
SQL Server 2012 Reporting Services

and Teradata Database

SQL Server Technical Article

Writer: Houman Ghaemi, Simba Technologies

Contributors: Craig Guyer, Mary Lingel

Technical Reviewers: Cal Arabshahi, Aaron Myers, Rupal Shah, Andre Magni

Project Editor: Deborah Dinzes

Published: January 2014

Applies To: Microsoft SQL Server 2012

Summary: This article discusses the connectivity and usage of Microsoft SQL Server 2012

Reporting Services (SSRS) with the Teradata Database using the .NET Data Provider for

Teradata. For Teradata users that are new to working with Reporting Services, this article aims to

present tips and Teradata features that can help make the most of SQL Server Reporting

Services. For Reporting Services users that are new to using Teradata as a data source, the article

serves as an introduction to working with different data types and characteristics that are specific

to the Teradata database.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=R0dZCpPQRYjJFM&tbnid=bDHbhIbTP4QP4M:&ved=0CAUQjRw&url=http://blogs.technet.com/b/swisssql/archive/2011/10/15/sql-server-2012-all-the-announcements-from-sql-pass-summit-2011.aspx&ei=WfC_UebdF8THiwKnlIHoAQ&bvm=bv.47883778,d.cGE&psig=AFQjCNH-wYHawiKGFvJVTKBHTmX9fir76w&ust=1371619797207845

Introduction: Reporting Services Connectivity with

Teradata

Since the release of SQL Server 2008 Reporting Services (SSRS), Teradata users can take

advantage of a rich report authoring environment. Reporting Services can interoperate with

Teradata using the .NET Data Provider for Teradata and Teradata users can continue to take full

advantage of Reporting Services capabilities without migrating data to another platform.

About This Document

This article is designed for customers and partners who are interested in using Reporting

Services with a Teradata relational database. Topics covered in this article include:

 Prerequisites, installation, and configuration

 Teradata-specific terms and concepts

 Teradata client tools

 Report design and Teradata relational data sources

 Leveraging Teradata Database features

 Teradata Database native data types

 Troubleshooting tips

 Appendix A – Teradata Connectivity

 Appendix B – Teradata Database

This article is intended to complement the documentation available in SQL Server Books Online.

This article assumes a basic understanding of Reporting Services, report server projects and

Report Builder 3.0. It is recommended that the reader complete the tutorials in SQL Server

Books Online, or acquire an equivalent know-how on the prerequisite topics.

http://msdn.microsoft.com/en-us/library/ms159106.aspx
http://msdn.microsoft.com/en-us/library/ms159106.aspx

Prerequisites

To use a Teradata Database as a data source with Reporting Services, you need the following

components:

· Microsoft SQL Server Reporting Services

· .NET Data Provider for Teradata

The .NET Data Provider for Teradata is the ‘advocated’ interface for Reporting Services. The

.NET Data Provider for Teradata is an implementation of the Microsoft ADO.NET specification.

Once installed, the .NET Data Provider for Teradata supports all required ADO.NET interfaces

and classes.

The following table summarizes the ‘official’ supported configurations with SQL Server 2012

and 2008 Reporting Services:

Teradata Database 14.10 14.0 13.10 13.0 12.0

SQL Server 2008 √ √ √ √

SQL Server 2008 R2 √ √ √ √

SQL Server 2012 √ √ √ √

Below is Teradata versioning for ‘major’, ‘minor’ and ‘bug or enhancement’ release.

 14.00.00.xx is a ‘major’ release

 14.10.00.xx is a ‘minor’ release

 xx denoted intermediate releases to address issues and/or enhancement (i.e. 14.00.00.01)

The .NET Data Provider for Teradata is ‘backward’ and ‘forward’ compatible with the Teradata

Database and SQL Server Reporting Services versions. For example, .NET Data Provider for

Teradata version 13.10.00.xx can work with Teradata Database 14.10.00.xx and SQL Server

2008. Or .NET Data Provider for Teradata version 14.10.00.xx can work with Teradata Database

14.00.00.xx and SQL Server 2012.

Higher Versions of .NET Data Provider for Teradata

Starting with .NET Data Provider for Teradata version 12.00.01.00 and higher, you need to

select the Publisher Policy option from the Select Features select dialog box when installing or

upgrading the .NET Data Provider for Teradata. Publisher policy installs on default when you choose

Setup Type ‘Complete’

The publisher policy enables ‘backwards’ compatibility with applications built from an earlier

version of the .NET Data Provider for Teradata. The publisher policy will automatically bind the

higher version of the .NET Data Provider for Teradata version at run time. For example, if

Reporting Services used version 13.10 of the provider, and the user installs version 14.10 and

installs the publisher policy file. At runtime, CLR will load the Data Provider version 14.10

instead of looking for the Data Provider version 13.10.

Installation Overview

A default installation of Reporting Services has the capability of connecting with a Teradata

database using the .NET Data Provider for Teradata. The .NET Data Provider for Teradata can

be downloaded from the Teradata web site here or is now available on Teradata Tools and

Utilities suite version 14.10 or higher..

For more information about installation of the .NET Data Provider for Teradata, see the Readme

file that accompanies the provider or search the Teradata web site for additional help.

SQL Server Data Tools (SSDT)

The SQL Server Data Tools is one of the report authoring environments for Reporting Services

2012. You can also author reports using Report Builder 3.0. Report Builder is a click-once

application that supports the full capabilities presented in this document, for more information

about Report Builder click here.

This section gives a brief overview of SQL Server Data Tools, and any data source specific notes

associated with using a Teradata data source in SQL Server Data Tools.

Unlike Reporting Services 2008 which had two types of report projects that can be created in

Business Intelligence Development Studio. The first being, report server and the second being

report model projects. In Reporting Services 2012 report model has been dropped and only

report server projects can be created in SQL Server Data Tools for reporting against Teradata

relational database. A report server project supports the traditional design experience in SQL

Server Data Tools.

Report Server project type is discussed in more detail in paper.

Report Server Projects

The purpose of the report server project, in the context of Teradata, is to create a report by

directly querying the database and using the rich report design options available in SQL Server

Data Tools. The following is a summary of the steps that a typical user goes through to create

and deploy a report:

http://downloads.teradata.com/download
http://www.teradata.com/
http://www.microsoft.com/en-us/download/details.aspx?id=29072

1. Within a report server project, a data source is created. Data sources are representative of the

database connection.

2. One or more datasets are created based on a data source. A dataset is a table of rows and

columns that are returned by a query.

3. A report, which is a visual representation of the data returned by the data set (or query), is

created from the datasets.

4. The report is deployed to the report server.

Upon deployment, end-users can request the server to process the report to see the final results.

This section describes some of the steps involved in detail. Specifically, the steps are focused on

nuances of working with Teradata as a data source. For more information about working with

report server projects, see Reporting Services Tutorials.

Creating a Report Server Project and Data Source

1. In SQL Server Data Tools, click File, then New, and then Project. Select Reporting

Services from the Installed Templates section and select Report Server Projects from the list

of project templates as shown in Figure 1.

Figure 1: Creating a report server project

http://msdn.microsoft.com/en-us/library/bb522859.aspx

After you create a new project, you will see three nodes (or folders) in the Solution Explorer

window. If Solution Explorer is not visible, you can activate it by selecting View then Solution

Explorer, or alternatively, by using the keyboard shortcut Ctrl+Alt+L. The first node (or folder)

is Shared Data Sources, the second is Shared Datasets and third second is Reports.

At this point, you have two choices. First, you can create a shared data source to be used in all

your reports, or second, create a report with its private (i.e. embedded) data source.

2. Create a shared data source by right-clicking on the Shared Data Sources folder and

selecting Add New Data Source. Type a name for your data source and select Teradata for

Type as shown in Figure 2.

Figure 2: Creating a shared data source

3. You can either enter a connection string or click Edit to build one which will open the

Connection Properties dialog box shown in Figure 3.

Figure 3: Teradata Connection Properties dialog box

The ‘basic’ connection information to access Teradata requires Server name, User name and

Password. The Connection Properties dialog box is customized for Teradata and was installed

when the .NET Data Provider for Teradata was installed. Note that all fields are disabled until a

server name or IP address is entered in the Server name box.

Note, the .NET Data Provider for Teradata uses the Teradata system (TDPID or DBC-Name)

name. For more information, see "Teradata Host Naming Convention" section in this article.

After filling in your username and password, click Test Connection and you should see a

message box noting ‘Test connection succeeded’. If you don’t see this message, you may need to

click Teradata Authentication Mechanisms and change the authentication mechanism using the

Mechanism box (as shown in Figure 3). Otherwise, check with your administrator to ensure you

have access to the Teradata Database.

The Advanced button enables you to edit all connection string properties. For optimal

experience, see Appendix A – Teradata Connectivity for more information about connection

string properties and recommendations or see the Teradata help files that are installed with the

.NET Data Provider for Teradata.

Creating a New Report and Data Set - Report Server Project Type

1. In Solution Explorer, right-click on the Reports node and then select Add New Report as

shown in Figure 4.

Figure 4: Adding a new report in Solution Explorer

2. The Report Wizard is now open. If you see the Welcome page, click Next to move to the

Select the Data Source page as shown in Figure 5.

Figure 5: Specifying a data source

At this point, you have the option of selecting a shared data source or creating a new data source.

Click Next to continue.

3. On the Design the Query page, you can type in your query, or click on Query Builder to

create a data set as shown in Figure 6.

Figure 6: Report Wizard Design the Query page

4. If you click Query Builder, then you will see the text-based query designer as shown in

Figure 7.

Figure 7: Text-based query designer

Note, Query Designer does not support UI for Teradata data sources only ‘Text’ editor.

This query designer allows you to directly edit the SQL command text sent to the database. A

graphical query designer, such as the designer used for SQL Server, is not available when using

the Teradata provider. The text-only designer is used for several data source types in Reporting

Services and Report Builder therefore is not optimized for any one data source type in

particular.

In the Dataset Properties window, the only Query type available is Text. Hence, in the Query

Designer window, the Command Type box only contains the Text option. The Text mode is the

most commonly used and allows you to enter a standard SQL query, Teradata Stored Procedure

and a Teradata Macro for a dataset. TableDirect is not supported by SQL Server Reporting

Services for a Teradata data source.

 5. After you enter your query and click OK, you will see additional steps in the wizard which

allow you to format your report fields and finally you will see a report in the design view as

shown in Figure 8.

Figure 8: Finished report in design view

Previewing and Deploying the New Report

1. You can now see the dataset you created in the Report Wizard in the Report Data window.

The Report Data window can be opened by selecting View, then Report Data. An example of a

dataset is shown in Figure 9.

Figure 9: Report Data window showing new data sets

2. To see how your new report looks, click Preview. A sample report preview is shown in

Figure 10.

Figure 10: Report preview

3. The final step in the cycle of report creation is to deploy the report to a Reporting Services

server where it can be viewed by many users. For more information about report deployment and

processing, see Publishing Data Sources and Reports.

For more information about how to work with datasets and reports, see the following: Report

Design Basics and Reporting Services in SQL Server Data Tools.

How to Explore Teradata Database Entities

As noted earlier, the Report Designer in SQL Server Data Tools provides a text-based query

designer when working with a Teradata data source.

To assist in query creation, Server Explorer, found in SQL Server Data Tools, can be used to

graphically explore a Teradata database structure as well as author queries which can be copied

and pasted into a Reporting Services dataset.

To access Server Explorer in SQL Server Data Tools, select menu item View, then Other

Windows, then Server Explorer. You can also use the keyboard short cut <Ctrl>+<Alt>+<S>.

Server Explorer not only reveals the tables, views, and stored procedures; it also shows the

fields, and primary and foreign keys of the tables.

http://msdn.microsoft.com/en-us/library/cc281175.aspx
http://msdn.microsoft.com/en-us/library/ms159267.aspx
http://msdn.microsoft.com/en-us/library/ms159267.aspx
http://msdn.microsoft.com/en-us/library/ms173745.aspx

 Figure 11 shows an example of a Server Explorer window.

Figure 11: Server Explorer

Working with Report and Query Parameters

Report parameters allow end users to enter values (or use specified defaults), which are used

when a report is processed. The new value replaces the parameter placeholder. For example, a

report based on sales by country could support a parameter for country name. Therefore, the end

user may choose the countries with which to filter the report at report execution time.

In Reporting Services, there are two types of parameters in a report: report parameters and

query parameters. Report parameters (or filters) that are not tied to a query parameter are

processed by the report server, while query parameters are processed on the data source server.

Depending on your reporting requirements, design reports to use query parameters versus report

filters to push processing to Teradata Database (Figure P-1)

Figure P-1: Dataset Properties page for Query Parameter setting

Using hard-coded or parameterized (user prompt) queries, ensures backend database performs

the heavy lifting and returns data which is required for the request as shown in Figure P-2.

Figure P-2: Dataset Properties page for Query statement

Whereas, report filters will process in the middle-tier against more data than requests may

require

In some scenarios, you will want to use report parameters. For example, you have a large result

set that takes a long time to process and your data will not change during the day, you might

consider taking a snapshot of the report and you can use the report parameters to properly filter

the report. For more information on Snapshot execution and report filtering, refer to

Performance, Snapshots, Caching (Reporting Services).

In addition, there are two types of report parameters that one can create: a single-value parameter

and multi-value parameter.

The report parameters can be named or unnamed.

Teradata only supports unnamed parameters. An unnamed parameter is denoted by a ‘?’, and is

merely a placeholder for data that is going to be entered at report processing time. For example,

the following is a dataset with a single-value unnamed query parameter:

Select * from A where A.aid = ?;

For a multi-value parameter use an IN clause with ‘(?)’, the end-user has the option to select

from a list of available values. The following query uses a multi-value parameter:

Select * from A where A.aid in (?);

For more information about the Reporting Services report parameters, see the following: Adding

Parameters to Your Report and Using Single-Valued and Multivalued Parameters.

Working with Teradata Macros

Teradata macros are similar concepts to stored procedures. A Teradata macro can be called using

exec <macro name>in the Design the Query page as shown in Figure 6. A Teradata macro

normally returns at least one result set. For example, the following macro will generate two

result sets:

 replace macro get_promo(ID smallint) as (

 sel * from promotion where promotion_id = :ID;

 sel * from sales_fact_1997 where promotion_id = :ID;);

The Reporting Services query designer will only return and process the first result set. If you

have macros that return more than one result set from which you need the data, then you need to

create wrapper macros that join the result sets into a single result set, or modify your report

design to use multiple datasets; for example, showing two tables rather than one.

http://msdn.microsoft.com/en-us/library/bb522786.aspx
http://msdn.microsoft.com/en-us/library/ms155917.aspx
http://msdn.microsoft.com/en-us/library/ms155917.aspx
http://msdn.microsoft.com/en-us/library/aa337292.aspx

Working with Teradata Query Band Feature

Though, no ‘official’ integration or support exists between Microsoft Reporting Services and

Teradata Query Band feature, there are some ‘limited’ ‘out-of-the-box’ capabilities for

governance and managing Teradata database workloads. To enable appropriate priority and

Teradata database resources to reports and users to meet agreed upon SLA(s) requirements.

The Teradata Query Bands feature was introduced in Teradata Database v12 to provide a means

to set name/value pairs across individual Database connections at a Session or Transaction level

to provide the database with significant information about the connections originating source.

This provides a mechanism for Applications to collaborate with the underlying Teradata

Database in order to provide for better Workload Management, Prioritization and Accounting.

Through utilizing of this feature it is expected that improvements in Supportability, Logging,

Security and Notification will also be achieved
1
.

At a ‘high-level’, the .NET Data Provider for Teradata supports and enables the provider to

manage Query Bands for applications. Query Band can be defined within the connection string

using the Query Band attribute using name/value pairs. Depending on your requirements, this

can be achieved with Reporting Services shared or embedded data source connections. Using

either ‘static/hard-coding’ Query Band attributes key=value pairs (Figure 12) or using Reporting

Services Expression-based Connection String (ECS) editor (Figure 13) to pass ‘dynamic’ values

to Query Band attributes from Reporting Services built–in fields and/or report parameters for

your connection string.

Note, it is assume readers of this section are familiar with Teradata Query Band feature
2
 and

Reporting Services Expression-based Connection String feature.

Creating a ‘static’ or ‘hard-coded’ Query Band statement

To submit a Query Band statement at an application level for a group of reports and/or user

group or for a ‘single’ user, a ‘static/hard-coded’ Query Band statement might suffice. Simply

open your shared or embedded data source and enter appropriate Query Band information. The

following is a summary of the steps that a typical user goes through to define a static or hard-

coded Query Band within the connection string using the Query Band attribute.

1. Within a report server project, create or open a Shared or Embedded data source which

represents your database connection and click edit button (Figure 2 above)

2. In Connection Properties, click on Advance button to open Advance Properties. Expand

Query Band attribute (Figure 12)

1 Referenced Teradata Orange Book – “Reserved” Query Band Names for use by Teradata, Customer and Partner

applications
2
 Referenced Teradata Orange Book – Using Query Banding in Teradata Database

http://msdn.microsoft.com/en-us/library/ms156450.aspx

Figure 12: Advanced Properties page for Query Band attributes

3. By setting values to any Query Band keys, the Query Band definition will be applied when

opening a connection to Teradata. For example, setting Application Name=’West Regional

Reports’ and Group=’marketing’ will generate the following connection string and Query

Band statement to Teradata.

Connection String

Database=marketing; Data Source=12.105.999.9; ….

Query Band="APPLICATIONNAME=West Regional Reports; GROUP=marketing;"

Query Band statement in Teradata DBQL logs

SET QUERY_BAND = ‘GROUP=marketing; APPLICATION=West Regional Reports;
QueryIssueTime = 2012-03-02T14:01:38.316188Z;' FOR SESSION

SET QUERY_BAND = NONE FOR SESSION

4. Type in your query on the Design the Query page, click Finish and Preview your report for

correctness.

5. The final step of deploying the report keeps the Query Band settings intact. Furthermore,

Report Builder users can use the shared data source which will continue to leverage the

Query Band settings in place.

Creating a ‘dynamic’ Query Band statement

To provide more details about the individual user and report will require creating a ‘dynamic’

Query Band definition with Reporting Services Expression-based Connection String (ECS)

editor (Figure 13). This will provide the level of detail for Teradata workload management

requirements and sites that require end-users to be individually identified and authorized using

Teradata Trusted Sessions. Since, the .NET Data Provider for Teradata supports Query Band, it

supports Trusted Sessions using specific Query Band key=value pair called Proxyuser and

Proxyrole. When a proxy user requests database access, the application forwards the user

identity and applicable role information to the database in the form of a Query Band statement.

Figure 13: Expression Editor

The expression must be written in Visual Basic and is processed at run time or when the report is
previewed. The following requirements apply to be able to use ECS when defining a data source
expression:

 Use Report Wizard
 Must use ‘Embedded’ (not Shared) data source connections for ‘each’ report
 ‘Shared’ data source connections do not support ECS definition
 Must use .NET Data Provider for Teradata
 Specify credentials separately from the connection string
 Can use a report parameter and/or built in field to specify a ‘static’, query-based value or

built in value for a Query Band parameter and values
 Before publishing the report, replace the static connection string with an expression
 Updates to a report may require converting between ECS and ‘static’ connection

See Expression-based Connections String for more information.

At a ‘high-level’, design the report with a ‘static’ connection string which allows you to connect

to the data source in Report Designer so you can get the query results you need to create the

report. Test your report and then replace ‘static’ connection string with an expression based

connection string before deploying report. The following is a summary of the steps that a user

goes through to define a ‘dynamic’ Query Band to their report using Expression-based

http://developer.teradata.com/database/articles/security-administration-accessing-the-teradata-database-through-a-middle-tier
http://msdn.microsoft.com/en-us/library/ms156450.aspx

Connection String feature to supply ‘run time’ values to the Query Band attribute in the

connection string.

1. Within a report server project, right-click on the Reports node in Solution Explorer and

select Add New Report as shown in Figure 14 or double-click on Report1 from earlier

example above and go to step 4 to change the data source from shared to embedded.

Figure 14: Adding a new report in Solution Explorer

2. The Report Wizard is now open. If you see the Welcome page, click Next to move to the

Select the Data Source page as shown in Figure 15.

Figure 15: Specifying a data source

3. At this point, you have the option of selecting a shared data source or creating a new data

source. If you choose New data source for our embedded data source connection, provide a

Name for your New data source connection, Type of data source should be Teradata for the

.NET Data Provider for Teradata. Click Edit (Figure 16) to provide the Teradata Server

name, User name and Password.

Figure 16: Teradata connection properties

It is also suggested to click on Advanced dialog to enter any Query Band ‘static’ and/or

placeholder values you plan to use and/or derive from the expression based connection string

feature (see Figure 12) above. For example, Query Band attribute GROUP=’marketing’

might be a ‘static’ value, but CLIENTUSER= or PROXYUSER=’placeholder’ might be a

run time derived value using a built-in field (i.e. UserID) with Expression based Connection

String editor. For Teradata Trusted Sessions sites using domain users to identify and

authorize access to Teradata see Hint below to derive user name from UserID built-in field to

set PROXYUSER. This will be clearer in step 7 below.

Finally, click OK and then click Next as shown in Figure 17 and continue to step 6.

Figure 17: Select the Data Source with ‘static’ connection string

4. Use steps 4 and 5 to change existing Report1 data source from shared to an embedded data

source. Expand Data Sources under Report Data pane (Figure 18) and click on Data

Source Properties to change earlier Shared data source connection to Embedded.

Figure 18: Data Sources under Report Data

5. Choose Embedded connection, Teradata for Type and Edit to re-establish connection to

Teradata. Reference steps 3 and Figure 16 above to re-establish connection and Query Band

statement to display Figure 19 and click OK

Figure 19: Data Source Properties

6. On the Design the Query page (Figure 6), enter your query and click Finish and test you

‘static’ embedded connection string and query by clicking on Preview tab before proceeding

to the next step.

7. In the next few steps, we will change your embedded ‘static’ connection string to an

expression based connection string and replace any Query Band ‘placeholder’ values (from

step 3) with built-in field parameters for your Query Band statement for this report. Though,

report parameters can also be used with an expression, this example does not warrant its use.

8. To open the Expression editor (Figure 20), click your Data Source Properties (Figure 19

above) and click on fx button under Edit button.

Figure 20: Expression Editor

9. In this example, we set Query Band attributes CLIENTUSER and APPLICATIONNAME

with ‘static’ or placeholder values. To provide specific information about the user and actual

report name, under Category using Built-in Fields UserID and ReportName will provide

just such information.

10. Before double-clicking a built-in field, insert ‘=’ before the expression, otherwise your whole

connection string will disappear. Then highlight your ‘placeholder’ and ‘static’ values and

double-click built-in fields UserID and then ReportName items as shown in Figure 21.

Figure 21: Expression based Connection String after Built-in Field replacement

11. Next, modify expression syntax for correctness as shown in Figure 22, pay particular

attention to:

 Single quotes: Replaces initial double quotes around Query Band statement

 Double quotes: Used between strings and ‘static’ values

 ‘&’ placement: Used between Built-in Fields

Figure 22: Expression based Connection String using built-in fields for Query Band

12. Click OK twice and test report with new expression based connection string using Preview

tab. The following as shown in Figure 23 and 24 are typical errors due to misplacement of

single and/or double quotes in your expression.

Figure 23: Error due to misplaced double quote

Figure 24: Error due to misplaced single quote

13. Successful run of your report will generate the Query Band statement with the report query to

Teradata Database as captured in Teradata DBQL logs.

SET QUERY_BAND =

'APPLICATIONNAME=Report1;CLIENTUSER=TD\rs122158;GROUP=marketing;QueryI

ssueTime=2013-06-11T15:08:27.206075Z;' FOR SESSION

select * from realtd.vtbl_dim_store

SET QUERY_BAND = NONE FOR SESSION;

Hint: For setting up Query Bands with Teradata Trusted Sessions, use the Built-in field

UserID with the following code to pass the current SSRS user logged on (minus the domain)

to Query Band attribute PROXYUSER. To remove the domain in the UserID field use the

following code:

"& MID(User!UserID,InStr(User!UserID,"\")+1, Len(User!UserID)) &";

14. Updates to a report after deployment and/or during report design after establishing an

Expression based Connection String may require converting between ECS and ‘static’ (i.e.

Data Source Properties Edit button) connection during testing.

Note, Query Designer does not support reports with an Expression based Connection Strings
as shown in Figure 25. You must convert back to a ‘static’ connection string to use Query
Designer.

Figure 25: Query Designer error message with Expression based Connection String

As the above examples have demonstrated, Reporting Services has some ‘limited’ out-of-the-

box capabilities with Teradata Query Band feature to provide better governance and

workload management of applications running against Teradata database.

Some of the benefits are,

 Works for Reporting Services and Report Builder

 Allows dynamic and static parameter provision to Teradata

 Can configure Teradata Trusted Sessions using Query Band key/value pair Proxyuser and

Proxyrole.

 Teradata workload management software can pick up Query Band statements for meeting

agreed upon SLA requirements.

Some implementation considerations to be aware of are,

 No global parameter setting for pre and post based processing.

o Requires creating an Expression for each report with an embedded connection

string.

 Prevents metadata retrieval of columns in data set until run time.

o Users must first create static connection and replace with expression

 Report Builder Data Source Properties Connection String Edit/Build button is greyed out.

o Users will need to manually create or cut and paste ‘static’ connection string

definition for Teradata.

 Updates to reports will require converting between Expression based and ‘static

connections string definition.

 Query Designer does not work with Expressions based Connections String

Working with Teradata Temporal Feature

Though, no ‘official’ integration or support exists between Microsoft Reporting Services and

Teradata Temporal Table feature. There is some ‘rudimentary’ capabilities ‘out-of-the-box’ to

enable Reporting Services to design reports against Teradata Temporal tables where applications

need to design and build databases where information changes over time.

Teradata Temporal Table feature was introduced in Teradata Database v13.10 to support

temporal ‘time-based’ analytics. Teradata Database provides the built-in capabilities that are

required in a temporal database management system. Temporal data types and temporal

statements facilitate creating applications that need to represent time and the information that

changes over time. The ‘major’ components for this feature are:

 Temporal Data Types – The PERIOD data type represents an anchored duration of time.

 Kinds of time – Teradata temporal table support adds the capability to add VALIDTIME and

TRANSACTIONTIME column attributes to time dimension tables.

 Temporal statements – Temporal SQL modifiers for existing statements that let you create

and alter temporal tables, query and modify data that changes over time.

Period Data Type

Teradata provides temporal table support at the data type level with period data types. A period

is an anchored duration that represents a set of contiguous time granules within the duration. It

has a beginning bound (defined by the value of a beginning element) and an ending bound

(defined by the value of an ending element). Beginning and ending elements can be DATE,

TIME, or TIMESTAMP types, but both must be the same type.

Temporal Table

Temporal tables store and maintain information with respect to time. Temporal tables include

one or two special columns, which store time information:

• TRANSACTIONTIME column records and maintains the time period for which Teradata

Database was aware of the information in the row. Teradata Database automatically enters

and maintains the transaction-time column data, and consequently automatically tracks the

history of such information.

• VALIDTIME column models the real world, and stores information such as the time an

insurance policy or product warranty is valid, the length of employment of an employee, or

other information that is important to track and manipulate in a time-aware fashion. When

you add a new row to this type of table, you use the valid-time column to specify the time

period for which the row information is valid. This is the period of validity (PV) of the

information in the row.

As rows are changed in temporal tables, the database automatically creates new rows as

necessary to maintain the time dimensions. UNITL_CLOSED and UNTIL_CHANGED are used

to represent the end bound values of the newly created rows for TRANSACTIONTIME and

VALIDTIME period values.

A Teradata table is considered non-temporal if VALIDTIME and TRANSACTIONTIME

columns attributes are not defined with PERIOD data type column. Besides, being able to mix

and match temporal and non-temporal columns, you can also define both VALIDTIME and

TRANSACTIONTIME on a table, which is then called a BI-Temporal table.

Temporal Statements

Queries and modifications can include temporal qualifiers that reference a time dimension and

act as criteria or selectors on the data. They affect only the data that meets the time criterion.

Temporal DML statements can be generally qualified as:

• CURRENT, affecting only data that is currently in effect

• SEQUENCED, affecting only data that is in effect for a specified time period

• AS OF, affecting only data that is in effect at a specified point in time

• NONSEQUENCED, where the time dimension is ignored, the table is treated as a non-

temporal table, and DML is applied to all data in the table

For more information, please reference Teradata Temporal Support documentation here.

Interoperability

At a ‘high-level’, Reporting Services ‘out-of-the-box’ does recognize PERIOD data types in

queries with

 Non-Temporal – Tables which does not use TRANSACTION and VALIDTIME column

attributes with the PERIOD data type column

 Temporal – Tables which use the TRANSACTION and VALIDTIME column attributes

with the PERIOD data type column

However, workarounds are required when writing Temporal SQL statements with parameterized

queries using unnamed parameters (i.e. ?) for DATE values with Reporting Services Report

Wizard. Initial reports need to be designed with a ‘hard-coded’ value and then modified to a

parameterized query using Query Designer with a Report Parameter. In addition, Query

Expression Editor fx will be required if DATE value from Calendar control UI is not an option

and requires a ‘manual’ DATE to be enter by user.

There is no integration to help design temporal queries with Temporal SQL Qualifiers to the

extent of what you can enter in the Reporting Services Report Wizard and Query Designer

‘Text’ only editor for Teradata.

Note, it is assume readers of this section are familiar with Teradata Temporal Table feature and

Reporting Services features.

http://www.info.teradata.com/

Teradata Database

The examples below will reference a company’s payroll where if you know what Event (i.e.

when someone got Hired, Fired or moved to another organization) as shown in Figure 26 and the

DATE you’re interested, you will be able to send a request to the database such as

“Show me the payroll report after some Event has happened in our company”

Tables and data used in this section can be found in Appendix B – Teradata Database. For

simplicity, examples below use only VALIDTIME, but a large part of temporal databases require

BI-Temporal implementation.

Figure 26: Temporal Events

Create a Teradata Temporal query

The following are a few ‘simple’ examples of creating a Teradata Temporal query.

1. In Solution Explorer, right-click on the Reports node and then select Add New Report as

shown in Figure 4 above. Chose or create a shared or New embedded Data Source and click

Next

2. On the Design the Query page (Figure 6), enter the Temporal query example below. To save

report click Next and Finish. Click Preview tab to run the report. To repeat for each example

below, double click DataSet1 object to display Dataset Properties to enter/modify a new

query.

Example 1

A normal select will equate to current validtime and will display the ‘current’ salary values

for an employee as show in Figure 27. This is similar to “current validtime select * from

salary” and would give the same result.

select * from salary

Figure 27: Current employee salary

Example 2

To show the validtime column and show all salary data over time for an employee as shown

in Figure 28, add the temporal SQL qualifier sequenced validtime and add the column

VAILDTIME to the report.

SEQUENCED VALIDTIME

select * from salary

Figure 28: Shows validtime along with all salaries over time

Example 3

Finally as shown in Figure 29, to view all current employee’s salary and departments they

work for prior to Jack being hired ‘2010-06-01’ (Figure 26) enter following SQL and modify

report columns accordingly.

VALIDTIME AS OF DATE ‘2010-03-01’

select e.name, d.dept_name, s.salary

from employee e , department d, salary s

where e.d_id = d.d_id and e.e_id = s.e_id

Figure 29: Employee salary and departments before Jack was hired

Tip: Check for appropriate single quote usage for literal values after any cut and paste task.

Otherwise, you may experience following warning messages as shown in Figure 30 and 31.

Figure 30: After enter SQL and clicking OK

Figure 31: After clicking on Refresh Fields

Create a Teradata Temporal ‘parameterized’ query

The following steps are what a typical user would need to perform for Temporal parameterized

statements using Reporting Services Report Wizard and Calendar control UI to prompt a user for

a DATE value. High-level steps include first creating Temporal parameterized statement with a

hard-coded value, similar to Example 3 above. Then replacing hard-coded value with unnamed

parameter (i.e. ?) and then create a Report Parameter to prompt user for a DATE value using the

Calendar control UI as shown in Figure 32.

Figure 32: Calendar control UI for DATE value

1. Entering the following Temporal parameterized statement during Report Wizard (Figure 6)

will display an error message as shown in Figure 33 and Report Wizard will not continue.

VALIDTIME AS OF ?

select e.name, d.dept_name, s.salary

from employee e , department d, salary s

where e.d_id = d.d_id and e.e_id = s.e_id

Figure 33: Warning message for Temporal parameterized statement

2. Instead, ‘hard-code’ the temporal statement with the DATE value as shown in Example 3

above and save report.

3. Then double click DataSet1 object to display Dataset Properties to modify query for

unnamed parameter ‘?’ as shown in Figure 34.

Figure 34: Dataset Properties Query dialog

Note, Temporal statement does not need DATE syntax when using Reporting Services

Calendar control UI (Figure 32)

4. Click OK and ignore Define Query Parameters message as shown in Figure 35 and click

OK twice do not CANCEL. Otherwise, DataSet columns in your report will not appear

under Report Data and make report usable and received error message as shown in Figure

35-1 when you try to run the report.

Figure 35: Define Query Parameter dialog

Figure 35-1: Error message if Cancel is chosen

5. Next create the Report Parameter, click on Design tab, and right click Parameters in Report

Data pane and Add Parameter. Change ReportParameter1 Name and Prompt to something

more meaningful like DateParam and set Data type to ‘Datetime’ as shown in Figure 36 and

click OK.

Figure 36: Report Parameter Properties

6. Add the Report Parameter (i.e. @DateParam) to the Dataset Properties page for

Parameters as shown in Figure 37. Parameter Name is the unnamed parameter ? and

Parameter Value is @DateParam you just created in the previous step. Click OK

Figure 37: Adding a Report Parameter in Dataset Properties page

7. Click Preview tab to run report. Pick Date from Calendar prompt or type Date value (i.e.

2010-09-01 or 9/1/2010) as shown in Figure 38.

Figure 38: Preview tab and Calendar control UI

8. Click View Report to run report as shown in Figure 39.

Figure 39: After Jack was hired

Use Expression editor if Calendar Control UI is NOT an option

If Calendar control UI is not an option for your reporting requirements. For example, end users

will be required to enter a DATE value as shown in Figure 40 which is also possible with

Calendar control UI or be given specific drop down list of pre-defined or queried DATE values

as shown in Figure 41. Then the following Teradata temporal statement would apply with the

DATE syntax.

VALIDTIME AS OF DATE ?

select e.name, d.dept_name, s.salary

from employee e , department d, salary s

where e.d_id = d.d_id and e.e_id = s.e_id.

Figure 40: Manually enter DATE value

Figure 41: Report Parameter Properties predefine specific DATE values

You would follow the same steps above, create the report with a hard-coded DATE value, edit

the report with the unnamed parameter ‘?’. Create the Report Parameter with Date type ‘Text’

instead of ‘Date/Time’, but then use Expression editor for Query as shown in Figure 42 by

clicking on fx button (Figure 34) to replace ? parameter with a Report Parameter expression.

Figure 42: Expression editor for Query

Otherwise, you will receive the following error message.

Figure 43: Error message when running report with ?

The same rules apply when replacing and modifying your report with Report Parameters within

the Expression editor see Creating a ‘dynamic’ Query Band statement steps 10 and 11 above.

In this example, we will be replacing ? with DateParam report parameter as shown in Figure 44.

Check your single and double quote placements.

Figure 44: Expression editor for Query replacing ? with report parameter

Finally, Preview the report as shown in Figure 45. If you encounter any errors, especially when

converting Calendar control UI to an Expression based report parameter review steps 10 and 11

above and delete any Report Parameter in Dataset Properties page (Figure 37) you may have

added for Calendar control UI designed reports which is not required when a report query is

converted to an Expression.

Figure 45: After Ppaolo moved to Marketing

Hint: Ensure you test your reports in SSDT Designer using ‘green’ refresh arrows (Figure 46).
Otherwise, you might experience errors with reports going against cached results versus against
the database. Refresh ensures current report definitions are accurate based on source.

Figure 46: Refresh/rerun report button

Note, Reporting Services does not recognize ‘set session’ syntax. The following will not work.

set session validtime as of date '2010-06-01‘

select b.projectname, a.date_id, sum(a.hours)

from fact_hours a, lu_employee_temporal b

where a.employee_id = b.employee_id

group by b.projectname, a.date_id

As the above examples have demonstrated, Reporting Services has some rudimentary ‘out-of-

the-box’ capabilities with Teradata Temporal table feature for applications that might need to

design report where information changes over time in a temporal based database.

Working with Teradata BLOB Data Type column

Reporting Services supports Teradata BLOB data type. The following is a summary of the steps

that a typical user goes through to create a report to display an image stored in a Teradata BLOB

data type column. Tables and data used in this section can be found in Appendix B – Teradata

Database.

1. In Solution Explorer, right-click on the Reports node and then select Add New Report as

shown in (Figure 4) above. Chose or create a Shared or New ’Embedded’ Data Source and

click Next

2. On the Design the Query page (Figure 6), enter the SQL query example below and click

Next and Finish to save report.

SELECT TestID, BLOBName, BLOBData FROM BLOBTest

3. Before you Preview the report, set the appropriate image properties to the BLOB data type

column in your report.

4. In Design view, right click our BLOBData column as shown in Figure B-1 and click

InsertImage

Figure B-1: Open Image Properties

5. In General page of the Image Properties as shown in Figure B-2, set Select the image

source to ‘Database’, Use this field to ‘BLOBData’ and Use this MIME type to

‘image/jpeg’ and Click OK.

Figure B-2: Image Properties General page to set BLOB column properties

6. (Optional) Click Size, Visibility, Action, or Border to set additional properties for the image report

item

7. Preview the report as shown in Figure B-3.

Figure B-3: Preview report

For more details, see http://technet.microsoft.com/en-us/library/dd239394.aspx

http://technet.microsoft.com/en-us/library/dd239394.aspx

Working with Teradata Spatial Data

Since the release of SQL Server 2008 Reporting Services (SSRS), Teradata users can take

advantage of some of the visualization capabilities the tool has to offer. In particular, using Map

Report feature to create, display and visualize/analyze your data. Using the Map Wizard will

allow you to create maps layers to let you visualize data against a geographic background.

Figure S-1: Map Report called Policy Report

In this section, we will examine the following:

 Map Report Overview

 Map Report Sources for Spatial Data

 Creating a Map Report with Teradata

 Creating an ESRI Shapefile for Teradata

 Creating a Map Report with an ESRI Shapefile

 Adding an analytic data set to a Map Layer

 Adding multiple ESRI Shapefile to a Map Layer

 Creating a Map Report using SSAS cube

Map Report Overview

Adding a map to your report you can visualize analytical data against a geographical

background. The four important concepts that need to be understood before you begin your

report are:

Spatial Data

Spatial data represents the geographical background in the report and it can be:

 Points: represent specific locations, such as cities and business locations.

 Lines: represent routes and/or paths.

 Polygons: represent areas, such as, states, countries and regions in general.

 Bing map tiles: represent Bing Map aerial or road views in the background.

Typical sources for spatial data are:

 ESRI (Environmental Systems Research Institute, Inc.) shapefiles, more information on

ESRI shapefiles for SSRS can be found here.

 Maps from the Map Gallery, provided out-of-the-box maps, but limited to USA.

 Spatial data from SQL Server spatial data sources

Analytical Data

Analytical data represents your business data, such as sales by state or crime rate by city.

Matching Field(s)

Matching field(s) are fundamental to map reports because they are used to tie your Spatial data

with your Analytical data. For example to display sales by city: your spatial data set should have

at least the name of the city (or code) and its latitude/longitude; your analytical data set should

have city name (or code) and total sales; and the matching field in this case would be city name

(or code).

Map Viewport

SSRS uses the Map viewport to control what is displayed and how. For example, you can use the

map viewport to determine the main/max coordinates of the map to display, center the map, and

control the zoom level.

http://social.technet.microsoft.com/wiki/contents/articles/767.find-esri-shapefiles-for-a-sql-server-2008-r2-reporting-services-map-ssrs.aspx

Map Report Sources for Spatial Data

SSRS only supports spatial data stored in SQL Server. Hence, for Teradata users, there is no

support to view or run a Teradata spatial query request within Map Report feature. Instead,

Teradata spatial data stored in a ST_GEOMETRY data type column must be exported to an

ESRI shapefile for Map Report to consume. In this section, we will demonstrate how you can

create map report using an exported ESRI shapefile from Teradata to analyze your data against a

geographical background. We will use Teradata TDGeoImportExport tool to export our Teradata

spatial data to an ESRI shapefile.

It is assumed reader is familiar SSRS Map Reports and with TDGeoImportExport
3
 tool which

can be download here.

Creating a Map Report for Teradata

The Map Report shown above in Figure S-1 is a Policy Report for a particular state. Basically,

shows the location of our policy holders/customers and associated coverage amount. The report

uses a Teradata POLICIES table (see Appendix B – Teradata Database) which has both spatial

‘point’ data in the GEOMETRY column and analytic or policy ‘coverage’ value in the

POLICY_VALUE column. Ideally, for performance spatial data and analytic data should exist in

separate tables or views. I created 2 views to represent my spatial and analytic data for my

report. The first view represents my policy holder locations and the second view represents their

policy amount.

replace view POLICIES_GEOM_V as select policy_id, geometry from policies;

replace view POLICIES_DATA_V as select policy_id, policy_value from policies;

Besides for demonstration purposes to show how to add an analytic data set onto a Map Layer.

The benefits to creating these views will ensure smaller shapefiles which translates to faster

rendering for my report and faster query response for my analytic data set query without

returning spatial data which map report does not support anyway. In addition, using views as a

source for a shapefile is a good way to leverage Teradata Database and Teradata spatial feature

and functions to define your spatial reporting needs. Definition of the table and sample of the

data used in this section can be found in Appendix B – Teradata Database.

Creating an ESRI Shapefile for Teradata

The first step is to create a shapefile for your Teradata spatial reporting needs. At a high-level,

after download and unzipping TDGeoImportExport tool into C:\Temp\TDGeoImportExport\bin

directory. The following command was ran to create a shapefile for POLICIES_GEOM_V.

3
 Reference Teradata Orange Book – Teradata 13.10 Spatial Features User’s Guide Version B02

http://technet.microsoft.com/en-us/library/ee240845.aspx
http://downloads.teradata.com/download/database/td-geo-importexport-tool-32-bit

C:\Temp\TdGeoImportExport\bin java -Xms256m -Xmx1024m -classpath

.;tdgssconfig.jar;terajdbc4.jar;tdgeospatial.jar; com.teradata.geo.TDGeoExport -l

12.105.999.99/dbc,dbc -s dbc -t policies_geom_v -f "ESRI Shapefile" point -o

c:\temp\geodata\policies_geom -n policies_geom

The output ESRI shape files will show up in c:\temp\geodata\policies directory as shown in

Figure S-2.

Figure S-2: ESRI Shapefile output for POLICIES spatial data

A few helpful notes (as of the writing of this document):

 Include the tdgeospatial.jar in CLASSPATH

 Users should install java jdk (1.6) on the machine you plan to run TDGeoImportExport tool.

You can check java version using c:\temp\TDGeoImportExport\bin>java –version

java version "1.6.0_41”

 Delete C:\Temp\geodata* when creating new shapefiles or create separate directories

 Use the appropriate spatial data option (i.e. point, linestring or polygon) after –f “ESRI

Shapefile” based on stored spatial data

 Mixed shapefile types (i.e. point, linestring and polygon) are not supported

 -t option can be table or view

 Create Teradata tables with last column as spatial column (i.e. ST_Geometry data type) and

one Unique Primary Index column for better results

Creating a Map Report using ESRI Shapefile

After the shapefile has been created you are ready to create your Map Report using ESRI

shapefile.

1. Open SQL Server Data Tools (SSDT) or Microsoft Business Intelligence Development

Studio (BIDS) and create a new Report Server Project. Note that this report can also be

created with Report Builder 3.0.

2. Add a new report. Do not use Report Wizard because it does not support creating maps,

instead use Report. Name the report PolicyReport.rdl.

3. Open the toolbar and double click the Map report item. This adds a Map Report Item to the

report and opens the New Map Layer wizard. The first page of the wizard is for setting the

source for spatial data. There are three options: Map gallery, ESRI shapefiles, SQL Server

spatial query.

Since Map Layer does not support Teradata spatial data type/queries. We need to use an

ESRI shapefile for drawing our spatial data. Select the second radio button and browse to the

directory where our shapefile POLICIES.shp is located as shown in Figure S-3.

Figure S-3: Choose a source of spatial data

Click Next to continue.

4. Review the settings in Choose spatial data and map view options. In this example, we will

checkmark Add a Bing Maps layer tile type Hybrid for our geographical background.

Alternatively, you could have used and started with Map Gallery (built-in map reports) and

then add your shapefile to the report. Click Next.

Adding an analytic data set to a Map Layer

5. There are three map visualizations under Choose Map Visualization. If you select either

Color Analytical Map or Bubble Map, you will need to provide a data set that contains data

to be analyzed. If our exported ESRI shapefile contained analytic data, we could select Basic

Map and continue without providing a data set. However, since we did create separate views

to access spatial and analytic data and created a shapefile without analytic data. We will use

Color Analytical Map or Bubble Map and click Next to show how you can add an analytic

data set to your Map Report.

Figure S-4: Choose map visualization

6. On Choose a connection to a data source, click New create a data source (embedded or

shared) for analytical data. Choose Teradata for type and ensure Data source references .NET

Data Provider for Teradata. Enter Server name, User name and Password and Test

Connection see Appendix A – Teradata Connectivity for additional connectivity guidance.

7. Name your data source and click OK and then Next to continue

Figure S-5: Data Source Properties

8. In Design a query window (Figure S-6), type in our analytic (i.e. POLICIES_DATA_V)

data query. The query returns the POLICY_ID and POLICY_VALUE for each policy holder.

Click Next

Figure S-6: Design a query

9. On the Specify the match fields for spatial and analytical data screen. This allows us to

specify the relationship between the spatial data loaded from POLICIES.shp file and the data

loaded from the query in the previous step. The first grid on the screen allows you to set

links between the two data sources. The second grid shows the columns in the spatial data

set, highlighting the column we use to match. The third grid contains data from the query,

again highlighting the column we use to match. We make a link with POLICY_ID between

data sets.

Figure S-7: Specify the match fields for spatial and analytical data

10. On the Choose color theme and data visualization screen, select [Policy_Value] for Field

to use bubble colors to visualize data. Click Finish to close the wizard and Preview the

report.

Figure S-8: Preview Policy Report

Note, Legend does not update in Design mode only in Preview mode with appropriate field

11. Next, on the report layout, we do not require Distance Scale and Color Scale. Right click the

Map area and deselect these from the menu as shown in Figure S-9.

Figure S-9: Map area properties Distance and Color Scale options

12. Next, we want to see Policy Values when we hover over a geographical point or policy

holder location. Right click your PointLayer1 under the Map Layers and select Point

Properties as shown in Figure S-10.

Figure S-10: Map Layer and Point Properties

13. In Map Point Properties page, we select Tooltip and choose POLICY_VALUE column and

click OK

Figure S-11: Map Point Properties

14. Finally, we can edit the report and legend names and Preview and Deploy the report as

shown in Figure S-1 above.

Adding multiple ESRI shapefile type to a Map Layer

To continue with our Policy Report example, we are told there is a hurricane reported in this area

and would like to know which policy holders this event might affect. We have spatial data that

not only identifies the path of the hurricane, but also the affect area once this hurricane hits

landfall. Our HURRICANE_PATH table contains spatial ‘line’ data for the hurricane path and

HURRICANE_AREA table with spatial ‘polygon’ data for the affected area. Definition of tables

and samples of the data used in this section can be found in Appendix B – Teradata Database.

The first step again, is to create the appropriate ESRI shapefiles for our hurricane path and area

spatial data information so we can add to our Map Report. Using TDGeoImportExport export

command earlier and the appropriate table/view, directory and ESRI Shapefile format (i.e.

linestring and polygon) we can create our shapefiles HURRICANE_PATH.shp and

HURRICANE_AREA.shp.

15. To add our new shapefiles, we open our Policy Report in Design mode, right click on Map

area and click on Add Layer

Figure S-11: Map area properties Add Layer option

16. Next, in New Map Layer as shown in Figure S-3 above, we choose ESRI Shapefile option

and select the HURRICANE_PATH.shp we just created and add that to our report as shown

in Figure S-12 and click Next.

Figure S-12: Choose spatial data and map view options

17. Review Choose Map Visualization, our Line Map does not contain any analytic data nor do

we care about color and theme for our Line Map, so we pick Basic Line Map and click Next

twice and click Finish.

18. Similarly, we can add our HURRICANE_AREA.shp which contains spatial ‘polygon’ data

and again choose the defaults to add the shapefile to our report and Preview the report as

shown in Figure S-13.

Figure S-13: Policy Report with polygon data layer

As above has demonstrated, you can use SSRS Map Report feature with Teradata though not

ideal versus ‘direct’ query support like SQL Server. We did show Map Report can consume

Teradata spatial data once exported to an ESRI shapefile using TDGeoImportExport tool.

Creating a Map Report using SSAS cube

Geographical visualization of a cube is very similar to adding an analytic data set to your Map

Layer. The approach is to map the cube analytic data to a Map Gallery (built-in map reports) or

an ESRI shapefile. This requires the SSAS cube (MOLAP or ROLAP) to have some type of

geography hierarchy which we can then map to a Map Gallery image or ESRI shapefile based on

analytic ‘geography’ data. Note, SSAS does not support ‘true’ spatial data types from SQL

Server or Teradata. Meaning, if cube contains world data Map Gallery reports will not work

because it contains only US maps. Hence, you would need to download an appropriate shapefile

to draw the world map. Free shapefiles can be found here or codeplex site. In addition, any

http://diva-gis.org/Data
http://uscdsql.codeplex.com/

analytic data set introduced to a Map Layer must match to map appropriately between spatial and

analytic columns. Note SSAS does not support spatial data types from SQL Server or Teradata.

The SSAS cube in this example is called Adventure Works which contains USA retail sales data

and a variety of dimensions including a geography hierarchy. We will follow most of the same

steps mentioned above with the modification of using Map Gallery report for the USA and

adding the cube as an analytic data set to the report.

1. Create a new Report Server project, add a new Report and double click the Map report

item. This time we will choose Map Gallery (built-in map report) choose USA by State and

click Next.

Figure S-14: Choose a source of spatial data

2. Review the settings in Choose spatial data and map view options and click Next

.

3. Under Choose Map Visualization, choose Color Analytical Map for our cube and click

Next.

Figure S-15: Choose map visualization

4. On Choose a connection to a data source, click New create a data source for your cube.

Choose Microsoft SQL Server Analysis Services and enter server and cube name and click

OK twice and click Next.

Figure S-16: Data Source Properties

5. In Design a query window, Map Wizard recognizes the data source is a cube and brings up

the cube browser to design our analytic query we want to map to our geographical map

report. We will drag ‘State-Province’ under ‘Geography’ hierarchy and drag ‘Reseller

Extended Amount’ measure. We will also filter on ‘Country’ for USA since our Map

Gallery report only contains map elements of USA as shown in Figure S-17.

Figure S-17: Design a query

6. Similar to step 9 above, on the Specify the match fields for spatial and analytical data

screen. We will specify a relationship between the spatial data from Map Gallery report

USA by State ‘STATENAME’ and our analytic (cube) data column ‘State-Province’ and

click Next.

Figure S-18: Specify the match fields for spatial and analytical data

7. On the Choose color theme and data visualization screen, select [Reseller_Sales_Amount]

for Field to visualize data. Click Finish to close the wizard and Preview the report.

Figure S-19: Preview Reseller Sales by States report

As above has demonstrated, you can use SSRS Map Report feature with a SSAS cube. In this

case, we showed how you can use a spatial map report from Map Gallery (or an ESRI shapefile)

and combine it with a SSAS cube data.

Additional Considerations on SSRS Maps
The legend, color scale and rules can sometimes be trick configure or understand, in this article

you will have a detailed explanation of how they work and how they are configured.

The Map Viewport does not support zoom and change map center (move the map) in run-time. A

possible work around to this scenario is to set map viewport properties, such as, Zoom level (%),

View Center (X)%, and View Center Y(%), through report parameters. This article gives the step

by step.

If you need to enable drill down functionality in your maps, for example from country to state,

you could use a combination of report actions and sub reports.

Let’s suppose you are creating a report with sales by state and you want to enable your users to

click on a state and then open a report on sales by county for that state. In this case you will

need:

1. Create a sales by state report.

http://technet.microsoft.com/en-us/library/ee240843.aspx#Legend
http://social.msdn.microsoft.com/Forums/sqlserver/en-US/2ef489f3-c8a5-4ab6-b68f-6f99b35e6b4d/is-it-possible-to-add-interactive-zooming-capabilities-to-map-reports-developed-by-report-builder

2. Create a second report where you have sales by county having the state as parameter (in my

example it is called PAR_State. You will need to load the appropriate shapefiles on the map

viewport.

3. Now you can go the Polygon properties of the sales by state report, and configure an action

to go to the sales by county report, as shown in the figure S-20 below.

Figure S-20: Map Polygon Properties

There are several good articles that you can use to learn more about the map viewport and also to

troubleshoot report maps.

Report Model on the Reporting Services Server

Report Models is a feature available to SSRS report developers in SQL Server prior to SQL

Server 2012. The recommended approach to modeling report data sets in SSRS with SSRS 2012

is using BI Semantic Models via Power Pivot or SSAS 2012 Tabular Models. You can find the

details of building Semantic Models for Teradata reports in SSRS 2008 at this link.

Although you can you continue to use existing report models as data sources in SQL Server 2012

Reporting Services reports you should consider updating your reports to remove their

dependency on report models.

SQL Server 2012 Reporting Services does not include tools for creating or updating report

models. For more information, see Breaking Changes in SQL Server Reporting Services in SQL

Server 2012.

http://technet.microsoft.com/en-us/library/ee240845.aspx
http://technet.microsoft.com/en-us/library/ee240843.aspx
http://msdn.microsoft.com/en-us/library/dd182005.aspx
http://msdn.microsoft.com/en-us/library/ms143380.aspx
http://msdn.microsoft.com/en-us/library/ms143380.aspx

Working with Teradata Data Types and Semantic Query

Functions

Most of the Teradata native data types are supported in Reporting Services. The following table

shows the mapping from Teradata database data types to the .NET types.

Teradata database type System.Data.DbType mapping

BIGINT Int64

BINARY LARGE OBJECT, BLOB Binary

BYTE Byte

BYTEINT Sbyte

CHAR, CHARACTER StringFixedLength

CHAR VARYING, CHARACTER VARYING

(same as VARCHAR)
String

CHARACTER LARGE OBJECT, CLOB String

DATE Date

DEC, DECIMAL Decimal

DOUBLE PRECISION Double

FLOAT Double

GRAPHIC StringFixedLength

INT, INTEGER Int32

INTERVAL DAY StringFixedLength

INTERVAL DAY TO HOUR StringFixedLength

INTERVAL DAY TO MINUTE StringFixedLength

INTERVAL DAY TO SECOND StringFixedLength

INTERVAL HOUR StringFixedLength

INTERVAL HOUR TO MINUTE StringFixedLength

INTERVAL HOUR TO SECOND StringFixedLength

INTERVAL MINUTE StringFixedLength

INTERVAL MINUTE TO SECOND StringFixedLength

INTERVAL MONTH StringFixedLength

INTERVAL SECOND StringFixedLength

INTERVAL YEAR StringFixedLength

INTERVAL YEAR TO MONTH StringFixedLength

LONG VARCHAR String

LONG VARGRAPHIC String

NUMERIC Decimal

REAL Double

SMALLINT Int16

TIME Time

*TIME WITH TIMEZONE String (not supported)

TIMESTAMP DateTime

*TIMESTAMP WITH TIMEZONE String (not supported)

*user-defined type (UDT) Partially supported. See Note following.**

VARBYTE Binary

VARCHAR String

VARGRAPHIC String

* These types are not supported because their type mapping to System.Data.DbType types were

not compatible with types that semantic query engine functions expected.

** Note: There are two types of UDTs: distinct, based on a single predefined type, and

structured, that is a collection of one or more fields (similar to a C language struct). For

structured UDTs, the Teradata database transforms the structured UDT into a primitive data type

when it is selected. Distinct UDTs are converted to their underlying primitive type. In practice,

the database column type is exposed using the Columns schema as a UDT. However, when the

field data is read, the underlying primitive type is returned. For example, if a UDT is defined as

an Integer, then the data reader will report the column type as Int32 and the GetInt32 can be used

to retrieve column values.

The INTERVAL data types appear as character strings using the .NET Data Provider for

Teradata. Teradata supports using ANSI interval expressions and arithmetic operators on interval

data types as well as certain aggregation functions. However, be aware of certain string

functions, such as RTrim and LTrim, which do not yield meaningful results when used over

database fields of type INTERVAL, or which may result in errors at the query execution time.

Teradata Host Naming Convention

Teradata .NET Data Provider performs the following actions to resolve the host name that is

entered into the Connection Properties dialog box to an IP address:

1. It will attempt to resolve the hostname using the Teradata host naming convention (TDPID

or DBC-Name).

2. If it cannot resolve the host name using the preceding method, then it will attempt to resolve

the server name as it is entered by the user.

Teradata users are most familiar with the Teradata system naming conventions. However, for the

Reporting Services users, the host naming convention is explained as follows:

The hostname that is entered into the Server name box in the Connection Properties dialog box

is appended with a COPn suffix, where n is a sequential number starting from 1, before resolving

the hostname to a network address. Hence the number n corresponds to the number of Gateways

(COP) supported by the system. For example, to connect to a system called MYDATA, the

following entry is required in the hosts file, which is located under

%SystemRoot%\System32\drivers\etc\hosts (assuming the MYDATA machine IP address is

10.0.0.1):

 10.0.0.1 MYDATAcop1

 Then, the .NET Data Provider for Teradata resolves the hostname properly. The system name is

also restricted to eight characters or less (the system name refers to the part without COPn suffix;

MYDATA in this example).

Alternatively, you can use an IP address instead of the hostname to establish a connection.

Known Issues

Working with Large Rows

The maximum row size for Teradata is approximately 64,000 bytes (roughly 64KB). If a SQL

query requires row sizes larger than 64KB, then the database will generate an error similar to the

following:

 [Teradata Database] [3577] Row size or Sort Key size overflow

If you ever encounter this error, then you may need to restructure your query to accommodate

this Teradata 64KB row limit size.

Teradata INTERVAL Data Type Range

Teradata databases have a limit of 9999 units on the INTERVAL data type. Therefore, if a SQL

or semantic query exceeds this limit, it generates an error. For more information about the

INTERVAL data type and its usage, see Teradata reference manuals. Generally, the INTERVAL

data type is used for performing arithmetic operations on the TIMESTAMP type.

For example, assume that you have a table called promotions and this table has a columns called

start_time and duration; with duration in hours. To obtain the end date of all promotion

campaigns, write the following query:

sel

 start_time as “StartTime”,

 StartTime + cast(duration as interval hour(4)) as “EndTime”

 from promotions;

If you have a promotion with duration greater than 9999 hours, the query will generate an error,

because you are using an interval type of greater than 9999 units.

You can run into similar issues when using semantic queries. For example, assume your are

using DateDiff and DateAdd functions in Report Builder to subtract the time difference in hours

of two columns and then add that difference to a third column. If the number of hours obtained

from the first operation is greater than 9999 hours, then you will exceed the INTERVAL type

limit.

Installing oReplace User-Defined Functions

By default, Teradata databases do not have a string REPLACE function. A REPLACE function

is used for replacing all instances of one string with another. For example, if you replace all

instances of aa in Faa with ee, then you will end up with Fee.

However, REPLACE functionality is required by Reporting Services, specifically if Replace

functionality is used in Report Builder with your report model. Luckily, Teradata offers a group

of User-Defined Functions (UDF) called Oracle UDFs for compatibility purposes. The

REPLACE function is one of these UDFs. For more information and to download the UDF

bundle, go to Teradata Download and download Oracle UDF.

Note: The REPLACE Oracle UDF is called oReplace, perhaps to distinguish that it is an Oracle

UDF. The following sequence of commands must be used to install the oReplace UDF:

REPLACE FUNCTION oreplace(

 Str VARCHAR(4000),

 aFrom VARCHAR(512),

 aTo VARCHAR(512)

)RETURNS VARCHAR(4000)

LANGUAGE C

NO SQL

SPECIFIC oreplace2

EXTERNAL NAME 'SC!oreplace2!<fullpath>/oreplace2.c'

PARAMETER STYLE SQL;

The oReplace is written in C, and upon issuing the preceding commands. The code is compiled

and installed on the server. However, before you install this UDF, make sure that values in bold

http://downloads.teradata.com/download

are adjusted based on your requirements. Specifically, you must adjust the value pertaining to the

sizes of input and output strings, which is 4000 in the preceding code sample.

Setting the return output to 64KB will trigger the error that was described in the preceding

Working with Large Rows section, and setting it too low may truncate your strings without

notification. The best solution is to adjust these values based on your reporting requirements

before installing the UDF.

Troubleshooting and Additional Information

Teradata Authentication Mechanisms

The following figure shows the authentication mechanisms available in the Teradata

Connection dialog box and which a report author can use while creating a data source in

Reporting Services.

Figure 25: Authentication mechanism

The authentication mechanisms are described as follows:

· SPNEGO (The Simple and Protected GSS-API Negotiation): SPNEGO protocol

negotiates different security mechanisms. It is used to negotiate with the Teradata Gateway to

use Microsoft Kerberos on Windows.

· TD2 (Teradata Method 2): Uses a user name and password to authenticate.

· LDAP (Lightweight Directory Access Protocol): LDAP is a standard directory protocol

that can be used for authentication as well. For more information about LDAP, see LDAP.

For more information about the authentication mechanisms, session security, and Default

authentication mechanism, see the help file that accompanies the .NET Data Provider for

Teradata.

Exception Caught Instantiating TERADATA Report Server Extension

After you install Reporting Services, you might see the following error message in the Reporting

Services log file and the system event log:

"Exception caught instantiating TERADATA report server extension."

http://msdn.microsoft.com/en-us/library/aa366075(VS.85).aspx

This error is logged under the following circumstances:

· A new installation of SQL Server Reporting Services.

· Each time the Report Server service restarts.

This error occurs because the Teradata extension is registered in the Reporting Services

configuration file by default, but the Teradata provider is not shipped with SQL Server or as part

of the .NET Framework. You can ignore this error if you are not planning to need Teradata

connectivity. However, if you want to work around this issue, do one of the following:

· Open the Reporting Services configuration file (Reportserver.config), and remove or

comment out the Teradata extension. Do this only if you do not require functionality that the

Teradata extension provides.

· Install the .NET Data Provider for Teradata. Do this only if you require functionality that

the Teradata extension provides. You can obtain the provider from the Teradata Web site.

Reporting Services.

You may see a similar exception when trying to deploy a report server, or report model project,

to a report server which does not have the provider installed, and when the project contains

references to the .NET Data Provider for Teradata:

An attempt has been made to use a data extension 'TERADATA' that is either not registered for

this report server or is not supported in this edition of Reporting Services.

If you encounter this error, then you will need to install the.NET Data Provider Teradata on the

report server. For more information, see the Prerequisites section.

Conclusion

This paper explained usage of Teradata as a Reporting Services data source. It also explored tips

and tricks of working with Teradata and Reporting Services.

For more information:

SQL Server Reporting Services: http://www.microsoft.com/en-us/sqlserver/solutions-

technologies/business-intelligence/reporting.aspx

SQL Server Reporting Services Forum: http://social.msdn.microsoft.com/Forums/sqlserver/en-

US/home?forum=sqlreportingservices

SQL Server TechCenter: http://technet.microsoft.com/en-us/library/ms159106.aspx

SQL Server DevCenter: http://msdn.microsoft.com/en-us/library/ms159106.aspx

http://downloads.teradata.com/download

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

· Are you rating it high due to having good examples, excellent screenshots, clear writing,

or another reason?

· Are you rating it low due to poor examples, fuzzy screenshots, or unclear writing?

This feedback will help us improve the quality of white papers we release. Send feedback.

mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20Using%20SQL%20Server%202008%20Reporting%20Services%20with%20the.NET%20Framework%20Data%20Provider%20for%20Teradata

Appendix A – Teradata Connectivity

The Connection Properties is native to the .NET Data Provider for Teradata as shown in Figure

A-1. Readers are encouraged to reference the .Net Data Provider for Teradata Help for more

information on some of the following settings mentioned below, available under Program

File.Net Data Provider for TeradataHelp.

In the Connection Properties, at a minimum requires the server name or IP address, user name

and password credentials.

Figure A-1: Connection Properties for Teradata

Before proceeding, be aware that some additional connection string parameters can provide a

better DSV experience. Especially, when interrogating large databases and user credentials with

access to large number of schemas.

The Connection Properties allows you to build a connection string rather than editing one

directly. If you click Advanced, you will see all of the connection string properties that are

available for the .NET Data Provider for Teradata (Figure A-2)

The following list includes properties relevant to ensure optimal behavior experience between

Reporting Services and Teradata Database using the .NET Data Provider for Teradata.

Response Buffer Size (8K to 64K)

To maximize the .Net Data Provider for Teradata response buffers used for SQL requests and

data retrieval administrators are encouraged to perform their own due diligence on benefits when

setting from 8K to 64K with the read ahead option below. With the understanding this allocates

additional resources. This will help in large answer set retrieval. The difference in performance

may be considerable if the result set is large. If the Row Size of the result set is large and the

Number of Rows in the result set is also large, then better performance can be expected by

increasing the 'Maximum Response Buffer'. With small result sets the difference in performance

is negligible.

Read Ahead = True

On default, Read Ahead is set to True. True enables additional buffering for results, while the

current buffer is consumed by an application. This is useful when executing queries that return

large result sets and should be considered when building MOLAP cubes.

Use X Views

On default, Use X Views is set to True. True limits the schema data to objects associated with

the requesting user, such as objects the user owns, is associated with, has been granted privileges

on, or is assigned a role which has privileges.

To improve DSV experience, set 'Use X Views' to false and ensure User Name/credentials have

been scoped appropriately for your reporting project. Hence, appropriate Semantic Layer in place

is critical.

Restrict to Default Database

On default, Restrict to Default Database is set to False.

To improve DSV experience, set this parameter to True to alleviate the number of calls generated

by DSV component and restrict all schema collections to ‘just’ the Default Database (see next

bullet).

Database

On default, Database is blank. This can be set via the connection string/Connection Manager

screen (see below) or it will default to user’s profile.

To improve DSV experience, set this parameter to the (default) database/schema in question.

You can also edit the data source directly and update the connection string. The following

example is a rich connection string including the settings for restricting the default database as

well as disabling the use of X views:

Database = db_name; Use X Views=False; Restrict to Default Database=True; Read Ahead =

True

Figure A-2: Advanced Properties for .NET Data Provider for Teradata

Appendix B – Teradata Database

Temporal Tables and Data

CREATE MULTISET TABLE department (

 d_id INTEGER,

 dept_name VARCHAR(100) CHARACTER SET LATIN CASESPECIFIC,

 eff_date PERIOD(DATE) AS VALIDTIME)

PRIMARY INDEX (d_id);

CREATE MULTISET TABLE employee (

 e_id INTEGER,

 name VARCHAR(100) CHARACTER SET LATIN CASESPECIFIC,

 d_id INTEGER,

 depassigned PERIOD(DATE) AS VALIDTIME)

PRIMARY INDEX (e_id);

CREATE MULTISET TABLE salary (

 e_id INTEGER,

 salary DECIMAL(8,2),

 sal_effective PERIOD(DATE) AS VALIDTIME)

PRIMARY INDEX (e_id);

Department
SEQUENCED VALIDTIME insert into department values (1, 'Sales', PERIOD (DATE '2009-01-01', UNTIL_CHANGED));

SEQUENCED VALIDTIME insert into department values (2, 'Marketing', PERIOD (DATE '2009-01-01',

UNTIL_CHANGED));

Employee
SEQUENCED VALIDTIME insert into employee values (1, 'Steve', 1, PERIOD (DATE '2009-01-01', DATE '2011-06-01'));

SEQUENCED VALIDTIME insert into employee values (2, 'PPaolo', 1, PERIOD (DATE '2009-01-01', DATE '2010-12-31'));

SEQUENCED VALIDTIME insert into employee values (2, 'PPaolo', 2, PERIOD (DATE '2011-01-01', UNTIL_CHANGED));

SEQUENCED VALIDTIME insert into employee values (3, 'John', 1, PERIOD (DATE '2009-01-01', UNTIL_CHANGED));

SEQUENCED VALIDTIME insert into employee values (4, 'Jack', 1, PERIOD (DATE '2010-06-01', UNTIL_CHANGED));

Salary
SEQUENCED VALIDTIME insert into salary values (1, 40000, PERIOD (DATE '2009-01-01', DATE '2009-12-31'));

SEQUENCED VALIDTIME insert into salary values (1, 50000, PERIOD (DATE '2010-01-01', DATE '2010-12-31'));

SEQUENCED VALIDTIME insert into salary values (1, 60000, PERIOD (DATE '2011-01-01', DATE '2011-06-01'));

SEQUENCED VALIDTIME insert into salary values (2, 41000, PERIOD (DATE '2009-01-01', DATE '2009-12-31'));

SEQUENCED VALIDTIME insert into salary values (2, 51000, PERIOD (DATE '2010-01-01', DATE '2010-12-31'));

SEQUENCED VALIDTIME insert into salary values (2, 61500, PERIOD (DATE '2011-01-01', UNTIL_CHANGED));

SEQUENCED VALIDTIME insert into salary values (3, 42000, PERIOD (DATE '2009-01-01', DATE '2009-12-31'));

SEQUENCED VALIDTIME insert into salary values (3, 52000, PERIOD (DATE '2010-01-01', DATE '2010-12-31'));

SEQUENCED VALIDTIME insert into salary values (3, 62000, PERIOD (DATE '2011-01-01', UNTIL_CHANGED));

SEQUENCED VALIDTIME insert into salary values (4, 53000, PERIOD (DATE '2010-06-01', DATE '2010-12-31'));

SEQUENCED VALIDTIME insert into salary values (4, 63000, PERIOD (DATE '2011-01-01', UNTIL_CHANGED));

BLOB Table and Data

You can import Large Objects into Teradata Database using Teradata SQL Assistant tool by

setting up an import job. Or if you have images on SQL Server database you can move BLOB

data using SQL Server Integration Services (SSIS) with Teradata ODBC Driver.

Load BLOB data from Flat file to Teradata

1. Extract the 2 images and place them in C:\Temp\Blobdata

2. Create Teradata table BLOBTest table

CREATE SET TABLE BLOBTest ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL,

 CHECKSUM = DEFAULT,

 DEFAULT MERGEBLOCKRATIO

 (

 TestID INTEGER,

 BLOBName VARCHAR(50) CHARACTER SET LATIN NOT CASESPECIFIC,

 BLOBData BLOB(2097088000))

PRIMARY INDEX (TestID);

3. You need a parameterized query:

insert into BLOBTest (testid, blobname, blobdata) values (?, ?, ?B);

The question mark fields in the “values” clause correspond to the columns in your control

file. The “question mark B” column tells SQL Assistant that the third column is a BLOB and

that the control file lists the file name of the blob. The control file (i.e. notepad) looks like

this:

1,first file,BLOBData001.jpeg

2,second file,BLOBData002.jpeg

Note, ensure you set the appropriate delimiter in SQL Assistant under ToolOptions

4. Finally, you set SQL Assistant into “Import mode” (i.e. FileImport Data) and run the

query. When you do, SQL Assistant will prompt you for the location of the control file.

Notice that the file names (the 3rd column) do not have paths. SQL Assistant assumes that

the files representing the LOB data are in the same directory as the control file. If you

attempt to use path names to locate files in other directories SQL Assistant will abort the

import and display an error in the status bar.

Spatial Table and Data

CREATE SET TABLE POLICIES ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL,

 CHECKSUM = DEFAULT,

 DEFAULT MERGEBLOCKRATIO

 (

 POLICY_ID INTEGER,

 POLICY_VALUE INTEGER,

 GEOMETRY SYSUDTLIB.ST_Geometry)

UNIQUE PRIMARY INDEX (POLICY_ID);

CREATE SET TABLE HURRICANE_PATH ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL,

 CHECKSUM = DEFAULT,

 DEFAULT MERGEBLOCKRATIO

 (

 ID INTEGER,

 GEOMETRY SYSUDTLIB.ST_Geometry)

UNIQUE PRIMARY INDEX (ID);

CREATE SET TABLE HURRICANE_AREA ,NO FALLBACK ,

 NO BEFORE JOURNAL,

 NO AFTER JOURNAL,

 CHECKSUM = DEFAULT,

 DEFAULT MERGEBLOCKRATIO

 (

 ID INTEGER,

 GEOMETRY SYSUDTLIB.ST_Geometry)

UNIQUE PRIMARY INDEX (ID);

