
Using R and Python in the Teradata Database

By Tim Miller
04.16 EB9386 DATA ANALYTICS

http://www.teradata.com

USING R AND PYTHON IN THE TERADATA DATABASE2 TERADATA.COM

Abstract

The ever-growing field of advanced analytics presents

Teradata® users with many solutions for their mathematical

and statistical tasks. In this field, R and Python are two

of the most popular and influential open source scripting

languages. Since the release of Teradata Database ver-

sion 15.00, it has been possible to execute these scripting

languages directly within the RDBMS, providing the

performance and scalability required for analytics against

exponentially growing data volumes, such as that gen-

erated by the Internet of Things (IoT). This important

technology allows for quick exploitation of these key open

source technologies by a modern data warehouse, provid-

ing the organization with a platform for the Analytics of

Things (AoT) and similarly high scale enterprise analytic

requirements. The techniques described in this white

paper allow both cost savings and access to programming

skills that otherwise would not be used within and against

data stored in the Teradata Database.

Overview

It is no secret that both R and Python have become two

of the most popular languages for data analytics. Both

have their supporters and opponents—while Python is

often praised for being a general-purpose language

with an easy-to-understand syntax and applicability to

a variety of engineering disciplines, R was specifically

developed with statisticians in mind perhaps giving it the

edge to most of the data science community.

What may be a secret, however, is that both of these open

source scripting languages can be used to process data

directly within the Teradata Database. With the release of

Teradata Database 15.0, data scientists have been able to

write their R and Python scripts following several easy to

use conventions, so that the analytic processing happens

in Teradata. This has tremendous processing and perfor-

mance benefits, driven by two key attributes:

1. R and Python code is able to leverage Teradata’s

massively parallel platform (MPP) for performance and

scalability.

2. Data resident in the Teradata Database does not have

to be moved to another analytic processing platform

within the enterprise.

Table of Contents

2 Abstract

2 Overview

3 Introduction

4 Analytic Processing in Teradata

5 Rules of Engagement

5 Use-Cases

8 Conclusion

8 About the Author

http://www.teradata.com
http://www.teradata.com

USING R AND PYTHON IN THE TERADATA DATABASE3 TERADATA.COM

Why is this important? In the past, data scientists have

used R or Python on their laptops or an analytic server

with memory and processor speed sufficient for the data

sets they were analyzing. Today, these same R or Python

scripts will not be able to process data volumes that are

growing exponentially. If, in the best case scenario these

scripts still run, processing times become unbearably

slow. By providing a highly scalable MPP platform, these

same analytics can be performed against this same data

in a timely manner, freeing the data scientists to do more

of what they do best—analyze the data.

Scalable performance has a profound effect on analyst

productivity and accuracy. If it takes 2-5 minutes to run

an analysis, the expert willingly iterates through several

parameter refinements and resubmits the analysis. When

the processing requires 2-5 hours, their willingness to

make accuracy improvements fades away. Along with it,

the spirit of agile exploration also is lost. Furthermore,

by bringing modern open source technologies inside the

Teradata Database, organizations have access to pro-

gramming skills that provide cost savings and an ability to

hire the best young talent entering the workforce today.

This white paper explores several use cases for utilizing

the R and Python capabilities available within Teradata

today. At Teradata Labs, we believe that both tools will

be used within the same corporation depending on skills,

preferences, and the task at hand. Teradata has chosen a

generic* mechanism for processing both languages giving

you the freedom and flexibly to utilize either, or both, of

these powerful languages for data science.

Introduction

The Teradata Database was built from the ground up

for analytics. As the database has evolved over the last

several decades, a number of facilities have been added to

the core database engine that enables Teradata Database

users to bring analytics to the data stored in the database.

The design of the shared nothing architecture** of the

Teradata Database allows much more than the simple

storage and reporting of voluminous detailed data

records. Simply put, the Teradata Database allows the

execution of analytical tasks directly on the data, in

parallel by using in-database analytics, a capability

Teradata Labs pioneered in the late 1990s.

Moving the analytics to the data is a desirable feature for

R and Python users who want the ability to process large

amounts of data with scripts written in these external

languages. In-database analytics can be particularly useful

for R and Python users, which without Teradata, need to

export large volumes of data to analytic servers. Because

these languages can be memory bound, preventing large

data volume processing or building applications that can

scale, they become unsuitable for use with data and proj-

ects where memory or processing demands exceed the

capabilities of their computing platform.

Teradata Labs has thoroughly embraced in-database

analytics over the last 15-20 years from partnerships

with companies such as SAS® and SPSS®, to the internal

development of the Teradata Warehouse Miner (TWM)

product family. Teradata also recognized the popularity

that R was gaining in the late 2000’s by creating a pack-

age known as teradataR. This package, which is now an

open source project residing on Github performs SQL

generation to push the processing of popular R functions

into the database.

Teradata Labs continued in-database analytic investment

by providing infrastructure known as table operators

in Teradata Database 14.10. This foundational compo-

nent extended the capabilities of user defined functions

(UDFs)—which allow users to place a custom function in

the FROM clause of a SQL SELECT statement—in several

important ways:

1. Table operators are object oriented and allow arbitrary

inputs and outputs defined at run-time, instead of fixed

inputs and outputs defined at compile-time.

2. Table operators have a simpler interface to iterate over

the output rows produced by the function, providing a

more natural application development interface than

table UDF’s have.

* Although the focus of this white paper is R and Python processing, this generic interface can also process other current (Perl, Ruby, GO, etc.) or future languages that follow

the same protocols

** In a shared nothing distributed computing architecture, each processing node is independent and self-sufficient. The nodes share no memory or disk storage, and there is no

single point of contention across the system. so that the maximum performance and scalability is achieved.

http://www.teradata.com
http://www.teradata.com
http://github.com/Teradata/teradataR

USING R AND PYTHON IN THE TERADATA DATABASE4 TERADATA.COM

3. Table operators operate on a stream of rows, buffered

for high-performance, eliminating the row at a time

processing of table UDF’s.

4. Table operators support PARTITON BY and

ORDER BY, allowing the development of Map and

Reduce style operations in-database.

Since the release of this initial capability, Teradata

Labs has developed a set of built-in table operators

that are advanced analytic enablers. For example, the

CALCMATRIX table operator builds matrices of up to

2048 data elements from an arbitrarily large number

of data rows, which can then be processed in certain

clustering, regression and data reduction algorithms.

Then in Teradata Database 15.0, the SCRIPT table

operator was released—this built in table operator is

the enabler for the execution of R and Python scripts

(amongst others) within the Teradata Database.

Analytic Processing in Teradata

In Teradata Database’s shared nothing MPP architecture,

the data is evenly distributed across every unit of par-

allelism, known as AMPs or Access Module Processors.

These are virtual processes, multiple instances of which

reside on every node—the physical server or cloud virtual

instance on which the Teradata Database is installed and

running. In order to enable R and/or Python processing

on the Teradata platform, the respective interpreters,

base packages and any desired add-on packages need

to be installed on every node. When execution occurs,

the processing is simultaneously performed on every

AMP in the system against the data available to that unit

of parallelism. The number of AMPs per node varies from

30 to 45 units of parallelism based on the version of the

Intel CPU and overall node performance. Thus a ten node

system with 40 AMPs per node will run 400 parallel

processes of R or Python.

This is important because each instance of R or Python is

operating independently, with no inter-process communi-

cation across nodes or between the AMPs within a node.

The implication here is that the R or Python program must

be cognizant of the distribution of data that it is operating

against. This is a new paradigm for data scientists who are

used to having all their data available in a singular mem-

ory address space.

Despite this new processing paradigm, there are a wide

variety of use cases that can be addressed. In order to

explain them all, we introduce the following processing

nomenclature:

 • Row-independent processing (RI) – The result of the

analytic depends only on the input from individual data

rows on a single AMP. Examples of RI analytic opera-

tions are model scoring, text field parsing and simple

scalars (i.e. log(x)).

 • Partition-independent processing (PI) – The result

of the analytic depends on the input from individual

data partitions on a single AMP. An example of a PI

analytic operation is model fitting for a given region,

time period, product or location.

 • System-wide processing – The result of the analytic

is based upon the entire input table which is evenly

spread across every AMP in the system. This is the

situation where additional design or programming may

be needed. System wide processing is required for an

operation such as a global sales average, or an attrition

model for the entire customer base.

Out of the box, R and Python scripts can be executed

in Teradata through the RI and PI processing models.

For system-wide style processing, the data scientist

must construct a master processing level to combine

and appropriately process the partial results returned

from every AMP process. This can be done in either a

MapReduce style by nesting multiple calls to the SCRIPT

table operator or by embedding calls to the SCRIPT table

operator within a C++ or Java external stored procedure

(XSP). In either case, the results are aggregated across

all AMPs and processed further to produce a meaningful

final answer.

http://www.teradata.com
http://www.teradata.com

USING R AND PYTHON IN THE TERADATA DATABASE5 TERADATA.COM

Rules of Engagement

In order for an R or Python script to be processed in

Teradata, there are certain simple rules that must be

followed. First, the script must be “installed” or registered

to the database. The Teradata Database provides a very

simple one line SQL command that performs this reg-

istration. Second, the R or Python script must read data

from the database through the Standard Input Stream,

commonly referred to as STDIN, and write to the database

through the Standard Output Stream or STDOUT. For the

first processing model described above (RI), these are the

only two rules.

The second processing model (PI) requires an additional

rule be followed. These programs assume that each data

partition will be hashed appropriately to every AMP.

Teradata provides indexing mechanisms such as par-

titioned primary indexes that guarantee these hashing

schemes are applied to the tables being operated on.

When writing the SQL statement to source the data for

use within the script, a PARTITION BY clause can also be

used to feed the R or Python script the data it needs to

process each group of data.

For the last processing model, additional programming

will be required, depending upon the use case. We will

explore a system-wide processing use case in subsequent

sections of this white paper.

Use-Cases

Scoring in R
Analytic model scoring is perhaps the

most common example of RI process-

ing. Consider for a moment that you are

an insurance carrier who has been using

R on a large Windows server for quite

some time. You have developed a

generalized linear model (GLM) to

predict propensity to purchase an upgraded policy based

upon demographic, historical policy and claim data

resident in the database. You’ve been asked to score the

entire customer base with your model, but the Windows

server is running out of memory when you apply it to the

entire corpus.

Since the data resides in the Teradata Database, the

SCRIPT table operator is used to apply the model to all

customers and give them a propensity to buy score for

this new policy. The scoring script is used to read the data

from STDIN and write it to STDOUT, and the script is reg-

istered to the Teradata Database. The script reads model

parameters from the R model object built on the Windows

system, applies those parameters to the entire population

and creates a table of customer propensity to buy scores

in several seconds.

RI Processing
Request

NodeNode

PI Processing
Request

NodeNode

System-Wide
Processing Request

NodeNode

Figure 1. Analytic Processing Paradigms.

http://www.teradata.com
http://www.teradata.com
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams

USING R AND PYTHON IN THE TERADATA DATABASE6 TERADATA.COM

Simulation in Python
Simulation is a different example of RI processing. Simu-

lation is a flexible methodology used to analyze the

behavior of a proposed business activity such as a new

product launch. By performing simulations and analyz-

ing the results in the database, we can estimate how a

proposed new product would perform in the marketplace

and the effects on the present product portfolio.

Another good example of a use case for

simulation is supply chain. Suppose a

retailer is having significant restocking

problems, and needs to optimize their

inventory levels because of fluctuating

demand at some of the retail stores.

The analytics team have written a fairly

complex program in Python, utilizing the Python package

“SimPy” In this scenario, various inventory stock levels are

studied for certain products based upon store location,

population demographics, seasonality and sales to

determine how best to provide stock to the stores. The

problem is the Linux server runs out of resources and

crashes before the study can be completed.

In order to simulate a process over multiple iterations in

Teradata Database, you provide an input table with rows

of random seeds. Each row provides a seed for an individ-

ual iteration; hence the results from all AMPs correspond

to the simulation output from independent iterations.

Different random seeds across iterations serve to define

different random inventory stock levels. Simulation results

are then aggregated inside the parallel database to com-

plete the study. Following the processing rules for the

SCRIPT table operator, the Python simulation program

completes in several minutes, instead of never or days.

For some, it may seem unusual to utilize a relational data-

base to simulate data. However, considering the compute

intensive nature of simulation uses cases, it is a very

powerful option to leverage Teradata Database’s R and

Python processing capabilities. The additional analysis

that can be done with historical data in comparison to the

simulated data may also provide insights that were never

thought of before.

Clustering in Python
Clustering lends itself to the PI processing paradigm when

needing to group data together. For example, a telecom-

munications company that has acquired a new region

often needs to establish a new cellular network by putting

towers in a particular location. This necessitates building

a clustering model for the users in this region to ensure

optimal signal strength for each.

Using iPython on a laptop, along with the

PyCluster package, a K-Means model

for the user population within a postal

code area in the new region can be

built. Utilizing call detail records

exported from the data warehouse

onto a laptop reveals several clusters

that appear optimal for one particular geographical area.

However, when attempting to apply it all the postal codes

in the region, the Python script crashes the system.

Typically the call detail records stored in the data ware-

house have been partitioned by the postal code, making

this use-case perfect for the SCRIPT table operator.

By modifying the Python script to read the table directly

through STDIN as opposed to a flat file on a laptop,

the power of the MPP platform can be exploited to

determine clustering schemes for all of postal codes

within the new region in a matter of minutes. Additionally,

the cluster scores have been built directly in the database

so that applications used by the telco’s field engineers

have immediate access to the data for planning and

other purposes.

Multiple Model Fitting and Scoring in R
Any type of modeling algorithm available in R or Python

is able to leverage PI processing in Teradata Database to

build multiple models. By ensuring that the data selected

has been built with a partitioning scheme that matches

the analytic models being built, the SCRIPT table operator

can be leveraged. For example, building a model for each

product a retailer sells requires the data be partitioned

by a product identifier. The resulting model can be stored

in the database in a temporary table and then read by a

scoring routine to apply the model to other data in the

Teradata Database.

http://www.teradata.com
http://www.teradata.com

USING R AND PYTHON IN THE TERADATA DATABASE7 TERADATA.COM

Consider, for example, a financial institution

with an attrition problem. Upper manage-

ment has asked the marketing team to

put together attractive packages of

various accounts and services that the

bank offers customers who are at risk of

moving to another bank. The goal is to

develop an R program that utilizes the random forest R

package to build a classification model to determine

which products have a higher probability of cross-selling

when the customer already has another banking service.

However, when executing the random forest R package to

build a model for each of the 1000s of existing products/

services the bank sells, the program hangs and never

completes. This is another example where in-database

parallelism is necessary.

Applying decision tree analysis in Teradata Database is a

two-step approach. First, a model fitting script that reads

the training data and applies the random forest algorithm

to it is executed. The fitted model details are sent directly

to the Teradata Database by serializing the results and

storing them in a table as a character large object (CLOB).

Then, a second script reads the serialized model, trans-

forms it back to its original format so that the predict() R

function can score the entire customer population. Both

steps in the process complete in under an hour and you

are a hero in the marketing department.

Modeling the Population
While R and Python scripts typically require little to no

change to operate within the RI or PI paradigms, the

same is not true of system-wide processing. When deal-

ing with the entire corpus, the SCRIPT table operator can

be used in a MapReduce way by nesting multiple calls.

At the inner—or local—level, an R or Python script pro-

duces partial results from each AMP. Then in the outer—or

global—level, a different script receives the output from

the local level, and aggregation operations on this partial

output produce a global result.

In can be difficult for a data scientist to think in terms of

the MapReduce paradigm, where one R or Python script

is your mapper that produces partial results, and the other

a reducer that aggregates the partial results into a final

answer. However, one of the very interesting things you

can do is build your R or Python script so that it reads

directly from a correlation or covariance matrix. There

are many classes of analytics which build a matrix as the

first step in its processing—the most popular of which are

multivariate linear regression and data reduction through

factor analysis. For these types of analytics, the SCRIPT

table operator can work in a nested MapReduce manner

with Teradata’s built-in CALCMATRIX table operator.

For example, an IT department

wants to forecast future

system performance and

capacity. In particular, they

want the answer to the following question—if the

workload on the data warehouse grows by 10% each

quarter, when will we need to grow the system? This

requires a forecast over many years to pinpoint when

the system runs out of compute capacity. And for that

same exact reason, the Teradata Database is needed for

its in-database processing power. We call this “Analytics

on Analytics.”

One approach to this problem is to build a regression

model. The first step in the process is to calculate the sum

of squares and cross-products matrix from the system’s

utilization data. For this task, the CALCMATRIX table

operator is employed in a nested call within a SCRIPT

table operator call which will build a regression model

from the R script. The CALCMATRIX table operator easily

and quickly, creates the matrix which is streamlined as

input to the outer call of the nested query to the SCRIPT

table operator. The R script then takes over the analysis

with the computed matrix as input, and produces a list

of the regression estimates for the intercept and variable

coefficients. Once the model statistics are satisfactory, the

regression model is applied for the forecast. Imagine using

simple nested SQL statements to build and score models

against Teradata Database’s own system logs in a matter

of minutes.

http://www.teradata.com
http://www.teradata.com

USING R AND PYTHON IN THE TERADATA DATABASE8 TERADATA.COM

Conclusion

Teradata truly understands the power of bringing analytics

to the data for performance and scalability. By extending

the capabilities of the platform to utilize the two most

popular languages for data science, Teradata Labs has

provided R and Python programmers an elegant way to

run these languages in parallel without having to move

huge amounts of data to another server. They can move

the processing to the data instead. By keeping the data

in place, and utilizing the compute power of the MPP

platform, R and Python programmers can quickly run

their analytics at any scale. This gives them more time to

discover new, incredibly valuable insights, for the business.

About the Author

Tim Miller has been in a wide variety of R&D roles at

Teradata Labs over his 29 year career. He has been

involved in all aspects of enterprise software develop-

ment, from software architecture to quality assurance.

Tim has developed software in many domains—the last

20 years dedicated to predictive analytics. He is one of

two principals in the development of the first commercial

in-database data mining system, Teradata Warehouse

Miner. Recently, as a member of Teradata’s Partner

Integration Lab, he consulted with new and emerging

Teradata ISV partners to integrate and optimize their

advanced analytics products with Teradata’s platform

family. Today, Tim is part of Teradata’s Advanced Analytics

Consulting Practice working closely with customers to

optimize their analytic environments.

This document, which includes the information contained herein,: (i) is the exclusive property of Teradata Corporation; (ii) constitutes Teradata confidential information; (iii) may

not be disclosed by you to third parties; (iv) may only be used by you for the exclusive purpose of facilitating your internal Teradata-authorized use of the Teradata product(s)

described in this document to the extent that you have separately acquired a written license from Teradata for such product(s); and (v) is provided to you solely on an “AS-IS”

basis. In no case will you cause this document or its contents to be disseminated to any third party, reproduced or copied by any means (in whole or in part) without Teradata’s

prior written consent. Any copy of this document, or portion thereof, must include this notice, and all other restrictive legends appearing in this document. Note that any product,

process or technology described in this document may be the subject of other intellectual property rights reserved by Teradata and are not licensed hereunder. No license rights

will be implied. Use, duplication, or disclosure by the United States government is subject to the restrictions set forth in DFARS 252.227-7013(c)(1)(ii) and FAR 52.227-19. Other

brand and product names used herein are for identification purposes only and may be trademarks of their respective companies.

This white paper has a detailed counterpart known as an “Orange Book.” The “R and Python Analytics with the SCRIPT Table Operator Introductory Guide” includes detailed

examples and corresponding data sets for the types of use cases described above. It also includes in-depth installation instructions to enable R and Python scripting on your

Teradata platform. Orange books are available at Teradata @ Your Service.

Unified Data Architecture is a trademark, and Teradata and the Teradata logo are registered trademarks of Teradata Corporation and/or its affiliates in the U.S. or worldwide.

Linux is a registered trademark of Linus Torvalds. Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. Python is a registered trademark of the Python Software Foundation. Red Hat is a registered trademark of Red Hat, Inc.

SAS is a registered trademark of SAS Institute Inc. SLES is a registered trademark of Novell, Inc. SPSS is a registered trademark of IBM Corporation. SUSE is a registered

trademark of SUSE, LLC. Teradata continually improves products as new technologies and components become available. Teradata, therefore, reserves the right to change

specifications without prior notice. All features, functions, and operations described herein may not be marketed in all parts of the world. Consult your Teradata representative or

Teradata.com for more information.

Copyright © 2016 by Teradata Corporation All Rights Reserved. Produced in U.S.A.

04.16 EB9386

http://www.teradata.com
http://www.teradata.com
http://www.teradata.com
http://www.facebook.com/Teradata
http://www.twitter.com/teradata
http://www.linkedin.com/company/teradata
http://www.youtube.com/teradata

	Abstract
	Overview
	Introduction
	Analytic Processing in Teradata
	Rules of Engagement
	Use-Cases
	Conclusion
	About the Author

