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Abstract

The ever-growing field of advanced analytics presents 

Teradata® users with many solutions for their mathematical 

and statistical tasks. In this field, R and Python are two  

of the most popular and influential open source scripting 

languages. Since the release of Teradata Database ver-

sion 15.00, it has been possible to execute these scripting 

languages directly within the RDBMS, providing the  

performance and scalability required for analytics against 

exponentially growing data volumes, such as that gen-

erated by the Internet of Things (IoT). This important 

technology allows for quick exploitation of these key open 

source technologies by a modern data warehouse, provid-

ing the organization with a platform for the Analytics of 

Things (AoT) and similarly high scale enterprise analytic 

requirements. The techniques described in this white 

paper allow both cost savings and access to programming 

skills that otherwise would not be used within and against 

data stored in the Teradata Database.

Overview

It is no secret that both R and Python have become two  

of the most popular languages for data analytics. Both 

have their supporters and opponents—while Python is 

often praised for being a general-purpose language  

with an easy-to-understand syntax and applicability to  

a variety of engineering disciplines, R was specifically  

developed with statisticians in mind perhaps giving it the 

edge to most of the data science community.

What may be a secret, however, is that both of these open 

source scripting languages can be used to process data 

directly within the Teradata Database. With the release of 

Teradata Database 15.0, data scientists have been able to 

write their R and Python scripts following several easy to 

use conventions, so that the analytic processing happens 

in Teradata. This has tremendous processing and perfor-

mance benefits, driven by two key attributes:

1. R and Python code is able to leverage Teradata’s  

massively parallel platform (MPP) for performance and 

scalability.

2. Data resident in the Teradata Database does not have 

to be moved to another analytic processing platform 

within the enterprise.
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Why is this important? In the past, data scientists have 

used R or Python on their laptops or an analytic server 

with memory and processor speed sufficient for the data 

sets they were analyzing. Today, these same R or Python 

scripts will not be able to process data volumes that are 

growing exponentially. If, in the best case scenario these 

scripts still run, processing times become unbearably 

slow. By providing a highly scalable MPP platform, these 

same analytics can be performed against this same data 

in a timely manner, freeing the data scientists to do more 

of what they do best—analyze the data. 

Scalable performance has a profound effect on analyst 

productivity and accuracy. If it takes 2-5 minutes to run 

an analysis, the expert willingly iterates through several 

parameter refinements and resubmits the analysis. When 

the processing requires 2-5 hours, their willingness to 

make accuracy improvements fades away. Along with it, 

the spirit of agile exploration also is lost. Furthermore, 

by bringing modern open source technologies inside the 

Teradata Database, organizations have access to pro-

gramming skills that provide cost savings and an ability to 

hire the best young talent entering the workforce today.

This white paper explores several use cases for utilizing 

the R and Python capabilities available within Teradata 

today. At Teradata Labs, we believe that both tools will 

be used within the same corporation depending on skills, 

preferences, and the task at hand. Teradata has chosen a 

generic* mechanism for processing both languages giving 

you the freedom and flexibly to utilize either, or both, of 

these powerful languages for data science. 

Introduction

The Teradata Database was built from the ground up  

for analytics. As the database has evolved over the last 

several decades, a number of facilities have been added to 

the core database engine that enables Teradata Database 

users to bring analytics to the data stored in the database. 

The design of the shared nothing architecture** of the 

Teradata Database allows much more than the simple 

storage and reporting of voluminous detailed data 

records. Simply put, the Teradata Database allows the 

execution of analytical tasks directly on the data, in 

parallel by using in-database analytics, a capability 

Teradata Labs pioneered in the late 1990s.

Moving the analytics to the data is a desirable feature for 

R and Python users who want the ability to process large 

amounts of data with scripts written in these external 

languages. In-database analytics can be particularly useful 

for R and Python users, which without Teradata, need to 

export large volumes of data to analytic servers. Because 

these languages can be memory bound, preventing large 

data volume processing or building applications that can 

scale, they become unsuitable for use with data and proj-

ects where memory or processing demands exceed the 

capabilities of their computing platform.

Teradata Labs has thoroughly embraced in-database  

analytics over the last 15-20 years from partnerships  

with companies such as SAS® and SPSS®,   to the internal 

development of the Teradata Warehouse Miner (TWM) 

product family. Teradata also recognized the popularity 

that R was gaining in the late 2000’s by creating a pack-

age known as teradataR. This package, which is now an 

open source project residing on Github performs SQL 

generation to push the processing of popular R functions 

into the database.

Teradata Labs continued in-database analytic investment 

by providing infrastructure known as table operators 

in Teradata Database 14.10. This foundational compo-

nent extended the capabilities of user defined functions 

(UDFs)—which allow users to place a custom function in 

the FROM clause of a SQL SELECT statement—in several 

important ways:

1. Table operators are object oriented and allow arbitrary 

inputs and outputs defined at run-time, instead of fixed 

inputs and outputs defined at compile-time.

2. Table operators have a simpler interface to iterate over 

the output rows produced by the function, providing a 

more natural application development interface than 

table UDF’s have.

* Although the focus of this white paper is R and Python processing, this generic interface can also process other current (Perl, Ruby, GO, etc.) or future languages that follow 

the same protocols

** In a shared nothing distributed computing architecture, each processing node is independent and self-sufficient.  The nodes share no memory or disk storage, and there is no 

single point of contention across the system.  so that the maximum performance and scalability is achieved.
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http://www.teradata.com
http://github.com/Teradata/teradataR


USING R AND PYTHON IN THE TERADATA DATABASE4 TERADATA.COM

3. Table operators operate on a stream of rows, buffered 

for high-performance, eliminating the row at a time 

processing of table UDF’s.

4. Table operators support PARTITON BY and  

ORDER BY, allowing the development of Map and 

Reduce style operations in-database.

Since the release of this initial capability, Teradata 

Labs has developed a set of built-in table operators 

that are advanced analytic enablers. For example, the 

CALCMATRIX table operator builds matrices of up to 

2048 data elements from an arbitrarily large number 

of data rows, which can then be processed in certain 

clustering, regression and data reduction algorithms.  

Then in Teradata Database 15.0, the SCRIPT table 

operator was released—this built in table operator is 

the enabler for the execution of R and Python scripts 

(amongst others) within the Teradata Database.

Analytic Processing in Teradata

In Teradata Database’s shared nothing MPP architecture, 

the data is evenly distributed across every unit of par- 

allelism, known as AMPs or Access Module Processors. 

These are virtual processes, multiple instances of which 

reside on every node—the physical server or cloud virtual 

instance on which the Teradata Database is installed and 

running. In order to enable R and/or Python processing  

on the Teradata platform, the respective interpreters,  

base packages and any desired add-on packages need  

to be installed on every node. When execution occurs,  

the processing is simultaneously performed on every  

AMP in the system against the data available to that unit 

of parallelism. The number of AMPs per node varies from 

30 to 45 units of parallelism based on the version of the 

Intel CPU and overall node performance. Thus a ten node 

system with 40 AMPs per node will run 400 parallel 

processes of R or Python. 

This is important because each instance of R or Python is 

operating independently, with no inter-process communi-

cation across nodes or between the AMPs within a node. 

The implication here is that the R or Python program must 

be cognizant of the distribution of data that it is operating 

against. This is a new paradigm for data scientists who are 

used to having all their data available in a singular mem-

ory address space.

Despite this new processing paradigm, there are a wide 

variety of use cases that can be addressed. In order to 

explain them all, we introduce the following processing 

nomenclature:

 • Row-independent processing (RI) – The result of the 

analytic depends only on the input from individual data 

rows on a single AMP. Examples of RI analytic opera-

tions are model scoring, text field parsing and simple 

scalars (i.e. log(x)).

 • Partition-independent processing (PI) – The result  

of the analytic depends on the input from individual 

data partitions on a single AMP. An example of a PI 

analytic operation is model fitting for a given region, 

time period, product or location.

 • System-wide processing – The result of the analytic 

is based upon the entire input table which is evenly 

spread across every AMP in the system. This is the  

situation where additional design or programming may 

be needed. System wide processing is required for an  

operation such as a global sales average, or an attrition 

model for the entire customer base.

Out of the box, R and Python scripts can be executed  

in Teradata through the RI and PI processing models.  

For system-wide style processing, the data scientist  

must construct a master processing level to combine  

and appropriately process the partial results returned 

from every AMP process. This can be done in either a  

MapReduce style by nesting multiple calls to the SCRIPT 

table operator or by embedding calls to the SCRIPT table 

operator within a C++ or Java external stored procedure 

(XSP). In either case, the results are aggregated across 

all AMPs and processed further to produce a meaningful 

final answer.

http://www.teradata.com
http://www.teradata.com
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Rules of Engagement

In order for an R or Python script to be processed in  

Teradata, there are certain simple rules that must be  

followed. First, the script must be “installed” or registered 

to the database. The Teradata Database provides a very 

simple one line SQL command that performs this reg- 

istration. Second, the R or Python script must read data 

from the database through the Standard Input Stream, 

commonly referred to as STDIN, and write to the database 

through the Standard Output Stream or STDOUT. For the 

first processing model described above (RI), these are the 

only two rules. 

The second processing model (PI) requires an additional 

rule be followed. These programs assume that each data 

partition will be hashed appropriately to every AMP.  

Teradata provides indexing mechanisms such as par-

titioned primary indexes that guarantee these hashing 

schemes are applied to the tables being operated on. 

When writing the SQL statement to source the data for 

use within the script, a PARTITION BY clause can also be 

used to feed the R or Python script the data it needs to 

process each group of data. 

For the last processing model, additional programming 

will be required, depending upon the use case. We will 

explore a system-wide processing use case in subsequent 

sections of this white paper.

Use-Cases

Scoring in R
Analytic model scoring is perhaps the  

most common example of RI process-

ing. Consider for a moment that you are 

an insurance carrier who has been using 

R on a large Windows server for quite 

some time. You have developed a 

generalized linear model (GLM) to 

predict propensity to purchase an upgraded policy based 

upon demographic, historical policy and claim data 

resident in the database. You’ve been asked to score the 

entire customer base with your model, but the Windows 

server is running out of memory when you apply it to the 

entire corpus. 

Since the data resides in the Teradata Database, the 

SCRIPT table operator is used to apply the model to all 

customers and give them a propensity to buy score for 

this new policy. The scoring script is used to read the data 

from STDIN and write it to STDOUT, and the script is reg-

istered to the Teradata Database. The script reads model 

parameters from the R model object built on the Windows 

system, applies those parameters to the entire population 

and creates a table of customer propensity to buy scores 

in several seconds.

RI Processing
Request

NodeNode

PI Processing
Request

NodeNode

System-Wide
Processing Request

NodeNode

Figure 1. Analytic Processing Paradigms.
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Simulation in Python
Simulation is a different example of RI processing. Simu-

lation is a flexible methodology used to analyze the 

behavior of a proposed business activity such as a new 

product launch. By performing simulations and analyz-

ing the results in the database, we can estimate how a 

proposed new product would perform in the marketplace 

and the effects on the present product portfolio.

Another good example of a use case for  

simulation is supply chain. Suppose a 

retailer is having significant restocking 

problems, and needs to optimize their 

inventory levels because of fluctuating 

demand at some of the retail stores. 

The analytics team have written a fairly 

complex program in Python, utilizing the Python package 

“SimPy” In this scenario, various inventory stock levels are 

studied for certain products based upon store location, 

population demographics, seasonality and sales to 

determine how best to provide stock to the stores. The 

problem is the Linux server runs out of resources and 

crashes before the study can be completed.

In order to simulate a process over multiple iterations in 

Teradata Database, you provide an input table with rows 

of random seeds. Each row provides a seed for an individ-

ual iteration; hence the results from all AMPs correspond 

to the simulation output from independent iterations. 

Different random seeds across iterations serve to define 

different random inventory stock levels. Simulation results 

are then aggregated inside the parallel database to com-

plete the study. Following the processing rules for the 

SCRIPT table operator, the Python simulation program 

completes in several minutes, instead of never or days.

For some, it may seem unusual to utilize a relational data-

base to simulate data. However, considering the compute 

intensive nature of simulation uses cases, it is a very 

powerful option to leverage Teradata Database’s R and 

Python processing capabilities. The additional analysis 

that can be done with historical data in comparison to the 

simulated data may also provide insights that were never 

thought of before.

Clustering in Python
Clustering lends itself to the PI processing paradigm when 

needing to group data together. For example, a telecom-

munications company that has acquired a new region 

often needs to establish a new cellular network by putting 

towers in a particular location. This necessitates building 

a clustering model for the users in this region to ensure 

optimal signal strength for each.

Using iPython on a laptop, along with the  

PyCluster package, a K-Means model 

for the user population within a postal 

code area in the new region can be 

built. Utilizing call detail records 

exported from the data warehouse 

onto a laptop reveals several clusters 

that appear optimal for one particular geographical area. 

However, when attempting to apply it all the postal codes 

in the region, the Python script crashes the system.

Typically the call detail records stored in the data ware-

house have been partitioned by the postal code, making 

this use-case perfect for the SCRIPT table operator.  

By modifying the Python script to read the table directly 

through STDIN as opposed to a flat file on a laptop,  

the power of the MPP platform can be exploited to  

determine clustering schemes for all of postal codes 

within the new region in a matter of minutes. Additionally, 

the cluster scores have been built directly in the database 

so that applications used by the telco’s field engineers 

have immediate access to the data for planning and  

other purposes.

Multiple Model Fitting and Scoring in R
Any type of modeling algorithm available in R or Python 

is able to leverage PI processing in Teradata Database to 

build multiple models. By ensuring that the data selected 

has been built with a partitioning scheme that matches 

the analytic models being built, the SCRIPT table operator 

can be leveraged. For example, building a model for each 

product a retailer sells requires the data be partitioned 

by a product identifier. The resulting model can be stored 

in the database in a temporary table and then read by a 

scoring routine to apply the model to other data in the 

Teradata Database.

http://www.teradata.com
http://www.teradata.com
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Consider, for example, a financial institution  

with an attrition problem. Upper manage-

ment has asked the marketing team to 

put together attractive packages of 

various accounts and services that the 

bank offers customers who are at risk of 

moving to another bank. The goal is to 

develop an R program that utilizes the random forest R 

package to build a classification model to determine 

which products have a higher probability of cross-selling 

when the customer already has another banking service. 

However, when executing the random forest R package to 

build a model for each of the 1000s of existing products/

services the bank sells, the program hangs and never 

completes. This is another example where in-database 

parallelism is necessary.

Applying decision tree analysis in Teradata Database is a 

two-step approach. First, a model fitting script that reads 

the training data and applies the random forest algorithm 

to it is executed. The fitted model details are sent directly 

to the Teradata Database by serializing the results and 

storing them in a table as a character large object (CLOB). 

Then, a second script reads the serialized model, trans-

forms it back to its original format so that the predict() R 

function can score the entire customer population. Both 

steps in the process complete in under an hour and you 

are a hero in the marketing department.

Modeling the Population
While R and Python scripts typically require little to no 

change to operate within the RI or PI paradigms, the 

same is not true of system-wide processing. When deal-

ing with the entire corpus, the SCRIPT table operator can 

be used in a MapReduce way by nesting multiple calls. 

At the inner—or local—level, an R or Python script pro-

duces partial results from each AMP. Then in the outer—or 

global—level, a different script receives the output from 

the local level, and aggregation operations on this partial 

output produce a global result.

In can be difficult for a data scientist to think in terms of 

the MapReduce paradigm, where one R or Python script 

is your mapper that produces partial results, and the other 

a reducer that aggregates the partial results into a final 

answer. However, one of the very interesting things you 

can do is build your R or Python script so that it reads 

directly from a correlation or covariance matrix. There 

are many classes of analytics which build a matrix as the 

first step in its processing—the most popular of which are 

multivariate linear regression and data reduction through 

factor analysis. For these types of analytics, the SCRIPT 

table operator can work in a nested MapReduce manner 

with Teradata’s built-in CALCMATRIX table operator.

For example, an IT department  

wants to forecast future 

system performance and 

capacity. In particular, they 

want the answer to the following question—if the  

workload on the data warehouse grows by 10% each 

quarter, when will we need to grow the system? This 

requires a forecast over many years to pinpoint when  

the system runs out of compute capacity. And for that 

same exact reason, the Teradata Database is needed for 

its in-database processing power. We call this “Analytics 

on Analytics.”

One approach to this problem is to build a regression 

model. The first step in the process is to calculate the sum 

of squares and cross-products matrix from the system’s 

utilization data. For this task, the CALCMATRIX table 

operator is employed in a nested call within a SCRIPT 

table operator call which will build a regression model 

from the R script. The CALCMATRIX table operator easily 

and quickly, creates the matrix which is streamlined as 

input to the outer call of the nested query to the SCRIPT 

table operator. The R script then takes over the analysis 

with the computed matrix as input, and produces a list 

of the regression estimates for the intercept and variable 

coefficients. Once the model statistics are satisfactory, the 

regression model is applied for the forecast. Imagine using 

simple nested SQL statements to build and score models 

against Teradata Database’s own system logs in a matter 

of minutes.

http://www.teradata.com
http://www.teradata.com
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Conclusion

Teradata truly understands the power of bringing analytics 

to the data for performance and scalability. By extending 

the capabilities of the platform to utilize the two most 

popular languages for data science, Teradata Labs has 

provided R and Python programmers an elegant way to 

run these languages in parallel without having to move 

huge amounts of data to another server. They can move 

the processing to the data instead. By keeping the data  

in place, and utilizing the compute power of the MPP 

platform, R and Python programmers can quickly run 

their analytics at any scale. This gives them more time to 

discover new, incredibly valuable insights, for the business.
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