
Design Considerations for a Scalable Data Fabric

08.17 EB7271

Mark Madsen, President, Third Nature



DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

2 TERADATA.COM

Table of Contents

3 Executive Summary

4 Distributed Data Access Is a Specific and Poorly 
Met Need

5 The Goal Is to Build Infrastructure,  
Not Custom Applications

5 The Environment Is Distributed:  
How Do We Unify Data for Users?

6 Option 1: Use Tools from the Data  
Warehouse Environment

6 Option 2: Use Hadoop Tools

6 Option 3: Assemble Your Own Tools from Components in 
the Environment

7 The Evolution of Federated Data

8 Loosely Coupled, or Query Federation

8 Tightly Coupled Federation,  
Also Called “Data Virtualization”

9 Teradata® QueryGrid™: Merging Federated Access with 
Data Transfer

10 When to Use Different Technologies: Five Tradeoffs

10 Repeatability: How Well-Known Are the  
Data Requirements?

11 Query Concurrency: How Many Simultaneous Queries 
Do You Expect?

11 Response Time: What Is the Expected Time to Get 
Results for the User (or Application)?

11 Data Volume: How Large Are the Datasets You  
Need to Access?

11 Copying Data: Does Data Need to Be Copied from 
One Place to Another Before It Can Be Used?

12 When Should You Use These Technologies?

12 Nine Key Factors to Evaluate for a Scalable  
Data Fabric

12 Scalability

13 Efficiency

13 Concurrency

13 Topology of Systems and Connections

14 Data Conversion and Type Management

14 Support for Platform-Specific Capabilities

14 Security

15 Monitoring and Administration

15 These Factors All Contribute to the Overarching Goal,  
Ease of Use

15 Teradata QueryGrid™: Solving the Hard Problems 
of Scalable Data Use

16 QueryGrid Architecture: How It’s Built

16 General Design

17 Parallel Architecture

17 Network Awareness

18 Optimization

18 QueryGrid Link and Connectors

19 QueryGrid Manager

19 Conclusion

20  About the Author

20 About Third Nature

20 About Teradata

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

3 TERADATA.COM

Executive Summary 

Access to data was and is a significant bottleneck in 
analytics development. In most large organizations, this 
bottleneck is a function of two related trends. In the first, 
data is more siloed and distributed than ever before. The 
environments that were supposed to function as central 
hubs for data access and processing—first the data 
warehouse; more recently, big data platforms such as 
Apache Hadoop™—are commonly supplemented by one 
or more fit-for-purpose repositories.

In the second trend, organizations want to do more 
and different things with the data they collect. For 
example, data warehouse systems are designed to 
address known or pre-determined questions and needs. 
Increasingly, however, organizations want to support 
a range of new analytics use cases, many of which are 
characterized by open-ended exploration and discovery. 
Unlike the warehouse, which is a primary destination 
for derived transactional data, these new use cases 
require information from systems that provide data on 
interactions, such as web logs, mobile devices and sensors.

Nor is that all. These new analytics use cases have 
unpredictable data and processing needs, too. Users 
often determine the data they need on demand, not 
as part of a scheduled loading process. Last and most 
important, whereas the data contained in the data 
warehouse was traditionally determined by IT, individual 
analysts define data requirements at the time of use for 
the new analytics uses.

A general solution for data access is needed. The 
challenge is that the available technologies—be they 
custom-built middleware or commercial products—cannot 

scale to address this requirement. Most organizations, 
even the very largest, lack the resources and expertise to 
build and maintain a custom-coded middleware solution 
to act as a data fabric that connects systems. 

Commercial data integration tools are ill-suited to address 
this problem, too. Most such tools are optimized for 
scheduled, batch-oriented operation by IT professionals. 
Their designs are based on a number of assumptions that 
are no longer viable, e.g., that data flows are predictable 
and can be reused; and that the people using them 
possess coding or low-level technical expertise.

The upshot is that analysts require on-demand access to 
different sources and types of data. Thanks to the siloing of 
both data and analytics engines, it is precisely on-demand 
access that is so difficult to facilitate. For example, an 
analyst should be able to initiate data access from the 
platform of her choice—wherever she happened to be 
working at the time. Ideally, she wouldn’t have to use or 
open up a separate tool to do this: access would, instead, 
be facilitated by means of a transparent data fabric. 

Ideally, this solution would be smart about how it moved 
data. Instead of moving data in bulk from the platform 
on which it lives to the environment in which the analyst 
works, this solution should perform operations where 
it makes the most sense. In other words, data could be 
processed in place, with the result that only a small subset 
of data —the data the analyst actually needed—would be 
moved. Data could also be moved to the analyst, where 
the appropriate tools exist to process it. This is critical. At 
today’s large volumes, any viable solution must minimize 
data movement to only what is necessary. When it does 
move data between systems or contexts, it must do so as 
efficiently as possible.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

4 TERADATA.COM

Distributed Data Access Is a Specific 
and Poorly Met Need

First the data warehouse market and then the Hadoop 
market made a promise they couldn’t keep. They said 
there would be only one place for data, and that all your 
data needs would be met there. This is a myth. We have 
an analytical ecosystem with multiple data stores and pro-
cessing engines, none of which contains all of the data.

We need a general solution for data access, a need that 
many people didn’t face until recent years. This need 
isn’t met by conventional data integration tools which 
are designed to move tables and files from one system 
to another, usually in batch operations. We need a solu-
tion that operates on-demand. We need a solution that 
not only minimizes data movement, particularly at today’s 
large volumes, but one that—when it does move data 
between systems—is able to do the task efficiently.

Most of the data infrastructure we built assumed people 
would be passive information consumers. This assumption 
is built into the foundation of the BI model: it’s implicit in 
the standard of a data warehouse as “a read-only reposi-
tory,” yet the data environment that has evolved over 
the past twenty years supports much more than passive 
consumption by reports and dashboards. The use today 
includes exploration and deeper analysis of data, along-
side the fixed dashboards and reports.

Unlike business intelligence, data exploration and analysis 
have unpredictable needs. We don’t know the specific 
details of how data will be used. Exploration is predictable 
only at a coarse level, so that we can build repositories 
to store datasets with less rigorous structure and quality 
control. An example of this type of system is the data lake. 
It’s used for large-scale collection and exploratory use. It’s 
not used for common, core data, creating a problem for 
analysts who want to link new data from the lake to the 
core data in a warehouse or analytics system.

The challenge facing analysts is the lack of easy mecha-
nisms to access data in the different environments. 
Getting data into Hadoop or Amazon S3 is as easy as 
copying a file. This ignores the problem of generating that 
file at a remote data source, transferring it, and ensuring 
that it is properly formatted and accessible, particularly if 
it’s large. Even a few tens of gigabytes can be problematic 
for many source systems.

Likewise, getting data from Hadoop or S3 into other plat-
forms is a challenge. It’s not hard to access the data alone, 
but it is hard to fetch, move, load and join that data, more 
so when the volume is large. When moving data in either 
direction, the tools for data access are aimed at develop-
ers, and to a lesser extent, administrators with technical 
skills on the platform, but not users.

When addressing problems from the new market envi-
ronment (Hadoop, NoSQL, Apache Spark™ and the like), 
the data problems are a mirror image of those in the data 
warehouse environment. The warehouse is the primary 
destination for core transactional and reference data. A 
non-relational repository, by contrast, stores a large vol-
ume of potentially valuable data. Nevertheless, not all core 
transactional or reference data is stored in this environ-
ment. As a result, the user or developer must get this data 
from databases or other sources and load it into the big 
data environment to analyze it.

All of this underscores a critical problem: our environments 
are weakest when it comes to support for on-demand data 
access. This is the result of an assumption—that there is 
only one place where data resides prior to use. While true 
for core metrics and common data, the assumption is not 
true when one has to diagnose a never-seen-before prob-
lem, analyze information about a new business project, or 
build an analytic model. These all share one characteristic. 
They all have unknown data needs.

This on-demand access pattern shares little with the pat-
terns in a data warehouse environment. The patterns in the 
warehouse are repeatable data flows from known sources to 
known targets, and repeatable querying from those targets.

On-demand data and processing is promoted in the 
Hadoop market with statements about schema-on-read, 
multiple processing engines, and data lakes. The discus-
sion ignores the problems of distributed data that isn’t 
stored on the platform. To solve those problems requires 
technical developer skills and specific knowledge of 
underlying platforms. 

Our environments are weakest when it comes to 
support for on-demand data access. 

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

5 TERADATA.COM

The Goal Is to Build Infrastructure,  
Not Custom Applications
Approaching the data access problem by working from 
the most familiar platform is a mistake because it ignores 
capabilities of the less known platforms and favors one 
platform’s technology and approach. Tools are invariably 
tied to the vendor of that platform. We need a solution 
that works equally well across the environments that 
analysts and developers use—not just the most familiar 
platform, whether it is new or old technology.

Data movement in the new analytics environment is not 
one-way, it’s bidirectional. Data can originate from any 
number of sources. New or aggregated data can be 
pushed back to those sources. Depending on the work an 
analyst is doing, they may initiate movement from differ-
ent systems at different times.

There is no center in the new environment. Every sys-
tem is a possible source of data, and a possible source of 
queries to other systems for data. Data access requires a 
fabric, not a one-way connector or a retrieval mechanism 
that only works from one location.

Integrating data for a single project is easy. Doing it for 
more than one project, which may add new source types 
or engines, is hard. Now you are building multi-purpose 
tools rather than assembling components within a single 
environment. Combine this fact with user requirements 
that their tools be uniform, consistent, and more reliable 
than the applications they integrate, and you face an 
order of magnitude increase in software complexity. This 
is the problem with custom-building multi-use middleware 
rather than one-off data integration solutions.

When designing data access tools, the goal is to have a 
reusable tool, not customized integration that is built into 
a single application or environment. Custom integration 
like this means the work will need to be redone as each 
new application or analytical model is added. The goal 
of infrastructure is to abstract problems away from the 
needs of one specific application.

What we want is ease of use for anyone who has to get 
or move data in an on-demand fashion. We want to make 
the work of the analyst or developer reusable, no matter 
which environment they use. The work should look the 
same to the user no matter whether they are accessing 
data from a database or Hadoop. This enables portability, 
allowing IT to change source platforms and relocate data 
without breaking analytical code that sides on top.

The Environment Is Distributed:  
How Do We Unify Data for Users?

The first option most architects consider is the primary 
data platform in the environment. It might be a database, 
it might be Hadoop, or it might be something else. The 
starting point is often driven by the idea of a centralized 
data architecture, for example storing all the data in the 
EDW or in a data lake built on Hadoop. The natural (and 
wrongheaded) assumption is that there is only one central 
data repository.

The analytical ecosystem is inescapably distributed, not 
centralized. It’s not hub and spoke, it’s multiple hubs. Dif-
ferent hubs arose for different purposes, each with its own 
constituent parts and core central platform. For example, 
the BI hub with a data warehouse at its center, and the 
customer analysis hub with a product like SAS or SPSS 
at its center, or a data lake with Hadoop at its center. We 
need something to efficiently shuttle data between each 
of these hubs.

The problem lies in connecting disparate systems to move 
data. This problem is hard to solve because it’s seen—or 
rather, glimpsed—only in piecemeal fashion, one user or 
project at a time. In this way it is invisible, an assumed cost 
of IT. In architecture diagrams, the work of integration is 
not in the boxes but in the arrows that connect them—
arrows that weren’t supposed to be there because there 
weren’t supposed to be disparate boxes.

If we ignore the “centralize all the things” default position 
in favor of one that assumes there are always islands of 
data, then there are a number of tools and technologies 
for data access based on the platforms in use in those 
islands. In the first instance, most of these options make 
the same assumptions: you have a place to put data, you 
have access to the necessary tools, and you have the 
platform-specific skills required to use them. While these 

The goal of infrastructure is to abstract problems 
away from the needs of one specific application.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

6 TERADATA.COM

assumptions are generally valid for developers, they are 
not true for users. In the second instance, the tools are not 
architected with heterogeneity in mind, but with the idea 
that data moves from somewhere else into the platform 
that tool is native to.

Option 1: Use Tools from the Data  
Warehouse Environment

The most common starting point is to use data-
base-centric tools, if only because many analysts 
and IT people are familiar with them. Setting up 

connections to remote databases of different types is usu-
ally possible, and most databases have some rudimentary 
connectivity to Hadoop environments.

The analyst’s challenge isn’t purely access to data, how-
ever. Database-oriented tools make it easy to access data, 
but that data still has to be moved to one platform before 
it can be linked. Once the various datasets are co-located, 
analysis can proceed. 

Databases have tools to export whole or partial tables 
locally and over networks. There are bulk loaders to load 
large datasets quickly. There are two problems with this 
approach. The first is that data access in this paradigm is 
batch-oriented, not on demand. The second is that this 
batch style of data movement is aimed at developers and 
administrators, not at users. 

Moving data in this way involves the use of multiple tools 
to work with the databases and exported files and pre-
supposes a familiarity with the operating environments 
at either end. This approach also requires developer- or 
DBA-level expertise and privileges to accomplish the 
work—for example allocating space for large files and 
tables, or invoking fast load processes. If the dataset is too 
large, a plausible scenario in data exploration use cases, 
these mechanisms become unwieldy or impossible to use.

ETL tools are almost ubiquitous in data warehouse envi-
ronments, and many have added capabilities to work with 
Hadoop, Spark, NoSQL databases, and other platforms. 
They solve the data movement problem in a developer-
friendly way, but they are overkill for users, who just need 
simple access, join and move functions. They are also not 
designed for on-demand data access, but for a develop-
ment environment.

Option 2: Use Hadoop Tools
Once data is located in Hadoop, the job of link-
ing datasets can be made simpler by using SQL 
rather than using code. SQL-on-Hadoop options 

make the data easier to integrate and access, abstracting 
away from a coding model.

A challenge for architects is that each Hadoop vendor has 
its own preferred SQL alternative. For example Cloudera® 
wants you to use Apache Impala™, Hortonworks® prefers 
Apache Hive™, and MapR® wants you to use Apache Drill™. 
Independent of these are SparkSQL, which is becoming 
more popular, Presto, which is gaining favor in the enter-
prise thanks to support from Teradata and adoption by 
Amazon, and many proprietary SQL-on-Hadoop products.

There’s no obvious convergence to one choice or even 
one model of SQL-on-Hadoop, which makes it difficult 
to use as a foundation for data access and movement. 
Even though SQL-on-Hadoop is a necessary component 
for data access, it isn’t sufficient. It helps to link data in 
Hadoop, but does nothing for data stored elsewhere.

Like databases, Hadoop has a collection of tools for mov-
ing data. Tools like Apache Sqoop™ are the equivalent of 
import and export tools, with the added ability to get data 
from remote databases. Also like databases, these tools 
are generally designed for batch movement of data from 
one system to another. The problem is that they are not 
designed as end-user tools for quick movement of sub-
sets of data. Like their counterparts in the data warehouse 
world, they are designed for developers and administra-
tors with technical skills.

Option 3: Assemble Your Own Tools from 
Components in the Environment

One platform’s tools are not an answer to a 
multi-platform problem. We need to provide a 
foundation for access across multiple systems 

that is usable by analysts and developers. Fortunately 
there are many components across both the database and 
big data environments that can be used to construct data 
access tools.

The challenge one faces when building these has to do 
with the nature of the problem. This is not as simple as 
connecting several different platforms. That’s the base 
layer. We want a facility that will allow reuse by multiple 

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

7 TERADATA.COM

parties. Building a multi-user facility starts a long march 
up the custom-coding mountain because this is much 
harder than building one-off solutions to specific prob-
lems or adding simple point-to-point data movement.

The usual path one follows is to first build basic point-
to-point access and movement tools. For a few users, 
this approach may work, although it becomes difficult to 
maintain as systems are upgraded, environments change, 
and the components evolve at different rates. The main-
tenance challenge of custom integration was hard enough 
with enterprise systems in the past. The rapid rate of 
change with open source and the Hadoop market makes 
it more challenging.

If more than a handful of users and developers use the 
tools, one discovers the challenges of concurrency, multi-
user performance and scalability. Concurrency, parallelism 
and distributed reliability are deep topics that require 
esoteric knowledge to do well. Even small things like con-
nection pools and connection initiation times can become 
big problems with just a few users, particularly with 
interactive response time. These are problems that have 
preoccupied commercial software vendors for years, and 
are core to solving parallel data access problems.

Manually assembling data access tools is an acceptable 
approach if you are building a prototype or proof-of-con-
cept, but not if your goal is to scale up an organization’s 
data environment to serve different uses and more than a 
handful of users.

The Evolution of Federated Data

The problem we face is that the tools associated with 
the old ways of accessing and moving data don’t meet 
new needs well, and the tools aimed at new uses are 
suboptimal for existing data access patterns. Mixing and 
matching of these is the right answer, but doing it in an 
ad-hoc fashion with independent tools is both technically 
difficult and expensive. What should an IT architect do?

There is no “correct” model. Your analytics needs and con-
straints dictate what is required. What we want is support 
for distributed data access, because we can’t count on data 
being centralized before it is used—this is the on-demand 
access challenge we face today. We also want something 
that makes distributed data accessible as if it were in one 
place, which means we want a centralized access model.

Four Architectural Goals for 
Distributed Data Access

There is rarely a single right answer in architecture, 
particularly for data integration. There are only 
tradeoffs between alternatives. Working from archi-
tectural principles is a good approach to help keep 
goals in mind as one evaluates technology tradeoffs.

Centerless (or flat): You can’t dictate one platform as 
the center when any data repository might be a source 
or a target for data access or transfer, and data flow 
can’t be one way. The underlying topology is a fabric, 
not a flow, hub or point to point connection. Anything 
you choose needs to work equally well regardless 
of which platform the user starts from. To the user it 
should always appear that they are at the center.

Parallel: Analysts often want to filter or aggregate 
large datasets and join them with other data. Data 
access must be parallel-aware to scale well and sup-
port these activities. Unfortunately, we are dealing 
with systems of widely varied sizes. It is easy to over-
whelm a small platform with data from a large cluster, 
so any solution must be aware of the resources avail-
able across all of the systems. This means any solution 
must be aware of resources where data resides so 
they can be exploited when processing the data and 
must be parallel-enabled for fast transport.

Abstraction: We need to support analysts in addition 
to developers. They don’t need to see the technical 
details of the underlying connections, processing and 
transport. They only need to see the data and have 
some sense of its location and whether it is feasible 
to access in place or move it to where it is needed. 
The value of abstraction is that it gives the users (and 
developers) portability for their work, regardless of 
what platforms they use.

Reuse: To enable reuse you can’t be locked into one 
platform. Focus on reuse and portability, because 
that is where productivity gains come from. Many 
data access solutions today require rewriting code or 
queries if they are moved from one place to another. 
Reuse and portability go hand in hand.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

8 TERADATA.COM

The primary technology on the market that meets these 
needs is data federation. Federation is designed to access 
remote data but to make it appear as if the data is local. It 
abstracts the access problem above platforms by hiding 
the implementation details. One doesn’t know if one is 
fetching data from a database, Hadoop or NoSQL. Feder-
ation products separate the problem of access into a layer 
that can be managed independently of data storage and 
working areas. They provide something akin to a “virtual 
hub” for data.

Data federation technologies can be divided into two 
categories based on whether they are loosely coupled or 
tightly coupled systems. A loosely coupled system is like 
the model of data federation that came out of the data-
base and BI tool markets—they commonly used the term 
“query federation” so we will use that term to distinguish 
between loosely and tightly coupled federation.

Loosely Coupled, or Query Federation
The idea of query federation has been around for many 
years but is often overlooked as a solution to current 
challenges. In part this is due to legacy infrastructure 
limitations, like internal network bandwidth and the limited 
ability of tools to scale. In part this oversight is due to the 
recent growth of large islands of data and the inability of 
the vendors to address large-scale needs. 

The goal of a federated query is to simplify access to 
data from multiple databases. The concept is to write 
one query that accesses two or more different databases 
to unify the results, as shown in Figure 1. To the user, it 
appears that one is accessing and joining tables from the 
same database. 

Database vendors have been providing this type of dis-
tributed access for a long time. The starting point was 
database links that let different databases from the same 
vendor share tables. Then came connectors and gateways 
that permitted other types of databases to access tables. 
These approaches typically had limitations, for example 
only working with one vendor’s products, or the inability 
to access remote and local tables within the same query.

Query federation is also used by some BI tools to make it 
easier to access multiple data sources without the need to 
integrate data beforehand. As with databases, these tools 
suffer from the limitation that a query can only be issued 
from within that vendor’s tool. This means any other tools 

are unable to access the data, furthering the data silo 
problem. Their use is often limited to a developer interface 
or to use of the data only inside that vendor’s database or 
query tool.

Query federation is not often used, due to the limitations 
mentioned above. It has been deployed mainly as a point 
solution for known, repeatedly-used data stored in rela-
tional databases, and is usually hidden from analysts, end 
users or application developers. It’s a good solution for a 
small subset of the problems.

Tightly Coupled Federation,  
Also Called “Data Virtualization”
Tightly coupled data federation tools abstract the prob-
lem away from any one database or query tool, making 
queries independent from the underlying databases. They 
provide connectors to different data sources and permit a 
single query to join data across them.

In order to resolve distributed joins and operate on the 
joined set—for example aggregating or filtering the results 
of a distributed join—they have rudimentary database 

Query

Hadoop

Figure 1. In query federation, the query is proxied through a 
database (or client tool) that directly communicates to each source, 
joining the data locally and returning the result.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

9 TERADATA.COM

capabilities as part of the federation server. The server 
acts as a place to join data before delivery. To avoid 
incompatibilities with different levels of SQL support 
between databases, the SQL syntax is usually limited to a 
common subset understood by all of the databases.

Tightly coupled federation is often referred to by the 
product category it spawned, data virtualization (DV). We 
will use DV to refer to tightly coupled federation, as this is 
the more popular term for the category of products.

The evolution that made federation more broadly usable is 
the idea of using views to hide the underlying details from 
user queries. A view makes the results of a query look like 
a table while hiding the details of the distributed query 
processing in the server.

Combining the idea of database views with query process-
ing, DV creates a collection of virtual tables that appears 
as a virtual database. Each virtual table is actually a query 
that joins remote data sources together. The views can be 
treated like tables and combined with other views or in 
queries, allowing a virtual database to be built over many 
sources. Any client tool can access this virtual database via 
a SQL connector. Users and developers query the views as if 
they were tables stored in a database, as shown in Figure 2.

Several other technical innovations were added. There is 
no requirement that the data be delivered as a table. A 
view is simply a query result set. It’s easy to make the DV 
server appear as a file server and present the same result 
set as a file. It’s just as easy to package the result set in 
JSON or XML and make it appear as a web service call-
able by any application.

Likewise, data sources need not be restricted to relational 
databases. Any type of database, file or web service can be 
accessed. This allows a DV server to be a sort of universal 
access layer, proxying any data source type to any query 
type. A table can become a web service. A web service 
joined to a file can be turned into a SQL-accessible table. 

Data virtualization doesn’t come without complexity. 
While a DV server is a virtual database, it doesn’t have 
the same performance characteristics as a real database 
because it accesses the data from remote sources over a 
network. The query optimizer inside a DV server is more 
complex than in a database. It has to optimize each of 
the component subqueries that are sent to different data 
sources as well as the final assembly—it essentially opti-
mizes multiple networked databases.

The DV approach has benefits. A SQL-knowledgeable 
developer can write complex queries and make the results 
easily accessible to a large audience as a virtual table. Any 
user can use SQL to access the table, or use web service 
or file-access tools. This allows DV to blend different 
application technologies into a data service layer.

DV has the limitation that one must create and publish 
data models via the server before data is accessible. Typi-
cally, only developers have the ability to define the queries 
that make a virtual table. This limits use to data access 
needs that are known in advance, making DV less useful 
for exploratory data uses typical in data analysis.

Teradata® QueryGrid™: Merging Federated 
Access with Data Transfer
Teradata® QueryGrid™ takes a step back to take a step 
forward: back to loosely coupled federation from the 
model-first approach of data virtualization and forward 
to an abstracted service for bidirectional data access and 
transfer that is independent of storage platforms. It can 
still optimize queries, take advantage of source-specific 
functions, and do this with the full parallel capability of 
each platform, unlike the single-threaded nature of data 
federation alternatives.

Query

Hadoop

Figure 2. In data virtualization, the DV server processes the query 
against a view, which is then resolved against remote sources, 
joining the remote data in the DV server and returning the result.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

10 TERADATA.COM

The QueryGrid concept orchestrates on-demand data 
access at scale across multiple platforms in the analytics 
environment. QueryGrid allows users to initiate queries 
from any linked platform and access any system it is con-
nected to, combining data from multiple platforms in a 
single query. It does this without requiring that all the data 
be copied to one place first. QueryGrid can access and 
transfer data to and from participating systems, unlike the 
one-way data flow of data federation, as shown in Figure 3.

QueryGrid is designed using SQL as the common lan-
guage, but it goes further by allowing a user to take 
advantage of platform-specific processing capabilities 
any source. This means QueryGrid can take advantage of 
the processing power available in multiple parallel engines 
using the native syntax.

The use of SQL does not limit QueryGrid to database use. 
QueryGrid integrates with any distribution of Hadoop via 
Presto, a distributed SQL-on-Hadoop project originally 
developed by Facebook. With this integration it is pos-
sible for QueryGrid to provide parallel access to any data 
available in Hadoop, from file formats to sharded MySQL to 
Amazon S3. 

Any technology that operates as an infrastructure layer 
requires security, reliable network transfer, workload man-
agement, administration and monitoring. QueryGrid, like 
DV, is designed to be intelligent middleware with these fea-
tures. For more details about how QueryGrid is designed to 
address large-scale parallel and distributed data access, see 
the section titled “QueryGrid Technical Design.”

When to Use Different Technologies:  
Five Tradeoffs
Query federation, data virtualization and the parallel data 
fabric approach taken by QueryGrid are variations of dis-
tributed access that don’t require physically copying it can 
be used. Each approach has a slightly different approach 
that embodies assumptions about how data is used. This 
results in design tradeoffs the limit their applicability to 
some workloads. The following items are key workload attri-
butes that constrain how these technologies can be applied:

Repeatability: How Well-Known Are the  
Data Requirements?
A high degree of repeatability means the data require-
ments are well understood. If it’s possible to anticipate 
data requirements in advance then data can be physically 
copied in advance to where it is needed, as it is in a data 
warehouse, or a virtual table can be built in a DV server to 
access the remote data.

The model-first approach is a strength of DV for repeated 
use of the same data. A modeling interface within the DV 
environment is used to construct and publish views, allow-
ing developers to build highly optimized queries and hide 
this complexity behind a virtual table. 

The downside is that views are predefined, making this 
approach untenable for exploratory work. The need for an 
in-tool modeling environment and the inflexibility of fixed 
views is a limitation of DV use for ad-hoc problems, narrow-
ing use to more predictable application and BI workloads.

Loosely coupled federation and QueryGrid are better 
suited to ad-hoc use, allowing them to be applied when 
the data requirements are unclear. A user can explore the 
data through a series of queries and arrive at the data 
they need. At the end of this process, if the data will be 
used repeatedly, it is possible to use the query to move 
data to another location or present it as a view.

Query

QueryQuery
Hadoop

Figure 3. Teradata® QueryGrid™ works by connecting the systems 
together into a fabric. In QueryGrid the same query can be run from 
any system. QueryGrid provides user access from anywhere and 
connects the systems to each other in the background.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

11 TERADATA.COM

Query Concurrency: How Many Simultaneous Queries  
Do You Expect?
Concurrency and repeatability are often linked: many 
workloads with high concurrency also have high repeat-
ability, for example application workloads or dashboards 
in BI environments where the same queries are run by 
many users at the same time.

Data access choices are more limited when there are 
many simultaneous queries. In general, loosely coupled 
federation is designed assuming few users, while the 
tightly coupled DV approach is designed for higher 
concurrency. QueryGrid falls between the two, limiting 
concurrency in order to increase parallel throughput.

Just as it’s not always possible to move data in advance to 
where it is needed, sometimes it’s not possible to address 
high concurrency requirements without physically consoli-
dating data in advance, particularly when there are strict 
response time requirements.

Response Time: What Is the Expected Time to Get Results 
for the User (or Application)?
Response times are often guaranteed as part of a service 
level agreement. The on-demand nature of loosely cou-
pled federation and QueryGrid make them less suitable 
for uses with strict SLAs unless the queries are predict-
able and can be tuned. A tightly coupled DV server is a 
better choice when one has guaranteed SLAs because of 
the approach DV takes to presenting a predefined view. 
This permits advanced tuning and caching prior to use.

If response time is less strict then the tradeoffs affecting 
choice will revolve around concurrency and data volume. 
Figure 4 shows what the relative response time tradeoff 
between concurrency and data volume looks like for the 
different approaches. 

Data Volume: How Large Are the Datasets You  
Need to Access?
Federation products are typically designed with a scale-
up model to address data volume scaling. Parallelism is 
limited to what can be done on a single server, and some-
times what can be done within a single process on the 
server. This is particularly true of loosely coupled federa-
tion that is embedded in client tools and databases.

Data virtualization is designed to act as a centralized 
hub, albeit without physically consolidating the data into 
one place. This works well for problems that have high 

concurrency and response time requirements, provided 
the data volume is low. It is easy for large queries to over-
whelm a DV server because the servers typically do not 
have a parallel distributed architecture. Accessing a lot of 
data highlights the central bottleneck of the DV server.

At moderate scale and low concurrency, any choice can 
be made to work. The challenge is then whether one 
knows the data requirements in advance or only after 
looking at the data. The tightly coupled federation model 
only works with known data requirements. Data volume is 
usually the biggest constraint mentioned for distributed 
data access. Accessing and processing a large volume of 
data generally requires a scale-out parallel architecture.

Copying Data: Does Data Need to Be Copied from One 
Place to Another Before It Can Be Used?
Most products are designed to facilitate access in read-only 
fashion. One of the needs we have in an analytical eco-
system with multiple data stores and different processing 
engines is to link and position data where it will be used.

Performance Area Covered by Data 
Virtualization, Query Federation, and 
Teradata® QueryGrid™

Data 
virtual
ization  
is best 
here.

QueryGrid 
is best here.

Query 
federation 

is best here.

Q
u

e
ry

 c
o

n
cu

rr
e

n
cy

Data volume per query

MBs GBs TBs

1000s

100s

1

Figure 4. Data virtualization is capable of very high concurrent query 
loads, but only at relatively small data volume per query. As the data 
volume grows into gigabytes, performance drops quickly. Loosely 
coupled query federation, as built into databases and query tools, 
tends to support far lower user concurrency, but can work with 
larger data volumes than data virtualization servers permit today. 
QueryGrid is designed to handle extreme data volumes at the level of 
user concurrency provided by underlying systems. At small data size 
and low user count, anything will work so the simplest tool is the best 
choice. When the user count is high, data virtualization is a better 
solution. When data size is large, QueryGrid is a better solution.

Data colocation/
integration is best 

in this area.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

12 TERADATA.COM

Copying data can be accomplished (via caching) with 
federation tools provided the data volume is low. As data 
volume increases, the ability of these node-serial architec-
tures to keep up is severely limited.

Federation was not designed to move data from one 
platform to another. It was designed to enable live access 
to distributed source data. Federation was envisioned as 
a technology to make remote databases accessible. Some 
products have the ability to insert the results of a query 
into the local environment, but the data flow is one way 
and manually configured for each use.

The federation approach is about publishing the results of 
a query as a view for others to reuse. The loosely coupled 
approach is intended for writing queries to fetch results for 
use. Neither of these is about exploring potentially large 
volumes of data via query and moving data from a place 
where it is stored to another where it can be processed. 
QueryGrid is intended to solve these types of problems.

When Should You Use These Technologies?
The challenge for an architect is that all of these constraints 
are factors in a workload, so one must prioritize between 
them, resulting in tradeoffs for any application. For 
example, querying large amounts of data reduces concur-
rency, or having a large number of queries places limits on 
response time guarantees when they are not repeatable.

There are other considerations as well. For example, the 
variety of data sources accessible via DV is very high, while 
for loosely coupled federation it can be very low, often 
limited to one vendor’s products. This extends to Hadoop, 
where access is usually limited to one or two distributions 
and is often accomplished by querying via Hive, which 
further constrains query complexity, response time and 
data availability.

There is rarely a single answer to data access because 
workloads mix conflicting requirements. It is very often 
a case of using multiple tools depending on the circum-
stances, for example mixing DV for repetitious data access 
with QueryGrid for the ad-hoc and at-scale requirements.

Nine Key Factors to Evaluate for a 
Scalable Data Fabric

The goals for distributed data access in an analytical 
ecosystem are clear: access must be on-demand, easy 

enough for an analyst to use, and scalable enough to not 
be the bottleneck. It needs to work across databases and 
Hadoop, and work for both reading from remote data 
sources and moving data between remote systems. That’s 
not a simple set of goals.

Whether you are assembling a set of components to build 
your own solution or evaluating third-party products that 
purport to address the problem, the general requirements 
are the same. Here are the top 9 items to evaluate when 
designing a solution or choosing a product.

Scalability
Scalability is an obvious item, but evaluating it 
properly is difficult. Data access must be parallel, 
which in a distributed environment means that a 

query should take advantage of parallelism available both 
where the query was initiated and at the source system.

While this might seem obvious, most data access solu-
tions are not fully parallel. They often funnel requests to 
a single processing thread or they use a single network 
channel between systems. It is not uncommon to find 
systems that are designed assuming one side of a connec-
tion is single-threaded. For example, many connectors for 
Hadoop take advantage of parallelism with the Hadoop 
cluster, but the connector itself narrows to a single pro-
cess when returning the data.

It is vital that both sides of a data access connection, as 
well as the transport used by the connection, be parallel. If 
any part of the connection from initiation through trans-
port to retrieval is not parallel then it will be a bottleneck 
that severely limits performance and scalability. 

The transfer of data between two systems should also 
be cluster-aware. For example, if a Hadoop cluster has 10 
nodes, and a database has 5 nodes, then access from the 
database should use the appropriate degree of parallel-
ism; perhaps 5 processes on the database nodes, each 
communicating to 2 of the 10 Hadoop nodes, using a total 
of 5 network links to move the data. This manages the 
resources to the level of the limited system, in this case 
the database. If the cluster size were reversed, the com-
munication would be reversed as well. However, it’s never 
this simple—for example some Hadoop nodes may have 
splits and some may not, so the software has to determine 
this at a finer grain of parallelism. 

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

13 TERADATA.COM

Other questions also come up with parallelism: How much 
is too much? How do you define it? How do you manage 
it as load fluctuates? Parallelism is easy when there’s one 
request, but multiple requests have to queue or resources 
have to be divided between queries. Since cluster sizes 
can change, this parallelism can’t be a fixed configuration, 
but must be determined as each request arrives.

Performance and scalability come from the architecture, 
but to get both in a data access framework requires an 
optimizer that can make decisions about where to do 
operations, when to reorder them and shift work across 
platforms, and how to manage parallel operations to avoid 
local and remote bottlenecks.

These are the types of design criteria that should be 
tested to ensure the solution scales appropriately for the 
data volumes and resources available.

Efficiency
A common belief with data today is that resources 
are cheap, so we can just add more. However, this 
brute force approach rarely works in real-world 

situations. When data volumes are large, small amounts 
of overhead add up and can disproportionately consume 
processing or transfer time.

Any solution should be smart enough to move only the 
data that needs to be moved. This is what is entailed, for 
example, when filtering data or eliminating partitions at 
the source before transferring it over the network. (This 
is usually called a “pushdown operation.”) Data reduc-
tion should always be applied early, which means that 
the system ought to have an optimizer that can reorder 
operations in a user request.

There are, however, other important efficiency consid-
erations. For example, resources may not be cheap, 
depending on where the data lives. If there are excess 
resources on one side of a transfer between two systems, 
then operations can be shifted to the resource-rich side of 
the transfer. This is ideal for work that involves format or 
code conversions. In some cases, particularly over lower-
bandwidth network links, it’s worth using extra CPU to 
encode the data for efficient wireline transfer, or even to 
compress data prior to transfer and decompress at the 
other end.

Ideally, the system should be able detect when this is 
worthwhile and do it automatically. Due to complexity, 
most open source tools and custom code do not attempt 
to optimize operations, instead requiring that a developer 
manually configure this as part of a data pipeline.

Concurrency
Concurrency is a critical feature of a data ware-
house system that is designed to support BI 
use cases. The good news is that exploratory 

use cases that join large datasets are not so common 
that every analyst will be doing them—at least, not at the 
same time. Even though concurrency doesn’t need to be 
as high as that needed for a BI system, it should be more 
than one user query at a time. Analysis systems are not 
single-user systems.

As noted in Figure 2, concurrency varies with dataset size. 
The larger the query, the lower concurrency can be. When 
testing a solution, try a mix of large and small data move-
ment tasks and see how they perform as the number of 
tasks increases.

Topology of Systems and Connections
A user needs the ability to initiate a query from 
any system that is part of the ecosystem. The 
limitation of many vendor-supplied data access 

solutions is their unidirectional and asymmetric approach. 
They can only initiate queries from their environment and 
access data from other systems, a common case with 
database links and federation. This forces analysts to work 
inside only one environment, even if it’s not the best one 
for their work.

Access should be the same no matter where a query is 
initiated. If a user is working in Hadoop, then they should 
be able to initiate their request from that environment. If a 
user is working on a Teradata Database, then they should 
be able to initiate their request from that database. For 
example, an analyst might have machine log events stored 
in Hadoop and warranty claims stored in a Teradata Data-
base. If they are looking to correlate that data, then they 
might start in the Hadoop environment and run an ana-
lytical model. Later, if they know what data is useful, they 
can simply query that data from Hadoop via a SQL-based 
query tool running against the Teradata Database.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

14 TERADATA.COM

The access or transfer of data should also be bidirectional 
so that an analyst can work with data locally and send it 
to a remote system, or join data from a remote system 
with data on the local system. The ideal situation is for the 
user to always feel as if they are at the center, no matter 
what platform they are working from and where the data 
is stored.

Related to this is the quality of the connectors to different 
platforms. In many cases, they are just JDBC connectors 
to remote systems despite being one of the most critical 
components to data transfer performance. You want con-
nectors that operate in parallel, bidirectionally, with the 
same degree of parallelism as the platforms they run on. 
They, or their management framework, have to address 
resource sharing across multiple queries, connection pool-
ing and automatic data conversion.

Data Conversion and Type Management
One of the problems when dealing with multiple 
platforms is that they can each store data in 
slightly different formats. An analyst using data 

from another platform has to be aware of the differences 
and convert formats and data types based on the system 
they are using. This is cumbersome when done manually 
and often leads to errors; one common example is partial 
joins that result when certain data types doesn’t align.

The ideal situation for a user is to have a common format 
(and data types when dealing with typed fields) that all of 
the connected platforms map to. In this way, there is no 
confusion about the data one is working with because the 
formats and types all look the same.

Databases use implicit type conversion between varying 
types of data internally. Data access middleware needs to 
do the same thing, but across a more varied range of data 
types. To do this requires implicit type conversion of data 
from each source system to a common representation so 
that data can be transparently moved from one platform 
to another. Doing this automatically prevents users from 
making obvious mistakes. The ability to override the con-
versions may be needed for expert users, but this should 
be the exception rather than the rule.

Support for Platform-Specific Capabilities
While we put a lot of emphasis on abstract-
ing away from underlying platforms so they all 
appear alike, the platforms do not have identi-

cal capabilities. Some are good at scanning on cheap, 

large-scale storage. Others are good for ad-hoc query on 
large data volumes. Others are good for running complex 
analytical models.

Analysts need access to underlying capabilities in the 
platforms. For example, it should be possible to execute 
commands in the native syntax of a remote system, doing 
computational work there, and then transferring the 
results. The local system where the user issued the query 
may not understand this syntax, but it can still send that 
work to the remote system for execution. This is called 
“pass-through” in data virtualization tools.

Likewise, analysts need to be able to take advantage of 
local system capabilities that may be unavailable on the 
remote system. For example, they might join remote data 
with local data and then execute an analytical model on 
that data using functions only available on the local sys-
tem. The ability to do useful analysis work can be severely 
curtailed without this type of pushdown capability.

Security
Security is another reason the data access solution 
needs to be abstracted from underlying platforms. 
You want security to be policy-driven rather than 

manually configured in point-to-point fashion. For exam-
ple, it’s not useful when a system on one side of a transfer 
enforces encryption if the system on the other side 
doesn’t or can’t do the same. Building this into the data 
access layer protects data from each point in the system.

If security is tied to the platforms rather than the data 
access layer, then enforcement of policies is left to indi-
vidual developers and administrators who configure the 
software. This has the effect of putting more work  
on technical staff since they will have to configure con-
nections to each system and deal with the exceptions.  
An ad-hoc approach leads to gaps in security because 
one misconfigured platform can permit access to  
other platforms. 

If security is part of the data access software and inde-
pendent of the underlying platforms, then it’s possible to 
have policy-based security that is not constrained by any 
one platform. Security should be configured once based 
on systems, data and teams. This also makes it easier to 
give users access to data—the access can be controlled 
by one set of policies rather than requesting access from 
many different administrators.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

15 TERADATA.COM

Monitoring and Administration
A key factor that is neglected (or under-
developed) in most custom-built data access 
environments is monitoring and administration. In 

part, it’s because the access is built more as data pipelines 
to supply data to one place or application. Enabling ad-
hoc access to data for analysts is a more generic problem, 
albeit one with more complex administration needs.

There are many layers to this: logging and monitoring 
of activity on remote systems, monitoring on the local 
system, tracking information for troubleshooting and 
tuning, observing and controlling platform and network 
resources, and throttling activity on local or remote 
platforms to balance the workload. For a multi-user data 
access fabric, these are vital or one bad query can bring 
multiple platforms to a standstill.

These Factors All Contribute to the  
Overarching Goal, Ease of Use
The biggest challenge for an analyst is the technical com-
plexity when dealing with multiple platforms. To make it 
easier, the data access solution needs to hide that com-
plexity. Using a single SQL dialect that is available from 
any connected platform and making all sources appear as 
tables partly achieves this. The user’s work (and their knowl-
edge) is then portable if they move to a different platform.

Other elements like automatic type conversion as data is 
linked or moved between systems, common security cre-
dentials and policies, automatic management of parallelism, 
and optimizing their queries to minimize data movement all 
contribute to an easier-to-use environment, which is the real 
goal here.

Teradata QueryGrid™: Solving the 
Hard Problems of Scalable Data Use

Teradata QueryGrid™ is designed to make it easy for a 
user to query and move data between the systems in their 
analytics environment. It abstracts the complexity of link-
ing data from different types of systems so they see the 
data without worrying about the underlying platforms. 
The challenges of linking, accessing and moving data are 
hidden from view. This allows them to store and process 
data on the platforms best suited to their needs and to 
access the data from those platforms when needed.

More importantly, QueryGrid is designed to be as scal-
able as the platforms it connects to. If a query from one 
parallel system, like Hadoop, accesses data from another 
parallel system, like a Teradata Database, QueryGrid 
will use the full resources available from each system. It 
is designed to be an independent middleware compo-
nent for high-speed, large-scale data access that won’t 
become the bottleneck between systems.

QueryGrid is similar in concept to federation, but with a 
few key differences that put it into a different category. 
Like federation, QueryGrid uses SQL as the common 
language for data access. Unlike federation, QueryGrid 
extends user queries by allowing the use of native func-
tions available on remote systems, enabling one to push 
processing to data on a remote system and join the out-
put of that process with data on a local system. QueryGrid 
supports bidirectional data transfer, so local data can be 
moved to a remote system and vice versa. This is gener-
ally not possible with simple federation.

Unlike loosely coupled federation, which typically has 
point-to-point connections, or DV, which involves a central 
hub through which the data flows, QueryGrid is a fabric of 
bidirectional connections. When a system is added to the 
fabric it becomes accessible to all other systems, regard-
less of type. Any data on that local system is then usable 
from any other system, subject to security policies set at 
both the QueryGrid and the local system level.

These differences are due to the design of QueryGrid. 
Loosely coupled federation is most often a feature that 
is built into an underlying database or application. It is 
a technology from the client-server era and embeds a 
notion of one place from which to initiate a request. Data 
virtualization operates as a central server through which 
data must flow from other servers.

Neither of these is an architectural match for a distrib-
uted parallel environment or cloud computing. Software 
architectures to access data must now meet the needs of 

QueryGrid is designed to be as scalable as the 
platforms it connects to.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

16 TERADATA.COM

large-scale data and compute platforms that may be on 
separate networks, but hide the underlying complexity 
from users and developers alike.

The previous sections described design principles and 
important factors to consider when evaluating solutions 
for distributed data access. To solve them requires under-
standing how to engineer solutions to several challenges: 
scalability in distributed systems, the right level of abstrac-
tion for users and making a system that is maintainable 
without significant developer or administrator involvement.

Before going into more detail, it’s worth looking at the 
high-level QueryGrid architecture to understand how it 
is designed to avoid the client-server scalability traps of 
other technologies.

QueryGrid Architecture: How It’s Built
This section provides details about the design of Que-
ryGrid to show how it addresses the challenges of parallel 
data transfer between platforms that are themselves dis-
tributed computer clusters. The components in QueryGrid 
are shown in Figure 5, QueryGrid architecture.

General Design
QueryGrid uses a modular architecture that is designed 
to provide independence from the underlying platforms. 
Components that provide shared services implement 
the same features regardless of platform, so features like 
authentication, encryption, network transport protocols, 
data conversion and data transfer are handled in the 
same way. This guarantees that different types of systems 
behave in the same way, abstracting the data access and 
movement problem into a common set of APIs. 

QueryGrid creates the concept of a “fabric”—a collection 
of platforms that can communicate with one another to 
transfer data. Once a platform is added to a fabric, it can 
instantly see all other platforms in that fabric. In most 
federation and custom-integrated environments, this is 
not the case—the visibility and data flow are unidirectional 
and must be configured with each pair of platform con-
nections. Point-to-point connection models are unwieldy 
because each new platform adds an increasing number of 
pairwise connections to configure and maintain. 
 

Teradata® QueryGrid™ Architecture

Platform Platform

Platform

QueryGrid Manager

QueryGrid  
Fabric

Node

Worker QueryGrid Connector

Q
u

e
ry

G
ri

d
 L

in
k

QueryGrid ConnectorWorker

QueryGrid ConnectorWorker

QueryGrid ConnectorWorker

Node

Worker QueryGrid Connector

Q
u

e
ry

G
ri

d
 L

in
k

QueryGrid ConnectorWorker

QueryGrid ConnectorWorker

QueryGrid ConnectorWorker

Node

Parsing Engine Parsing Engine

Parsing Engine

Node

WorkerQueryGrid Connector

QueryGrid Connector WorkerQ
u

e
ry


G

ri
d

 
L

in
k

Node

WorkerQueryGrid Connector

QueryGrid Connector WorkerQ
u

e
ry


G

ri
d

 
L

in
k

WorkerQueryGrid Connector

QueryGrid Connector WorkerQ
u

e
ry


G

ri
d

 
L

in
k

Figure 5. Teradata QueryGrid architecture. Every platform has several components installed: The parsing engine is what receives and parses a query from 
the user. The QueryGrid connectors provide basic services to each worker in the platform (e.g. security, data conversion, data transfer). The QueryGrid 
fabric spans all the connectors, enabling one platform to communicate with other platforms and the QueryGrid manager. The manager is responsible for 
configuring QueryGrid on each platform, collecting metrics from nodes and the network, and monitoring all query and data transfer activity. A fabric is a 
collection of platforms that can communicate with one another.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

17 TERADATA.COM

The idea of a fabric avoids one of the other problems 
with most custom data access work, as well as with the 
server-centric model of federation: forcing a user to work 
from one primary platform. In the fabric, any platform can 
access and transfer data from any other platform. The 
ability to access data is symmetric, subject only to the 
limitations of the local platform the user is working on.

For example, a user might use Hadoop to join local event 
data with transactions in a remote Teradata Database, or 
query from the Teradata Database and join a local table 
to event data stored remotely in Hadoop. An analyst can 
work from the environment that makes the most sense 
for them, not what is technically convenient for admin-
istrators who have to copy data between systems first. 
The data is presented as SQL-accessible tables 
abstracted above the underlying platforms.

Multiple fabrics are possible in QueryGrid, each 
managed independently. This allows an admin-
istrator to link different systems for different 
uses, or to create categories of fabric with dif-
ferent resource limits. For example, a fabric for 
ad-hoc use by analysts might be different than 
one used to support analytical model execution. 
This is an important feature for enterprise envi-
ronments, yet absent from most alternatives.

Parallel Architecture
If your goal is to support people exploring and 
analyzing data, then you don’t want them to 
wait for hours for data. QueryGrid is designed 
as a parallel architecture from end to end so 
that it won’t be the bottleneck in data access. 
There is no primary platform from which queries 
are run, as there is in client/server-style federation, nor is 
there is a central server through which data must flow.

Parallelism is one of the hardest elements to get right in 
distributed systems. Most of our existing integration tools 
were developed assuming that SMP servers communicate 
across a single network link. In today’s environment we 
are dealing with clusters of nodes. Unlike the server-based 
world, cluster sizes can vary greatly, meaning that data 
throughput and network bandwidth use also vary greatly. 

Users want their data fast, but not at the cost of over-
whelming shared environments, creating difficult design 

challenges. QueryGrid must be aware of the units of paral-
lelism available for use in each platform that is attached to 
a fabric. It’s easy to move data from same-sized clusters, 
but not when moving from a large cluster to a small clus-
ter. Depending on the degree of parallelism, it’s possible 
to overload one cluster with data from another, or saturate 
the network links between them.

Another challenge in design is the fact that cluster sizes 
are not static. Resources can be added and removed, 
sometimes quickly. It is very hard to build software that 
can introspect the environments it is connected to and 
change its configuration. Most products and custom solu-
tions are statically configured, so when resources change, 
an administrator must update the configurations or they 

will be out of date. QueryGrid is not static.

The volume of data and its distribution also 
change over time. When combined with queries 
that filter some data, any approach based on 
static configuration puts too much of a burden 
on the user. For example, some solutions to data 
transfer make the user or developer specify 
manual data partition management rather than 
determining that information at runtime.

Network Awareness
Network bandwidth is the scarce resource with 
this type of work, not server resources. Network 
bandwidth limits are often overlooked by devel-
opers who build custom software to move data 
back and forth between clusters. With a single 
user or query, this can be managed. Problems 
build up when one introduces concurrency. 
Multiple users or queries will either compete 

for resources on the clusters, or they will consume all the 
available network bandwidth. 

Some platforms can read or write data faster than others, 
so the middleware has to be aware of not just parallelism, 
but throughput and resource consumption. Resource use 
is further complicated by cluster placement, for example 
using a local database to access data stored in Postgres 
running in a cloud, which implies not a high-bandwidth 
LAN between the two platforms but (probably) a lower-
bandwidth WAN. QueryGrid allows an administrator to set 
policies that address these problems, for example to set 
resource limits that are different for different platforms.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

18 TERADATA.COM

Optimization
QueryGrid was designed specifically for the kinds of prob-
lems that appear only when one grows into large-scale 
data environments and cluster-based platforms. In these 
environments, addressing efficiency of queries and data 
transfers grows in importance. Small changes in where data 
is filtered or aggregated can vastly improve response time.

An optimizer separates the logic of data access from its 
physical execution. When done properly, an optimizer can 
introspect the metadata available for local and remote 
datasets to rewrite queries, change the order of opera-
tions, and adjust the physical execution of queries and 
subqueries. In manually configured or static environments, 
like those in many Hadoop environments and virtualiza-
tion tools, a developer must make these decisions for each 
query. Most analysts do not have this level of expertise.

When parsing queries, QueryGrid takes into account many 
of the elements described earlier. It can push tasks like 
filtering and aggregation to a remote platform and manage 
partition elimination so that less data moves across the net-
work. It can push a projection to a remote platform when 
possible, so only the columns required are returned, rather 
than an entire row that includes unused columns (impor-
tant when there are hundreds of millions of rows). Based on 
resource profiles, it can do implicit data type conversions 
on local or remote platforms, taking advantage of the plat-
forms with more resources available.

A problem with most of today’s big data platforms is that 
the statistics about datasets are inaccurate or unavailable. 
Querying a file may return one million rows or 100 billion 
rows depending on the filters. The only way to know is 
often to run a query and see what happens. The alternative 
is to gather stats on the data first, which might take as long 
as running the query.

QueryGrid is unique in offering a third option: when execut-
ing from some platforms, it has an adaptive optimizer that 
gathers statistics on the data being processed as a query 
executes. If data is larger or smaller than expected, or is 
skewing, which means it overloads some workers while 
leaving others idle, the optimizer can change the execution 
plan for the running query. This allows a user to query with-
out worrying as much about what might happen.

QueryGrid Link and Connectors
To provide parallel data access, QueryGrid installs local 
components that communicate with the fabric onto every 
node in a cluster. These components provide an equiva-
lent interface to every platform so that they all have the 
same set of services available. Every node has a link that 
enables communication, transfer and monitoring, as well 
as a connector for every worker process. 

For example, every mapper in a Hadoop cluster running 
Hive has a connector. This means that there is the same 
degree of parallelism available to QueryGrid as there is in 
the platform it is installed on. Many cross-platform data 
integration solutions use a static configuration to define 
the units of parallelism, or base the parallelism on parti-
tions in the data. Data distributions can change over time, 
requiring periodic reconfiguration on the part of adminis-
trators or developers. If this is not done then performance 
degrades. By aligning parallelism dynamically with work-
ers, QueryGrid avoids this flaw.

The connector used by QueryGrid is not a simple JDBC 
connector, common in many software packages and open 
source projects for remote communication. It addresses 
a number of difficulties related to efficiency and perfor-
mance. Instead of using disk-based mechanisms for data 
transfer to or from remote systems and local storage, it 
uses shared memory to transfer the data.

One feature that affects resource efficiency is the internal 
row conversion API that allows QueryGrid to auto-
matically map data types in local storage to a common 
representation used on all platforms. By using more effi-
cient representations of data than raw JSON, for example, 
it’s possible to move the same data using far less memory 
and network bandwidth.

The more important aspect of automatic type conversions 
is that the user does not need to be aware that types are 
conformed across systems, or how to do it. Without this 
feature, simply moving a query that joins data in Hive 
and Cassandra from Hive to a Teradata Database would 
require rewriting that query to recast all the data types. 
This is something users often do not think about, unless 
they are highly technical. Even then, mistakes are com-
mon, particularly with problematic data like DATETIME 
columns and various Unicode string encodings.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

19 TERADATA.COM

As with a database, it is still possible for the analyst to 
override type conversions if they want to change how 
a data element is treated. The connectors and links are 
designed to support flexibility when working across mul-
tiple platforms. The goal is to hide complexity, but provide 
transparency when desired.

Another example of this transparency is the ability to 
send commands in the syntax of the remote system from 
where the user is working. A user on a Teradata Database 
can send a Cassandra-specific query. It is this type of 
flexibility in pass-through query processing that makes 
QueryGrid well-suited to exploratory and analytics uses. 
Data can be processed in place on the most appropriate 
remote engine, joined with data elsewhere and brought 
back to the local platform.

QueryGrid Manager
The QueryGrid Manager runs in a separate environment, 
independent from the platforms it connects. This enables 
monitoring and administration of the full ecosystem 
without concern for what happens when one platform is 
down. Many do-it-yourself monitoring solutions encounter 
problems where the monitor and the platform monitored 
run in the same environment or depend on the same 
event logging infrastructure. The cloud-native pattern 
that separates these monitoring functions is uncommon in 
federation products.

Another cloud-native pattern is providing an always-on 
system. With many solutions, zero-downtime upgrades 
are difficult to impossible. QueryGrid has the ability to 
configure more than one version of the software at one 
time, install or upgrade software on platforms, and roll the 
upgrades back.

It facilitates rolling upgrades both within a cluster, as well 
as across platforms, using this multi-version capability. For 
example, all the nodes in a Hadoop cluster can use one 

version of QueryGrid while a second version is running in 
the same cluster for testing. The same can be done across 
platforms in the same fabric. The manager can add and 
remove platforms in a fabric dynamically without recon-
figuring connectivity on all participating platforms, as one 
must often do with point-to-point platform integration.

In a distributed environment, each platform is like an 
island, using its own interfaces for administrative tasks. 
Monitoring is usually handled on a platform-by-platform 
basis. The problem for a user or administrator is that 
distributed data access is not tied to one system. A user 
running a query that joins data across platforms must 
be able to monitor what is happening on each platform 
and see a picture of the global state: how much data is 
being read from each source system? From each worker 
on that system? What are the performance and resource 
consumption metrics for each? How much data is moving 
across the network? How much data was returned?

Monitoring is one of the key features needed to make 
data exploration and analytics development easier, and 
to make operations easier. The monitoring environment in 
QueryGrid is so sophisticated because the same metrics it 
gathers for management are useful to users who want to 
know what’s happening with their work, developers who 
want to optimize performance and administrators who 
want to keep their systems running smoothly.

Conclusion

Data access fabrics that can scale to the extreme data 
volumes of distributed systems are a new and evolving 
category. As should be apparent, building parallel-aware 
software to act as a transparent data interconnect for het-
erogeneous systems is not a simple task. It isn’t as easy as 
integrating open source components that were designed 
in isolation for specific tasks. Nor is it as simple as retrofit-
ting a product designed for a different environment.

http://www.teradata.com


DESIGN CONSIDERATIONS FOR A 
SCALABLE DATA FABRIC

20 TERADATA.COM

Building a parallel-aware transparent data interconnect 
is a daunting but essential task. It’s essential because 
the problem of on-demand data access, while not new, 
does have new urgency. Like it or not, we’re in the midst 
of a transition away from the traditional, IT-controlled 
governance regime to a new regime that aims to strike a 
balance between the business’ need for self-service and 
the organization’s need to impose reasonable limits on 
what the people do with data.

It behooves you to do something to accommodate this 
transition because analysts expect to be able to do more 
and different things with data, starting with access to data 
on-demand. IT is expected to support and promote the 
efforts of users. It was different in the old model, with little 
choice but to go to a single, centralized data warehouse 
to get the data they needed. Ultimately, restriction, not 
permission, was the default posture.

Now more than ever before, IT needs a scalable, parallel-
aware data fabric because the more than one system 
stores data that analysts need. Users want access to data 
whenever and wherever they need it. IT needs a solution 
that strikes a balance between its responsibility to cater 
to user expectations (for data access, for the freedom to 
transform, use, and share data) and its duty to enforce a 
responsible governance regime. 

A solution such as Teradata QueryGrid offers the 
equivalent of a data fabric that facilitates on-demand, 
self-initiated access for analytical and exploratory uses. 
QueryGrid makes it possible for organizations to enforce 
a reasonable governance regime – even in the context of 
self-service, exploratory analytics. 
 
When deciding whether to assemble your own fabric 
or to evaluate competing alternatives, it’s worth spend-
ing the time to understand the deeper challenges and 

considerations outlined in this paper. QueryGrid is the first 
product in this category that is designed specifically to 
address high-scalability considerations. As such, if you are 
a Teradata customer, QueryGrid should be on the list of 
technologies to evaluate. Again, it behooves you to act: to 
do something to improve the current data environment.

About the Author

Mark Madsen is a research analyst focused on analytics 
and information management. Mark is an award-winning 
architect and former CTO whose work with large-scale 
data infrastructure and analytics has been featured in 
numerous industry publications. For more information, or 
to contact Mark, visit ThirdNature.net.

About Third Nature

Third Nature is a research and consulting firm focused 
on new business practices and emerging technology 
for analytics and information management. The goal of 
the company is to help organizations learn how to take 
advantage of new information-driven management prac-
tices and applications, offering consulting, education and 
research services to support business and IT organizations 
and technology vendors.

About Teradata

Teradata empowers companies to achieve high-impact 
business outcomes. With a portfolio of business analytics 
solutions, architecture consulting, and industry-leading 
big data and analytics technology, Teradata unleashes the 
potential of great companies. Visit teradata.com.

10000 Innovation Drive, Dayton, OH 45342    Teradata.com

QueryGrid is a trademark, and Teradata and the Teradata logo are registered trademarks of Teradata Corporation and/or its affiliates in the U.S. and worldwide. Cassandra, Drill, 
Hive, Impala, Spark, and Sqoop are trademarks, and Apache and Hadoop are registered trademarks of the Apache Software Foundation. Cloudera is a registered trademark of 
Cloudera. Hortonworks is a registered trademark of Hortonworks. MapR is a registered trademark of MapR Technologies, Inc. Amazon Web Services and AWS are trademarks 
or registered trademarks of AWS in the U.S. and/or other countries. Microsoft and Azure are registered trademarks of Microsoft Corporation. Teradata continually improves 
products as new technologies and components become available. Teradata, therefore, reserves the right to change specifications without prior notice. All features, functions, 
and operations described herein may not be marketed in all parts of the world. Consult your Teradata representative or Teradata.com for more information. 

Copyright © 2017 by Third Nature Inc.    All Rights Reserved.    Produced in U.S.A.

08.17 EB7271 

http://www.teradata.com
http://ThirdNature.net
http://www.teradata.com
http://www.teradata.com
http://www.teradata.com
http://www.facebook.com/Teradata
http://www.twitter.com/teradata
http://www.linkedin.com/company/teradata
http://www.youtube.com/teradata



