

Key Takeaways

- Integrate new data sources and include new user communities for broader insights
- Simplified and optimized capabilities to accelerate time based analytics
- Leverage integrated analytics with the scale, optimization, and management of Teradata

Business enabled by Time Series Functions

Business users, Operational Technology engineers & data scientists Joining sensor data to corporate contextual data

Optimized & parallel performance

Scalability across manufacturing plants, oil fields, fleets of vehicles, power grids, ...

Solving

complex

previously unsolvable

analysis

Enabling IoT Analytics

The operationalization of real time Operational Technology data from sensors/IoT/RFID and other sources:

Deep Sea Oil & Gas Production...

Operational Failures:
Life Threatening
Conditions &
Lost Revenues

Preventing equipment failure:

- Know Safety Tolerances are Reached
- Safer Work Environment

Predicting Changes to Sub-Surface Conditions with Time Series Data:

- Ensures Production Targets are Met
 - Keeps Cash Flow On-Plan

Other Time Based Use Cases

- Securities/stock trades
- Commodity prices tracking
- Autonomous trading algorithms
- Geospatial device tracking
- RFID/bar code packages
- Gaming role play, gambling
- Mobile/web application event streams
- Predict staffing requirements

- Merchandise forecasting
- Infrastructure monitoring/audits
- Dev/Ops events
- Employee productivity and security
- Period based Sales analysis (Hourly sales)
- Transportation delays
- Vendor commitment attainment

Making Business Analytics Easier...

- Without time series capabilities
 - Complex SQL to align time intervals
 - Every query = full table scan
 - Complex analytics take hours
- With time series capabilities
 - Optimized data storage
 - Highly efficient queries plans
 - Reduce time to insight and action

... and Data Scientists Happier

- Dramatic reduction in data preparation time
 - Its all ETL then ad hoc SQL
- Easiest way to join multi variate sensor streams
 - Align different grains of time
 - When you have to compare the shape of two curves
 - Reach across UDA with QueryGrid
- Teradata class scalability
 - Much higher accuracy
 - Turn development into deployment

Teradata Database – Time Series Capabilities Teradata Database 16.20

Agile Analysis enabled by Time-Aware Functions

- Time period aware aggregations
- Work with ANY time component data
- Impute missing values
 - Ignore, removed, update with constant

High-Performance enabled by Primary Time Index (PTI)

- Supports time sensitive decisions
- Fast access through:
 - Hash distribute by time bucket
 - AMP-local processing
 - Sequenced data

Time Aware Aggregate Example

SELECT \$TD_TIMECODE_RANGE, \$TD_GROUP_BY_TIME, SENSORID, AVG(TEMPERATURE) FROM BUOYS
WHERE TIMECODE BETWEEN TIMESTAMP '2017-08-11 01:00:00' AND TIMESTAMP '2017-08-11 03:00:00'
GROUP BY TIME(MINUTES(30) AND SENSORID) USING TIMECODE(TD_TIMECODE)
ORDER BY SENSORID, \$TD_GROUP_BY_TIME;

Timecode-Range	Group by 30 minutes	Sensor ID	Temperature
'2017-08-11 01:00:00', '2017-08-11 01:30:00 '	1	22	63.5
'2017-08-11 01:30:00', '2017-08-11 02:00:00 '	2	22	64.6
'2017-08-11 02:00:00', '2017-08-11 02:30:00 '	3	22	65.0
'2017-08-11 02:30:00', '2017-08-11 03:00:00 '	4	22	65.1
,2017-08-11 01:00:00', '2017-08-11 01:30:00 '	1	23	66.4
'2017-08-11 01:30:00', '2017-08-11 02:00:00 '	2	23	65.1
'2017-08-11 02:00:00', '2017-08-11 02:30:00 '	3	23	64.9
'2017-08-11 02:30:00', '2017-08-11 03:00:00 '	4	23	65.1

Time Aware Aggregation Functions – GROUP BY TIME

Existing Aggregate Functions

Average	Count
Describe	Kurtosis
Maximum	Minimum
Percentile	Rank
Skew	Sum
Std. population deviation	Std. sample deviation
Population variance	Sample variance

If not in the list above, then function is not time aware and cannot be used with the GROUP BY TIME clause

New Aggregate Functions

Bottom	Delta_T	
First	Last	
Median	Mode	
Тор	Mean absolute deviation	

These new aggregate functions are only invokable with the GROUP BY TIME clause

Primary Time Index (PTI) High Performance Parallelism with Efficient Storage and Access

What are the sensor readings between 4:30pm and 5:30pm?

Primary Time Index Tables (PTI)

Storage distribution choice

Time interval only

PRIMARY TIME INDEX (TIMESTAMP(6), DATE '2016-02-22', HOURS(2))

Time + column list

PRIMARY TIME INDEX (TIMESTAMP(6), DATE '2016-04-19', HOURS(2), COLUMNS(COUNTRYID, CARID))

Column list only

PRIMARY TIME INDEX (TIMESTAMP(6), DATE '2016-01-01', COLUMNS(SENSORID))

In-table logical ordering

Time code only

Time code + sequence number

Many SQL Table Designs Include Time

	Partitioned Primary Index (PPI)	Temporal Tables	Primary Time Index (PTI)
Business	 Multi-dimensional analytics Hierarchical analytics Date, character, or numeric levels 	 Time periods (ranges) Historical relevance Audit – what was the situation when 	 High volume time stamped data Time aware analytics Sorted data Unique algorithms
Technology	 Multi-level (up to 64) Does not effect row distribution to the AMPs Data is not ordered 	 Slowly changing dimensions Insert, update, delete Normalize and overlap functions 	 Distribution to AMPs by time buckets Updates/deletes rare Insert late arrival data Multivariate payload common

Integrating Analytics Drive the Most Value

Assets

- Location data TimeSeries and Geospatial
- Sensor observations **Timeseries**

Open /Public Data

- Map data Geospatial
- Traffic (Real Time: Historical) – JSON
- Emergency data JSON
- Weather data JSON / **Temporal**

Data Integration

Teradata Analytics Platform

Business Data (Transactional and Temporal):

- Requests
- Financial Data
- Historical data
- **Supply Chain**

Data Integration

Analytics

- Trip Planning
- Demand Based replanning (Urgent Request bases)
- Optimal delivery plan
- Capacity prediction planning
- Repair / Replace decisions
- Delay versus Penalty costs

Teradata Advantage

- Analyze various data in context with business data
- Leverage UDA ecosystem
- Use multi-function analytic engine

High-performance enabled by **Primary Time Index (PTI)** that supports time sensitive
decisions

...on **robust Teradata Database:** Scalable, highly available, high performance, and secure

Agile analysis enabled by Time-Aware
Aggregate Functions that work with ANY time
component data

... with **Teradata Everywhere** deployment options. Design for data gravity

Key Takeaways Summary

- Integrate new data sources and include new user communities for broader insights
 - Examples that we shared such as incorporate IoT analytics and extending the tools into the data scientist arena for new insights
- Simplified and optimized capabilities to accelerate time based analytics
 - This would include the new time aware functions and optimized Primary Time Index table options
- Leverage integrated analytics with the scale, optimization, and management of Teradata
 - Examples that we shared such as the integration of Geospatial, Temporal, and Transactional to drive targeted and timely action

