
1.0 Data Management and Governance 3

1.1 Standard Statistical Distributions 4

1.1.1 Types of Distributions 12

1.2 Normal Distribution 18

1.3 Data Quality Issues Through Plots 54

1.4 Resolution of Data Quality Issues 61

1.5 Data Prep and Transformations 67

1.6 Identifying Data Transformation Functions Part 1 94

1.7 Identifying Data Transformation Functions Part 2 103

1.8 Normalization 113

1.9 CASE Expressions 128

1.9.1 CASE Expressions Examples 156

1.10 Connecting to External Sources 176

1.11 Creating High Performance Tables 182

2.0 Data Visualization & Presentation 227

2.1 SQL Configuration and Performance Optimizations 228

2.2 Data Visualizations 262

2.2.1 Custom Visualizations in AppCenter 282

2.3.1 Misleading Graphs 303

2.3.2 Boxplot Caveats 304

2.3.3 Calculation Errors 308

2.3.4 Histogram Issues 314

2.3.5 Dual Axis Issues 317

2.4 AppCenter Visualization Formats and Types 328

3.0 Statistical Techniques 330

3.1.1 Scatterplots and Correlation 331

3.1.2 Histogram Issues 345

3.1.3 Assumption Linearity 348

3.2 Statistical Analysis for Univariate Statistics 350

3.3 Hypothesis Testing 362

3.4 GLM Stats Model 368

3.4.1 GLM Stats Model Outcome and Significance 372

3.5 Linear Regression 412

3.5.1 Simple Linear Regression Model 429

4.0 Data Analytics Methods & Algorithms 433

4.1 Text Analysis Function Reference 434

4.2 Text Analytics Function Reference ML Engine 536

4.3 Sentiment Extractor 604

4.4 Named Entity Recognition 640

4.5 nPath 664

4.5.1 nPath Advanced 714

4.6 nPath Function Reference 733

4.7 Sessionize 768

4.8 Time Series 799

4.8.1 Time Series Detail 812

4.9 Time Series 825

4.9.1 Time Series Aggregation 838

4.10 Windowing Functions 933

4.11 CFilter 1033

4.12 CFilter Syntax and Examples 1084

5.0 Validation and Evaluation 1093

5.1 ROC Introduction 1094

5.1.1 ROC Function Reference 1098

5.2 ROC Overview 1127

5.2.1 ROC Curve and AUC Classification 1138

5.3 Classifier Thresholds 1141

1.0 Data

Management

and

Governance

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 8

Standard Statistical Distributions
(e.g. Normal, Poisson, Binomial) and their uses

Source: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-
methods/statistical-distributions

Statistics: Distributions

Summary

Normal distribution describes continuous data which have a symmetric distribution, with a characteristic
'bell' shape.

Binomial distribution describes the distribution of binary data from a finite sample. Thus it gives the
probability of getting r events out of n trials.

Poisson distribution describes the distribution of binary data from an infinite sample. Thus it gives the
probability of getting r events in a population.

The Normal Distribution

It is often the case with medical data that the histogram of a continuous variable obtained from a single
measurement on different subjects will have a characteristic `bell-shaped' distribution known as a
Normal distribution. One such example is the histogram of the birth weight (in kilograms) of the 3,226
new born babies shown in Figure 1.

Figure 1 Distribution of birth weight in 3,226 newborn babies (data from O' Cathain et al 2002)

https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/statistical-distributions
https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/statistical-distributions

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 8

To distinguish the use of the same word in normal range and Normal distribution we have used a lower
and upper case convention throughout.

The histogram of the sample data is an estimate of the population distribution of birth weights in new
born babies. This population distribution can be estimated by the superimposed smooth `bell-shaped'
curve or `Normal' distribution shown. We presume that if we were able to look at the entire population
of new born babies then the distribution of birth weight would have exactly the Normal shape. We often
infer, from a sample whose histogram has the approximate Normal shape, that the population will have
exactly, or as near as makes no practical difference, that Normal shape.

The Normal distribution is completely described by two parameters μ and σ, where μ represents the
population mean, or centre of the distribution, and σ the population standard deviation. It is
symmetrically distributed around the mean. Populations with small values of the standard deviation σ
have a distribution concentrated close to the centre μ; those with large standard deviation have a
distribution widely spread along the measurement axis. One mathematical property of the Normal
distribution is that exactly 95% of the distribution lies between

μ−(1.96xσ)andμ+(1.96xσ)μ−(1.96xσ)andμ+(1.96xσ)
Changing the multiplier 1.96 to 2.58, exactly 99% of the Normal distribution lies in the corresponding
interval.

In practice the two parameters of the Normal distribution, μ and σ, must be estimated from the sample
data. For this purpose a random sample from the population is first taken. The sample mean and the
sample standard deviation, SD(x¯)=SSD(x¯)=S , are then calculated. If a sample is taken from such a

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 8

Normal distribution, and provided the sample is not too small, then approximately 95% of the sample lie
within the interval:
x¯−[1.96×SD(x¯)]x¯−[1.96×SD(x¯)] to x¯+[1.96×SD(x¯)]x¯+[1.96×SD(x¯)]

This is calculated by merely replacing the population parameters μ and σ by the sample
estimates and s in the previous expression.
In appropriate circumstances this interval may estimate the reference interval for a particular laboratory
test which is then used for diagnostic purposes.

We can use the fact that our sample birth weight data appear Normally distributed to calculate a
reference range. We have already mentioned that about 95% of the observations (from a Normal
distribution) lie within ±1.96 SDs of the mean. So a reference range for our sample of babies, using the
values given in the histogram above, is:

3.39 - [1.96 x 0.55] to 3.39 + [1.96 x 0.55]

2.31kg to 4.47kg

A baby's weight at birth is strongly associated with mortality risk during the first year and, to a lesser
degree, with developmental problems in childhood and the risk of various diseases in adulthood. If the
data are not Normally distributed then we can base the normal reference range on the observed
percentiles of the sample, i.e. 95% of the observed data lie between the 2.5 and 97.5 percentiles. In this
example, the percentile-based reference range for our sample was calculated as 2.19kg to 4.43kg.

Most reference ranges are based on samples larger than 3500 people. Over many years, and millions of
births, the WHO has come up with a normal birth weight range for new born babies. These ranges
represent results than are acceptable in newborn babies and actually cover the middle 80% of the
population distribution, i.e. the 10th to 90th centiles. Low birth weight babies are usually defined (by
the WHO) as weighing less than 2500g (the 10th centile) regardless of gestational age, and large birth
weight babies are defined as weighing above 4000kg (the 90th centile). Hence the normal birth weight
range is around 2.5kg to 4kg. For our sample data, the 10th to 90th centile range was similar, 2.75 to
4.03kg.

The Binomial Distribution

If a group of patients is given a new drug for the relief of a particular condition, then the
proportion p being successively treated can be regarded as estimating the population treatment success
rate .
The sample proportion p is analogous to the sample mean , in that if we score zero for those s patients
who fail on treatment, and 1 for those r who succeed, then p=r/n, where n=r+s is the total number of
patients treated. Thus p also represents a mean.
Data which can take only a binary (0 or 1) response, such as treatment failure or treatment success,
follow the binomial distribution provided the underlying population response rate does not change. The
binomial probabilities are calculated from:

P(rresponsesoutofn)=n!r!(n−r)!πr(1−π)n−rP(rresponsesoutofn)=n!r!(n−r)!πr(1−π)n−r

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 8

…for successive values of R from 0 through to n. In the above, n! is read as “n factorial” and r! as “r
factorial”. For r=4, r!=4×3×2×1=24. Both 0! and 1! are taken as equal to 1. The shaded area marked in
Figure 2 (below) corresponds to the above expression for the binomial distribution calculated for each
of r=8,9,...,20 and then added. This area totals 0.1018. So the probability of eight or more responses out
of 20 is 0.1018.
For a fixed sample size n the shape of the binomial distribution depends only on . Suppose n = 20
patients are to be treated, and it is known that on average a quarter, or =0.25, will respond to this
particular treatment. The number of responses actually observed can only take integer values between
0 (no responses) and 20 (all respond). The binomial distribution for this case is illustrated in Figure 2.
The distribution is not symmetric, it has a maximum at five responses and the height of the blocks
corresponds to the probability of obtaining the particular number of responses from the 20 patients yet
to be treated. It should be noted that the expected value for r, the number of successes yet to be
observed if we treated n patients, is (nx). The potential variation about this expectation is expressed
by the corresponding standard deviation:

SD(r)=nπ(1−π)−−−−−−−−√SD(r)=nπ(1−π)
Figure 2 also shows the Normal distribution arranged to have μ = n = 5 and σ = √[n (1 -)] = 1.94,
superimposed on to a binomial distribution with = 0.25 and n = 20. The Normal distribution describes
fairly precisely the binomial distribution in this case. If n is small, however, or close to 0 or 1, the
disparity between the Normal and binomial distributions with the same mean and standard deviation
increases and the Normal distribution can no longer be used to approximate the binomial distribution.
In such cases the probabilities generated by the binomial distribution itself must be used.
It is also only in situations in which reasonable agreement exists between the distributions that we
would use the confidence interval expression given previously. For technical reasons, the expression
given for a confidence interval for a proportion is an approximation. The approximation will usually be
quite good provided p is not too close to 0 or 1, situations in which either almost none or nearly all of
the patients respond to treatment. The approximation improves with increasing sample size n.

Figure 2: Binomial distribution for n=20 with =0.25 and the Normal approximation

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 8

The Poisson Distribution

The Poisson distribution is used to describe discrete quantitative data such as counts in which the
population size n is large, the probability of an individual event is small, but the expected number of
events, n , is moderate (say five or more). Typical examples are the number of deaths in a town from a
particular disease per day, or the number of admissions to a particular hospital.

Example
Wight et al (2004) looked at the variation in cadaveric heart beating organ donor rates in the UK. They
found that there were 1330 organ donors, aged 15-69, across the UK for the two years 1999 and 2000
combined. Heart-beating donors are patients who are seriously ill in an intensive care unit (ICU) and are
placed on a ventilator.

Now it is clear that the distribution of the number of donors takes integer values only, thus the
distribution is similar in this respect to the binomial. However, there is no theoretical limit to the
number of organ donors that could happen on a particular day. Here the population is the UK
population aged 15-69, over two years, which is over 82 million person years, so in this case each
member can be thought to have a very small probability of actually suffering an event, in this case being
admitted to a hospital ICU and placed on a ventilator with a life threatening condition.

The mean number of organ donors per day over the two year period is calculated as:

r=1330(365+365)=1330730=1.82r=1330(365+365)=1330730=1.82 organ donations per day

It should be noted that the expression for the mean is similar to that for , except here multiple data
values are common; and so instead of writing each as a distinct figure in the numerator they are first
grouped and counted. For data arising from a Poisson distribution the standard error, that is the

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 8

standard deviation of r, is estimated by SE(r) = √(r/n), where n is the total number of days (or an
alternative time unit). Provided the organ donation rate is not too low, a 95% confidence interval for the
underlying (true) organ donation rate λ can be calculated in the usual way:

r−[1.96×SE(r)]tor+[1.96×SE(r)]r−[1.96×SE(r)]tor+[1.96×SE(r)]
In the above example r=1.82, SE(r)=√(1.82/730)=0.05, and therefore the 95% confidence interval for λ is
1.72 to 1.92 organ donations per day. Exact confidence intervals can be calculated as described by
Altman et al. (2000).
The Poisson probabilities are calculated from:

P(rresponses)=λrr!e−λP(rresponses)=λrr!e−λ

…for successive values of r from 0 to infinity. Here e is the exponential constant 2.7182…, and λ is the
population rate which is estimated by r in the example above.

Example
Suppose that before the study of Wight et al. (2004) was conducted it was expected that the number of
organ donations per day was approximately two. Then assuming λ = 2, we would anticipate the
probability of 0 organ donations in a given day to be (20/0!)e-2 =e-2 = 0.135. (Remember that 20 and 0!
are both equal to 1.) The probability of one organ donation would be (21/1!)e-2 = 2(e-2) = 0.271. Similarly
the probability of two organ donations per day is (22/2!)e-2= 2(e-2) = 0.271; and so on to give for three
donations 0.180, four donations 0.090, five donations 0.036, six donations 0.012, etc. If the study is then
to be conducted over 2 years (730 days), each of these probabilities is multiplied by 730 to give the
expected number of days during which 0, 1, 2, 3, etc. donations will occur. These expectations are 98.8,
197.6, 197.6, 131.7, 26.3, 8.8 days. A comparison can then be made between what is expected and what
is actually observed.

Other Distributions

A brief description of some other distributions are given for completeness.

t-distribution

Student’s t-distribution is a continuous probability distribution with a similar shape to the Normal
distribution but with wider tails. t-distributions are used to describe samples which have been drawn
from a population, and the exact shape of the distribution varies with the sample size. The smaller the
sample size, the more spread out the tails, and the larger the sample size, the closer the t-distribution is
to the Normal distribution (Figure 3). Whilst in general the Normal distribution is used as an
approximation when estimating means of samples from a Normally-distribution population, when the
same size is small (say n<30), the t-distribution should be used in preference.

Figure 3. The t-distribution for various sample sizes. As the sample size increases, the t-distribution more
closely approximates the Normal.

Teradata Vantage: Analytics Certification Learning Resource

Page 7 of 8

Chi-squared distribution
The chi-squared distribution is continuous probability distribution whose shape is defined by the
number of degrees of freedom. It is a right-skew distribution, but as the number of degrees of freedom
increases it approximates the Normal distribution (Figure 4). The chi-squared distribution is important
for its use in chi-squared tests. These are often used to test deviations between observed and expected
frequencies, or to determine the independence between categorical variables. When conducting a chi-
squared test, the probability values derived from chi-squared distributions can be looked up in a
statistical table.

Figure 4. The chi-squared distribution for various degrees of freedom. The distribution becomes less
right-skew as the number of degrees of freedom increases.

Histogram

Teradata Vantage: Analytics Certification Learning Resource

Page 8 of 8

A bar diagram easy to understand but what is a histogram? Unlike a bar graph that depicts discrete data,
histograms depict continuous data. The continuous data takes the form of class intervals. Thus, a histogram
is a graphical representation of a frequency distribution with class intervals or attributes as the base and
frequency as the height.

The key difference is that histograms have bars without any spaces between them and the rectangles need
not be of equal width. So, we will understand histograms using an example.

In this case, see that we are considering class intervals such as 0-5, 5-10, 10-15 and 15-20. These are
continuous data. In case, the class intervals given to you are not continuous, you must make it continuous
first.

Here, you can interpret the histogram using the information that the graph gives. Consider the frequency to
be as given on the left vertical axis and ignore the values on the right vertical axis. Thus, for the class interval
0-5, the corresponding frequency is 3. Again, for 5-10, the frequency is 7, and so on.

Note that we have taken the simple case of a histogram with bars of equal width. But as mentioned, it
might not be the case if the class intervals are not even in size. In that case, you will get a histogram with
bars stuck to each other (without any space between them) but with different widths. It could look
something like this, but exactly how it will look depends on the data:

https://www.toppr.com/guides/maths/introduction-to-graphs/bar-graphs/
https://www.toppr.com/guides/maths/statistics/data/

Teradata Vantage: Analytics Certification Learning Resource

Types of Distributions

Source: http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm

Discrete data, the entire distribution can either be developed from scratch or the data can be fitted to a

pre-specified discrete distribution. With the former, there are two steps to building the distribution. The

first is identifying the possible outcomes and the second is to estimate probabilities to each outcome. As

we noted in the text, we can draw on historical data or experience as well as specific knowledge about

the investment being analyzed to arrive at the final distribution. This process is relatively simple to

accomplish when there are a few outcomes with a well-established basis for estimating probabilities but

becomes more tedious as the number of outcomes increases. If it is difficult or impossible to build up a

customized distribution, it may still be possible fit the data to one of the following discrete distributions:

a. Binomial distribution: The binomial distribution measures the probabilities of the number of

successes over a given number of trials with a specified probability of success in each try. In the

simplest scenario of a coin toss (with a fair coin), where the probability of getting a head with each

toss is 0.50 and there are a hundred trials, the binomial distribution will measure the likelihood of

getting anywhere from no heads in a hundred tosses (very unlikely) to 50 heads (the most likely) to

100 heads (also very unlikely). The binomial distribution in this case will be symmetric, reflecting the

even odds; as the probabilities shift from even odds, the distribution will get more skewed. Figure

6A.1 presents binomial distributions for three scenarios – two with 50% probability of success and

one with a 70% probability of success and different trial sizes.

Figure 6A.1: Binomial Distribution

http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm

Teradata Vantage: Analytics Certification Learning Resource

As the probability of success is varied (from 50%) the distribution will also shift its shape, becoming

positively skewed for probabilities less than 50% and negatively skewed for probabilities greater

than 50%.[1]

b. Poisson distribution: The Poisson distribution measures the likelihood of a number of events

occurring within a given time interval, where the key parameter that is required is the average number

of events in the given interval (l). The resulting distribution looks similar to the binomial, with the

skewness being positive but decreasing with l. Figure 6A.2 presents three Poisson distributions,

with l ranging from 1 to 10.

Figure 6A.2: Poisson Distribution

c. Negative Binomial distribution: Returning again to the coin toss example, assume that you hold the

number of successes fixed at a given number and estimate the number of tries you will have before

you reach the specified number of successes. The resulting distribution is called the negative binomial

and it very closely resembles the Poisson. In fact, the negative binomial distribution converges on the

Poisson distribution, but will be more skewed to the right (positive values) than the Poisson

distribution with similar parameters.

There are some datasets that exhibit symmetry, i.e., the upside is mirrored by the downside. The
symmetric distribution that most practitioners have familiarity with is the normal distribution, sown in
Figure 6A.6, for a range of parameters:

Figure 6A.6: Normal Distribution

http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm#_ftn1

Teradata Vantage: Analytics Certification Learning Resource

The normal distribution has several features that make it popular. First, it can be fully characterized by

just two parameters – the mean and the standard deviation – and thus reduces estimation pain. Second,

the probability of any value occurring can be obtained simply by knowing how many standard deviations

separate the value from the mean; the probability that a value will fall 2 standard deviations from the

mean is roughly 95%. The normal distribution is best suited for data that, at the minimum, meets the

following conditions:

a. There is a strong tendency for the data to take on a central value.

b. Positive and negative deviations from this central value are equally likely

c. The frequency of the deviations falls off rapidly as we move further away from the central value.

f. Discrete uniform distribution: This is the simplest of discrete distributions and applies when all of

the outcomes have an equal probability of occurring. Figure 6A.5 presents a uniform discrete

distribution with five possible outcomes, each occurring 20% of the time:

Figure 6A.5: Discrete Uniform Distribution

Teradata Vantage: Analytics Certification Learning Resource

Most data does not exhibit symmetry and instead skews towards either very large positive or very

large negative values. If the data is positively skewed, one common choice is the lognormal distribution,

which is typically characterized by three parameters: a shape (s or sigma), a scale (m or median) and a

shift parameter (). When m=0 and =1, you have the standard lognormal distribution and when =0,

the distribution requires only scale and sigma parameters. As the sigma rises, the peak of the distribution

shifts to the left and the skewness in the distribution increases. Figure 6A.9 graphs lognormal distributions

for a range of parameters:

Figure 6A.9: Lognormal distribution

Gaussian Distribution and Reference Range

Gaussian distribution (also known as normal distribution) is a bell-shaped curve, and it is assumed that

during any measurement values will follow a normal distribution with an equal number of

measurements above and below the mean value. In order to understand normal distribution, it is

important to know the definitions of “mean,” “median,” and “mode.” The “mean” is the calculated

average of all values, the “median” is the value at the center point (mid-point) of the distribution, while

the “mode” is the value that was observed most frequently during the measurement. If a distribution is

normal, then the values of the mean, median, and mode are the same. However, the value of the mean,

median, and mode may be different if the distribution is skewed (not Gaussian distribution). Other

characteristics of Gaussian distributions are as follows:
▪

Mean±1 SD contain 68.2% of all values.

▪

Mean±2 SD contain 95.5% of all values.

▪

Teradata Vantage: Analytics Certification Learning Resource

Mean±3 SD contain 99.7% of all values.

A Gaussian distribution is shown in Figure 4.1. Usually, reference range is determined by measuring the

value of an analyte in a large number of normal subjects (at least 100 normal healthy people, but

preferably 200–300 healthy individuals). Then the mean and standard deviations are determined.

Tests for Fit

 The simplest test for distributional fit is visual with a comparison of the histogram of the actual

data to the fitted distribution. Consider figure 6A.16, where we report the distribution of current price

earnings ratios for US stocks in early 2007, with a normal distribution superimposed on it.

Figure 6A.16: Current PE Ratios for US Stocks – January 2007

Teradata Vantage: Analytics Certification Learning Resource

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 1/36

Normal distribution
Probability density function

The red curve is the standard normal distribution

Cumulative distribution function

Cumulative distribution function for the normal distribution

Notation

Parameters = mean (location)
 = variance (squared scale)

Support
PDF

CDF

Quantile

Mean
Median
Mode
Variance

MAD

Skewness
Ex.
kurtosis
Entropy

MGF

CF

Normal distribution

In probability theory, a normal (or
Gaussian or Gauss or Laplace–
Gauss) distribution is a type of
continuous probability distribution
for a real-valued random variable.
The general form of its probability
density function is

The parameter is the mean or
expectation of the distribution (and
also its median and mode), while the
parameter is its standard
deviation.[1] The variance of the
distribution is .[2] A random
variable with a Gaussian distribution
is said to be normally distributed,
and is called a normal deviate.

Normal distributions are important in
statistics and are often used in the
natural and social sciences to
represent real-valued random
variables whose distributions are not
known.[3][4] Their importance is
partly due to the central limit
theorem. It states that, under some
conditions, the average of many
samples (observations) of a random
variable with finite mean and
variance is itself a random variable—
whose distribution converges to a
normal distribution as the number of
samples increases. Therefore,
physical quantities that are expected
to be the sum of many independent
processes, such as measurement
errors, often have distributions that
are nearly normal.[5]

Moreover, Gaussian distributions
have some unique properties that are
valuable in analytic studies. For
instance, any linear combination of a
fixed collection of normal deviates is a
normal deviate. Many results and
methods, such as propagation of
uncertainty and least squares
parameter fitting, can be derived

https://en.wikipedia.org/wiki/File:Normal_Distribution_PDF.svg
https://en.wikipedia.org/wiki/File:Normal_Distribution_CDF.svg
https://en.wikipedia.org/wiki/Location_parameter
https://en.wikipedia.org/wiki/Scale_parameter
https://en.wikipedia.org/wiki/Support_(mathematics)
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Quantile_function
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Excess_kurtosis
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Moment-generating_function
https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Natural_science
https://en.wikipedia.org/wiki/Social_science
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Convergence_in_distribution
https://en.wikipedia.org/wiki/Measurement_error
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Least_squares

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 2/36

Fisher
information

Kullback-
Leibler
divergence

analytically in explicit form when the
relevant variables are normally
distributed.

A normal distribution is sometimes
informally called a bell curve.[6]

However, many other distributions
are bell-shaped (such as the Cauchy,
Student's t, and logistic distributions).

Definitions
Standard normal distribution
General normal distribution
Notation
Alternative parameterizations
Cumulative distribution function

Standard deviation and
coverage
Quantile function

Properties
Symmetries and derivatives
Moments
Fourier transform and
characteristic function
Moment and cumulant
generating functions
Stein operator and class
Zero-variance limit
Maximum entropy
Operations on normal deviates

Infinite divisibility and
Cramér's theorem
Bernstein's theorem

Other properties

Related distributions
Central limit theorem
Operations on a single random
variable
Combination of two
independent random variables
Combination of two or more
independent random variables
Operations on the density
function
Extensions

Statistical inference
Estimation of parameters

Sample mean
Sample variance

Contents

https://en.wikipedia.org/wiki/Fisher_information
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Logistic_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 3/36

Confidence intervals
Normality tests
Bayesian analysis of the normal
distribution

Sum of two quadratics
Scalar form
Vector form

Sum of differences from the
mean

With known variance
With known mean
With unknown mean and
unknown variance

Occurrence and applications
Exact normality
Approximate normality
Assumed normality
Produced normality

Computational methods
Generating values from normal
distribution
Numerical approximations for
the normal CDF

History
Development
Naming

See also
Notes
References

Citations
Sources

External links

The simplest case of a normal distribution is known as the standard normal distribution. This is a special case when
 and , and it is described by this probability density function:[1]

Here, the factor ensures that the total area under the curve is equal to one.[note 1] The factor in the
exponent ensures that the distribution has unit variance (i.e., variance being equal to one), and therefore also unit
standard deviation. This function is symmetric around , where it attains its maximum value and has
inflection points at and .

Definitions

Standard normal distribution

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Inflection_point

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 4/36

Authors differ on which normal distribution should be called the "standard" one. Carl Friedrich Gauss, for example,
defined the standard normal as having a variance of . That is:

On the other hand, Stephen Stigler[7] goes even further, defining the standard normal as having a variance of
:

Every normal distribution is a version of the standard normal distribution, whose domain has been stretched by a
factor (the standard deviation) and then translated by (the mean value):

The probability density must be scaled by so that the integral is still 1.

If is a standard normal deviate, then will have a normal distribution with expected value and
standard deviation . Conversely, if is a normal deviate with parameters and , then the distribution

 will have a standard normal distribution. This variate is also called the standardized form of .

The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit
variance) is often denoted with the Greek letter (phi).[8] The alternative form of the Greek letter phi, , is also used
quite often.[1]

The normal distribution is often referred to as or .[1][9] Thus when a random variable is
normally distributed with mean and variance , one may write

Some authors advocate using the precision as the parameter defining the width of the distribution, instead of the
deviation or the variance . The precision is normally defined as the reciprocal of the variance, .[10] The
formula for the distribution then becomes

This choice is claimed to have advantages in numerical computations when is very close to zero, and simplifies
formulas in some contexts, such as in the Bayesian inference of variables with multivariate normal distribution.

Alternatively, the reciprocal of the standard deviation might be defined as the precision, in which case the
expression of the normal distribution becomes

General normal distribution

Notation

Alternative parameterizations

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Stephen_Stigler
https://en.wikipedia.org/wiki/Standard_normal_deviate
https://en.wikipedia.org/wiki/Phi_(letter)
https://en.wikipedia.org/wiki/Precision_(statistics)
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 5/36

According to Stigler, this formulation is advantageous because of a much simpler and easier-to-remember formula,
and simple approximate formulas for the quantiles of the distribution.

Normal distributions form an exponential family with natural parameters and , and natural

statistics x and x2. The dual expectation parameters for normal distribution are η1 = μ and η2 = μ2 + σ2.

The cumulative distribution function (CDF) of the standard normal distribution, usually denoted with the capital
Greek letter (phi),[1] is the integral

The related error function gives the probability of a random variable, with normal distribution of mean 0 and
variance 1/2 falling in the range . That is:[1]

These integrals cannot be expressed in terms of elementary functions, and are often said to be special functions.
However, many numerical approximations are known; see below for more.

The two functions are closely related, namely

For a generic normal distribution with density , mean and deviation , the cumulative distribution function is

The complement of the standard normal CDF, , is often called the Q-function, especially in
engineering texts.[11][12] It gives the probability that the value of a standard normal random variable will exceed :

. Other definitions of the -function, all of which are simple transformations of , are also used
occasionally.[13]

The graph of the standard normal CDF has 2-fold rotational symmetry around the point (0,1/2); that is,
. Its antiderivative (indefinite integral) can be expressed as follows:

The CDF of the standard normal distribution can be expanded by Integration by parts into a series:

where denotes the double factorial.

Cumulative distribution function

https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Natural_parameter
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Phi_(letter)
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Special_function
https://en.wikipedia.org/wiki/Q-function
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Rotational_symmetry
https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Integration_by_parts
https://en.wikipedia.org/wiki/Double_factorial

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 6/36

For the normal distribution, the values less than one
standard deviation away from the mean account for
68.27% of the set; while two standard deviations from the
mean account for 95.45%; and three standard deviations
account for 99.73%.

An asymptotic expansion of the CDF for large x can also be derived using integration by parts. For more, see Error
function#Asymptotic expansion.[14]

About 68% of values drawn from a normal distribution are
within one standard deviation σ away from the mean; about
95% of the values lie within two standard deviations; and
about 99.7% are within three standard deviations.[6] This fact
is known as the 68-95-99.7 (empirical) rule, or the 3-sigma
rule.

More precisely, the probability that a normal deviate lies in the
range between and is given by

To 12 significant figures, the values for are:[15]

OEIS

1 0.682 689 492 137 0.317 310 507 863 3.151 487 187 53 OEIS: A178647

2 0.954 499 736 104 0.045 500 263 896 21.977 894 5080 OEIS: A110894

3 0.997 300 203 937 0.002 699 796 063 370.398 347 345 OEIS: A270712

4 0.999 936 657 516 0.000 063 342 484 15 787.192 7673

5 0.999 999 426 697 0.000 000 573 303 1 744 277.893 62

6 0.999 999 998 027 0.000 000 001 973 506 797 345.897

For large , one can use the approximation .

The quantile function of a distribution is the inverse of the cumulative distribution function. The quantile function of
the standard normal distribution is called the probit function, and can be expressed in terms of the inverse error
function:

For a normal random variable with mean and variance , the quantile function is

The quantile of the standard normal distribution is commonly denoted as . These values are used in
hypothesis testing, construction of confidence intervals and Q-Q plots. A normal random variable will exceed

 with probability , and will lie outside the interval with probability . In particular, the

Standard deviation and coverage

Quantile function

https://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg
https://en.wikipedia.org/wiki/Asymptotic_expansion
https://en.wikipedia.org/wiki/Error_function#Asymptotic_expansion
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/OEIS
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://oeis.org/A178647
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://oeis.org/A110894
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://oeis.org/A270712
https://en.wikipedia.org/wiki/Quantile_function
https://en.wikipedia.org/wiki/Probit_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Hypothesis_testing
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Q-Q_plot

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 7/36

quantile is 1.96; therefore a normal random variable will lie outside the interval in only 5% of cases.

The following table gives the quantile such that will lie in the range with a specified probability .
These values are useful to determine tolerance interval for sample averages and other statistical estimators with
normal (or asymptotically normal) distributions:.[16][17] NOTE: the following table shows

, not as defined above.

0.80 1.281 551 565 545 0.999 3.290 526 731 492

0.90 1.644 853 626 951 0.9999 3.890 591 886 413

0.95 1.959 963 984 540 0.99999 4.417 173 413 469

0.98 2.326 347 874 041 0.999999 4.891 638 475 699

0.99 2.575 829 303 549 0.9999999 5.326 723 886 384

0.995 2.807 033 768 344 0.99999999 5.730 728 868 236

0.998 3.090 232 306 168 0.999999999 6.109 410 204 869

For small , the quantile function has the useful asymptotic expansion

The normal distribution is the only distribution whose cumulants beyond the first two (i.e., other than the mean and
variance) are zero. It is also the continuous distribution with the maximum entropy for a specified mean and
variance.[18][19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the
only distribution where the mean and variance calculated from a set of independent draws are independent of each
other.[20][21]

The normal distribution is a subclass of the elliptical distributions. The normal distribution is symmetric about its
mean, and is non-zero over the entire real line. As such it may not be a suitable model for variables that are
inherently positive or strongly skewed, such as the weight of a person or the price of a share. Such variables may be
better described by other distributions, such as the log-normal distribution or the Pareto distribution.

The value of the normal distribution is practically zero when the value lies more than a few standard deviations
away from the mean (e.g., a spread of three standard deviations covers all but 0.27% of the total distribution).
Therefore, it may not be an appropriate model when one expects a significant fraction of outliers—values that lie
many standard deviations away from the mean—and least squares and other statistical inference methods that are
optimal for normally distributed variables often become highly unreliable when applied to such data. In those cases, a
more heavy-tailed distribution should be assumed and the appropriate robust statistical inference methods applied.

The Gaussian distribution belongs to the family of stable distributions which are the attractors of sums of
independent, identically distributed distributions whether or not the mean or variance is finite. Except for the
Gaussian which is a limiting case, all stable distributions have heavy tails and infinite variance. It is one of the few
distributions that are stable and that have probability density functions that can be expressed analytically, the others
being the Cauchy distribution and the Lévy distribution.

The normal distribution with density (mean and standard deviation) has the following properties:

Properties

Symmetries and derivatives

https://en.wikipedia.org/wiki/1.96
https://en.wikipedia.org/wiki/Tolerance_interval
https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance#Sample_mean
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Asymptotic
https://en.wikipedia.org/wiki/Cumulant
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
https://en.wikipedia.org/wiki/Elliptical_distribution
https://en.wikipedia.org/wiki/Symmetric_distribution
https://en.wikipedia.org/wiki/Weight
https://en.wikipedia.org/wiki/Share_(finance)
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Heavy-tailed
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 8/36

It is symmetric around the point which is at the same time the mode, the median and the mean of the
distribution.[22]

It is unimodal: its first derivative is positive for negative for and zero only at
The area under the curve and over the -axis is unity (i.e. equal to one).

Its first derivative is

Its density has two inflection points (where the second derivative of is zero and changes sign), located one
standard deviation away from the mean, namely at and [22]

Its density is log-concave.[22]

Its density is infinitely differentiable, indeed supersmooth of order 2.[23]

Furthermore, the density of the standard normal distribution (i.e. and) also has the following
properties:

Its first derivative is

Its second derivative is

More generally, its nth derivative is where is the nth (probabilist) Hermite
polynomial.[24]

The probability that a normally distributed variable with known and is in a particular set, can be calculated
by using the fact that the fraction has a standard normal distribution.

The plain and absolute moments of a variable are the expected values of and , respectively. If the expected
value of is zero, these parameters are called central moments. Usually we are interested only in moments with
integer order .

If has a normal distribution, these moments exist and are finite for any whose real part is greater than −1. For
any non-negative integer , the plain central moments are:[25]

Here denotes the double factorial, that is, the product of all numbers from to 1 that have the same parity as

The central absolute moments coincide with plain moments for all even orders, but are nonzero for odd orders. For
any non-negative integer

The last formula is valid also for any non-integer When the mean the plain and absolute moments
can be expressed in terms of confluent hypergeometric functions and

Moments

https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Unimodal
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Inflection_point
https://en.wikipedia.org/wiki/Logarithmically_concave_function
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Supersmooth
https://en.wikipedia.org/wiki/Hermite_polynomial
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Double_factorial
https://en.wikipedia.org/wiki/Confluent_hypergeometric_function

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 9/36

These expressions remain valid even if is not integer. See also generalized Hermite polynomials.

Order Non-central moment Central moment

1

2

3

4

5

6

7

8

The expectation of conditioned on the event that lies in an interval is given by

where and respectively are the density and the cumulative distribution function of . For this is known
as the inverse Mills ratio. Note that above, density of is used instead of standard normal density as in inverse
Mills ratio, so here we have instead of .

The Fourier transform of a normal density with mean and standard deviation is[26]

where is the imaginary unit. If the mean , the first factor is 1, and the Fourier transform is, apart from a
constant factor, a normal density on the frequency domain, with mean 0 and standard deviation . In particular,
the standard normal distribution is an eigenfunction of the Fourier transform.

In probability theory, the Fourier transform of the probability distribution of a real-valued random variable is
closely connected to the characteristic function of that variable, which is defined as the expected value of ,
as a function of the real variable (the frequency parameter of the Fourier transform). This definition can be
analytically extended to a complex-value variable .[27] The relation between both is:

Fourier transform and characteristic function

Moment and cumulant generating functions

https://en.wikipedia.org/wiki/Hermite_polynomials#%22Negative_variance%22
https://en.wikipedia.org/wiki/Inverse_Mills_ratio
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Eigenfunction
https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Frequency

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 10/36

The moment generating function of a real random variable is the expected value of , as a function of the real
parameter . For a normal distribution with density , mean and deviation , the moment generating function
exists and is equal to

The cumulant generating function is the logarithm of the moment generating function, namely

Since this is a quadratic polynomial in , only the first two cumulants are nonzero, namely the mean and the
variance .

Within Stein's method the Stein operator and class of a random variable are
 and the class of all absolutely continuous functions

.

In the limit when tends to zero, the probability density eventually tends to zero at any , but grows
without limit if , while its integral remains equal to 1. Therefore, the normal distribution cannot be defined as
an ordinary function when .

However, one can define the normal distribution with zero variance as a generalized function; specifically, as Dirac's
"delta function" translated by the mean , that is Its CDF is then the Heaviside step function
translated by the mean , namely

Of all probability distributions over the reals with a specified mean and variance , the normal distribution
 is the one with maximum entropy.[28] If is a continuous random variable with probability density ,

then the entropy of is defined as[29][30][31]

where is understood to be zero whenever . This functional can be maximized, subject to the
constraints that the distribution is properly normalized and has a specified variance, by using variational calculus. A
function with two Lagrange multipliers is defined:

where is, for now, regarded as some density function with mean and standard deviation .

At maximum entropy, a small variation about will produce a variation about which is equal to 0:

Stein operator and class

Zero-variance limit

Maximum entropy

https://en.wikipedia.org/wiki/Moment_generating_function
https://en.wikipedia.org/wiki/Cumulant_generating_function
https://en.wikipedia.org/wiki/Cumulant
https://en.wikipedia.org/wiki/Stein%27s_method
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Generalized_function
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
https://en.wikipedia.org/wiki/Continuous_random_variable
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Variational_calculus
https://en.wikipedia.org/wiki/Lagrange_multipliers

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 11/36

Since this must hold for any small , the term in brackets must be zero, and solving for yields:

Using the constraint equations to solve for and yields the density of the normal distribution:

The entropy of a normal distribution is equal to

The family of normal distributions is closed under linear transformations: if is normally distributed with mean
and standard deviation , then the variable , for any real numbers and , is also normally distributed,
with mean and standard deviation .

Also if and are two independent normal random variables, with means , and standard deviations , ,
then their sum will also be normally distributed,[proof] with mean and variance .

In particular, if and are independent normal deviates with zero mean and variance , then and
are also independent and normally distributed, with zero mean and variance . This is a special case of the
polarization identity.[32]

Also, if , are two independent normal deviates with mean and deviation , and , are arbitrary real
numbers, then the variable

is also normally distributed with mean and deviation . It follows that the normal distribution is stable (with
exponent).

More generally, any linear combination of independent normal deviates is a normal deviate.

For any positive integer , any normal distribution with mean and variance is the distribution of the sum of

independent normal deviates, each with mean and variance . This property is called infinite divisibility.[33]

Conversely, if and are independent random variables and their sum has a normal distribution, then
both and must be normal deviates.[34]

This result is known as Cramér’s decomposition theorem, and is equivalent to saying that the convolution of two
distributions is normal if and only if both are normal. Cramér's theorem implies that a linear combination of
independent non-Gaussian variables will never have an exactly normal distribution, although it may approach it
arbitrarily closely.[35]

Operations on normal deviates

Infinite divisibility and Cramér's theorem

https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Polarization_identity
https://en.wikipedia.org/wiki/Stable_distribution
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Infinite_divisibility_(probability)
https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%99s_decomposition_theorem
https://en.wikipedia.org/wiki/Convolution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 12/36

Bernstein's theorem states that if and are independent and and are also independent, then both
X and Y must necessarily have normal distributions.[36][37]

More generally, if are independent random variables, then two distinct linear combinations

and will be independent if and only if all are normal and , where denotes the

variance of .[36]

1. If the characteristic function of some random variable is of the form , where is a
polynomial, then the Marcinkiewicz theorem (named after Józef Marcinkiewicz) asserts that can be at most a
quadratic polynomial, and therefore is a normal random variable.[35] The consequence of this result is that the
normal distribution is the only distribution with a finite number (two) of non-zero cumulants.

2. If and are jointly normal and uncorrelated, then they are independent. The requirement that and should
be jointly normal is essential; without it the property does not hold.[38][39][proof] For non-normal random variables
uncorrelatedness does not imply independence.

3. The Kullback–Leibler divergence of one normal distribution from another is
given by:[40]

The Hellinger distance between the same distributions is equal to

4. The Fisher information matrix for a normal distribution is diagonal and takes the form

5. The conjugate prior of the mean of a normal distribution is another normal distribution.[41] Specifically, if
 are iid and the prior is , then the posterior distribution for the estimator of

 will be

6. The family of normal distributions not only forms an exponential family (EF), but in fact forms a natural
exponential family (NEF) with quadratic variance function (NEF-QVF). Many properties of normal distributions
generalize to properties of NEF-QVF distributions, NEF distributions, or EF distributions generally. NEF-QVF
distributions comprises 6 families, including Poisson, Gamma, binomial, and negative binomial distributions, while
many of the common families studied in probability and statistics are NEF or EF.

7. In information geometry, the family of normal distributions forms a statistical manifold with constant curvature .
The same family is flat with respect to the (±1)-connections ∇ and ∇ .[42]

Bernstein's theorem

Other properties

Related distributions

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/J%C3%B3zef_Marcinkiewicz
https://en.wikipedia.org/wiki/Cumulant
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Uncorrelated
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Fisher_information_matrix
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Natural_exponential_family
https://en.wikipedia.org/wiki/Variance_function
https://en.wikipedia.org/wiki/NEF-QVF
https://en.wikipedia.org/wiki/Information_geometry
https://en.wikipedia.org/wiki/Statistical_manifold
https://en.wikipedia.org/wiki/Constant_curvature
https://en.wikipedia.org/wiki/Flat_manifold

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 13/36

As the number of discrete events
increases, the function begins to
resemble a normal distribution

Comparison of probability density
functions, for the sum of fair 6-
sided dice to show their convergence to a
normal distribution with increasing , in
accordance to the central limit theorem.
In the bottom-right graph, smoothed
profiles of the previous graphs are
rescaled, superimposed and compared
with a normal distribution (black curve).

The central limit theorem states that under certain (fairly common)
conditions, the sum of many random variables will have an approximately
normal distribution. More specifically, where are independent
and identically distributed random variables with the same arbitrary
distribution, zero mean, and variance and is their mean scaled by

Then, as increases, the probability distribution of will tend to the normal
distribution with zero mean and variance .

The theorem can be extended to variables that are not independent
and/or not identically distributed if certain constraints are placed on the
degree of dependence and the moments of the distributions.

Many test statistics, scores, and estimators encountered in practice contain
sums of certain random variables in them, and even more estimators can be
represented as sums of random variables through the use of influence
functions. The central limit theorem implies that those statistical parameters
will have asymptotically normal distributions.

The central limit theorem also implies that certain distributions can be
approximated by the normal distribution, for example:

The binomial distribution is approximately normal with mean
and variance for large and for not too close to 0 or 1.
The Poisson distribution with parameter is approximately normal with
mean and variance , for large values of .[43]

The chi-squared distribution is approximately normal with mean
and variance , for large .
The Student's t-distribution is approximately normal with mean 0
and variance 1 when is large.

Whether these approximations are sufficiently accurate depends on the
purpose for which they are needed, and the rate of convergence to the
normal distribution. It is typically the case that such approximations are less
accurate in the tails of the distribution.

A general upper bound for the approximation error in the central limit theorem is given by the Berry–Esseen
theorem, improvements of the approximation are given by the Edgeworth expansions.

If X is distributed normally with mean μ and variance σ2, then

The exponential of X is distributed log-normally: eX ~ ln(N (μ, σ2)).
The absolute value of X has folded normal distribution: |X| ~ Nf (μ, σ2). If μ = 0 this is known as the half-normal
distribution.
The absolute value of normalized residuals, |X − μ|/σ, has chi distribution with one degree of freedom: |X − μ|/σ ~

.

Central limit theorem

Operations on a single random variable

https://en.wikipedia.org/wiki/File:De_moivre-laplace.gif
https://en.wikipedia.org/wiki/File:Dice_sum_central_limit_theorem.svg
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/Score_(statistics)
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Influence_function_(statistics)
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem
https://en.wikipedia.org/wiki/Edgeworth_expansion
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Folded_normal_distribution
https://en.wikipedia.org/wiki/Half-normal_distribution
https://en.wikipedia.org/wiki/Chi_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 14/36

The square of X/σ has the noncentral chi-squared distribution with one degree of freedom: X2/σ2 ~ (μ2/σ2). If μ
= 0, the distribution is called simply chi-squared.
The distribution of the variable X restricted to an interval [a, b] is called the truncated normal distribution.
(X − μ)−2 has a Lévy distribution with location 0 and scale σ−2.

If and are two independent standard normal random variables with mean 0 and variance 1, then

Their sum and difference is distributed normally with mean zero and variance two: .

Their product follows the "product-normal" distribution[44] with density function
where is the modified Bessel function of the second kind. This distribution is symmetric around zero,
unbounded at , and has the characteristic function .
Their ratio follows the standard Cauchy distribution: .

Their Euclidean norm has the Rayleigh distribution.

If are independent standard normal random variables, then the sum of their squares has the chi-
squared distribution with degrees of freedom

If are independent normally distributed random variables with means and variances , then
their sample mean is independent from the sample standard deviation,[45] which can be demonstrated using
Basu's theorem or Cochran's theorem.[46] The ratio of these two quantities will have the Student's t-distribution
with degrees of freedom:

If , are independent standard normal random variables, then the ratio of their
normalized sums of squares will have the F-distribution with (n, m) degrees of freedom:[47]

The split normal distribution is most directly defined in terms of joining scaled sections of the density functions of
different normal distributions and rescaling the density to integrate to one. The truncated normal distribution results
from rescaling a section of a single density function.

Combination of two independent random variables

Combination of two or more independent random variables

Operations on the density function

Extensions

https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Truncated_normal_distribution
https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
https://en.wikipedia.org/wiki/Macdonald_function
https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Sample_mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Basu%27s_theorem
https://en.wikipedia.org/wiki/Cochran%27s_theorem
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/F-distribution
https://en.wikipedia.org/wiki/Split_normal_distribution
https://en.wikipedia.org/wiki/Truncated_normal_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 15/36

The notion of normal distribution, being one of the most important distributions in probability theory, has been
extended far beyond the standard framework of the univariate (that is one-dimensional) case (Case 1). All these
extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists.

The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector
X ∈ Rk is multivariate-normally distributed if any linear combination of its components ∑k

j=1aj Xj has a (univariate)
normal distribution. The variance of X is a k×k symmetric positive-definite matrix V. The multivariate normal
distribution is a special case of the elliptical distributions. As such, its iso-density loci in the k = 2 case are ellipses
and in the case of arbitrary k are ellipsoids.
Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0
Complex normal distribution deals with the complex normal vectors. A complex vector X ∈ Ck is said to be normal
if both its real and imaginary components jointly possess a 2k-dimensional multivariate normal distribution. The
variance-covariance structure of X is described by two matrices: the variance matrix Γ, and the relation matrix C.
Matrix normal distribution describes the case of normally distributed matrices.
Gaussian processes are the normally distributed stochastic processes. These can be viewed as elements of
some infinite-dimensional Hilbert space H, and thus are the analogues of multivariate normal vectors for the case
k = ∞. A random element h ∈ H is said to be normal if for any constant a ∈ H the scalar product (a, h) has a
(univariate) normal distribution. The variance structure of such Gaussian random element can be described in
terms of the linear covariance operator K: H → H. Several Gaussian processes became popular enough to have
their own names:

Brownian motion,
Brownian bridge,
Ornstein–Uhlenbeck process.

Gaussian q-distribution is an abstract mathematical construction that represents a "q-analogue" of the normal
distribution.
the q-Gaussian is an analogue of the Gaussian distribution, in the sense that it maximises the Tsallis entropy, and
is one type of Tsallis distribution. Note that this distribution is different from the Gaussian q-distribution above.

A random variable X has a two-piece normal distribution if it has a distribution

where μ is the mean and σ1 and σ2 are the standard deviations of the distribution to the left and right of the mean
respectively.

The mean, variance and third central moment of this distribution have been determined[48]

where E(X), V(X) and T(X) are the mean, variance, and third central moment respectively.

One of the main practical uses of the Gaussian law is to model the empirical distributions of many different random
variables encountered in practice. In such case a possible extension would be a richer family of distributions, having
more than two parameters and therefore being able to fit the empirical distribution more accurately. The examples of
such extensions are:

Pearson distribution — a four-parameter family of probability distributions that extend the normal law to include
different skewness and kurtosis values.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Elliptical_distribution
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Ellipsoid
https://en.wikipedia.org/wiki/Rectified_Gaussian_distribution
https://en.wikipedia.org/wiki/Complex_normal_distribution
https://en.wikipedia.org/wiki/Matrix_normal_distribution
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Scalar_product
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Brownian_bridge
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process
https://en.wikipedia.org/wiki/Gaussian_q-distribution
https://en.wikipedia.org/wiki/Q-analogue
https://en.wikipedia.org/wiki/Q-Gaussian
https://en.wikipedia.org/wiki/Tsallis_entropy
https://en.wikipedia.org/wiki/Tsallis_distribution
https://en.wikipedia.org/wiki/Gaussian_q-distribution
https://en.wikipedia.org/wiki/Pearson_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 16/36

The generalized normal distribution, also known as the exponential power distribution, allows for distribution tails
with thicker or thinner asymptotic behaviors.

It is often the case that we do not know the parameters of the normal distribution, but instead want to estimate them.
That is, having a sample from a normal population we would like to learn the approximate
values of parameters and . The standard approach to this problem is the maximum likelihood method, which
requires maximization of the log-likelihood function:

Taking derivatives with respect to and and solving the resulting system of first order conditions yields the
maximum likelihood estimates:

Estimator is called the sample mean, since it is the arithmetic mean of all observations. The statistic is complete
and sufficient for , and therefore by the Lehmann–Scheffé theorem, is the uniformly minimum variance unbiased
(UMVU) estimator.[49] In finite samples it is distributed normally:

The variance of this estimator is equal to the μμ-element of the inverse Fisher information matrix . This implies
that the estimator is finite-sample efficient. Of practical importance is the fact that the standard error of is
proportional to , that is, if one wishes to decrease the standard error by a factor of 10, one must increase the
number of points in the sample by a factor of 100. This fact is widely used in determining sample sizes for opinion
polls and the number of trials in Monte Carlo simulations.

From the standpoint of the asymptotic theory, is consistent, that is, it converges in probability to as . The
estimator is also asymptotically normal, which is a simple corollary of the fact that it is normal in finite samples:

The estimator is called the sample variance, since it is the variance of the sample (). In practice,
another estimator is often used instead of the . This other estimator is denoted , and is also called the sample
variance, which represents a certain ambiguity in terminology; its square root is called the sample standard
deviation. The estimator differs from by having (n − 1) instead of n in the denominator (the so-called Bessel's
correction):

Statistical inference

Estimation of parameters

Sample mean

Sample variance

https://en.wikipedia.org/wiki/Generalized_normal_distribution
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Sample_mean
https://en.wikipedia.org/wiki/Complete_statistic
https://en.wikipedia.org/wiki/Sufficient_statistic
https://en.wikipedia.org/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem
https://en.wikipedia.org/wiki/Uniformly_minimum_variance_unbiased
https://en.wikipedia.org/wiki/Fisher_information_matrix
https://en.wikipedia.org/wiki/Efficient_estimator
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Monte_Carlo_simulation
https://en.wikipedia.org/wiki/Asymptotic_theory_(statistics)
https://en.wikipedia.org/wiki/Consistent_estimator
https://en.wikipedia.org/wiki/Convergence_in_probability
https://en.wikipedia.org/wiki/Asymptotic_normality
https://en.wikipedia.org/wiki/Sample_variance
https://en.wikipedia.org/wiki/Bessel%27s_correction

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 17/36

The difference between and becomes negligibly small for large n's. In finite samples however, the motivation
behind the use of is that it is an unbiased estimator of the underlying parameter , whereas is biased. Also, by
the Lehmann–Scheffé theorem the estimator is uniformly minimum variance unbiased (UMVU),[49] which makes
it the "best" estimator among all unbiased ones. However it can be shown that the biased estimator is "better"
than the in terms of the mean squared error (MSE) criterion. In finite samples both and have scaled chi-
squared distribution with (n − 1) degrees of freedom:

The first of these expressions shows that the variance of is equal to , which is slightly greater than the
σσ-element of the inverse Fisher information matrix . Thus, is not an efficient estimator for , and moreover,
since is UMVU, we can conclude that the finite-sample efficient estimator for does not exist.

Applying the asymptotic theory, both estimators and are consistent, that is they converge in probability to as
the sample size . The two estimators are also both asymptotically normal:

In particular, both estimators are asymptotically efficient for .

By Cochran's theorem, for normal distributions the sample mean and the sample variance s2 are independent,
which means there can be no gain in considering their joint distribution. There is also a converse theorem: if in a
sample the sample mean and sample variance are independent, then the sample must have come from the normal
distribution. The independence between and s can be employed to construct the so-called t-statistic:

This quantity t has the Student's t-distribution with (n − 1) degrees of freedom, and it is an ancillary statistic
(independent of the value of the parameters). Inverting the distribution of this t-statistics will allow us to construct
the confidence interval for μ;[50] similarly, inverting the χ2 distribution of the statistic s2 will give us the confidence
interval for σ2:[51]

where tk,p and χ
2
k,p are the pth quantiles of the t- and χ2-distributions respectively. These confidence intervals are of

the confidence level 1 − α, meaning that the true values μ and σ2 fall outside of these intervals with probability (or
significance level) α. In practice people usually take α = 5%, resulting in the 95% confidence intervals. The
approximate formulas in the display above were derived from the asymptotic distributions of and s2. The
approximate formulas become valid for large values of n, and are more convenient for the manual calculation since
the standard normal quantiles zα/2 do not depend on n. In particular, the most popular value of α = 5%, results in
|z0.025| = 1.96.

Confidence intervals

Normality tests

https://en.wikipedia.org/wiki/Unbiased_estimator
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Cochran%27s_theorem
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Ancillary_statistic
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Confidence_level
https://en.wikipedia.org/wiki/Significance_level
https://en.wikipedia.org/wiki/1.96

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 18/36

Normality tests assess the likelihood that the given data set {x1, ..., xn} comes from a normal distribution. Typically
the null hypothesis H0 is that the observations are distributed normally with unspecified mean μ and variance σ2,
versus the alternative Ha that the distribution is arbitrary. Many tests (over 40) have been devised for this problem,
the more prominent of them are outlined below:

"Visual" tests are more intuitively appealing but subjective at the same time, as they rely on informal human
judgement to accept or reject the null hypothesis.

Q-Q plot— is a plot of the sorted values from the data set against the expected values of the corresponding
quantiles from the standard normal distribution. That is, it's a plot of point of the form (Φ−1(pk), x(k)), where
plotting points pk are equal to pk = (k − α)/(n + 1 − 2α) and α is an adjustment constant, which can be anything
between 0 and 1. If the null hypothesis is true, the plotted points should approximately lie on a straight line.
P-P plot— similar to the Q-Q plot, but used much less frequently. This method consists of plotting the points
(Φ(z(k)), pk), where . For normally distributed data this plot should lie on a 45° line
between (0, 0) and (1, 1).
Shapiro-Wilk test employs the fact that the line in the Q-Q plot has the slope of σ. The test compares the least
squares estimate of that slope with the value of the sample variance, and rejects the null hypothesis if these
two quantities differ significantly.
Normal probability plot (rankit plot)

Moment tests:

D'Agostino's K-squared test
Jarque–Bera test

Empirical distribution function tests:

Lilliefors test (an adaptation of the Kolmogorov–Smirnov test)
Anderson–Darling test

Bayesian analysis of normally distributed data is complicated by the many different possibilities that may be
considered:

Either the mean, or the variance, or neither, may be considered a fixed quantity.
When the variance is unknown, analysis may be done directly in terms of the variance, or in terms of the
precision, the reciprocal of the variance. The reason for expressing the formulas in terms of precision is that the
analysis of most cases is simplified.
Both univariate and multivariate cases need to be considered.
Either conjugate or improper prior distributions may be placed on the unknown variables.
An additional set of cases occurs in Bayesian linear regression, where in the basic model the data is assumed to
be normally distributed, and normal priors are placed on the regression coefficients. The resulting analysis is
similar to the basic cases of independent identically distributed data.

The formulas for the non-linear-regression cases are summarized in the conjugate prior article.

The following auxiliary formula is useful for simplifying the posterior update equations, which otherwise become
fairly tedious.

Bayesian analysis of the normal distribution

Sum of two quadratics

Scalar form

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Q-Q_plot
https://en.wikipedia.org/wiki/P-P_plot
https://en.wikipedia.org/wiki/Shapiro-Wilk_test
https://en.wikipedia.org/wiki/Normal_probability_plot
https://en.wikipedia.org/wiki/Rankit
https://en.wikipedia.org/wiki/D%27Agostino%27s_K-squared_test
https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
https://en.wikipedia.org/wiki/Lilliefors_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
https://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test
https://en.wikipedia.org/wiki/Precision_(statistics)
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Improper_prior
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Bayesian_linear_regression
https://en.wikipedia.org/wiki/Regression_coefficient
https://en.wikipedia.org/wiki/Independent_identically_distributed
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Posterior_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 19/36

This equation rewrites the sum of two quadratics in x by expanding the squares, grouping the terms in x, and
completing the square. Note the following about the complex constant factors attached to some of the terms:

1. The factor has the form of a weighted average of y and z.

2. This shows that this factor can be thought of as resulting from a situation

where the reciprocals of quantities a and b add directly, so to combine a and b themselves, it's necessary to
reciprocate, add, and reciprocate the result again to get back into the original units. This is exactly the sort of

operation performed by the harmonic mean, so it is not surprising that is one-half the harmonic mean of a

and b.

A similar formula can be written for the sum of two vector quadratics: If x, y, z are vectors of length k, and A and B
are symmetric, invertible matrices of size , then

where

Note that the form x′ A x is called a quadratic form and is a scalar:

In other words, it sums up all possible combinations of products of pairs of elements from x, with a separate
coefficient for each. In addition, since , only the sum matters for any off-diagonal elements of
A, and there is no loss of generality in assuming that A is symmetric. Furthermore, if A is symmetric, then the form

Another useful formula is as follows:

where

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows
with known variance σ2, the conjugate prior distribution is also normally distributed.

This can be shown more easily by rewriting the variance as the precision, i.e. using τ = 1/σ2. Then if
and we proceed as follows.

Vector form

Sum of differences from the mean

With known variance

https://en.wikipedia.org/wiki/Completing_the_square
https://en.wikipedia.org/wiki/Weighted_average
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Invertible_matrices
https://en.wikipedia.org/wiki/Quadratic_form
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/I.i.d.
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Precision_(statistics)

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 20/36

First, the likelihood function is (using the formula above for the sum of differences from the mean):

Then, we proceed as follows:

In the above derivation, we used the formula above for the sum of two quadratics and eliminated all constant factors

not involving μ. The result is the kernel of a normal distribution, with mean and precision , i.e.

This can be written as a set of Bayesian update equations for the posterior parameters in terms of the prior
parameters:

That is, to combine n data points with total precision of nτ (or equivalently, total variance of n/σ2) and mean of
values , derive a new total precision simply by adding the total precision of the data to the prior total precision, and
form a new mean through a precision-weighted average, i.e. a weighted average of the data mean and the prior
mean, each weighted by the associated total precision. This makes logical sense if the precision is thought of as
indicating the certainty of the observations: In the distribution of the posterior mean, each of the input components
is weighted by its certainty, and the certainty of this distribution is the sum of the individual certainties. (For the
intuition of this, compare the expression "the whole is (or is not) greater than the sum of its parts". In addition,
consider that the knowledge of the posterior comes from a combination of the knowledge of the prior and likelihood,
so it makes sense that we are more certain of it than of either of its components.)

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Weighted_average

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 21/36

The above formula reveals why it is more convenient to do Bayesian analysis of conjugate priors for the normal
distribution in terms of the precision. The posterior precision is simply the sum of the prior and likelihood precisions,
and the posterior mean is computed through a precision-weighted average, as described above. The same formulas
can be written in terms of variance by reciprocating all the precisions, yielding the more ugly formulas

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows
with known mean μ, the conjugate prior of the variance has an inverse gamma distribution or a scaled inverse chi-
squared distribution. The two are equivalent except for having different parameterizations. Although the inverse
gamma is more commonly used, we use the scaled inverse chi-squared for the sake of convenience. The prior for σ2 is
as follows:

The likelihood function from above, written in terms of the variance, is:

where

Then:

With known mean

https://en.wikipedia.org/wiki/Bayesian_analysis
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/I.i.d.
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Inverse_gamma_distribution
https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution
https://en.wikipedia.org/wiki/Parameterization
https://en.wikipedia.org/wiki/Likelihood_function

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 22/36

The above is also a scaled inverse chi-squared distribution where

or equivalently

Reparameterizing in terms of an inverse gamma distribution, the result is:

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows
with unknown mean μ and unknown variance σ2, a combined (multivariate) conjugate prior is placed over the mean
and variance, consisting of a normal-inverse-gamma distribution. Logically, this originates as follows:

1. From the analysis of the case with unknown mean but known variance, we see that the update equations involve
sufficient statistics computed from the data consisting of the mean of the data points and the total variance of the
data points, computed in turn from the known variance divided by the number of data points.

2. From the analysis of the case with unknown variance but known mean, we see that the update equations involve
sufficient statistics over the data consisting of the number of data points and sum of squared deviations.

3. Keep in mind that the posterior update values serve as the prior distribution when further data is handled. Thus,
we should logically think of our priors in terms of the sufficient statistics just described, with the same semantics
kept in mind as much as possible.

4. To handle the case where both mean and variance are unknown, we could place independent priors over the
mean and variance, with fixed estimates of the average mean, total variance, number of data points used to
compute the variance prior, and sum of squared deviations. Note however that in reality, the total variance of the
mean depends on the unknown variance, and the sum of squared deviations that goes into the variance prior
(appears to) depend on the unknown mean. In practice, the latter dependence is relatively unimportant: Shifting
the actual mean shifts the generated points by an equal amount, and on average the squared deviations will
remain the same. This is not the case, however, with the total variance of the mean: As the unknown variance

With unknown mean and unknown variance

https://en.wikipedia.org/wiki/Inverse_gamma_distribution
https://en.wikipedia.org/wiki/I.i.d.
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution
https://en.wikipedia.org/wiki/Sufficient_statistic
https://en.wikipedia.org/wiki/Sum_of_squared_deviations

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 23/36

increases, the total variance of the mean will increase proportionately, and we would like to capture this
dependence.

5. This suggests that we create a conditional prior of the mean on the unknown variance, with a hyperparameter
specifying the mean of the pseudo-observations associated with the prior, and another parameter specifying the
number of pseudo-observations. This number serves as a scaling parameter on the variance, making it possible
to control the overall variance of the mean relative to the actual variance parameter. The prior for the variance
also has two hyperparameters, one specifying the sum of squared deviations of the pseudo-observations
associated with the prior, and another specifying once again the number of pseudo-observations. Note that each
of the priors has a hyperparameter specifying the number of pseudo-observations, and in each case this controls
the relative variance of that prior. These are given as two separate hyperparameters so that the variance (aka the
confidence) of the two priors can be controlled separately.

6. This leads immediately to the normal-inverse-gamma distribution, which is the product of the two distributions just
defined, with conjugate priors used (an inverse gamma distribution over the variance, and a normal distribution
over the mean, conditional on the variance) and with the same four parameters just defined.

The priors are normally defined as follows:

The update equations can be derived, and look as follows:

The respective numbers of pseudo-observations add the number of actual observations to them. The new mean
hyperparameter is once again a weighted average, this time weighted by the relative numbers of observations. Finally,
the update for is similar to the case with known mean, but in this case the sum of squared deviations is taken
with respect to the observed data mean rather than the true mean, and as a result a new "interaction term" needs to
be added to take care of the additional error source stemming from the deviation between prior and data mean.

[Proof]

The prior distributions are

https://en.wikipedia.org/wiki/Pseudo-observation
https://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Inverse_gamma_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 24/36

Therefore, the joint prior is

The likelihood function from the section above with known variance is:

Writing it in terms of variance rather than precision, we get:

where

Therefore, the posterior is (dropping the hyperparameters as conditioning factors):

In other words, the posterior distribution has the form of a product of a normal distribution over p(μ | σ2) times an
inverse gamma distribution over p(σ2), with parameters that are the same as the update equations above.

The occurrence of normal distribution in practical problems can be loosely classified into four categories:

1. Exactly normal distributions;
2. Approximately normal laws, for example when such approximation is justified by the central limit theorem; and
3. Distributions modeled as normal – the normal distribution being the distribution with maximum entropy for a given

mean and variance.

Occurrence and applications

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 25/36

The ground state of a
quantum harmonic
oscillator has the
Gaussian distribution.

Histogram of sepal widths for Iris
versicolor from Fisher's Iris flower
data set, with superimposed best-
fitting normal distribution.

4. Regression problems – the normal distribution being found after systematic effects have been modeled
sufficiently well.

Certain quantities in physics are distributed normally, as was first demonstrated by
James Clerk Maxwell. Examples of such quantities are:

Probability density function of a ground state in a quantum harmonic oscillator.
The position of a particle that experiences diffusion. If initially the particle is located at
a specific point (that is its probability distribution is the Dirac delta function), then after
time t its location is described by a normal distribution with variance t, which satisfies

the diffusion equation . If the initial location is given by a

certain density function , then the density at time t is the convolution of g and the
normal PDF.

Approximately normal distributions occur in many situations, as explained by the central limit theorem. When the
outcome is produced by many small effects acting additively and independently, its distribution will be close to
normal. The normal approximation will not be valid if the effects act multiplicatively (instead of additively), or if
there is a single external influence that has a considerably larger magnitude than the rest of the effects.

In counting problems, where the central limit theorem includes a discrete-to-continuum approximation and where
infinitely divisible and decomposable distributions are involved, such as

Binomial random variables, associated with binary response variables;
Poisson random variables, associated with rare events;

Thermal radiation has a Bose–Einstein distribution on very short time scales, and a normal distribution on longer
timescales due to the central limit theorem.

I can only recognize the occurrence of the normal curve – the
Laplacian curve of errors – as a very abnormal phenomenon. It is
roughly approximated to in certain distributions; for this reason, and
on account for its beautiful simplicity, we may, perhaps, use it as a
first approximation, particularly in theoretical investigations.

— Pearson (1901)

There are statistical methods to empirically test that assumption, see the above
Normality tests section.

In biology, the logarithm of various variables tend to have a normal
distribution, that is, they tend to have a log-normal distribution (after
separation on male/female subpopulations), with examples including:

Measures of size of living tissue (length, height, skin area, weight);[52]

The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth;
presumably the thickness of tree bark also falls under this category;
Certain physiological measurements, such as blood pressure of adult humans.

Exact normality

Approximate normality

Assumed normality

https://en.wikipedia.org/wiki/File:QHarmonicOscillator.png
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/File:Fisher_iris_versicolor_sepalwidth.svg
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Diffusion_equation
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Infinite_divisibility
https://en.wikipedia.org/wiki/Indecomposable_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Thermal_radiation
https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_statistics
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Log-normal_distribution

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 26/36

Fitted cumulative normal distribution
to October rainfalls, see distribution
fitting

In finance, in particular the Black–Scholes model, changes in the logarithm of exchange rates, price indices, and
stock market indices are assumed normal (these variables behave like compound interest, not like simple
interest, and so are multiplicative). Some mathematicians such as Benoit Mandelbrot have argued that log-Levy
distributions, which possesses heavy tails would be a more appropriate model, in particular for the analysis for
stock market crashes. The use of the assumption of normal distribution occurring in financial models has also
been criticized by Nassim Nicholas Taleb in his works.
Measurement errors in physical experiments are often modeled by a normal distribution. This use of a normal
distribution does not imply that one is assuming the measurement errors are normally distributed, rather using the
normal distribution produces the most conservative predictions possible given only knowledge about the mean
and variance of the errors.[53]

In standardized testing, results can be made to have a normal distribution by either selecting the number and
difficulty of questions (as in the IQ test) or transforming the raw test scores into "output" scores by fitting them to
the normal distribution. For example, the SAT's traditional range of 200–800 is based on a normal distribution with
a mean of 500 and a standard deviation of 100.

Many scores are derived from the normal distribution, including percentile
ranks ("percentiles" or "quantiles"), normal curve equivalents, stanines, z-
scores, and T-scores. Additionally, some behavioral statistical procedures
assume that scores are normally distributed; for example, t-tests and
ANOVAs. Bell curve grading assigns relative grades based on a normal
distribution of scores.
In hydrology the distribution of long duration river discharge or rainfall, e.g.
monthly and yearly totals, is often thought to be practically normal according
to the central limit theorem.[54] The blue picture, made with CumFreq,
illustrates an example of fitting the normal distribution to ranked October
rainfalls showing the 90% confidence belt based on the binomial distribution.
The rainfall data are represented by plotting positions as part of the
cumulative frequency analysis.

In regression analysis, lack of normality in residuals simply indicates that the model postulated is inadequate in
accounting for the tendency in the data and needs to be augmented; in other words, normality in residuals can always
be achieved given a properly constructed model.

In computer simulations, especially in applications of the Monte-Carlo method, it is often desirable to generate
values that are normally distributed. The algorithms listed below all generate the standard normal deviates, since a

N(μ, σ2) can be generated as X = μ + σZ, where Z is standard normal. All these algorithms rely on the availability of a
random number generator U capable of producing uniform random variates.

The most straightforward method is based on the probability integral transform property: if U is distributed
uniformly on (0,1), then Φ−1(U) will have the standard normal distribution. The drawback of this method is that it
relies on calculation of the probit function Φ−1, which cannot be done analytically. Some approximate methods
are described in Hart (1968) and in the erf article. Wichura gives a fast algorithm for computing this function to 16
decimal places,[55] which is used by R to compute random variates of the normal distribution.
An easy to program approximate approach, that relies on the central limit theorem, is as follows: generate 12
uniform U(0,1) deviates, add them all up, and subtract 6 – the resulting random variable will have approximately
standard normal distribution. In truth, the distribution will be Irwin–Hall, which is a 12-section eleventh-order
polynomial approximation to the normal distribution. This random deviate will have a limited range of (−6, 6).[56]

The Box–Muller method uses two independent random numbers U and V distributed uniformly on (0,1). Then the
two random variables X and Y

Produced normality

Computational methods

Generating values from normal distribution

https://en.wikipedia.org/wiki/File:FitNormDistr.tif
https://en.wikipedia.org/wiki/Distribution_fitting
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
https://en.wikipedia.org/wiki/Compound_interest
https://en.wikipedia.org/wiki/Benoit_Mandelbrot
https://en.wikipedia.org/wiki/Levy_skew_alpha-stable_distribution
https://en.wikipedia.org/wiki/Heavy_tails
https://en.wikipedia.org/wiki/Stock_market_crash
https://en.wikipedia.org/wiki/Nassim_Nicholas_Taleb
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Standardized_testing_(statistics)
https://en.wikipedia.org/wiki/Intelligence_quotient
https://en.wikipedia.org/wiki/SAT
https://en.wikipedia.org/wiki/Percentile_rank
https://en.wikipedia.org/wiki/Normal_curve_equivalent
https://en.wikipedia.org/wiki/Stanine
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Bell_curve_grading
https://en.wikipedia.org/wiki/Hydrology
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/CumFreq
https://en.wikipedia.org/wiki/Confidence_belt
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Plotting_position
https://en.wikipedia.org/wiki/Cumulative_frequency_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Monte-Carlo_method
https://en.wikipedia.org/wiki/Random_number_generator
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Probability_integral_transform
https://en.wikipedia.org/wiki/Probit_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/R_programming_language
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Irwin%E2%80%93Hall_distribution
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 27/36

The bean machine, a device invented by
Francis Galton, can be called the first
generator of normal random variables.
This machine consists of a vertical board
with interleaved rows of pins. Small balls
are dropped from the top and then
bounce randomly left or right as they hit
the pins. The balls are collected into bins
at the bottom and settle down into a
pattern resembling the Gaussian curve.

will both have the standard normal distribution, and will be
independent. This formulation arises because for a bivariate normal
random vector (X, Y) the squared norm X2 + Y2 will have the chi-
squared distribution with two degrees of freedom, which is an easily
generated exponential random variable corresponding to the quantity
−2ln(U) in these equations; and the angle is distributed uniformly
around the circle, chosen by the random variable V.

The Marsaglia polar method is a modification of the Box–Muller method
which does not require computation of the sine and cosine functions. In
this method, U and V are drawn from the uniform (−1,1) distribution, and
then S = U2 + V2 is computed. If S is greater or equal to 1, then the
method starts over, otherwise the two quantities

are returned. Again, X and Y are independent, standard normal
random variables.

The Ratio method[57] is a rejection method. The algorithm proceeds as
follows:

Generate two independent uniform deviates U and V;
Compute X = √8/e (V − 0.5)/U;
Optional: if X2 ≤ 5 − 4e1/4U then accept X and terminate algorithm;
Optional: if X2 ≥ 4e−1.35/U + 1.4 then reject X and start over from step 1;
If X2 ≤ −4 lnU then accept X, otherwise start over the algorithm.

The two optional steps allow the evaluation of the logarithm in the last step to be avoided in most cases. These
steps can be greatly improved[58] so that the logarithm is rarely evaluated.

The ziggurat algorithm[59] is faster than the Box–Muller transform and still exact. In about 97% of all cases it uses
only two random numbers, one random integer and one random uniform, one multiplication and an if-test. Only in
3% of the cases, where the combination of those two falls outside the "core of the ziggurat" (a kind of rejection
sampling using logarithms), do exponentials and more uniform random numbers have to be employed.
Integer arithmetic can be used to sample from the standard normal distribution.[60] This method is exact in the
sense that it satisfies the conditions of ideal approximation;[61] i.e., it is equivalent to sampling a real number from
the standard normal distribution and rounding this to the nearest representable floating point number.
There is also some investigation[62] into the connection between the fast Hadamard transform and the normal
distribution, since the transform employs just addition and subtraction and by the central limit theorem random
numbers from almost any distribution will be transformed into the normal distribution. In this regard a series of
Hadamard transforms can be combined with random permutations to turn arbitrary data sets into a normally
distributed data.

The standard normal CDF is widely used in scientific and statistical computing.

The values Φ(x) may be approximated very accurately by a variety of methods, such as numerical integration, Taylor
series, asymptotic series and continued fractions. Different approximations are used depending on the desired level
of accuracy.

Numerical approximations for the normal CDF

https://en.wikipedia.org/wiki/File:Planche_de_Galton.jpg
https://en.wikipedia.org/wiki/Bean_machine
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Bivariate_normal
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Marsaglia_polar_method
https://en.wikipedia.org/wiki/Ziggurat_algorithm
https://en.wikipedia.org/wiki/Hadamard_transform
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Asymptotic_series
https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction#Of_Kummer's_confluent_hypergeometric_function

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 28/36

Zelen & Severo (1964) give the approximation for Φ(x) for x > 0 with the absolute error |ε(x)| < 7.5·10−8

(algorithm 26.2.17 (http://www.math.sfu.ca/~cbm/aands/page_932.htm)):

where ϕ(x) is the standard normal PDF, and b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978, b5 = 1.330274429.
Hart (1968) lists some dozens of approximations – by means of rational functions, with or without exponentials –
for the erfc() function. His algorithms vary in the degree of complexity and the resulting precision, with
maximum absolute precision of 24 digits. An algorithm by West (2009) combines Hart's algorithm 5666 with a
continued fraction approximation in the tail to provide a fast computation algorithm with a 16-digit precision.
Cody (1969) after recalling Hart68 solution is not suited for erf, gives a solution for both erf and erfc, with maximal
relative error bound, via Rational Chebyshev Approximation.
Marsaglia (2004) suggested a simple algorithm[note 2] based on the Taylor series expansion

for calculating Φ(x) with arbitrary precision. The drawback of this algorithm is comparatively slow calculation time
(for example it takes over 300 iterations to calculate the function with 16 digits of precision when x = 10).
The GNU Scientific Library calculates values of the standard normal CDF using Hart's algorithms and
approximations with Chebyshev polynomials.

Shore (1982) introduced simple approximations that may be incorporated in stochastic optimization models of
engineering and operations research, like reliability engineering and inventory analysis. Denoting p=Φ(z), the
simplest approximation for the quantile function is:

This approximation delivers for z a maximum absolute error of 0.026 (for 0.5 ≤ p ≤ 0.9999, corresponding to
0 ≤ z ≤ 3.719). For p < 1/2 replace p by 1 − p and change sign. Another approximation, somewhat less accurate, is the
single-parameter approximation:

The latter had served to derive a simple approximation for the loss integral of the normal distribution, defined by

http://www.math.sfu.ca/~cbm/aands/page_932.htm
https://en.wikipedia.org/wiki/Continued_fraction
https://en.wikipedia.org/wiki/Rational_function
https://en.wikipedia.org/wiki/GNU_Scientific_Library
https://en.wikipedia.org/wiki/Chebyshev_polynomial

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 29/36

Carl Friedrich Gauss
discovered the normal
distribution in 1809 as a way
to rationalize the method of
least squares.

This approximation is particularly accurate for the right far-tail (maximum error of 10−3 for z≥1.4). Highly accurate
approximations for the CDF, based on Response Modeling Methodology (RMM, Shore, 2011, 2012), are shown in
Shore (2005).

Some more approximations can be found at: Error function#Approximation with elementary functions. In particular,
small relative error on the whole domain for the CDF and the quantile function as well, is achieved via an
explicitly invertible formula by Sergei Winitzki in 2008.

Some authors[63][64] attribute the credit for the discovery of the normal distribution to de Moivre, who in 1738[note 3]

published in the second edition of his "The Doctrine of Chances" the study of the coefficients in the binomial
expansion of (a + b)n. De Moivre proved that the middle term in this expansion has the approximate magnitude of

, and that "If m or ½n be a Quantity infinitely great, then the Logarithm of the Ratio, which a Term distant

from the middle by the Interval ℓ, has to the middle Term, is ."[65] Although this theorem can be interpreted as

the first obscure expression for the normal probability law, Stigler points out that de Moivre himself did not interpret
his results as anything more than the approximate rule for the binomial coefficients, and in particular de Moivre
lacked the concept of the probability density function.[66]

In 1809 Gauss published his monograph "Theoria motus corporum coelestium in
sectionibus conicis solem ambientium" where among other things he introduces
several important statistical concepts, such as the method of least squares, the method
of maximum likelihood, and the normal distribution. Gauss used M, M′, M′′, ... to
denote the measurements of some unknown quantity V, and sought the "most
probable" estimator of that quantity: the one that maximizes the probability
φ(M − V) · φ(M′ − V) · φ(M′′ − V) · ... of obtaining the observed experimental results.
In his notation φΔ is the probability law of the measurement errors of magnitude Δ.
Not knowing what the function φ is, Gauss requires that his method should reduce to
the well-known answer: the arithmetic mean of the measured values.[note 4] Starting
from these principles, Gauss demonstrates that the only law that rationalizes the
choice of arithmetic mean as an estimator of the location parameter, is the normal law
of errors:[67]

where h is "the measure of the precision of the observations". Using this normal law as
a generic model for errors in the experiments, Gauss formulates what is now known as
the non-linear weighted least squares (NWLS) method.[68]

Although Gauss was the first to suggest the normal distribution law, Laplace made significant contributions.[note 5] It
was Laplace who first posed the problem of aggregating several observations in 1774,[69] although his own solution
led to the Laplacian distribution. It was Laplace who first calculated the value of the integral ∫ e−t2

 dt = √π in 1782,
providing the normalization constant for the normal distribution.[70] Finally, it was Laplace who in 1810 proved and
presented to the Academy the fundamental central limit theorem, which emphasized the theoretical importance of
the normal distribution.[71]

It is of interest to note that in 1809 an Irish mathematician Adrain published two derivations of the normal
probability law, simultaneously and independently from Gauss.[72] His works remained largely unnoticed by the
scientific community, until in 1871 they were "rediscovered" by Abbe.[73]

History

Development

https://en.wikipedia.org/wiki/File:Carl_Friedrich_Gauss.jpg
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Method_of_least_squares
https://en.wikipedia.org/wiki/Response_modeling_methodology
https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/The_Doctrine_of_Chances
https://en.wikipedia.org/wiki/Binomial_expansion
https://en.wikipedia.org/wiki/Stephen_Stigler
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Method_of_least_squares
https://en.wikipedia.org/wiki/Method_of_maximum_likelihood
https://en.wikipedia.org/wiki/Pierre_Simon_de_Laplace
https://en.wikipedia.org/wiki/Laplacian_distribution
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Robert_Adrain
https://en.wikipedia.org/wiki/Cleveland_Abbe

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 30/36

Pierre-Simon Laplace proved
the central limit theorem in
1810, consolidating the
importance of the normal
distribution in statistics.

In the middle of the 19th century Maxwell demonstrated that the normal distribution
is not just a convenient mathematical tool, but may also occur in natural
phenomena:[74] "The number of particles whose velocity, resolved in a certain
direction, lies between x and x + dx is

Since its introduction, the normal distribution has been known by many different
names: the law of error, the law of facility of errors, Laplace's second law, Gaussian
law, etc. Gauss himself apparently coined the term with reference to the "normal
equations" involved in its applications, with normal having its technical meaning of
orthogonal rather than "usual".[75] However, by the end of the 19th century some
authors[note 6] had started using the name normal distribution, where the word
"normal" was used as an adjective – the term now being seen as a reflection of the fact
that this distribution was seen as typical, common – and thus "normal". Peirce (one of
those authors) once defined "normal" thus: "...the 'normal' is not the average (or any
other kind of mean) of what actually occurs, but of what would, in the long run, occur under certain
circumstances."[76] Around the turn of the 20th century Pearson popularized the term normal as a designation for
this distribution.[77]

Many years ago I called the Laplace–Gaussian curve the normal curve, which name, while it avoids an
international question of priority, has the disadvantage of leading people to believe that all other
distributions of frequency are in one sense or another 'abnormal'.

— Pearson (1920)

Also, it was Pearson who first wrote the distribution in terms of the standard deviation σ as in modern notation. Soon
after this, in year 1915, Fisher added the location parameter to the formula for normal distribution, expressing it in
the way it is written nowadays:

The term "standard normal", which denotes the normal distribution with zero mean and unit variance came into
general use around the 1950s, appearing in the popular textbooks by P.G. Hoel (1947) "Introduction to mathematical
statistics" and A.M. Mood (1950) "Introduction to the theory of statistics".[78]

Bates distribution — similar to the Irwin–Hall distribution, but rescaled back into the 0 to 1 range
Behrens–Fisher problem — the long-standing problem of testing whether two normal samples with different
variances have same means;
Bhattacharyya distance – method used to separate mixtures of normal distributions
Erdős–Kac theorem—on the occurrence of the normal distribution in number theory
Gaussian blur—convolution, which uses the normal distribution as a kernel
Normally distributed and uncorrelated does not imply independent
Reciprocal normal distribution
Ratio normal distribution
Standard normal table
Stein's lemma

Naming

See also

https://en.wikipedia.org/wiki/File:Pierre-Simon_Laplace.jpg
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Bates_distribution
https://en.wikipedia.org/wiki/Behrens%E2%80%93Fisher_problem
https://en.wikipedia.org/wiki/Bhattacharyya_distance
https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Kac_theorem
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
https://en.wikipedia.org/wiki/Reciprocal_normal_distribution
https://en.wikipedia.org/wiki/Ratio_normal_distribution
https://en.wikipedia.org/wiki/Standard_normal_table
https://en.wikipedia.org/wiki/Stein%27s_lemma

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 31/36

Sub-Gaussian distribution
Sum of normally distributed random variables
Tweedie distribution — The normal distribution is a member of the family of Tweedie exponential dispersion
models
Wrapped normal distribution — the Normal distribution applied to a circular domain
Z-test— using the normal distribution

1. For the proof see Gaussian integral.
2. For example, this algorithm is given in the article Bc programming language.
3. De Moivre first published his findings in 1733, in a pamphlet "Approximatio ad Summam Terminorum Binomii

(a + b)n in Seriem Expansi" that was designated for private circulation only. But it was not until the year 1738 that
he made his results publicly available. The original pamphlet was reprinted several times, see for example Walker
(1985).

4. "It has been customary certainly to regard as an axiom the hypothesis that if any quantity has been determined
by several direct observations, made under the same circumstances and with equal care, the arithmetical mean
of the observed values affords the most probable value, if not rigorously, yet very nearly at least, so that it is
always most safe to adhere to it." — Gauss (1809, section 177)

5. "My custom of terming the curve the Gauss–Laplacian or normal curve saves us from proportioning the merit of
discovery between the two great astronomer mathematicians." quote from Pearson (1905, p. 189)

6. Besides those specifically referenced here, such use is encountered in the works of Peirce, Galton (Galton (1889,
chapter V)) and Lexis (Lexis (1878), Rohrbasser & Véron (2003)) c. 1875.

1. "List of Probability and Statistics Symbols" (https://mathvault.ca/hub/higher-math/math-symbols/probability-statisti
cs-symbols/). Math Vault. April 26, 2020. Retrieved August 15, 2020.

2. Weisstein, Eric W. "Normal Distribution" (https://mathworld.wolfram.com/NormalDistribution.html).
mathworld.wolfram.com. Retrieved August 15, 2020.

3. Normal Distribution (http://www.encyclopedia.com/topic/Normal_Distribution.aspx#3), Gale Encyclopedia of
Psychology

4. Casella & Berger (2001, p. 102)
5. Lyon, A. (2014). Why are Normal Distributions Normal? (https://aidanlyon.com/normal_distributions.pdf), The

British Journal for the Philosophy of Science.
6. "Normal Distribution" (https://www.mathsisfun.com/data/standard-normal-distribution.html). www.mathsisfun.com.

Retrieved August 15, 2020.
7. Stigler (1982)
8. Halperin, Hartley & Hoel (1965, item 7)
9. McPherson (1990, p. 110)

10. Bernardo & Smith (2000, p. 121)
11. Scott, Clayton; Nowak, Robert (August 7, 2003). "The Q-function" (http://cnx.org/content/m11537/1.2/).

Connexions.
12. Barak, Ohad (April 6, 2006). "Q Function and Error Function" (https://web.archive.org/web/20090325160012/htt

p://www.eng.tau.ac.il/~jo/academic/Q.pdf) (PDF). Tel Aviv University. Archived from the original (http://www.eng.ta
u.ac.il/~jo/academic/Q.pdf) (PDF) on March 25, 2009.

13. Weisstein, Eric W. "Normal Distribution Function" (https://mathworld.wolfram.com/NormalDistributionFunction.htm
l). MathWorld.

Notes

References

Citations

https://en.wikipedia.org/wiki/Sub-Gaussian_distribution
https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
https://en.wikipedia.org/wiki/Tweedie_distribution
https://en.wikipedia.org/wiki/Exponential_dispersion_model
https://en.wikipedia.org/wiki/Wrapped_normal_distribution
https://en.wikipedia.org/wiki/Z-test
https://en.wikipedia.org/wiki/Gaussian_integral
https://en.wikipedia.org/wiki/Bc_programming_language#A_translated_C_function
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Wilhelm_Lexis
https://mathvault.ca/hub/higher-math/math-symbols/probability-statistics-symbols/
https://mathworld.wolfram.com/NormalDistribution.html
http://www.encyclopedia.com/topic/Normal_Distribution.aspx#3
https://aidanlyon.com/normal_distributions.pdf
https://www.mathsisfun.com/data/standard-normal-distribution.html
http://cnx.org/content/m11537/1.2/
https://web.archive.org/web/20090325160012/http://www.eng.tau.ac.il/~jo/academic/Q.pdf
http://www.eng.tau.ac.il/~jo/academic/Q.pdf
https://en.wikipedia.org/wiki/Eric_W._Weisstein
https://mathworld.wolfram.com/NormalDistributionFunction.html
https://en.wikipedia.org/wiki/MathWorld

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 32/36

14. Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 26, eqn 26.2.12" (http://www.math.sfu.
ca/~cbm/aands/page_932.htm). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with
corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce,
National Bureau of Standards; Dover Publications. p. 932. ISBN 978-0-486-61272-0. LCCN 64-60036 (https://lcc
n.loc.gov/64-60036). MR 0167642 (https://www.ams.org/mathscinet-getitem?mr=0167642). LCCN 65-12253 (http
s://lccn.loc.gov/65012253).

15. "Wolfram|Alpha: Computational Knowledge Engine" (http://www.wolframalpha.com/input/?i=Table%5B{N(Erf(n/Sq
rt(2)),+12),+N(1-Erf(n/Sqrt(2)),+12),+N(1/(1-Erf(n/Sqrt(2))),+12)},+{n,1,6}%5D). Wolframalpha.com. Retrieved
March 3, 2017.

16. "Wolfram|Alpha: Computational Knowledge Engine" (http://www.wolframalpha.com/input/?i=Table%5BSqrt%28
2%29*InverseErf%28x%29%2C+{x%2C+N%28{8%2F10%2C+9%2F10%2C+19%2F20%2C+49%2F50%2C+9
9%2F100%2C+995%2F1000%2C+998%2F1000}%2C+13%29}%5D). Wolframalpha.com.

17. "Wolfram|Alpha: Computational Knowledge Engine" (http://www.wolframalpha.com/input/?i=Table%5B%7BN(1-1
0%5E(-x),9),N(Sqrt(2)*InverseErf(1-10%5E(-x)),13)%7D,%7Bx,3,9%7D%5D). Wolframalpha.com. Retrieved
March 3, 2017.

18. Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory (https://archive.org/details/elementsin
format00cove). John Wiley and Sons. p. 254 (https://archive.org/details/elementsinformat00cove/page/n279).

19. Park, Sung Y.; Bera, Anil K. (2009). "Maximum Entropy Autoregressive Conditional Heteroskedasticity Model" (htt
p://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C200951993
2327055475115776.pdf) (PDF). Journal of Econometrics. 150 (2): 219–230. CiteSeerX 10.1.1.511.9750 (https://ci
teseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.511.9750). doi:10.1016/j.jeconom.2008.12.014 (https://doi.org/
10.1016%2Fj.jeconom.2008.12.014). Retrieved June 2, 2011.

20. Geary RC(1936) The distribution of the "Student's" ratio for the non-normal samples". Supplement to the Journal
of the Royal Statistical Society 3 (2): 178–184

21. Lukas E (1942) A characterization of the normal distribution. Annals of Mathematical Statistics 13: 91–93
22. Patel & Read (1996, [2.1.4])
23. Fan (1991, p. 1258)
24. Patel & Read (1996, [2.1.8])
25. Papoulis, Athanasios. Probability, Random Variables and Stochastic Processes (4th Edition). p. 148.
26. Bryc (1995, p. 23)
27. Bryc (1995, p. 24)
28. Cover & Thomas (2006, p. 254)
29. Williams, David (2001). Weighing the odds : a course in probability and statistics (https://archive.org/details/weigh

ingoddscour00will) (Reprinted. ed.). Cambridge [u.a.]: Cambridge Univ. Press. pp. 197 (https://archive.org/details/
weighingoddscour00will/page/n219)–199. ISBN 978-0-521-00618-7.

30. Smith, José M. Bernardo; Adrian F. M. (2000). Bayesian theory (https://archive.org/details/bayesiantheory00bern
_963) (Reprint ed.). Chichester [u.a.]: Wiley. pp. 209 (https://archive.org/details/bayesiantheory00bern_963/page/
n224), 366. ISBN 978-0-471-49464-5.

31. O'Hagan, A. (1994) Kendall's Advanced Theory of statistics, Vol 2B, Bayesian Inference, Edward Arnold. ISBN 0-
340-52922-9 (Section 5.40)

32. Bryc (1995, p. 27)
33. Patel & Read (1996, [2.3.6])
34. Galambos & Simonelli (2004, Theorem 3.5)
35. Bryc (1995, p. 35)
36. Lukacs & King (1954)
37. Quine, M.P. (1993). "On three characterisations of the normal distribution" (http://www.math.uni.wroc.pl/~pms/pub

licationsArticle.php?nr=14.2&nrA=8&ppB=257&ppE=263). Probability and Mathematical Statistics. 14 (2): 257–
263.

38. UIUC, Lecture 21. The Multivariate Normal Distribution (http://www.math.uiuc.edu/~r-ash/Stat/StatLec21-25.pdf),
21.6:"Individually Gaussian Versus Jointly Gaussian".

39. Edward L. Melnick and Aaron Tenenbein, "Misspecifications of the Normal Distribution", The American
Statistician, volume 36, number 4 November 1982, pages 372–373

https://en.wikipedia.org/wiki/Milton_Abramowitz
https://en.wikipedia.org/wiki/Irene_Stegun
http://www.math.sfu.ca/~cbm/aands/page_932.htm
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-61272-0
https://en.wikipedia.org/wiki/LCCN_(identifier)
https://lccn.loc.gov/64-60036
https://en.wikipedia.org/wiki/MR_(identifier)
https://www.ams.org/mathscinet-getitem?mr=0167642
https://en.wikipedia.org/wiki/LCCN_(identifier)
https://lccn.loc.gov/65012253
http://www.wolframalpha.com/input/?i=Table%5B{N(Erf(n/Sqrt(2)),+12),+N(1-Erf(n/Sqrt(2)),+12),+N(1/(1-Erf(n/Sqrt(2))),+12)},+{n,1,6}%5D
http://www.wolframalpha.com/input/?i=Table%5BSqrt%282%29*InverseErf%28x%29%2C+{x%2C+N%28{8%2F10%2C+9%2F10%2C+19%2F20%2C+49%2F50%2C+99%2F100%2C+995%2F1000%2C+998%2F1000}%2C+13%29}%5D
http://www.wolframalpha.com/input/?i=Table%5B%7BN(1-10%5E(-x),9),N(Sqrt(2)*InverseErf(1-10%5E(-x)),13)%7D,%7Bx,3,9%7D%5D
https://archive.org/details/elementsinformat00cove
https://archive.org/details/elementsinformat00cove/page/n279
http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.511.9750
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.jeconom.2008.12.014
https://archive.org/details/weighingoddscour00will
https://archive.org/details/weighingoddscour00will/page/n219
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-00618-7
https://archive.org/details/bayesiantheory00bern_963
https://archive.org/details/bayesiantheory00bern_963/page/n224
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-49464-5
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-340-52922-9
http://www.math.uni.wroc.pl/~pms/publicationsArticle.php?nr=14.2&nrA=8&ppB=257&ppE=263
http://www.math.uiuc.edu/~r-ash/Stat/StatLec21-25.pdf
https://en.wikipedia.org/wiki/The_American_Statistician

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 33/36

40. "Kullback Leibler (KL) Distance of Two Normal (Gaussian) Probability Distributions" (http://www.allisons.org/ll/MM
L/KL/Normal/). Allisons.org. December 5, 2007. Retrieved March 3, 2017.

41. Jordan, Michael I. (February 8, 2010). "Stat260: Bayesian Modeling and Inference: The Conjugate Prior for the
Normal Distribution" (http://www.cs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf) (PDF).

42. Amari & Nagaoka (2000)
43. "Normal Approximation to Poisson Distribution" (http://www.stat.ucla.edu/~dinov/courses_students.dir/Applets.dir/

NormalApprox2PoissonApplet.html). Stat.ucla.edu. Retrieved March 3, 2017.
44. Weisstein, Eric W. "Normal Product Distribution" (http://mathworld.wolfram.com/NormalProductDistribution.html).

MathWorld. wolfram.com.
45. Lukacs, Eugene (1942). "A Characterization of the Normal Distribution" (https://doi.org/10.1214/aoms/117773164

7). The Annals of Mathematical Statistics. 13 (1): 91–3. doi:10.1214/aoms/1177731647 (https://doi.org/10.1214%
2Faoms%2F1177731647). ISSN 0003-4851 (https://www.worldcat.org/issn/0003-4851). JSTOR 2236166 (https://
www.jstor.org/stable/2236166).

46. Basu, D.; Laha, R. G. (1954). "On Some Characterizations of the Normal Distribution". Sankhyā. 13 (4): 359–62.
ISSN 0036-4452 (https://www.worldcat.org/issn/0036-4452). JSTOR 25048183 (https://www.jstor.org/stable/2504
8183).

47. Lehmann, E. L. (1997). Testing Statistical Hypotheses (2nd ed.). Springer. p. 199. ISBN 978-0-387-94919-2.
48. John, S (1982). "The three parameter two-piece normal family of distributions and its fitting". Communications in

Statistics - Theory and Methods. 11 (8): 879–885. doi:10.1080/03610928208828279 (https://doi.org/10.1080%2F
03610928208828279).

49. Krishnamoorthy (2006, p. 127)
50. Krishnamoorthy (2006, p. 130)
51. Krishnamoorthy (2006, p. 133)
52. Huxley (1932)
53. Jaynes, Edwin T. (2003). Probability Theory: The Logic of Science (https://books.google.com/books?id=tTN4HuU

NXjgC&pg=PA592). Cambridge University Press. pp. 592–593. ISBN 9780521592710.
54. Oosterbaan, Roland J. (1994). "Chapter 6: Frequency and Regression Analysis of Hydrologic Data" (http://www.w

aterlog.info/pdf/freqtxt.pdf) (PDF). In Ritzema, Henk P. (ed.). Drainage Principles and Applications, Publication 16
(second revised ed.). Wageningen, The Netherlands: International Institute for Land Reclamation and
Improvement (ILRI). pp. 175–224. ISBN 978-90-70754-33-4.

55. Wichura, Michael J. (1988). "Algorithm AS241: The Percentage Points of the Normal Distribution". Applied
Statistics. 37 (3): 477–84. doi:10.2307/2347330 (https://doi.org/10.2307%2F2347330). JSTOR 2347330 (https://w
ww.jstor.org/stable/2347330).

56. Johnson, Kotz & Balakrishnan (1995, Equation (26.48))
57. Kinderman & Monahan (1977)
58. Leva (1992)
59. Marsaglia & Tsang (2000)
60. Karney (2016)
61. Monahan (1985, section 2)
62. Wallace (1996)
63. Johnson, Kotz & Balakrishnan (1994, p. 85)
64. Le Cam & Lo Yang (2000, p. 74)
65. De Moivre, Abraham (1733), Corollary I – see Walker (1985, p. 77)
66. Stigler (1986, p. 76)
67. Gauss (1809, section 177)
68. Gauss (1809, section 179)
69. Laplace (1774, Problem III)
70. Pearson (1905, p. 189)
71. Stigler (1986, p. 144)
72. Stigler (1978, p. 243)
73. Stigler (1978, p. 244)
74. Maxwell (1860, p. 23)

http://www.allisons.org/ll/MML/KL/Normal/
http://www.cs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf
http://www.stat.ucla.edu/~dinov/courses_students.dir/Applets.dir/NormalApprox2PoissonApplet.html
http://mathworld.wolfram.com/NormalProductDistribution.html
https://doi.org/10.1214/aoms/1177731647
https://en.wikipedia.org/wiki/The_Annals_of_Mathematical_Statistics
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2Faoms%2F1177731647
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0003-4851
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2236166
https://en.wikipedia.org/wiki/Sankhy%C4%81_(journal)
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0036-4452
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/25048183
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-94919-2
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1080%2F03610928208828279
https://books.google.com/books?id=tTN4HuUNXjgC&pg=PA592
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780521592710
http://www.waterlog.info/pdf/freqtxt.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-90-70754-33-4
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2347330
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2347330

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 34/36

Aldrich, John; Miller, Jeff. "Earliest Uses of Symbols in Probability and Statistics" (http://jeff560.tripod.com/stat.ht
ml).
Aldrich, John; Miller, Jeff. "Earliest Known Uses of Some of the Words of Mathematics" (http://jeff560.tripod.com/
mathword.html). In particular, the entries for "bell-shaped and bell curve" (http://jeff560.tripod.com/b.html),
"normal (distribution)" (http://jeff560.tripod.com/n.html), "Gaussian" (http://jeff560.tripod.com/g.html), and "Error,
law of error, theory of errors, etc." (http://jeff560.tripod.com/e.html).
Amari, Shun-ichi; Nagaoka, Hiroshi (2000). Methods of Information Geometry. Oxford University Press.
ISBN 978-0-8218-0531-2.
Bernardo, José M.; Smith, Adrian F. M. (2000). Bayesian Theory. Wiley. ISBN 978-0-471-49464-5.
Bryc, Wlodzimierz (1995). The Normal Distribution: Characterizations with Applications. Springer-Verlag.
ISBN 978-0-387-97990-8.
Casella, George; Berger, Roger L. (2001). Statistical Inference (2nd ed.). Duxbury. ISBN 978-0-534-24312-8.
Cody, William J. (1969). "Rational Chebyshev Approximations for the Error Function". Mathematics of
Computation. 23 (107): 631–638. doi:10.1090/S0025-5718-1969-0247736-4 (https://doi.org/10.1090%2FS0025-5
718-1969-0247736-4).
Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory. John Wiley and Sons.
de Moivre, Abraham (1738). The Doctrine of Chances. ISBN 978-0-8218-2103-9.
Fan, Jianqing (1991). "On the optimal rates of convergence for nonparametric deconvolution problems" (https://d
oi.org/10.1214/aos/1176348248). The Annals of Statistics. 19 (3): 1257–1272. doi:10.1214/aos/1176348248 (http
s://doi.org/10.1214%2Faos%2F1176348248). JSTOR 2241949 (https://www.jstor.org/stable/2241949).
Galton, Francis (1889). Natural Inheritance (http://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-cle
an.pdf) (PDF). London, UK: Richard Clay and Sons.
Galambos, Janos; Simonelli, Italo (2004). Products of Random Variables: Applications to Problems of Physics
and to Arithmetical Functions (https://archive.org/details/productsofrandom00gala). Marcel Dekker, Inc.
ISBN 978-0-8247-5402-0.
Gauss, Carolo Friderico (1809). Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm (htt
ps://archive.org/details/theoriamotuscor00gausgoog) [Theory of the Motion of the Heavenly Bodies Moving about
the Sun in Conic Sections] (in Latin). English translation (https://books.google.com/books?id=1TIAAAAAQAAJ).
Gould, Stephen Jay (1981). The Mismeasure of Man (first ed.). W. W. Norton. ISBN 978-0-393-01489-1.
Halperin, Max; Hartley, Herman O.; Hoel, Paul G. (1965). "Recommended Standards for Statistical Symbols and
Notation. COPSS Committee on Symbols and Notation". The American Statistician. 19 (3): 12–14.
doi:10.2307/2681417 (https://doi.org/10.2307%2F2681417). JSTOR 2681417 (https://www.jstor.org/stable/26814
17).
Hart, John F.; et al. (1968). Computer Approximations. New York, NY: John Wiley & Sons, Inc. ISBN 978-0-
88275-642-4.
"Normal Distribution" (https://www.encyclopediaofmath.org/index.php?title=Normal_Distribution), Encyclopedia of
Mathematics, EMS Press, 2001 [1994]
Herrnstein, Richard J.; Murray, Charles (1994). The Bell Curve: Intelligence and Class Structure in American Life.
Free Press. ISBN 978-0-02-914673-6.
Huxley, Julian S. (1932). Problems of Relative Growth. London. ISBN 978-0-486-61114-3. OCLC 476909537 (http
s://www.worldcat.org/oclc/476909537).
Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions,
Volume 1. Wiley. ISBN 978-0-471-58495-7.
Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1995). Continuous Univariate Distributions,
Volume 2. Wiley. ISBN 978-0-471-58494-0.
Karney, C. F. F. (2016). "Sampling exactly from the normal distribution". ACM Transactions on Mathematical
Software. 42 (1): 3:1–14. arXiv:1303.6257 (https://arxiv.org/abs/1303.6257). doi:10.1145/2710016 (https://doi.org/

75. Jaynes, Edwin J.; Probability Theory: The Logic of Science, Ch 7 (http://www-biba.inrialpes.fr/Jaynes/cc07s.pdf)
76. Peirce, Charles S. (c. 1909 MS), Collected Papers v. 6, paragraph 327
77. Kruskal & Stigler (1997)
78. "Earliest uses... (entry STANDARD NORMAL CURVE)" (http://jeff560.tripod.com/s.html).

Sources

http://jeff560.tripod.com/stat.html
http://jeff560.tripod.com/mathword.html
http://jeff560.tripod.com/b.html
http://jeff560.tripod.com/n.html
http://jeff560.tripod.com/g.html
http://jeff560.tripod.com/e.html
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8218-0531-2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-49464-5
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-97990-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-534-24312-8
https://en.wikipedia.org/wiki/Error_function#cite_note-5
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1090%2FS0025-5718-1969-0247736-4
https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/The_Doctrine_of_Chances
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8218-2103-9
https://doi.org/10.1214/aos/1176348248
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2Faos%2F1176348248
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2241949
http://galton.org/books/natural-inheritance/pdf/galton-nat-inh-1up-clean.pdf
https://archive.org/details/productsofrandom00gala
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8247-5402-0
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://archive.org/details/theoriamotuscor00gausgoog
https://books.google.com/books?id=1TIAAAAAQAAJ
https://en.wikipedia.org/wiki/Stephen_Jay_Gould
https://en.wikipedia.org/wiki/The_Mismeasure_of_Man
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-393-01489-1
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2681417
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2681417
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-88275-642-4
https://www.encyclopediaofmath.org/index.php?title=Normal_Distribution
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/European_Mathematical_Society
https://en.wikipedia.org/wiki/Charles_Murray_(political_scientist)
https://en.wikipedia.org/wiki/The_Bell_Curve
https://en.wikipedia.org/wiki/Free_Press_(publisher)
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-02-914673-6
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-61114-3
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/476909537
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-58495-7
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-58494-0
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1303.6257
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F2710016
http://www-biba.inrialpes.fr/Jaynes/cc07s.pdf
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce_bibliography#CP
http://jeff560.tripod.com/s.html

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 35/36

10.1145%2F2710016).
Kinderman, Albert J.; Monahan, John F. (1977). "Computer Generation of Random Variables Using the Ratio of
Uniform Deviates". ACM Transactions on Mathematical Software. 3 (3): 257–260. doi:10.1145/355744.355750 (ht
tps://doi.org/10.1145%2F355744.355750).
Krishnamoorthy, Kalimuthu (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC.
ISBN 978-1-58488-635-8.
Kruskal, William H.; Stigler, Stephen M. (1997). Spencer, Bruce D. (ed.). Normative Terminology: 'Normal' in
Statistics and Elsewhere. Statistics and Public Policy. Oxford University Press. ISBN 978-0-19-852341-3.
Laplace, Pierre-Simon de (1774). "Mémoire sur la probabilité des causes par les événements" (http://gallica.bnf.f
r/ark:/12148/bpt6k77596b/f32). Mémoires de l'Académie Royale des Sciences de Paris (Savants étrangers),
Tome 6: 621–656. Translated by Stephen M. Stigler in Statistical Science 1 (3), 1986: JSTOR 2245476 (https://w
ww.jstor.org/stable/2245476).
Laplace, Pierre-Simon (1812). Théorie analytique des probabilités (https://archive.org/details/thorieanalytiqu00lap
lgoog) [Analytical theory of probabilities].
Le Cam, Lucien; Lo Yang, Grace (2000). Asymptotics in Statistics: Some Basic Concepts (second ed.). Springer.
ISBN 978-0-387-95036-5.
Leva, Joseph L. (1992). "A fast normal random number generator" (https://web.archive.org/web/2010071603532
8/http://saluc.engr.uconn.edu/refs/crypto/rng/leva92afast.pdf) (PDF). ACM Transactions on Mathematical
Software. 18 (4): 449–453. CiteSeerX 10.1.1.544.5806 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.544.5806). doi:10.1145/138351.138364 (https://doi.org/10.1145%2F138351.138364). Archived from the original
(http://saluc.engr.uconn.edu/refs/crypto/rng/leva92afast.pdf) (PDF) on July 16, 2010.
Lexis, Wilhelm (1878). "Sur la durée normale de la vie humaine et sur la théorie de la stabilité des rapports
statistiques". Annales de Démographie Internationale. Paris. II: 447–462.
Lukacs, Eugene; King, Edgar P. (1954). "A Property of Normal Distribution" (https://doi.org/10.1214/aoms/117772
8796). The Annals of Mathematical Statistics. 25 (2): 389–394. doi:10.1214/aoms/1177728796 (https://doi.org/10.
1214%2Faoms%2F1177728796). JSTOR 2236741 (https://www.jstor.org/stable/2236741).
McPherson, Glen (1990). Statistics in Scientific Investigation: Its Basis, Application and Interpretation (https://arch
ive.org/details/statisticsinscie0000mcph). Springer-Verlag. ISBN 978-0-387-97137-7.
Marsaglia, George; Tsang, Wai Wan (2000). "The Ziggurat Method for Generating Random Variables" (https://doi.
org/10.18637/jss.v005.i08). Journal of Statistical Software. 5 (8). doi:10.18637/jss.v005.i08 (https://doi.org/10.186
37%2Fjss.v005.i08).
Marsaglia, George (2004). "Evaluating the Normal Distribution" (https://doi.org/10.18637/jss.v011.i04). Journal of
Statistical Software. 11 (4). doi:10.18637/jss.v011.i04 (https://doi.org/10.18637%2Fjss.v011.i04).
Maxwell, James Clerk (1860). "V. Illustrations of the dynamical theory of gases. — Part I: On the motions and
collisions of perfectly elastic spheres". Philosophical Magazine. Series 4. 19 (124): 19–32.
doi:10.1080/14786446008642818 (https://doi.org/10.1080%2F14786446008642818).
Monahan, J. F. (1985). "Accuracy in random number generation" (https://doi.org/10.1090/S0025-5718-1985-0804
945-X). Mathematics of Computation. 45 (172): 559–568. doi:10.1090/S0025-5718-1985-0804945-X (https://doi.o
rg/10.1090%2FS0025-5718-1985-0804945-X).
Patel, Jagdish K.; Read, Campbell B. (1996). Handbook of the Normal Distribution (2nd ed.). CRC Press.
ISBN 978-0-8247-9342-5.
Pearson, Karl (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space" (http://stat.smmu.edu.c
n/history/pearson1901.pdf) (PDF). Philosophical Magazine. 6. 2 (11): 559–572. doi:10.1080/14786440109462720
(https://doi.org/10.1080%2F14786440109462720).
Pearson, Karl (1905). " 'Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson'. A
rejoinder". Biometrika. 4 (1): 169–212. doi:10.2307/2331536 (https://doi.org/10.2307%2F2331536).
JSTOR 2331536 (https://www.jstor.org/stable/2331536).
Pearson, Karl (1920). "Notes on the History of Correlation" (https://zenodo.org/record/1431597/files/article.pdf)
(PDF). Biometrika. 13 (1): 25–45. doi:10.1093/biomet/13.1.25 (https://doi.org/10.1093%2Fbiomet%2F13.1.25).
JSTOR 2331722 (https://www.jstor.org/stable/2331722).
Rohrbasser, Jean-Marc; Véron, Jacques (2003). "Wilhelm Lexis: The Normal Length of Life as an Expression of
the "Nature of Things" " (http://www.persee.fr/web/revues/home/prescript/article/pop_1634-2941_2003_num_58_
3_18444). Population. 58 (3): 303–322. doi:10.3917/pope.303.0303 (https://doi.org/10.3917%2Fpope.303.0303).
Shore, H (1982). "Simple Approximations for the Inverse Cumulative Function, the Density Function and the Loss
Integral of the Normal Distribution". Journal of the Royal Statistical Society. Series C (Applied Statistics). 31 (2):

https://doi.org/10.1145%2F2710016
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F355744.355750
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-58488-635-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-852341-3
https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
http://gallica.bnf.fr/ark:/12148/bpt6k77596b/f32
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2245476
https://archive.org/details/thorieanalytiqu00laplgoog
https://en.wikipedia.org/wiki/Analytical_theory_of_probabilities
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-95036-5
https://web.archive.org/web/20100716035328/http://saluc.engr.uconn.edu/refs/crypto/rng/leva92afast.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.544.5806
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F138351.138364
http://saluc.engr.uconn.edu/refs/crypto/rng/leva92afast.pdf
https://doi.org/10.1214/aoms/1177728796
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2Faoms%2F1177728796
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2236741
https://archive.org/details/statisticsinscie0000mcph
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-97137-7
https://en.wikipedia.org/wiki/George_Marsaglia
https://doi.org/10.18637/jss.v005.i08
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.18637%2Fjss.v005.i08
https://doi.org/10.18637/jss.v011.i04
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.18637%2Fjss.v011.i04
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1080%2F14786446008642818
https://doi.org/10.1090/S0025-5718-1985-0804945-X
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1090%2FS0025-5718-1985-0804945-X
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8247-9342-5
https://en.wikipedia.org/wiki/Karl_Pearson
http://stat.smmu.edu.cn/history/pearson1901.pdf
https://en.wikipedia.org/wiki/Philosophical_Magazine
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1080%2F14786440109462720
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2331536
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2331536
https://zenodo.org/record/1431597/files/article.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fbiomet%2F13.1.25
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2331722
http://www.persee.fr/web/revues/home/prescript/article/pop_1634-2941_2003_num_58_3_18444
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3917%2Fpope.303.0303

9/18/2020 Normal distribution - Wikipedia

https://en.wikipedia.org/wiki/Normal_distribution 36/36

108–114. doi:10.2307/2347972 (https://doi.org/10.2307%2F2347972). JSTOR 2347972 (https://www.jstor.org/sta
ble/2347972).
Shore, H (2005). "Accurate RMM-Based Approximations for the CDF of the Normal Distribution".
Communications in Statistics – Theory and Methods. 34 (3): 507–513. doi:10.1081/sta-200052102 (https://doi.or
g/10.1081%2Fsta-200052102).
Shore, H (2011). "Response Modeling Methodology". WIREs Comput Stat. 3 (4): 357–372. doi:10.1002/wics.151
(https://doi.org/10.1002%2Fwics.151).
Shore, H (2012). "Estimating Response Modeling Methodology Models". WIREs Comput Stat. 4 (3): 323–333.
doi:10.1002/wics.1199 (https://doi.org/10.1002%2Fwics.1199).
Stigler, Stephen M. (1978). "Mathematical Statistics in the Early States"
(https://doi.org/10.1214/aos/1176344123). The Annals of Statistics. 6 (2): 239–265. doi:10.1214/aos/1176344123
(https://doi.org/10.1214%2Faos%2F1176344123). JSTOR 2958876 (https://www.jstor.org/stable/2958876).
Stigler, Stephen M. (1982). "A Modest Proposal: A New Standard for the Normal". The American Statistician. 36
(2): 137–138. doi:10.2307/2684031 (https://doi.org/10.2307%2F2684031). JSTOR 2684031 (https://www.jstor.or
g/stable/2684031).
Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900 (https://archiv
e.org/details/historyofstatist00stig). Harvard University Press. ISBN 978-0-674-40340-6.
Stigler, Stephen M. (1999). Statistics on the Table. Harvard University Press. ISBN 978-0-674-83601-3.
Walker, Helen M. (1985). "De Moivre on the Law of Normal Probability" (http://www.york.ac.uk/depts/maths/histst
at/demoivre.pdf) (PDF). In Smith, David Eugene (ed.). A Source Book in Mathematics. Dover. ISBN 978-0-486-
64690-9.
Wallace, C. S. (1996). "Fast pseudo-random generators for normal and exponential variates". ACM Transactions
on Mathematical Software. 22 (1): 119–127. doi:10.1145/225545.225554 (https://doi.org/10.1145%2F225545.225
554).
Weisstein, Eric W. "Normal Distribution" (http://mathworld.wolfram.com/NormalDistribution.html). MathWorld.
West, Graeme (2009). "Better Approximations to Cumulative Normal Functions" (http://www.wilmott.com/pdfs/090
721_west.pdf) (PDF). Wilmott Magazine: 70–76.
Zelen, Marvin; Severo, Norman C. (1964). Probability Functions (chapter 26) (http://www.math.sfu.ca/~cbm/aand
s/page_931.htm). Handbook of mathematical functions with formulas, graphs, and mathematical tables, by
Abramowitz, M.; and Stegun, I. A.: National Bureau of Standards. New York, NY: Dover. ISBN 978-0-486-61272-
0.

"Normal distribution" (https://www.encyclopediaofmath.org/index.php?title=Normal_distribution), Encyclopedia of
Mathematics, EMS Press, 2001 [1994]
Normal distribution calculator (https://www.hackmath.net/en/calculator/normal-distribution), More powerful
calculator (https://keisan.casio.com/exec/system/1180573188)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=978806832"

This page was last edited on 17 September 2020, at 01:50 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to
the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

External links

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2347972
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2347972
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1081%2Fsta-200052102
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Fwics.151
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Fwics.1199
https://en.wikipedia.org/wiki/Stephen_Stigler
https://doi.org/10.1214/aos/1176344123
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2Faos%2F1176344123
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2958876
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2684031
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2684031
https://archive.org/details/historyofstatist00stig
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-674-40340-6
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-674-83601-3
http://www.york.ac.uk/depts/maths/histstat/demoivre.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-64690-9
https://en.wikipedia.org/wiki/Chris_Wallace_(computer_scientist)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F225545.225554
https://en.wikipedia.org/wiki/Eric_W._Weisstein
http://mathworld.wolfram.com/NormalDistribution.html
https://en.wikipedia.org/wiki/MathWorld
http://www.wilmott.com/pdfs/090721_west.pdf
http://www.math.sfu.ca/~cbm/aands/page_931.htm
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
https://en.wikipedia.org/wiki/Milton_Abramowitz
https://en.wikipedia.org/wiki/Irene_A._Stegun
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-486-61272-0
https://www.encyclopediaofmath.org/index.php?title=Normal_distribution
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/European_Mathematical_Society
https://www.hackmath.net/en/calculator/normal-distribution
https://keisan.casio.com/exec/system/1180573188
https://en.wikipedia.org/w/index.php?title=Normal_distribution&oldid=978806832
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 7

Source: https://en.wikipedia.org/wiki/Box_plot

A boxplot is a standardized way of displaying the dataset based on a five-number summary: the
minimum, the maximum, the sample median, and the first and third quartiles.

Minimum : the lowest data point excluding any outliers.

Maximum : the largest data point excluding any outliers.

Median (Q2 / 50th percentile) : the middle value of the dataset.

First quartile (Q1 / 25th percentile) : also known as the lower quartile qn(0.25), is the median of the
lower half of the dataset.

Third quartile (Q3 / 75th percentile) : also known as the upper quartile qn(0.75), is the median of the
upper half of the dataset.[4]

An important element used to construct the box plot by determining the minimum and maximum data
values feasible, but is not part of the aforementioned five-number summary, is the interquartile range
or IQR denoted below:

Interquartile range (IQR) : is the distance between the upper and lower quartiles.

A boxplot is constructed of two parts, a box and a set of whiskers shown in Figure 2. The lowest
point is the minimum of the data set and the highest point is the maximum of the data set. The
box is drawn from Q1 to Q3 with a horizontal line drawn in the middle to denote the median.

The same data set can also be represented as a boxplot shown in Figure 3. From above the
upper quartile, a distance of 1.5 times the IQR is measured out and a whisker is drawn up to the
largest observed point from the dataset that falls within this distance. Similarly, a distance of 1.5
times the IQR is measured out below the lower quartile and a whisker is drawn up to the lower
observed point from the dataset that falls within this distance. All other observed points are
plotted as outliers.

However, the whiskers can represent several possible alternative values, among them:

 the minimum and maximum of all of the data (as in figure 2)
 one standard deviation above and below the mean of the data
 the 9th percentile and the 91st percentile
 the 2nd percentile and the 98th percentile.

Any data not included between the whiskers should be plotted as an outlier with a dot, small
circle, or star, but occasionally this is not done.

Some box plots include an additional character to represent the mean of the data.

On some box plots a crosshatch is placed on each whisker, before the end of the whisker.

Rarely, box plots can be presented with no whiskers at all.

Because of this variability, it is appropriate to describe the convention being used for the
whiskers and outliers in the caption for the plot.

The unusual percentiles 2%, 9%, 91%, 98% are sometimes used for whisker cross-hatches and
whisker ends to show the seven-number summary. If the data are normally distributed, the
locations of the seven marks on the box plot will be equally spaced.

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 7

Boxplot with whiskers from minimum to maximum

Figure 3. Same Boxplot with whiskers with maximum 1.5 IQR

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 7

Example without outliers

Figure 5. The generated boxplot figure of our example on the left with no outliers.

A series of hourly temperatures were measured throughout the day in degrees Fahrenheit. The
recorded values are listed in order as follows: 50, 50, 55, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70,
70, 72, 73, 75, 75, 76, 76, 78, 79, 81.

A box plot of the data can be generated by calculating five relevant values: minimum, maximum,
median, first quartile, and third quartile.

The minimum is the smallest number of the set. In this case, the minimum day temperature is 50 °F.

The maximum is the largest number of the set. In this case, the maximum day temperature is 81 °F.

The median is the "middle" number of the ordered set. This means that there are exactly 50% of the
elements less than the median and 50% of the elements greater than the median. The median of
this ordered set is 70 °F.

The first quartile value is the number that marks one quarter of the ordered set. In other words, there
are exactly 25% of the elements that are less than the first quartile and exactly 75% of the elements
that are greater. The first quartile value can easily be determined by finding the "middle" number
between the minimum and the median. For the hourly temperatures, the "middle" number between
50 °F and 70 °F is 66 °F.

The third quartile value is the number that marks three quarters of the ordered set. In other words,
there are exactly 75% of the elements that are less than the first quartile and 25% of the elements
that are greater. The third quartile value can be easily determined by finding the "middle" number
between the median and the maximum. For the hourly temperatures, the "middle" number between
70 °F and 81 °F is 75 °F.

The upper whisker of the box plot is the largest dataset number smaller than 1.5IQR above the third
quartile. Here, 1.5IQR above the third quartile is 88.5 °F and the maximum is 81 °F. Therefore, the
upper whisker is drawn at the value of the maximum, 81 °F.

Similarly, the lower whisker of the box plot is the smallest dataset number larger than 1.5IQR below
the first quartile. Here, 1.5IQR below the first quartile is 52.5 °F and the minimum is 50 °F. Therefore,
the lower whisker is drawn at the value of the smallest dataset number larger than 52.5 °F, 55 °F.

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 7

Example with outliers

Figure 6. The generated boxplot of our example on the left with outliers.

Above is an example without outliers. Here is a followup example with outliers:

The ordered set is: 52, 57, 57, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76,
78, 79, 89.

In this example, only the first and the last number are changed. The median, third quartile, and first
quartile remain the same.

In this case, the maximum is 89 °F and 1.5IQR above the third quartile is 88.5 °F. The maximum is
greater than 1.5IQR plus the third quartile, so the maximum is an outlier. Therefore, the upper
whisker is drawn at the greatest value smaller than 1.5IQR above the third quartile, which is 79 °F.

Similarly, the minimum is 52 °F and 1.5IQR below the first quartile is 52.5 °F. The minimum is
smaller than 1.5IQR minus the first quartile, so the minimum is also an outlier. Therefore, the lower
whisker is drawn at the smallest value greater than 1.5IQR below the first quartile, which is 57 °F.

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 7

Scatter plot (method comparison)

A scatter plot shows the relationship between two methods.

The scatter plot shows measured values of the reference or comparison method on the
horizontal axis, against the test method on the vertical axis.

The relationship between the methods may indicate a constant, or proportional bias, and
the variability in the measurements across the measuring interval. If the points form a
constant-width band, the method has a constant standard deviation (constant SD). If the
points form a band that is narrower at small values and wider at large values, there is a
constant relationship between the standard deviation and value, and the method has
constant a coefficient of variation (CV). Some measurement procedures exhibit constant SD
in the low range and constant CV in the high range.

If both methods measure on the same scale, a gray identity line shows ideal agreement and
is useful for comparing the relationship against.

2.5: Correlation and Causation, Scatter Plots

The strength of a relationship between two variables is called correlation. Variables that are
strongly related to each other have strong correlation. However, if two variables are correlated it
does not mean that one variable caused the other variable to occur. The above example from the

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 7

Planters Cocktail Peanuts label is an example of this. There is a strong correlation between eating
a diet that is low in saturated fat and cholesterol and heart disease. But that correlation does not
mean that eating a diet that is low in saturated fat and cholesterol will cause your risk of heart
disease to go down. There could be many different variables that could cause both variables in
question to go down or up. One example is that a person’s genetic makeup could make them not
want to eat fatty food and also not develop heart disease. No matter how strong a correlation is
between two variables, you can never know for sure if one variable causes the other variable to
occur without conducting experimentation. The only way to find out if eating a diet low in
saturated fat and cholesterol actually lowers the risk of heart disease is to do an experiment. This
is where you tell one group of people that they have to eat a diet low in saturated fat and cholesterol
and another group of people that they have to eat a diet high in saturated fat and cholesterol, and
then observe what happens to both groups over the years. You cannot morally do this experiment,
so there is no way to prove the statement. That is why the word “may” is in the statement. We see
many correlations like this one. Always be sure not to make a correlation statement into a causation
statement.

Example 2.5.12.5.1: Correlation vs Causation

For each of the following scenarios answer the question and give an example of another variable
that could explain the correlation.

1. There is a negative correlation between number of children a woman has and her life
expectancy. Does that mean that having children causes a woman to die earlier?

A correlation between two variables does not mean that one causes the other. A possible cause for
both variables could be better health care. If there is better health care, then life expectancy goes
up, and also with better health care birth control is more readily available.

2. There is a positive correlation between ice cream sales and the number of drownings at the
beach. Does that mean that eating ice cream can cause a person to drown?

A correlation between two variables does not mean that one causes the other. The cause for both
could be that the temperature is going up. The higher the temperature, the more likely someone
will buy ice cream and the more people at the beach.

3. There is a correlation between waist measures and wrist measures. Does this mean that your
waist measurement causes your wrist measurement to change?

A correlation between two variables does not mean that one causes the other. The cause of both
could be a person’s genetics, eating habits, exercise habits, etc.

How do we tell if there is a correlation between two variables? The easiest way is to graph the two
variables together as ordered pairs on a graph called a scatter plot. To create a scatter plot,
consider that one variable is the independent variable and the other is the dependent variable. This
means that the dependent variable depends on the independent variable. We usually set up these
two variables as ordered pairs where the independent variable is first and the dependent variable

Teradata Vantage: Analytics Certification Learning Resource

Page 7 of 7

is second. Thus, when graphed, the independent variable is graphed along the horizontal axis and
the dependent variable is graphed along the vertical axis. You do not connect the dots after plotting
these ordered pairs. Instead look to see if there is a pattern, such as a line, that fits the data well.
Here are some examples of scatter plots and how strong the linear correlation is between the two
variables.

Figure 2.5.12.5.1: Scatter Plots Showing Types of Linear Correlation

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 6

Null Replacement

Source: https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/Rgr~tkmosOxOreWqyseB_A

Purpose

NULL value replacement is offered as a transformation function. A literal value, the mean,
median, mode, or an imputed value joined from another table can be used as the replacement
value. The median value can be requested with or without averaging of two middle values
when there is an even number of values.

Literal value replacement is supported for numeric, character, and date data types. Mean value
replacement is supported for columns of numeric type or date type. Median without averaging,
mode, and imputed value replacement are valid for any supported type. Median with averaging
is supported only for numeric and date type.

Null can be checked by below query-:

SELECT Salary
FROM Employee
WHERE DeptNo IS NULL;

Examples

These examples demonstrate the Null Replacement transformation. To run the provided
examples, the td_analyze function must be installed in a database called twm and the TWM
tutorial data must be installed in the twm_source database.

The first example operates on numeric data.

call
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;keycolumns=cust
_id;nullreplacement={nullstyle(literal,0),columns(age,income/inc)}{nullstyle(mean),columns(ag
e/age1)}{nullstyle(median),columns(age/age2)}{nullstyle(medianwithoutaveraging),columns(ag
e/age3)}{nullstyle(mode),columns(age/age4)}{nullstyle(imputed,twm_customer_analysis),colu
mns(income)};');

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/Rgr~tkmosOxOreWqyseB_A

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 6

This example operates on date and character type data.

call
twm.td_analyze('vartran','database=twm_source;tablename=twm_credit_acct;keycolumns=cus
t_id;nullreplacement={nullstyle(literal,DATE 1995-12-
23),columns(acct_end_date/date1)}{nullstyle(literal,U),columns(account_active/char1)}{nullstyl
e(mean),columns(acct_end_date/date2)}{nullstyle(median),columns(acct_end_date/date2A)}{n
ullstyle(medianwithoutaveraging),columns(acct_end_date/date3)}{nullstyle(mode),columns(ac
ct_end_date/date4)}{nullstyle(imputed,twm_checking_acct),columns(acct_end_date/date5)}{n
ullstyle(medianwithoutaveraging),columns(account_active/char2)}{nullstyle(mode),columns(ac
count_active/char3)}{nullstyle(imputed,twm_checking_acct),columns(account_active/char4)};')
;

Recode

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/HTwi8XbIqKAnLR_hQpNG9A

Recoding a categorical data column is done to re-express existing values of a column (variable)
into a new coding scheme or to correct data quality problems and focus an analysis on a
particular value. It allows for mapping individual values, NULL values, or any number of
remaining values (ELSE option) to a new value, a NULL value or the same value.

Recoding supports character, numeric, and date type columns. If date values are entered, the
keyword DATE must precede the date value, and do not enclose in single quotes.

The following example demonstrates the Recode transformation.

call
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;recode={recodeva
lues(M/SAME,F/f),recodeother(NULL),columns(gender)}{recodevalues(1/SAME,2/NULL,3/6,4/4,
NULL/NULL),recodeother(NULL),columns(marital_status)}{recodevalues(F/f,null/0),recodeother
(same),columns(gender/gender2)}{recodevalues(0/0,1/1,2/1,3/1,4/1,5/1),recodeother(0),colu
mns(nbr_children,years_with_bank)};');

Rescale
https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/aIIZUpU7O1Jvsq~9_NUfWw

Purpose

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/HTwi8XbIqKAnLR_hQpNG9A
https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/aIIZUpU7O1Jvsq~9_NUfWw

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 6

Rescaling limits the upper and lower boundaries of the data in a continuous numeric column
using a linear rescaling function based on maximum and minimum data values. Rescale is useful
with algorithms that require or work better with data within a certain range. Rescale is only
valid on numeric columns, and not columns of type date.

You can supply new minimum and maximum values to form new variable boundaries. If only
the lower boundary is supplied, the variable is aligned to this value; if only an upper boundary
value is specified, the variable is aligned to that value. If a requested column has a constant
value (max and min are the same), then the transformation fails with an SQL error.

The following example demonstrates the Rescale transformation.

call
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;rescale={rescaleb
ounds(lowerbound/0,upperbound/1),columns(income/inc,age)}{rescalebounds(upperbound/1),
columns(income/income1,age/age1)}{rescalebounds(lowerbound/0),columns(income/income2
,age/age2)};');

Sigmoid

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/h8ApE8PwhJ6HpZ0GaQUhZQ

Purpose

A Sigmoid transformation provides rescaling of continuous numeric data in a more
sophisticated way than the Rescaling transformation function. In a Sigmoid transformation a
numeric column is transformed using a type of sigmoid or s-shaped function. The logit function
produces a continuously increasing value between 0 and 1. The modified logit function is twice
the logit minus 1 and produces a value between -1 and 1. The hyperbolic tangent function also
produces a value between -1 and 1. These non-linear transformations are more useful in data
mining than a linear Rescaling transformation.

For absolute values of x greater than or equal to 36, the value of the sigmoid function is
effectively 1 for positive arguments or 0 for negative arguments, within about 15 digits of
significance.

The Sigmoid transformation is supported for numeric columns only, not date columns. The only
required parameter for the Sigmoid transformation is columns. The datatype parameter
controls the output data type. The sigmoidstyle parameter is also specifies the style of sigmoid
function.

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/h8ApE8PwhJ6HpZ0GaQUhZQ

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 6

The following example demonstrates the Sigmoid transformation.

call
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;sigmoid={sigmoid
style(logit),columns(cust_id,age,income)}{sigmoidstyle(modifiedlogit),columns(cust_id/cid2,age
/age2,income/inc2)}{sigmoidstyle(tanh),columns(cust_id/cid3,age/age3,income/inc3)};');

BAD QUALITY DATA CHECK

(source-: Teradata SQL Function Expression and Predicates document)

EXIST and NOT EXIST PREDICATES

EXISTS predicate tests the existence of specified rows of a subquery. In general, EXISTS can be used to
replace comparisons with IN and NOT EXISTS can be used to replace comparisons with NOT IN. However,
the reverse is not true. Some problems can be solved only by using EXISTS and/or NOT EXISTS predicate.

SELECT SName, SNo
FROM student s
WHERE EXISTS
(SELECT *
FROM department d
WHERE EXISTS
(SELECT *
FROM course c, registration r, class cl
WHERE c.Dept=d.Dept
AND c.CNo=r.CNo
AND s.SNo=r.SNo
AND r.CNo=cl.CNo
AND r.Sec=cl.Sec));

SELECT SName, SNo
FROM student s
WHERE NOT EXISTS
(SELECT *
FROM department d
WHERE d.Dept IN
(SELECT Dept
FROM course) AND NOT EXISTS
(SELECT *
FROM course c, registration r, class cl
WHERE c.Dept=d.Dept
AND c.CNo=r.CNo
AND s.SNo=r.SNo

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 6

AND r.CNo=cl.CNo
AND r.Sec=cl.Sec)));

IN/NOT IN
Purpose
Tests the existence of the value of an expression or expression list in a comparable set in one of two ways:
• Compares the value of an expression with values in an explicit list of literals.
• Compares values in a list of expressions with values and in a set of corresponding expressions in a
subquery.

The following statement searches for the names of all employees who work in Atlanta.
SELECT Name
FROM Employee
WHERE DeptNo IN
(SELECT DeptNo
FROM Department
WHERE Loc = 'ATL');

Example: Using IN/NOT IN with a List of Literals
This example shows the behavior of IN/NOT IN with a list of literals.
Consider the following table definition and contents:
CREATE TABLE t (x INTEGER);
INSERT t (1);
INSERT t (2);
INSERT t (3);
INSERT t (4);
INSERT t (5);
IF you use this query …

Query Result

SELECT * FROM t WHERE x IN (1,2) 1, 2

SELECT * FROM t WHERE x IN ANY (1,2) 1, 2

SELECT * FROM t WHERE NOT (x NOT IN (1,2)) 1, 2

SELECT * FROM t WHERE x NOT IN (1,2) 3, 4, 5

SELECT * FROM t WHERE x NOT IN ALL (1,2) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN (1, 2)) 3, 4, 5

SELECT * FROM t WHERE NOT (x IN ANY (1,2)) 3, 4, 5

SELECT * FROM t WHERE x IN (3 TO 5) 3, 4, 5

SELECT * FROM t WHERE x NOT IN SOME (1, 2)
1, 2, 3,
4, 5

SELECT * FROM t WHERE x IN (1, 2 TO 4, 5)
1, 2, 3,
4, 5

SELECT * FROM t WHERE x IN ALL (1,2) no rows

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2)) no rows

SELECT * FROM t WHERE x NOT IN (1 TO 5) no rows

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 6

The
 THEN the T

The data can be deleted which is not required using -:
DELETE FROM t WHERE NOT (x IN (1, 2))

Basic Sampling (Weighted)
https://docs.teradata.com/reader/JtLhZxnZVIJAs8pZG1VVfg/EE9WkcAqwaJmGDLD32QShw

This example uses basic sampling to select a sample of 10 rows, weighted by car weight.
Because the function call includes the Seed and SeedColumn arguments, it always produces the
same output from the same input.

The sampling can be done to avoid data quality issues.

SELECT * FROM RandomSample (
 ON (SELECT 1) PARTITION BY 1
 InputTable ('fs_input')
 SamplingMode ('basic')
 NumSample ('10')
 WeightColumn ('wt')
 Seed ('1')
 SeedColumn ('model')
) ORDER BY 1, 2, 3;

https://docs.teradata.com/reader/JtLhZxnZVIJAs8pZG1VVfg/EE9WkcAqwaJmGDLD32QShw

The MultiCaseMatch function extends the capability of the SQL CASE statement by supporting matches to
multiple criteria in a single row.

When SQL CASE finds a match, it outputs the result and immediately proceeds to the next row without
searching for more matches in the current row.

The MultiCaseMatch function iterates through the input data set only once and outputs matches whenever
a match occurs. If multiple matches occur for a given input row, the function outputs one output row for each
match.

Use the MultiCaseMatch function when the conditions in your CASE statement do not form a mutually
exclusive set.

MultiCaseMatch Syntax
Version 1.5

SELECT * FROM MultiCaseMatch (
 ON (SELECT t.*, condition AS case [,...] FROM { table | view | (query) } AS t)
 USING
 Labels ('case AS "label"' [,...])
) AS alias;

MultiCaseMatch Syntax Elements
Labels

Specify a label for each case. Each case corresponds to a condition, which is a SQL predicate
that includes input column names. When an input value satisfies condition, that is a match, and
the function outputs the input row and the corresponding label.

MultiCaseMatch Input
Input Table Schema

Column Data Type Description

column_in_condition Any [Column appears once for each column specified in a condition.]

other_column Any [Column appears zero or more times.] Column to copy to output
table.

MultiCaseMatch (ML Engine)

29

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 416

MultiCaseMatch Output
Output Table Schema

Column Data Type Description

column_in_
condition

Same as in input
table

[Column appears once for each column specified in a condition.
] Column copied from input table.

labels VARCHAR [Column appears once for each matching label.] Labels that
correspond to case that column_in_condition value matches.

MultiCaseMatch Example
This example labels people with the age groups to which they belong, which overlap:

Age Group Description

infant Younger than 1 year

toddler 1-2 years, inclusive

kid 2-12 years, inclusive

teenager 13-19 years, inclusive

young adult 16-25 years, inclusive

adult 21-40 years, inclusive

middle-aged person 35-60 years, inclusive

senior citizen 60 years or older

Input

people_age
id name age

1 John 0.5

2 Freddy 2

3 Marie 6

4 Tom Sawyer 17

5 Becky Thatcher 16

6 Philip 22

7 Joseph 25

29: MultiCaseMatch (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 417

id name age

8 Roger 35

9 Natalie 30

10 Henry 40

11 George 50

12 Sir William 65

SQL Call

SELECT * FROM MultiCaseMatch (
ON (SELECT t.*,
 (case when t.age < 1 THEN '1' ELSE '0' END) AS case1,
 (case when t.age >= 1 AND t.age <= 2 THEN '1' ELSE '0' END) AS case2,
 (case when t.age >= 2 AND t.age <= 12 THEN '1' ELSE '0' END) AS case3,
 (case when t.age >= 13 AND t.age <= 19 THEN '1' ELSE '0' END) AS case4,
 (case when t.age >= 16 AND t.age <= 25 THEN '1' ELSE '0' END) AS case5,
 (case when t.age >= 21 AND t.age <= 40 THEN '1' ELSE '0' END) AS case6,
 (case when t.age >= 35 AND t.age <= 60 THEN '1' ELSE '0' END) AS case7,
 (case when t.age >= 60 THEN '1' ELSE '0' END) AS case8
 FROM people_age AS t)
USING
 LABELS (
 'case1 AS "infant"',
 'case2 AS "toddler"',
 'case3 AS "kid"',
 'case4 AS "teenager"',
 'case5 AS "young adult"',
 'case6 AS "adult"',
 'case7 AS "middle aged person"',
 'case8 AS "senior citizen"')
) AS dt;

Output

Several people have two labels. For example, Freddy is both a toddler and a kid, and Tom Sawyer and
Becky Thatcher are both teenagers and young adults.

 id name age labels
 -- -------------- ---- ------------------
 7 joseph 25.0 young adult
 6 philip 22.0 young adult
 7 joseph 25.0 adult

29: MultiCaseMatch (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 418

 6 philip 22.0 adult
 12 sir william 65.0 senior citizen
 11 george 50.0 middle aged person
 4 tom sawyer 17.0 teenager
 9 natalie 30.0 adult
 4 tom sawyer 17.0 young adult
 10 henry 40.0 adult
 5 becky thatcher 16.0 teenager
 10 henry 40.0 middle aged person
 5 becky thatcher 16.0 young adult
 3 marie 6.0 kid
 1 john 0.5 infant
 8 roger 35.0 adult
 8 roger 35.0 middle aged person
 2 freddy 2.0 toddler
 2 freddy 2.0 kid

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

29: MultiCaseMatch (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 419

The OutlierFilter function is useful for filtering a numeric data set before applying ML Engine functions for
which outliers can skew the estimates of parameters and cause inaccurate predictions. Such functions
include time series functions, GLM, LAR, LinReg, PCA, and KMeans. The input data set is expected to
have millions of attribute-value pairs.

The OutlierFilter function filters outliers from a data set, either deleting them or replacing them with a
specified value. Optionally, the function stores the outliers in their own table. The function provides these
methods for filtering outliers:

• Percentile
• Tukey's test
• Carling's modification to Tukey's test
• Median absolute deviation

The method determines the criteria for an observation to classify as an outlier.

OutlierFilter Syntax
Version 1.10

SELECT * FROM OutlierFilter (
 ON { table | view | (query) } AS InputTable
 OUT TABLE OutputTable (output_table)
 [OUT TABLE OutliersTable (outliers_table)]
 USING
 TargetColumns ('target_column' [,...])
 [GroupByColumns ('group_column' [,...])]
 [OutlierMethod ('method' [,...])]
 [ApproxPercentile ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [PercentileThreshold (perc_lower, perc_upper])]
 [PercentAccuracy (accuracy)]
 [IQRMultiplier (k)]
 [RemoveTail ({ 'both' | 'upper' | 'lower' })]
 [ReplacementValue ({ 'delete' | 'null' | 'median' | 'newval' })]
 [MADScaleConstant (constant)]
 [MADThreshold (madlimit)]
) AS alias;

OutlierFilter (ML Engine)

31

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 424

OutlierFilter Syntax Elements
OutputTable

Specify the name of the table where the function stores the copy of the InputTable (including the
PARTITION BY column) with the outliers either deleted (by default) or replaced (as specified by
the ReplacementValue syntax element).

OutliersTable
[Optional] Specify the name of the table where the function outputs copies of the rows of the
InputTable that contain outliers.

Default behavior: Function does not output an outlier table.

TargetColumns
Specify the names of the InputTable columns that contain numeric data to filter.

GroupByColumns
[Optional] Specify the names of the InputTable columns by which to group the data. If the data
schema format is name:value, this list must include name.

Default behavior: Function does not group data.

OutlierMethod
[Optional] Specify one or more of the following methods of filtering outliers:

method Description

'percentile'
(Default)

Percentile.

'tukey' Tukey's test:
An outlier is defined as any observation smaller than V1 - k*(V3-V1) or larger
than V3 + k*(V3-V1), where V1 and V3 are 25th and 75th percentiles of data
and k is specified by IQRMultiplier syntax element.

'carling' Carling's modification to Tukey's test:
An outlier is defined as an observation outside the range V2 ± c*(V3 - V1),
where V2 is median of data, V1 and V3 are 25th and 75th percentiles of
data, and c is constant (which you cannot change).
For more information about Carling's modification, see:
Carling, Kenneth. "Resistant outlier rules and the non-Gaussian case."
Computational Statistics and Data Analysis 33, no. 3 (2000): 249-258.
Available at https://core.ac.uk/download/pdf/6559387.pdf.

'MAD-median' Median absolute deviation (MAD), median of absolute values of residuals.
For example, for i datapoints and median value of data M, MAD=mediani(|
xi-M |).

Specify either one method, which the function uses for all columns specified by TargetColumns,
or specify a method for each column specified by TargetColumns.

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 425

ApproxPercentile
[Optional] Specify whether the function calculates the percentiles used as filter limits exactly.
Approximate percentiles are typically faster, but can fail when the number of groups exceeds one
million.

Default: 'false'

PercentileThreshold
[Optional] Specify the range of percentile values for 'percentile' filtering, [perc_lower, 100 -
perc_lower].

Default: [5, 95]

PercentAccuracy
[Optional] Specify the accuracy of percentiles used for filtering. The value accuracy must be in
the range [0.01, 50].

Default: 0.5%

IQRMultiplier
[Optional] Specify the multiplier of interquartile range for 'tukey' filtering.

Default: 1.5

RemoveTail
[Optional] Specify the side of the distribution to filter.

Default: 'both'

ReplacementValue
[Optional] Specify how the function handles outliers:

Option Description

'delete'
(Default)

Function does not copy row to output table.

'null' Function copies row to output table, replacing each outlier with value NULL.

'median' Function copies row to output table, replacing each outlier with median
value for its group.

newval Function copies row to output table, replacing each outlier with newval,
which must be a numeric value.

MadScaleConstant
[Optional] Specify the scale constant used with 'MAD-median' filtering; a DOUBLE PRECISION
value.

Default: 1.4826, which means MAD = 1.4826 * median(|x - median(x)|)

MadThreshold
[Optional] Specify the threshold used with 'MAD-median' filtering; a DOUBLE PRECISION value.

Default: 3, which means that |x-median(x)|/MAD > 3 is flagged as an outlier

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 426

OutlierFilter Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

target_column BYTEINT, SMALLINT,
INTEGER, BIGINT,
NUMERIC, or DOUBLE
PRECISION

[Column appears once for each specified target_
column.] Numeric data to filter.

group_column Any [Column appears once for each specified group_
column.] Column by which to group data.

OutlierFilter Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports whether tables were created successfully.

OutputTable Schema

The table has the same schema as the OutlierFilter Input table.

OutliersTable Schema

This table appears only with OutliersTable syntax element. It has the same schema as the OutlierFilter
Input table.

OutlierFilter Examples

OutlierFilter Example: OutlierMethod ('percentile'),
ReplacementValue ('null')
Input

The InputTable has a time series of atmospheric pressure readings (in mbar) for five cities.

InputTable: ville_pressuredata
sn city period pressure_mbar

1 Asheville 2010-01-01 00:00:00 1020.5

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 427

sn city period pressure_mbar

2 Asheville 2010-01-01 01:00:00 9000

3 Asheville 2010-01-01 02:00:00 1020

4 Asheville 2010-01-01 03:00:00 10000

5 Asheville 2010-01-01 04:00:00 1020.2

6 Asheville 2010-01-01 05:00:00 1020

7 Asheville 2010-01-01 06:00:00 1020.3

8 Asheville 2010-01-01 07:00:00 1020.8

9 Asheville 2010-01-01 08:00:00 1020.3

10 Asheville 2010-01-01 09:00:00 1020.7

...

25 Greenville 2010-01-01 00:00:00 1020.6

26 Greenville 2010-01-01 01:00:00 9000

27 Greenville 2010-01-01 02:00:00 1020.1

28 Greenville 2010-01-01 03:00:00 10000

29 Greenville 2010-01-01 04:00:00 1020.2

30 Greenville 2010-01-01 05:00:00 1020

...

49 Brownsville 2010-01-01 00:00:00 1020.5

50 Brownsville 2010-01-01 01:00:00 9000

51 Brownsville 2010-01-01 02:00:00 1020

52 Brownsville 2010-01-01 03:00:00 10000

53 Brownsville 2010-01-01 04:00:00 1020.2

54 Brownsville 2010-01-01 05:00:00 1020

...

73 Nashville 2010-01-01 00:00:00 1020.4

74 Nashville 2010-01-01 01:00:00 9000

75 Nashville 2010-01-01 02:00:00 1019.9

76 Nashville 2010-01-01 03:00:00 10000

77 Nashville 2010-01-01 04:00:00 1020.1

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 428

sn city period pressure_mbar

78 Nashville 2010-01-01 05:00:00 1019.9

...

97 Knoxville 2010-01-01 00:00:00 1020.4

98 Knoxville 2010-01-01 01:00:00 9000

99 Knoxville 2010-01-01 02:00:00 1019.9

100 Knoxville 2010-01-01 03:00:00 10000

101 Knoxville 2010-01-01 04:00:00 1020

102 Knoxville 2010-01-01 05:00:00 1019.9

...

SQL Call

SELECT * FROM OutlierFilter (
 ON ville_pressuredata AS InputTable
 OUT TABLE OutputTable (of_output1)
 USING
 TargetColumns ('pressure_mbar ')
 OutlierMethod ('percentile')
 PercentileThreshold (1,90)
 RemoveTail ('both')
 ReplacementValue ('null')
 GroupByColumns ('city')
) AS dt ;

Output

The outlying values have been replaced by NULL.

 message

 Output tables created successfully

SELECT * FROM of_output1 ORDER BY 1,2,3;
 sn city period pressure_mbar
 --- ----------- -------------------------- -------------
 1 ashville 2010-01-01 00:00:00.000000 1020.5
 2 ashville 2010-01-01 01:00:00.000000 NULL
 3 ashville 2010-01-01 02:00:00.000000 1020.0
 4 ashville 2010-01-01 03:00:00.000000 NULL

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 429

 5 ashville 2010-01-01 04:00:00.000000 1020.2
 6 ashville 2010-01-01 05:00:00.000000 1020.0
 7 ashville 2010-01-01 06:00:00.000000 1020.3
 8 ashville 2010-01-01 07:00:00.000000 1020.8
 9 ashville 2010-01-01 08:00:00.000000 1021.3
 10 ashville 2010-01-01 09:00:00.000000 1021.7
 11 ashville 2010-01-01 10:00:00.000000 1022.1
 12 ashville 2010-01-01 11:00:00.000000 1022.0
 13 ashville 2010-01-01 12:00:00.000000 1021.1
 14 ashville 2010-01-01 13:00:00.000000 1020.0
 15 ashville 2010-01-01 14:00:00.000000 1019.3
 16 ashville 2010-01-01 15:00:00.000000 1019.0
 17 ashville 2010-01-01 16:00:00.000000 1019.2
 18 ashville 2010-01-01 17:00:00.000000 1019.6
 19 ashville 2010-01-01 18:00:00.000000 1020.1
 20 ashville 2010-01-01 19:00:00.000000 1020.6
 21 ashville 2010-01-01 20:00:00.000000 1020.9
 22 ashville 2010-01-01 21:00:00.000000 1021.1
 23 ashville 2010-01-01 22:00:00.000000 1021.0
 24 ashville 2010-01-01 23:00:00.000000 1020.9
 25 greenville 2010-01-01 00:00:00.000000 1020.6
 26 greenville 2010-01-01 01:00:00.000000 NULL
 27 greenville 2010-01-01 02:00:00.000000 1020.1
 28 greenville 2010-01-01 03:00:00.000000 NULL
 29 greenville 2010-01-01 04:00:00.000000 1020.2
 30 greenville 2010-01-01 05:00:00.000000 1020.0
 31 greenville 2010-01-01 06:00:00.000000 1020.4
 32 greenville 2010-01-01 07:00:00.000000 1020.8
 33 greenville 2010-01-01 08:00:00.000000 1021.3
 34 greenville 2010-01-01 09:00:00.000000 1021.7
 35 greenville 2010-01-01 10:00:00.000000 1022.0
 36 greenville 2010-01-01 11:00:00.000000 1021.9
 37 greenville 2010-01-01 12:00:00.000000 1021.1
 38 greenville 2010-01-01 13:00:00.000000 1020.0
 39 greenville 2010-01-01 14:00:00.000000 1019.3
 40 greenville 2010-01-01 15:00:00.000000 1019.0
 41 greenville 2010-01-01 16:00:00.000000 1019.2
 42 greenville 2010-01-01 17:00:00.000000 1019.6
 43 greenville 2010-01-01 18:00:00.000000 1020.1
 44 greenville 2010-01-01 19:00:00.000000 1020.6
 45 greenville 2010-01-01 20:00:00.000000 1020.9
 46 greenville 2010-01-01 21:00:00.000000 1021.0
 47 greenville 2010-01-01 22:00:00.000000 1020.9
 48 greenville 2010-01-01 23:00:00.000000 1020.9

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 430

 49 brownsville 2010-01-01 00:00:00.000000 1020.5
 50 brownsville 2010-01-01 01:00:00.000000 NULL
 51 brownsville 2010-01-01 02:00:00.000000 1020.0
 52 brownsville 2010-01-01 03:00:00.000000 NULL
 53 brownsville 2010-01-01 04:00:00.000000 1020.2
 54 brownsville 2010-01-01 05:00:00.000000 1020.0
 55 brownsville 2010-01-01 06:00:00.000000 1020.3
 56 brownsville 2010-01-01 07:00:00.000000 1020.8
 57 brownsville 2010-01-01 08:00:00.000000 1021.2
 58 brownsville 2010-01-01 09:00:00.000000 1021.6
 59 brownsville 2010-01-01 10:00:00.000000 1022.0
 60 brownsville 2010-01-01 11:00:00.000000 1021.9
 61 brownsville 2010-01-01 12:00:00.000000 1021.0
 62 brownsville 2010-01-01 13:00:00.000000 1019.9
 63 brownsville 2010-01-01 14:00:00.000000 1019.2
 64 brownsville 2010-01-01 15:00:00.000000 1019.0
 65 brownsville 2010-01-01 16:00:00.000000 1019.2
 66 brownsville 2010-01-01 17:00:00.000000 1019.6
 67 brownsville 2010-01-01 18:00:00.000000 1020.0
 68 brownsville 2010-01-01 19:00:00.000000 1020.5
 69 brownsville 2010-01-01 20:00:00.000000 1020.8
 70 brownsville 2010-01-01 21:00:00.000000 1020.9
 71 brownsville 2010-01-01 22:00:00.000000 1020.9
 72 brownsville 2010-01-01 23:00:00.000000 1020.8
 73 nashville 2010-01-01 00:00:00.000000 1020.4
 74 nashville 2010-01-01 01:00:00.000000 NULL
 75 nashville 2010-01-01 02:00:00.000000 1019.9
 76 nashville 2010-01-01 03:00:00.000000 NULL
 77 nashville 2010-01-01 04:00:00.000000 1020.1
 78 nashville 2010-01-01 05:00:00.000000 1019.9
 79 nashville 2010-01-01 06:00:00.000000 1020.2
 80 nashville 2010-01-01 07:00:00.000000 1020.6
 81 nashville 2010-01-01 08:00:00.000000 1021.1
 82 nashville 2010-01-01 09:00:00.000000 1021.5
 83 nashville 2010-01-01 10:00:00.000000 1021.9
 84 nashville 2010-01-01 11:00:00.000000 1021.8
 85 nashville 2010-01-01 12:00:00.000000 1021.0
 86 nashville 2010-01-01 13:00:00.000000 1019.8
 87 nashville 2010-01-01 14:00:00.000000 1019.2
 88 nashville 2010-01-01 15:00:00.000000 1018.9
 89 nashville 2010-01-01 16:00:00.000000 1019.1
 90 nashville 2010-01-01 17:00:00.000000 1019.5
 91 nashville 2010-01-01 18:00:00.000000 1019.9
 92 nashville 2010-01-01 19:00:00.000000 1020.4

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 431

 93 nashville 2010-01-01 20:00:00.000000 1020.7
 94 nashville 2010-01-01 21:00:00.000000 1020.9
 95 nashville 2010-01-01 22:00:00.000000 1020.8
 96 nashville 2010-01-01 23:00:00.000000 1020.7
 97 knoxville 2010-01-01 00:00:00.000000 1020.4
 98 knoxville 2010-01-01 01:00:00.000000 NULL
 99 knoxville 2010-01-01 02:00:00.000000 1019.9
 100 knoxville 2010-01-01 03:00:00.000000 NULL
 101 knoxville 2010-01-01 04:00:00.000000 1020.0
 102 knoxville 2010-01-01 05:00:00.000000 1019.9
 103 knoxville 2010-01-01 06:00:00.000000 1020.2
 104 knoxville 2010-01-01 07:00:00.000000 1020.6
 105 knoxville 2010-01-01 08:00:00.000000 1021.1
 106 knoxville 2010-01-01 09:00:00.000000 1021.5
 107 knoxville 2010-01-01 10:00:00.000000 1021.9
 108 knoxville 2010-01-01 11:00:00.000000 1021.8
 109 knoxville 2010-01-01 12:00:00.000000 1021.0
 110 knoxville 2010-01-01 13:00:00.000000 1019.9
 111 knoxville 2010-01-01 14:00:00.000000 1019.2
 112 knoxville 2010-01-01 15:00:00.000000 1018.9
 113 knoxville 2010-01-01 16:00:00.000000 1019.2
 114 knoxville 2010-01-01 17:00:00.000000 1019.6
 115 knoxville 2010-01-01 18:00:00.000000 1020.0
 116 knoxville 2010-01-01 19:00:00.000000 1020.5
 117 knoxville 2010-01-01 20:00:00.000000 1020.8
 118 knoxville 2010-01-01 21:00:00.000000 1020.9
 119 knoxville 2010-01-01 22:00:00.000000 1020.9
 120 knoxville 2010-01-01 23:00:00.000000 1020.8

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

OutlierFilter Example: OutlierMethod ('MAD-median'),
ReplacementValue ('median')
Input

• InputTable: ville_pressuredata, as in OutlierFilter Example: OutlierMethod ('percentile'),
ReplacementValue ('null')

SQL Call

SELECT * FROM OutlierFilter (
 ON ville_pressuredata AS InputTable
 OUT TABLE OutputTable (of_output2)

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 432

 OUT TABLE OutliersTable (of_outlier2)
 USING
 TargetColumns ('pressure_mbar')
 ReplacementValue ('median')
 OutlierMethod ('MAD-median')
 MADScaleConstant (1.4826)
 MADThreshold (3)
 GroupByColumns ('city')
) AS dt ;

Output

The outlying values have been replaced with the median value for the group.

 message

 Output tables created successfully

SELECT * FROM of_output2 ORDER BY 1, 2, 3;
 sn city period pressure_mbar
 --- ----------- -------------------------- -------------
 1 ashville 2010-01-01 00:00:00.000000 1020.5
 2 ashville 2010-01-01 01:00:00.000000 1020.8
 3 ashville 2010-01-01 02:00:00.000000 1020.0
 4 ashville 2010-01-01 03:00:00.000000 1020.8
 5 ashville 2010-01-01 04:00:00.000000 1020.2
 6 ashville 2010-01-01 05:00:00.000000 1020.0
 7 ashville 2010-01-01 06:00:00.000000 1020.3
 8 ashville 2010-01-01 07:00:00.000000 1020.8
 9 ashville 2010-01-01 08:00:00.000000 1021.3
 10 ashville 2010-01-01 09:00:00.000000 1021.7
 11 ashville 2010-01-01 10:00:00.000000 1022.1
 12 ashville 2010-01-01 11:00:00.000000 1022.0
 13 ashville 2010-01-01 12:00:00.000000 1021.1
 14 ashville 2010-01-01 13:00:00.000000 1020.0
 15 ashville 2010-01-01 14:00:00.000000 1019.3
 16 ashville 2010-01-01 15:00:00.000000 1019.0
 17 ashville 2010-01-01 16:00:00.000000 1019.2
 18 ashville 2010-01-01 17:00:00.000000 1019.6
 19 ashville 2010-01-01 18:00:00.000000 1020.1
 20 ashville 2010-01-01 19:00:00.000000 1020.6
 21 ashville 2010-01-01 20:00:00.000000 1020.9
 22 ashville 2010-01-01 21:00:00.000000 1021.1
 23 ashville 2010-01-01 22:00:00.000000 1021.0
 24 ashville 2010-01-01 23:00:00.000000 1020.9

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 433

 25 greenville 2010-01-01 00:00:00.000000 1020.6
 26 greenville 2010-01-01 01:00:00.000000 1020.8
 27 greenville 2010-01-01 02:00:00.000000 1020.1
 28 greenville 2010-01-01 03:00:00.000000 1020.8
 29 greenville 2010-01-01 04:00:00.000000 1020.2
 30 greenville 2010-01-01 05:00:00.000000 1020.0
 31 greenville 2010-01-01 06:00:00.000000 1020.4
 32 greenville 2010-01-01 07:00:00.000000 1020.8
 33 greenville 2010-01-01 08:00:00.000000 1021.3
 34 greenville 2010-01-01 09:00:00.000000 1021.7
 35 greenville 2010-01-01 10:00:00.000000 1022.0
 36 greenville 2010-01-01 11:00:00.000000 1021.9
 37 greenville 2010-01-01 12:00:00.000000 1021.1
 38 greenville 2010-01-01 13:00:00.000000 1020.0
 39 greenville 2010-01-01 14:00:00.000000 1019.3
 40 greenville 2010-01-01 15:00:00.000000 1019.0
 41 greenville 2010-01-01 16:00:00.000000 1019.2
 42 greenville 2010-01-01 17:00:00.000000 1019.6
 43 greenville 2010-01-01 18:00:00.000000 1020.1
 44 greenville 2010-01-01 19:00:00.000000 1020.6
 45 greenville 2010-01-01 20:00:00.000000 1020.9
 46 greenville 2010-01-01 21:00:00.000000 1021.0
 47 greenville 2010-01-01 22:00:00.000000 1020.9
 48 greenville 2010-01-01 23:00:00.000000 1020.9
 49 brownsville 2010-01-01 00:00:00.000000 1020.5
 50 brownsville 2010-01-01 01:00:00.000000 1020.8
 51 brownsville 2010-01-01 02:00:00.000000 1020.0
 52 brownsville 2010-01-01 03:00:00.000000 1020.8
 53 brownsville 2010-01-01 04:00:00.000000 1020.2
 54 brownsville 2010-01-01 05:00:00.000000 1020.0
 55 brownsville 2010-01-01 06:00:00.000000 1020.3
 56 brownsville 2010-01-01 07:00:00.000000 1020.8
 57 brownsville 2010-01-01 08:00:00.000000 1021.2
 58 brownsville 2010-01-01 09:00:00.000000 1021.6
 59 brownsville 2010-01-01 10:00:00.000000 1022.0
 60 brownsville 2010-01-01 11:00:00.000000 1021.9
 61 brownsville 2010-01-01 12:00:00.000000 1021.0
 62 brownsville 2010-01-01 13:00:00.000000 1019.9
 63 brownsville 2010-01-01 14:00:00.000000 1019.2
 64 brownsville 2010-01-01 15:00:00.000000 1019.0
 65 brownsville 2010-01-01 16:00:00.000000 1019.2
 66 brownsville 2010-01-01 17:00:00.000000 1019.6
 67 brownsville 2010-01-01 18:00:00.000000 1020.0
 68 brownsville 2010-01-01 19:00:00.000000 1020.5

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 434

 69 brownsville 2010-01-01 20:00:00.000000 1020.8
 70 brownsville 2010-01-01 21:00:00.000000 1020.9
 71 brownsville 2010-01-01 22:00:00.000000 1020.9
 72 brownsville 2010-01-01 23:00:00.000000 1020.8
 73 nashville 2010-01-01 00:00:00.000000 1020.4
 74 nashville 2010-01-01 01:00:00.000000 1020.6
 75 nashville 2010-01-01 02:00:00.000000 1019.9
 76 nashville 2010-01-01 03:00:00.000000 1020.6
 77 nashville 2010-01-01 04:00:00.000000 1020.1
 78 nashville 2010-01-01 05:00:00.000000 1019.9
 79 nashville 2010-01-01 06:00:00.000000 1020.2
 80 nashville 2010-01-01 07:00:00.000000 1020.6
 81 nashville 2010-01-01 08:00:00.000000 1021.1
 82 nashville 2010-01-01 09:00:00.000000 1021.5
 83 nashville 2010-01-01 10:00:00.000000 1021.9
 84 nashville 2010-01-01 11:00:00.000000 1021.8
 85 nashville 2010-01-01 12:00:00.000000 1021.0
 86 nashville 2010-01-01 13:00:00.000000 1019.8
 87 nashville 2010-01-01 14:00:00.000000 1019.2
 88 nashville 2010-01-01 15:00:00.000000 1018.9
 89 nashville 2010-01-01 16:00:00.000000 1019.1
 90 nashville 2010-01-01 17:00:00.000000 1019.5
 91 nashville 2010-01-01 18:00:00.000000 1019.9
 92 nashville 2010-01-01 19:00:00.000000 1020.4
 93 nashville 2010-01-01 20:00:00.000000 1020.7
 94 nashville 2010-01-01 21:00:00.000000 1020.9
 95 nashville 2010-01-01 22:00:00.000000 1020.8
 96 nashville 2010-01-01 23:00:00.000000 1020.7
 97 knoxville 2010-01-01 00:00:00.000000 1020.4
 98 knoxville 2010-01-01 01:00:00.000000 1020.6
 99 knoxville 2010-01-01 02:00:00.000000 1019.9
 100 knoxville 2010-01-01 03:00:00.000000 1020.6
 101 knoxville 2010-01-01 04:00:00.000000 1020.0
 102 knoxville 2010-01-01 05:00:00.000000 1019.9
 103 knoxville 2010-01-01 06:00:00.000000 1020.2
 104 knoxville 2010-01-01 07:00:00.000000 1020.6
 105 knoxville 2010-01-01 08:00:00.000000 1021.1
 106 knoxville 2010-01-01 09:00:00.000000 1021.5
 107 knoxville 2010-01-01 10:00:00.000000 1021.9
 108 knoxville 2010-01-01 11:00:00.000000 1021.8
 109 knoxville 2010-01-01 12:00:00.000000 1021.0
 110 knoxville 2010-01-01 13:00:00.000000 1019.9
 111 knoxville 2010-01-01 14:00:00.000000 1019.2
 112 knoxville 2010-01-01 15:00:00.000000 1018.9

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 435

 113 knoxville 2010-01-01 16:00:00.000000 1019.2
 114 knoxville 2010-01-01 17:00:00.000000 1019.6
 115 knoxville 2010-01-01 18:00:00.000000 1020.0
 116 knoxville 2010-01-01 19:00:00.000000 1020.5
 117 knoxville 2010-01-01 20:00:00.000000 1020.8
 118 knoxville 2010-01-01 21:00:00.000000 1020.9
 119 knoxville 2010-01-01 22:00:00.000000 1020.9
 120 knoxville 2010-01-01 23:00:00.000000 1020.8

SELECT * FROM of_outlier2 ORDER BY 1, 2, 3;

 sn city period pressure_mbar
 --- ----------- -------------------------- -------------
 2 ashville 2010-01-01 01:00:00.000000 9000.0
 4 ashville 2010-01-01 03:00:00.000000 10000.0
 26 greenville 2010-01-01 01:00:00.000000 9000.0
 28 greenville 2010-01-01 03:00:00.000000 10000.0
 50 brownsville 2010-01-01 01:00:00.000000 9000.0
 52 brownsville 2010-01-01 03:00:00.000000 10000.0
 74 nashville 2010-01-01 01:00:00.000000 9000.0
 76 nashville 2010-01-01 03:00:00.000000 10000.0
 98 knoxville 2010-01-01 01:00:00.000000 9000.0
 100 knoxville 2010-01-01 03:00:00.000000 10000.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

31: OutlierFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 436

The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
 ON { table | view | (query) }
 USING
 [TargetColumns ({ 'target_column' | target_column_range }[,...])]
 [Delimiter ('delimiter')]
 [IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)

32

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 437

Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 438

ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn
 FROM Pack_MLE (
 ON ville_temperature
 USING
 Delimiter(',')
 OutputColumn('packed_data')
 IncludeColumnName('true')
 TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data sn
 ------ --- --
 3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1 1
 5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2 2
 2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5 3
 2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6 4
 1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1 5

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 439

 3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2 6
 1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8 7
 4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4 8
 6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2 9
 7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data sn
 ------ -- --
 5 nashville|tennessee|2010-01-01 00:00:00|35.1 1
 7 nashville|tennessee|2010-01-01 01:00:00|36.2 2
 4 nashville|tennessee|2010-01-01 02:00:00|34.5 3
 2 nashville|tennessee|2010-01-01 03:00:00|33.6 4
 3 nashville|tennessee|2010-01-01 04:00:00|33.1 5
 3 knoxville|tennessee|2010-01-01 03:00:00|33.2 6
 1 knoxville|tennessee|2010-01-01 04:00:00|32.8 7
 6 knoxville|tennessee|2010-01-01 05:00:00|32.4 8
 1 knoxville|tennessee|2010-01-01 06:00:00|32.2 9
 2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 440

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 441

The Pivoting function pivots data that is stored in rows into columns. It outputs a table whose columns are
based on the individual values from an input table column. The output table schema depends on the function
syntax elements. The function handles missing or NULL values automatically.

The reverse of this function is Unpivoting (ML Engine).

Pivoting Syntax
Version 1.9

SELECT * FROM Pivoting (
 ON { table | view | (query) } PARTITION BY partition_column [,...]
 [ORDER BY order_column]
 USING
 PartitionColumns ({ 'partition_column' | partition_column_range }[,...])
 { NumberOfRows (number_of_rows) |
 PivotColumn ('pivot_column')
 [PivotKeys ('pivot_key' [,...])]
 [NumericPivotKey ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 }
 TargetColumns ({ 'target_column' | 'target_column_range' }[,...])
) AS alias;

Related Information:

Column Specification Syntax Elements

Pivoting Syntax Elements
PartitionColumns

Specify the same columns as the PARTITION BY clause (in any order).

NumberOfRows
[Required if you omit PivotColumn.] Use NumberOfRows when no column contains pivot keys,
but you can specify a maximum number of rows in any partition. The function pivots the input
rows into this number of columns in the output table.

If a partition has fewer than number_of_rows rows, the function adds NULL values; if a partition
has more than number_of_rows rows, the function omits the extra rows.

If you use NumberOfRows, you must use the ORDER BY clause to order the input data;
otherwise, the contents of the output table columns may vary from run to run.

Pivoting (ML Engine)

33

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 442

PivotColumn
[Required if you omit NumberOfRows.] Specify the name of the input column that contains the
pivot keys.

If pivot_column contains numeric values, the function casts them to VARCHAR; function
performance improves slightly if you specify NumericPivotKey ('true').

PivotKeys
[Required if you specify PivotColumn.] Specify the values in pivot_column to use as pivot keys.
The function ignores rows that contain other values in pivot_column.

NumericPivotKey
[Optional] Use this syntax element only with the PivotColumn syntax element. If pivot_column is
numeric, NumericPivotKey ('true') improves function performance slightly.

Default: 'false'

TargetColumns
[Optional] Specify the names of the target columns (input columns that contain the values to
pivot).

Pivoting Input
Input Table Schema

Column Data Type Description

partition_column Any [Column appears once for each specified partition_column.] Column by
which to partition input data.

target_column Any [Column appears once for each specified target_column.] Values to pivot.

Pivoting Output
The output table schema depends on whether you specify the syntax element NumberOfRows or
PivotColumn.

Output Table Schema, NumberOfRows

Column Data Type Description

partition_
column

Same as in
input table

[Column appears once for each specified partition_column.] Column by
which input data is partitioned.

value_i Any [Column appears number_of_rows times.] Value in ith target column,
where i is in range [0, number_of_rows-1]. Columns appear in order
specified by ORDER BY clause.

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 443

Output Table Schema, PivotColumn

Column Data
Type Description

partition_column Any [Column appears once for each specified partition_column.] Column
by which input data is partitioned.

value_target_
column

Any [Column appears once for each pivot_key.] Values for pivot_key that
are associated with partitions in row.

Pivoting Examples

Pivoting Example: NumberOfRows
This example specifies the NumberOfRows syntax element.

Input

The input table, pivot_input, contains temperature, pressure, and dewpoint data for three cities, in sparse
format.

pivot_input
sn city week attribute value1

1 Asheville 1 temp 32

1 Asheville 1 pressure 1020.8

1 Asheville 1 dewpoint 27.6F

2 Asheville 2 temp 32

2 Asheville 2 pressure 1021.3

2 Asheville 2 dewpoint 27.4F

3 Asheville 3 temp 34

3 Asheville 3 pressure 1021.7

3 Asheville 3 dewpoint 28.2F

4 Nashville 1 temp 42

4 Nashville 1 pressure 1021

4 Nashville 1 dewpoint 29.4F

5 Nashville 2 temp 44

5 Nashville 2 pressure 1019.8

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 444

sn city week attribute value1

5 Nashville 2 dewpoint 29.2F

6 Brownsville 2 temp 47

6 Brownsville 2 pressure 1019

6 Brownsville 2 dewpoint 28.9F

7 Brownsville 3 temp 46

7 Brownsville 3 pressure 1019.2

7 Brownsville 3 dewpoint 28.9F

SQL Call

SELECT * FROM Pivoting (
 ON pivot_input PARTITION BY sn,city,week
 ORDER BY week,attribute
 USING
 PartitionColumns ('sn','city', 'week')
 NumberOfRows (3)
 TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

The ORDER BY clause is required. If omitted, the output table column content is nondeterministic (for
more information, see Nondeterministic Results and UniqueID Syntax Element). The function adds any
NULL values at the end.

Output

The function outputs the input column contents in dense format in the output columns value1_0, value1_1,
and value1_2, which contain the dewpoint, pressure, and temperature, respectively. Because these
values are numeric, the function casts them to VARCHAR.

 sn city week value1_0 value1_1 value1_2
 -- ----------- ---- -------- -------- --------
 1 asheville 1 27.6f 1020.8 32
 2 asheville 2 27.4f 1021.3 32
 3 asheville 3 28.2f 1021.7 34
 4 nashville 1 29.4f 1021 42
 5 nashville 2 29.2f 1019.8 44
 6 brownsville 2 28.9f 1019 47
 7 brownsville 3 28.9f 1019.2 46

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 445

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pivoting Example: PivotKeys
Input

• Input table: pivot_input, as in Pivoting Example: NumberOfRows

SQL Call

SELECT * FROM Pivoting (
 ON pivot_input PARTITION BY sn,city,week
 USING
 PartitionColumns ('sn','city', 'week')
 PivotKeys ('temp','pressure')
 PivotColumn ('attribute')
 TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

With PivotKeys, the function does not use the ORDER BY clause.

Output

To create the output table, the function pivots the input table on the partition columns (sn, city, and week)
and outputs the contents of the target column (value1) in dense format in the output columns
value1_pressure and value1_temp.

 sn city week value1_pressure value1_temp
 -- ----------- ---- --------------- -----------
 1 asheville 1 1020.8 32
 2 asheville 2 1021.3 32
 3 asheville 3 1021.7 34
 4 nashville 1 1021 42
 5 nashville 2 1019.8 44
 6 brownsville 2 1019 47
 7 brownsville 3 1019.2 46

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 446

The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
 ON { table | view | (query) }
 USING
 [TargetColumns ({ 'target_column' | target_column_range }[,...])]
 [Delimiter ('delimiter')]
 [IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)

32

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 437

Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 438

ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn
 FROM Pack_MLE (
 ON ville_temperature
 USING
 Delimiter(',')
 OutputColumn('packed_data')
 IncludeColumnName('true')
 TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data sn
 ------ --- --
 3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1 1
 5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2 2
 2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5 3
 2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6 4
 1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1 5

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 439

 3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2 6
 1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8 7
 4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4 8
 6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2 9
 7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data sn
 ------ -- --
 5 nashville|tennessee|2010-01-01 00:00:00|35.1 1
 7 nashville|tennessee|2010-01-01 01:00:00|36.2 2
 4 nashville|tennessee|2010-01-01 02:00:00|34.5 3
 2 nashville|tennessee|2010-01-01 03:00:00|33.6 4
 3 nashville|tennessee|2010-01-01 04:00:00|33.1 5
 3 knoxville|tennessee|2010-01-01 03:00:00|33.2 6
 1 knoxville|tennessee|2010-01-01 04:00:00|32.8 7
 6 knoxville|tennessee|2010-01-01 05:00:00|32.4 8
 1 knoxville|tennessee|2010-01-01 06:00:00|32.2 9
 2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 440

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 441

Antiselect
Antiselect returns all columns except those specified in the Exclude syntax element.

Note:
This function requires the UTF8 client character set.

Antiselect Syntax
SELECT * FROM Antiselect (
 ON { table | view | (query) }
 USING
 Exclude ({ 'exclude_column' | exclude_column_range }[,...])
) AS alias;

Antiselect Syntax Elements
Exclude

Specify the names of the input table columns to exclude from the output table. Column names
must be valid object names, which are defined in Teradata Vantage™ SQL Fundamentals,
B035-1141.

The exclude_column is a column name. This is the syntax of exclude_column_range:

'start_column:end_column' [, '-exclude_in-range_column']

The range includes its endpoints.

The start_column and end_column can be:

• Column names (for example, 'column1:column2')

Column names must contain only letters in the English alphabet, digits, and special
characters. If a column name includes any special characters, surround the column name
with double quotation marks. For example, if the column name is a*b, specify it as "a*b". A
column name cannot contain a double quotation mark.

• Nonnegative integers that represent the indexes of columns in the table (for example,
'[0:4]')

The first column has index 0; therefore, '[0:4]' specifies the first five columns in the table.

• Empty. For example:

Teradata Vantage NewSQL Engine Analytic
Functions

2

Teradata Vantage™ - NewSQL Engine Analytic Functions, Release 16.20 20

◦ '[:4]' specifies all columns up to and including the column with index 4.
◦ '[4:]' specifies the column with index 4 and all columns after it.
◦ '[:]' specifies all columns in the table.

The exclude_in-range_column is a column in the specified range, represented by either its name
or its index (for example, '[0:99]', '-[50]', '-column10' specifies the columns with
indexes 0 through 99, except the column with index 50 and column10).

Column ranges cannot overlap, and cannot include any specified exclude_column.

Antiselect Input
The input table can have any schema.

Antiselect Output
The output table has all input table columns except those specified by the Exclude syntax element.

Antiselect Examples

Antiselect Example: No Column Ranges

Input

The input table, antiselect_test, is a sample set of sales data containing 13 columns.

antiselect_test
sno id orderdate priority qty sales disct dmode custname province region custsegment prodcat

1 3 2010-10-13
00:00:00

Low 6 261.
54

0.04 Regular
Air

Muhammed
MacIntyre

Nunavut Nunavut Small
Business

Office
Supplies

49 293 2012-10-01
00:00:00

High 49 10123 0.07 Delivery
Truck

Barry
French

Nunavut Nunavut Consumer Office
Supplies

50 293 2012-10-01
00:00:00

High 27 244.
57

0.01 Regular
Air

Barry
French

Nunavut Nunavut Consumer Office
Supplies

80 483 2011-07-10
00:00:00

High 30 4965.
76

0.08 Regular
Air

Clay
Rozendal

Nunavut Nunavut Corporate Technology

85 515 2010-08-28
00:00:00

Not
specified

19 394.
27

0.08 Regular
Air

Carlos
Soltero

Nunavut Nunavut Consumer Office
Supplies

86 515 2010-08-28
00:00:00

Not
specified

21 146.
69

0.05 Regular
Air

Carlos
Soltero

Nunavut Nunavut Consumer Furniture

97 613 2011-06-17
00:00:00

High 12 93.54 0.03 Regular
Air

Carl
Jackson

Nunavut Nunavut Corporate Office
Supplies

2: Teradata Vantage NewSQL Engine Analytic Functions

Teradata Vantage™ - NewSQL Engine Analytic Functions, Release 16.20 21

SQL Call

SELECT * FROM Antiselect (
 ON antiselect_test
 USING
 Exclude ('id', 'orderdate', 'disct', 'province', 'custsegment')
) AS dt ORDER BY 1, 4;

Output

sno priority qty sales dmode custname region prodcat

1 Low 6 2.
61540000000000E
002

Regular
Air

Muhammed
MacIntyre

Nunavut Office
Supplies

49 High 49 1.
01230000000000E
004

Delivery
Truck

Barry French Nunavut Office
Supplies

50 High 27 2.
44570000000000E
002

Regular
Air

Barry French Nunavut Office
Supplies

80 High 30 4.
96576000000000E
003

Regular
Air

Clay
Rozendal

Nunavut Technology

85 Not
specified

19 3.
94270000000000E
002

Regular
Air

Carlos
Soltero

Nunavut Office
Supplies

86 Not
specified

21 1.
46690000000000E
002

Regular
Air

Carlos
Soltero

Nunavut Furniture

97 High 12 9.
35400000000000E
001

Regular
Air

Carl Jackson Nunavut Office
Supplies

Antiselect Example: Column Range

Input

The input table is antiselect_test, as in Antiselect Example: No Column Ranges.

SQL Call

SELECT * FROM Antiselect (
 ON antiselect_test
 USING

2: Teradata Vantage NewSQL Engine Analytic Functions

Teradata Vantage™ - NewSQL Engine Analytic Functions, Release 16.20 22

 Exclude ('id', '[2:3]', 'custname:prodcat')
) AS dt ORDER BY 1, 4;

Output

sno qty sales disct dmode

1 6 2.61540000000000E 002 0.04 Regular Air

49 49 1.01230000000000E 004 0.07 Delivery Truck

50 27 2.44570000000000E 002 0.01 Regular Air

80 30 4.96576000000000E 003 0.08 Regular Air

85 19 3.94270000000000E 002 0.08 Regular Air

86 21 1.46690000000000E 002 0.05 Regular Air

97 12 9.35400000000000E 001 0.03 Regular Air

Attribution
The Attribution function is used in web page analysis, where it lets companies assign weights to pages
before certain events, such as buying a product.

The function takes data and parameters from multiple tables and outputs attributions.

2: Teradata Vantage NewSQL Engine Analytic Functions

Teradata Vantage™ - NewSQL Engine Analytic Functions, Release 16.20 23

The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
 ON { table | view | (query) }
 USING
 [TargetColumns ({ 'target_column' | target_column_range }[,...])]
 [Delimiter ('delimiter')]
 [IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)

32

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 437

Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 438

ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn
 FROM Pack_MLE (
 ON ville_temperature
 USING
 Delimiter(',')
 OutputColumn('packed_data')
 IncludeColumnName('true')
 TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data sn
 ------ --- --
 3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1 1
 5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2 2
 2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5 3
 2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6 4
 1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1 5

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 439

 3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2 6
 1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8 7
 4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4 8
 6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2 9
 7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data sn
 ------ -- --
 5 nashville|tennessee|2010-01-01 00:00:00|35.1 1
 7 nashville|tennessee|2010-01-01 01:00:00|36.2 2
 4 nashville|tennessee|2010-01-01 02:00:00|34.5 3
 2 nashville|tennessee|2010-01-01 03:00:00|33.6 4
 3 nashville|tennessee|2010-01-01 04:00:00|33.1 5
 3 knoxville|tennessee|2010-01-01 03:00:00|33.2 6
 1 knoxville|tennessee|2010-01-01 04:00:00|32.8 7
 6 knoxville|tennessee|2010-01-01 05:00:00|32.4 8
 1 knoxville|tennessee|2010-01-01 06:00:00|32.2 9
 2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 440

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 441

The Pivoting function pivots data that is stored in rows into columns. It outputs a table whose columns are
based on the individual values from an input table column. The output table schema depends on the function
syntax elements. The function handles missing or NULL values automatically.

The reverse of this function is Unpivoting (ML Engine).

Pivoting Syntax
Version 1.9

SELECT * FROM Pivoting (
 ON { table | view | (query) } PARTITION BY partition_column [,...]
 [ORDER BY order_column]
 USING
 PartitionColumns ({ 'partition_column' | partition_column_range }[,...])
 { NumberOfRows (number_of_rows) |
 PivotColumn ('pivot_column')
 [PivotKeys ('pivot_key' [,...])]
 [NumericPivotKey ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 }
 TargetColumns ({ 'target_column' | 'target_column_range' }[,...])
) AS alias;

Related Information:

Column Specification Syntax Elements

Pivoting Syntax Elements
PartitionColumns

Specify the same columns as the PARTITION BY clause (in any order).

NumberOfRows
[Required if you omit PivotColumn.] Use NumberOfRows when no column contains pivot keys,
but you can specify a maximum number of rows in any partition. The function pivots the input
rows into this number of columns in the output table.

If a partition has fewer than number_of_rows rows, the function adds NULL values; if a partition
has more than number_of_rows rows, the function omits the extra rows.

If you use NumberOfRows, you must use the ORDER BY clause to order the input data;
otherwise, the contents of the output table columns may vary from run to run.

Pivoting (ML Engine)

33

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 442

PivotColumn
[Required if you omit NumberOfRows.] Specify the name of the input column that contains the
pivot keys.

If pivot_column contains numeric values, the function casts them to VARCHAR; function
performance improves slightly if you specify NumericPivotKey ('true').

PivotKeys
[Required if you specify PivotColumn.] Specify the values in pivot_column to use as pivot keys.
The function ignores rows that contain other values in pivot_column.

NumericPivotKey
[Optional] Use this syntax element only with the PivotColumn syntax element. If pivot_column is
numeric, NumericPivotKey ('true') improves function performance slightly.

Default: 'false'

TargetColumns
[Optional] Specify the names of the target columns (input columns that contain the values to
pivot).

Pivoting Input
Input Table Schema

Column Data Type Description

partition_column Any [Column appears once for each specified partition_column.] Column by
which to partition input data.

target_column Any [Column appears once for each specified target_column.] Values to pivot.

Pivoting Output
The output table schema depends on whether you specify the syntax element NumberOfRows or
PivotColumn.

Output Table Schema, NumberOfRows

Column Data Type Description

partition_
column

Same as in
input table

[Column appears once for each specified partition_column.] Column by
which input data is partitioned.

value_i Any [Column appears number_of_rows times.] Value in ith target column,
where i is in range [0, number_of_rows-1]. Columns appear in order
specified by ORDER BY clause.

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 443

Output Table Schema, PivotColumn

Column Data
Type Description

partition_column Any [Column appears once for each specified partition_column.] Column
by which input data is partitioned.

value_target_
column

Any [Column appears once for each pivot_key.] Values for pivot_key that
are associated with partitions in row.

Pivoting Examples

Pivoting Example: NumberOfRows
This example specifies the NumberOfRows syntax element.

Input

The input table, pivot_input, contains temperature, pressure, and dewpoint data for three cities, in sparse
format.

pivot_input
sn city week attribute value1

1 Asheville 1 temp 32

1 Asheville 1 pressure 1020.8

1 Asheville 1 dewpoint 27.6F

2 Asheville 2 temp 32

2 Asheville 2 pressure 1021.3

2 Asheville 2 dewpoint 27.4F

3 Asheville 3 temp 34

3 Asheville 3 pressure 1021.7

3 Asheville 3 dewpoint 28.2F

4 Nashville 1 temp 42

4 Nashville 1 pressure 1021

4 Nashville 1 dewpoint 29.4F

5 Nashville 2 temp 44

5 Nashville 2 pressure 1019.8

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 444

sn city week attribute value1

5 Nashville 2 dewpoint 29.2F

6 Brownsville 2 temp 47

6 Brownsville 2 pressure 1019

6 Brownsville 2 dewpoint 28.9F

7 Brownsville 3 temp 46

7 Brownsville 3 pressure 1019.2

7 Brownsville 3 dewpoint 28.9F

SQL Call

SELECT * FROM Pivoting (
 ON pivot_input PARTITION BY sn,city,week
 ORDER BY week,attribute
 USING
 PartitionColumns ('sn','city', 'week')
 NumberOfRows (3)
 TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

The ORDER BY clause is required. If omitted, the output table column content is nondeterministic (for
more information, see Nondeterministic Results and UniqueID Syntax Element). The function adds any
NULL values at the end.

Output

The function outputs the input column contents in dense format in the output columns value1_0, value1_1,
and value1_2, which contain the dewpoint, pressure, and temperature, respectively. Because these
values are numeric, the function casts them to VARCHAR.

 sn city week value1_0 value1_1 value1_2
 -- ----------- ---- -------- -------- --------
 1 asheville 1 27.6f 1020.8 32
 2 asheville 2 27.4f 1021.3 32
 3 asheville 3 28.2f 1021.7 34
 4 nashville 1 29.4f 1021 42
 5 nashville 2 29.2f 1019.8 44
 6 brownsville 2 28.9f 1019 47
 7 brownsville 3 28.9f 1019.2 46

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 445

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pivoting Example: PivotKeys
Input

• Input table: pivot_input, as in Pivoting Example: NumberOfRows

SQL Call

SELECT * FROM Pivoting (
 ON pivot_input PARTITION BY sn,city,week
 USING
 PartitionColumns ('sn','city', 'week')
 PivotKeys ('temp','pressure')
 PivotColumn ('attribute')
 TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

With PivotKeys, the function does not use the ORDER BY clause.

Output

To create the output table, the function pivots the input table on the partition columns (sn, city, and week)
and outputs the contents of the target column (value1) in dense format in the output columns
value1_pressure and value1_temp.

 sn city week value1_pressure value1_temp
 -- ----------- ---- --------------- -----------
 1 asheville 1 1020.8 32
 2 asheville 2 1021.3 32
 3 asheville 3 1021.7 34
 4 nashville 1 1021 42
 5 nashville 2 1019.8 44
 6 brownsville 2 1019 47
 7 brownsville 3 1019.2 46

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 446

Description - Normalization (Scale and ScaleMap)
• In statistics and applications of statistics, Normalization can have a range of

meanings. In the simplest cases, normalization of ratings means adjusting values
measured on different scales to a notionally common scale, often prior to averaging

• In more complicated cases, Normalization may refer to more sophisticated
adjustments where the intention is to bring the entire probability distributions of
adjusted values into alignment. In the case of normalization of scores in educational
assessment, there may be an intention to align distributions to a normal distribution

High-bias ML algorithms (like Linear Regression, Logistic Regression, Kmeans) can
underfit Model; i.e., can't make accurate Predictions on either Train or Test set.

Normalization can minimize this tendency

Normalization uses Feature scaling which is a method used to standardize the range of independent
variables or features of data.

In data processing, it is also known as data normalization and is generally performed during the data
preprocessing step.

Transformation Analytic Functions Slide 4-18

Teradata Vantage Analytics Certification: Learning Resource

Why Used - Normalization
• The black box answer is you can’t train models when your features have different

ranges (1-5 vs 1-5000)
• In essence, Normalization is done to have the same range of values for each of the

inputs to the Model. This can guarantee stable convergence of weight and biases

If one of the features has a broad
range of values, the distance will be
governed by this particular feature

Range in column 'room area' is 50 and it is significantly larger than
the range in column 'height'. So we can't compare them directly

Since the range of values of raw data varies widely, in some machine learning algorithms, objective
functions will not work properly without normalization.

For example, the majority of classifiers calculate the distance between two points by the Euclidean
distance. If one of the features has a broad range of values, the distance will be governed by this
particular feature. Therefore, the range of all features should be normalized so that each feature
contributes approximately proportionately to the final distance. Another reason why feature scaling is
applied is that gradient descent converges much faster with feature scaling than without it.[

Transformation Analytic Functions Slide 4-19

Teradata Vantage Analytics Certification: Learning Resource

Workflow - Normalization

Input Table scaleMap and
scale

Output Table
(or Console)

ScaleSummary
(see Appendix) ScaleByPartition

Function Description

ScaleMap Takes data set and outputs its statistical information (assembled at vworker level)

Scale Takes ScaleMap output and outputs scaled (normalized) values for input data set. You can use
Scale output as input to distance-based analysis functions, such as KMeans

ScaleSummary Takes ScaleMap output and outputs global statistical information for the entire input data set

ScaleByPartition Scales sequences in each partition, using same formula as Scale

'ScaleMap' performs stat analysis
while 'Scale' generates new values

Here are the four functions associated with Normalization:

• ScaleMap and Scale
• ScaleSummary
• ScaleByPartition

Transformation Analytic Functions Slide 4-20

Teradata Vantage Analytics Certification: Learning Resource

SELECT * FROM Scale
(ON { table | view | (query) } AS "input" PARTITION BY ANY
ON (
SELECT * FROM ScaleMap (
ON { table | view | (query) }
USING
TargetColumns ({ 'target_column' | target_column_range }[,...])
[MissValue ({ 'KEEP' | 'OMIT' | 'ZERO' | 'LOCATION' })]
) AS alias_1
) AS statistic DIMENSION
USING
ScaleMethod ('method' [,...])
[GlobalScale ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
[TargetColumns ({ 'target_column' | target_column_range }[,...])]
[Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
[Multiplier (multiplier [,...])]
[Intercept (intercept [,...])]
) AS dt;

Syntax - Scale and ScaleMap

ScaleMap performs stat analysis
while Scale generates new values

'Method' tells you how to scale variables

Here's the generic syntax for the Outlier function. The next few slides will cover the individual
arguments in detail.

Transformation Analytic Functions Slide 4-21

Teradata Vantage Analytics Certification: Learning Resource

• TargetColumns Specify the names of input table columns for which to calculate
statistics. The columns must contain numeric values

• MissValue [Optional] Specify how the Scale, ScaleMap, and ScaleByPartition
functions are to process NULL values in input, as follows:

Arguments - ScaleMap

Option Description

Keep(Default) Keep NULL values
Omit Ignore any row that has a NULL value
Zero Replace each NULL value with zero
Location Replace each NULL value with its location value.

Note: Location definition varies by Method; e.g., for
Method "midrange", defined as (max X + min X) / 2

The 'MissValue' argument has four options which determine how NULL values are handled.

Transformation Analytic Functions Slide 4-22

Teradata Vantage Analytics Certification: Learning Resource

• Method Specify one or more statistical methods to Scale the data set

Arguments - Scale (1 of 3)

Method Location Scale

mean Xmean 1

sum 0 Σ X

ustd 0 Standard deviation, calculated according to biased estimator of
variance

std Xmean Standard deviation, calculated according to unbiased estimator
of variance

range minx maxX - minX

midrange (maxx+minx)/2 (maxX - minX)/2

There are a number of statistical algorithms that can be used with the 'Scale' function as shown in the
slide.

Transformation Analytic Functions Slide 4-23

Teradata Vantage Analytics Certification: Learning Resource

• Global [Optional] Specify whether all input columns scaled to same location and scale

• TargetColumns [Optional] Specify columns that contain values to scale.
Default: All columns from ScaleMap except stattype

• Accumulate [Optional] Specify the input table columns to copy to the output table

• Multiplier [Optional] Specify one or more multiplying factors to apply to the input variables
- multiplier in the following formula:

X' = intercept + multiplier * (X - location)/scale

Default: multiplier is 1

Arguments - Scale (2 of 3)

Transformation Analytic Functions Slide 4-24

Teradata Vantage Analytics Certification: Learning Resource

Intercept [Optional] Specify one or more addition factors incrementing the scaled
results - intercept in the following formula:

X' = intercept + multiplier * (X - location)/scale
If you specify only one intercept, it applies to all columns specified by the
TargetColumns argument. If you specify multiple addition factors, each intercept
applies to the corresponding input column. This is the syntax of intercept:

[-]{number | min | mean | max }
where min, mean, and max are the scaled global minimum, maximum, mean values
of the corresponding columns. This is the formula for computing the scaled global
minimum: scaledmin = (minX - location)/scale Default: intercept is 0

Arguments - Scale (3 of 3)

Transformation Analytic Functions Slide 4-25

Teradata Vantage Analytics Certification: Learning Resource

Data We’ll Be Using

SELECT * FROM scale_housing;

The Input variables are as follows

0 1 2 3 4 5 6

Here's the data we'll be using for the next lab.

Transformation Analytic Functions Slide 4-26

Teradata Vantage Analytics Certification: Learning Resource

c
Lab 05: Scale and ScaleMap (Method='midrange')

SELECT * FROM Scale
(ON ScaleMap
(ON scale_housing
USING
TargetColumns ('[2:6]')
MissValue ('omit')
) AS statistic DIMENSION
ON scale_housing AS "input" PARTITION BY ANY
USING
"Method" ('midrange')
Accumulate ('id')
) AS dt
ORDER BY id, price, lotsize;

'ScaleMap' performs stat analysis
while 'Scale' generates new values

Output

-- (maxX - minX)/2

Ignore any row with NULL

How to Scale variables
Put Column in Output

1

2

2

Output from ScaleMap (Input for Scale)

Here we normalize the data using Method = 'midrange'.

Transformation Analytic Functions Slide 4-27

Teradata Vantage Analytics Certification: Learning Resource

c
Lab 06: Scale and ScaleMap (Multiple Method)

SELECT * FROM Scale
(ON ScaleMap
(ON scale_housing
USING
TargetColumns ('[2:6]')
MissValue ('omit')
) AS statistic DIMENSION
ON scale_housing AS "input" PARTITION BY ANY
USING
"Method" ('midrange', 'mean', 'maxabs', 'range')
Accumulate ('id')
) AS dt
ORDER BY id, price, lotsize;

Output

Ignore any row with NULL
Output from ScaleMap (Input for Scale)

Here we normalize the data using four different 'Methods’. The Output displays all four.

Transformation Analytic Functions Slide 4-28

Teradata Vantage Analytics Certification: Learning Resource

c
Lab 07: Scale and ScaleMap (Method='maxabs')

CREATE MULTISET TABLE pc_normalized AS
(SELECT * FROM Scale
(ON computers_train1 AS INPUT PARTITION BY ANY
ON(SELECT * FROM ScaleMap
(ON computers_train1
USING
TargetColumns ('[1:5]')
MissValue ('omit')
) AS dt1
) AS statistic DIMENSION
USING
"Method" ('maxabs')
Accumulate ('id')
) AS dt2
ORDER BY id
) WITH DATA;

Input

Output

1 2 3 4 5

Ignore any row with NULL

All Output values between 0
and 1 if all input numbers are

positive.

And, final,y we Normalize using Method = 'maxabs'.

Transformation Analytic Functions Slide 4-29

Teradata Vantage Analytics Certification: Learning Resource

Description and Syntax - ScalebyPartition
The ScaleByPartition function scales the sequences in each partition independently,
using the same formula as the function Scale

SELECT * FROM ScaleByPartition
(ON { table | view | (query) } PARTITION BY partition_columns
USING
"Method" ('method' [,…])
[MissValue ({ 'KEEP' | 'OMIT' | 'ZERO' | 'LOCATION' })]
TargetColumns ({ 'input_column' | input_column_range }[,...])
["Global" ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
[Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
[Multiplier ('multiplier' [,...])]
[Intercept ('intercept' [,...])]
) AS alias;

If your data has Partitions (like we did earlier with OutlierFilter (Temperature and Pressure),
you can 'group' these partitions via ScaleByPartition function

If your Input data has partitions, you can use the ScaleByPartition function instead of the Scale function.

Transformation Analytic Functions Slide 4-30

Teradata Vantage Analytics Certification: Learning Resource

Data We’ll Be Using
SELECT * FROM scale_housing;

0 1 2 3 4 5 6

We will Partition by the 'types' column in our housing dataset

Here's the data we'll be using for the next lab.

Transformation Analytic Functions Slide 4-31

Teradata Vantage Analytics Certification: Learning Resource

c
Lab 08: ScaleByPartition

SELECT * FROM ScaleByPartition
(ON scale_housing PARTITION BY types
USING
TargetColumns ('[2:6]')
"Method" ('maxabs')
Accumulate ('types', 'id')
) AS dt
ORDER BY 1 desc,2;

Recall without Partitions, we used the 'PARTITION BY ANY' argument

Output

The Output show the statistics from the Input based on the two partitions, Classic and Bungalow.

Transformation Analytic Functions Slide 4-32

Teradata Vantage Analytics Certification: Learning Resource

Overview
The following sections describe SQL CASE expressions.

CASE
Purpose

Specifies alternate values for a conditional expression or expressions based on equality comparisons and
conditions that evaluate to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Overview
CASE provides an efficient and powerful method for application developers to change the representation
of data, permitting conversion without requiring host program intervention.

For example, you could code employee status as 1 or 2, meaning full-time or part-time, respectively. For
efficiency, the system stores the numeric code but prints or displays the appropriate textual description in
reports. This storage and conversion is managed by Teradata Database.

In addition, CASE permits applications to generate nulls based on information derived from the database,
again without host program intervention. Conversely, CASE can be used to convert a null into a value.

Two Forms of CASE Expressions
CASE expressions are specified in these forms:

• Valued CASE is described under “Valued CASE Expression”.
• Searched CASE is described under “Searched CASE Expression”.

CASE Shorthands for Handling Nulls
Two shorthand forms of CASE are provided to handle nulls:

• COALESCE is described under “COALESCE Expression”.
• NULLIF is described under “NULLIF Expression”.

CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 309

Valued CASE Expression
Purpose

Evaluates a set of expressions for equality with a test expression and returns as its result the value of the
scalar expression defined for the first WHEN clause whose value equals that of the test expression. If no
equality is found, then CASE returns the scalar value defined by an optional ELSE clause, or if omitted,
NULL.

Syntax

Syntax Elements

value_expression_1

An expression whose value is tested for equality with value_expression_n.

value_expression_n

A set of expressions against which the value for value_expression_1 is tested for equality.

scalar_expression_n

An expression whose value is returned on the first equality comparison of value_expression_1 and
value_expression_n.

scalar_expression_m

An expression whose value is returned if evaluation falls through to the ELSE clause.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 310

Teradata Database does not enforce the ANSI restriction that value_expression_1 must be a deterministic
function. In particular, Teradata Database allows the function RANDOM to be used in value_expression_1.

Note that if RANDOM is used, nondeterministic behavior may occur, depending on whether
value_expression_1 is recalculated for each comparison to value_expression_n.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause value_expression_n that equates to value_expression_1 returns the value of its
associated scalar_expression_n as its result. The evaluation process then terminates.

If no value_expression_n equals value_expression_1, then scalar_expression_m, the argument of the
ELSE clause, is the result.

If no ELSE clause is defined, then the result defaults to NULL.

The data type of value_expression_1 must be comparable with the data types of all of the
value_expression_n values.

For information on the result data type of a CASE expression, see Rules for the CASE Expression Result
Type.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

Default Title
The default title for a CASE expression appears as:

 <CASE expression>

Restrictions on the Data Types in a CASE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 311

Data
Type Restrictions

• The data type of value_expression_1 through value_expression_n must have the same UDT
data type if one of them has a UDT data type.

• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them
has a UDT data type.

Teradata Database does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language Syntax
and Examples, B035-1144.

Examples

Example: Calculating the Fraction of Cost

The following example uses a Valued CASE expression to calculate the fraction of cost in the total cost
of inventory represented by parts of type ‘1’:

 SELECT SUM(CASE part
 WHEN '1'
 THEN cost
 ELSE 0
 END
)/SUM(cost)
 FROM t;

Example: Using a CASE Expression

A CASE expression can be used in place of any value-expression.

 SELECT *
 FROM t
 WHERE x = CASE y
 WHEN 2
 THEN 1001
 WHEN 5
 THEN 1002
 END;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 312

Example: Combining a CASE Expression with a Concatenation Operator

The following example shows how to combine a CASE expression with a concatenation operator:

 SELECT prodID, CASE prodSTATUS
 WHEN 1
 THEN 'SENT'
 ELSE 'BACK ORDER'
 END || ' STATUS'
 FROM t1;

Example: Using UDT Data Types in Value Expressions

You use value_expression_1through value_expression_nto test for equality in a valued CASE
expression.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2 testrectangleudt)
PRIMARY INDEX (id);

The following example shows a valued CASE expression, where all value expressions are of the same
UDT data type:

 SELECT CASE udt1
 WHEN new testcircleudt('1,1,2,yellow,circ')
 THEN 'Row 1'
 WHEN new testcircleudt('2,2,4,purple,circ')
 THEN 'Row 2'
 WHEN new testcircleudt('3,3,9,green,circ')
 THEN 'Row 3'
 ELSE 'Row is NULL'
 END
 FROM t1;
*** Query completed. 4 rows found. One column returned.
<CASE expression>

Row 3
Row 1
Row is NULL
Row 2

However, the following example does not complete successfully because testrectangleudt does not
match the other UDT data types:

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 313

 SELECT CASE udt1
 WHEN new testcircleudt('1,1,2,yellow,circ')
 THEN 'Row 1'
 WHEN new testrectangleudt('2,2,4,4,purple,rect')
 THEN 'Row 2'
 WHEN new testcircleudt('3,3,9,green,circ')
 THEN 'Row 3'
 ELSE 'Row is NULL'
 END
 FROM t1;

Example 1: Using UDT Data Types in Scalar Expressions

You use scalar_expression_nand scalar_expression_mas the expressions to return on when the
equality comparison on a valued or searched CASE expression evaluates to TRUE, or the value to
return on in an ELSE condition.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2 testrectangleudt)
PRIMARY INDEX (id);

Following is an example of a searched CASE Expression where all scalar expressions are of the same
UDT data type.

Note:
The search_condition_ncan be a different UDT data type than the scalar_expression_n. SELECT
* FROM udtval038_t1

 WHERE udt1 = CASE
 WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')
 THEN new testcircleudt('1,1,2,blue,circ')
 ELSE new testcircleudt('2,2,4,purple,circ')
*** Query completed. 2 rows found. 3 columns returned.
 END;
id udt1
----------- ---
 1 1, 1, 2, yellow, circ
 2 2, 2, 4, purple, circ

However, the following example does not complete successfully because the scalar expressions are of
different data types.

 SELECT * FROM udtval038_t1
 WHERE udt1 = CASE

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 314

 WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')
 THEN new testcircleudt('1,1,2,blue,circ')
 ELSE new testrectangleudt('2,2,4,4,purple,rect')
 END;

Related Topics
For more information, see:

• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.
• For information about nulls and CASE expressions, see CASE and Nulls.

Searched CASE Expression
Purpose

Evaluates a search condition and returns one of a WHEN clause-defined set of scalar values when it finds
a value that evaluates to TRUE. If no TRUE test is found, then CASE returns the scalar value defined by
an ELSE clause, or if omitted, NULL.

Syntax

Syntax Elements

search_condition_n

A predicate condition to be tested for truth.

scalar_expression_n

A scalar expression whose value is returned when search_condition_n is the first search condition that
evaluates to TRUE.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 315

scalar_expression_m

A scalar expression whose value is returned when no search_condition_n evaluates to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause search_condition_n that is TRUE returns the value of its associated
scalar_expression_n as its result. The evaluation process then ends.

If no search_condition_n is TRUE, then scalar_expression_m, the argument of the ELSE clause, is the
result.

If no ELSE clause is defined, then the default value for the result is NULL.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

Default Title
The default title for a CASE expression appears as:

 <CASE expression>

Rules for WHEN Search Conditions
WHEN search conditions have the following properties:

• Can take the form of any comparison operator, such as LIKE, =, or <>.
• Can be a quantified predicate, such as ALL or ANY.
• Can contain a scalar subquery.
• Can contain joins of two tables.

For example:

 SELECT CASE
 WHEN t1.x=t2.x THEN t1.y

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 316

 ELSE t2.y
 END FROM t1,t2;

• Cannot contain SELECT statements.

Restrictions on the Data Types in a CASE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:
• The data type of value_expression_1 through value_expression_n must have the same UDT

data type if one of them has a UDT data type.
• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them

has a UDT data type.
Teradata Database does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language Syntax
and Examples, B035-1144.

Examples

Example: Evaluating a Search Condition

The following statement is equivalent to the first example of the valued form of CASE on “Example”:

 SELECT SUM(CASE
 WHEN part='1'
 THEN cost
 ELSE 0
 END
) / SUM(cost)
 FROM t;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 317

Example: Using a CASE Expression

CASE expressions can be used in place of any value-expressions.

Note that the following example does not specify an ELSE clause. ELSE clauses are always optional in
a CASE expression. If an ELSE clause is not specified and none of the WHEN conditions are TRUE,
then a null is returned.

 SELECT *
 FROM t
 WHERE x = CASE
 WHEN y=2
 THEN 1
 WHEN (z=3 AND y=5)
 THEN 2
 END;

Example: Using an ELSE Clause

The following example uses an ELSE clause.

 SELECT *
 FROM t
 WHERE x = CASE
 WHEN y=2
 THEN 1
 ELSE 2
 END;

Example: Using a CASE expression to Enhance Performance

The following example shows how using a CASE expression can result in significantly enhanced
performance by eliminating multiple passes over the data. Without using CASE, you would have to
perform multiple queries for each region and then consolidate the answers to the individual queries in a
final report.

 SELECT SalesMonth, SUM(CASE
 WHEN Region='NE'
 THEN Revenue
 ELSE 0
 END),
 SUM(CASE
 WHEN Region='NW'

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 318

 THEN Revenue
 ELSE 0
 END),
 SUM(CASE
 WHEN Region LIKE 'N%'
 THEN Revenue
 ELSE 0
 END)
 AS NorthernExposure, NorthernExposure/SUM(Revenue),
 SUM(Revenue)
 FROM Sales
 GROUP BY SalesMonth;

Example: Producing a Report to Show Employee Salary

All employees whose salary is less than $40000 are eligible for an across the board pay increase.

IF your salary is less than … AND you have greater than this
many years of service …

THEN you receive this
percentage salary increase …

$30000.00 8 15

$35000.00 10 10

$40000.00 5

The following SELECT statement uses a CASE expression to produce a report showing all employees
making under $40000, displaying the first 15 characters of the last name, the salary amount (formatted
with $and punctuation), the number of years of service based on the current date (in the column named
On_The_Job) and which of the four categories they qualify for: '15% Increase', '10% Increase', '05%
Increase' or 'Not Qualified'.

 SELECT CAST(last_name AS CHARACTER(15))
 ,salary_amount (FORMAT '$,$$9,999.99')
 ,(date - hire_date)/365.25 (FORMAT 'Z9.99') AS On_The_Job
 ,CASE
 WHEN salary_amount < 30000 AND On_The_Job > 8
 THEN '15% Increase'
 WHEN salary_amount < 35000 AND On_The_Job > 10
 THEN '10% Increase'
 WHEN salary_amount < 40000 AND On_The_Job > 10
 THEN '05% Increase'
 ELSE 'Not Qualified'
 END AS Plan
 WHERE salary_amount < 40000

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 319

 FROM employee
 ORDER BY 4;

The result of this query appears in the following table:

last_name salary_amount On_The_Job Plan

Trader $37,850.00 20.61 05% Increase

Charles $39,500.00 18.44 05% Increase

Johnson $36,300.00 20.41 05% Increase

Hopkins $37,900.00 19.99 05% Increase

Morrissey $38,750.00 18.44 05% Increase

Ryan $31,200.00 20.41 10% Increase

Machado $32,300.00 18.03 10% Increase

Short $34,700.00 17.86 10% Increase

Lombardo $31,000.00 20.11 10% Increase

Phillips $24,500.00 19.95 15% Increase

Rabbit $26,500.00 18.03 15% Increase

Kanieski $29,250.00 20.11 15% Increase

Hoover $25,525.00 20.73 15% Increase

Crane $24,500.00 19.15 15% Increase

Stein $29,450.00 20.41 15% Increase

Related Topics
For more information, see:

• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.
• For information about nulls and CASE expressions, see CASE and Nulls.

Error Conditions
The following conditions or expressions are considered illegal in a CASE expression:

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 320

Condition or Expression Example

A condition after the keyword CASE is supplied. SELECT CASE a=1
 WHEN 1
 THEN 1
 ELSE 0
 END
FROM t;

A non valid WHEN expression is supplied in a valued
CASE expression.

SELECT CASE a
 WHEN a=1
 THEN 1
 ELSE 0
 END
FROM t;

A non valid WHEN condition is supplied in a searched
CASE expression.

SELECT CASE
 WHEN a
 THEN 1
 ELSE 0
 END
FROM t;
SELECT CASE
 WHEN NULL
 THEN 'NULL'
 END
FROM table_1;

A non-scalar subquery is specified in a WHEN condition
of a searched CASE expression.

SELECT CASE
 WHEN t.a IN
 (SELECT u.a
 FROM u)
 THEN 1
 ELSE 0
 END
FROM t;

A CASE expression references multiple UDTs that are not
identical to each other.

SELECT CASE t.shape.gettype()
 WHEN 1
 THEN NEW circle('18,18,324')
 WHEN 2
 THEN NEW square('20,20,400')
 END;

Rules for the CASE Expression Result Type
Because the expressions in CASE THEN/ELSE clauses can be different data types, determining the result
type is not always straightforward. You can use the TYPE attribute function with the CASE expression as
the argument to find out the result data type. See TYPE.

The following rules apply to the data type of the CASE expression result.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 321

THEN/ELSE Expressions Having the Same Non-Character Data
Type
If all of the THEN and ELSE expressions have the same non-character data type, the result of the CASE
expression is that type. For example, if all of the THEN and ELSE expressions have an INTEGER type,
the result type of the CASE expression is INTEGER.

For information about how the precision and scale of DECIMAL results are calculated, see Binary
Arithmetic Result Data Types.

THEN/ELSE Character Type Expressions
The following rules apply to CASE expressions where the data types of all of the THEN/ELSE expressions
are character:

• The result of the CASE expression is also a character data type, with the length equal to the maximum
length of the different character data types of the THEN/ELSE expressions.

• If the data types of all of the THEN/ELSE expressions are CHARACTER (or CHAR), the result data
type is CHARACTER. If one or more expressions are VARCHAR (or LONG VARCHAR), the result
data type is VARCHAR.

• The server character set of the result is determined as follows:

◦ If the CASE expression contains 1 nonliteral character expression and 1 or more literals, then
Teradata Database tries to translate every literal to the character set of the nonliteral. If the
translations are successful, then the character set of the nonliteral is used for the result data type.
If the translations are not successful, the server character set of the result is Unicode.

◦ If the CASE expression contains more than 1 nonliteral character expression and 1 or more
literals, then:

If all of the nonliteral expressions have the same character set, then Teradata Database uses
this character set as the common data type. Otherwise, if the nonliteral expressions have differing
character sets, then Teradata Database uses the Unicode character set as the common data
type.

Teradata Database tries to translate every literal to the character set of the common data type.
If the translations are successful, then the result data type has the character set of the common
data type. If the translations are not successful, the server character set of the result is Unicode.

Examples

Examples of Character Data in a CASE Expression

For the following examples of CHARACTER data behavior, assume the default server character set is
KANJI1 and the table definition for the CASE examples is as follow:

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 322

 CREATE TABLE table_1
 (
 i INTEGER,
 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1
);

Note:
In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information,
see "KANJI1 Character Set" in Teradata Vantage™ NewSQL Engine International Character Set
Support, B035-1125.

Examples of Character Data in a CASE Expression: Example 1

The server character set of the result of the following query is UNICODE because the CASE expression
contains more than 1 nonliteral character expressions with differing character sets.

 SELECT i, CASE
 WHEN i=2 THEN column_u
 WHEN i=3 THEN column_j
 WHEN i=4 THEN column_g
 WHEN i=5 THEN column_k
 ELSE column_l
 END
 FROM table_1
 ORDER BY 1;

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

 SELECT a, CASE
 WHEN a=1
 THEN TIME
 ELSE USER

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 323

 END
 FROM table_1
 ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 2

The result of the following query is a 5354 failure (Arguments must be of type KANJI1) because one
THEN/ELSE expression is a KANJI1 literal, but the server character sets of all the other THEN/ELSE
expressions are not KANJI1.

 SELECT i, CASE
 WHEN i=1 THEN column_l
 WHEN i=2 THEN column_u
 WHEN i=3 THEN column_j
 WHEN i=4 THEN column_g
 WHEN i=5 THEN _Kanji1'4142'XC
 ELSE column_k
 END
 FROM table_1
 ORDER BY 1;

For this example, assume the following table definition:

 CREATE table_1
 (i INTEGER,
 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character
set of the first THEN with a character type is GRAPHIC):

 SELECT i, CASE
 WHEN i=1 THEN 4
 WHEN i=2 THEN column_g
 WHEN i=3 THEN 5
 WHEN i=4 THEN column_l
 WHEN i=5 THEN column_k
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 324

Examples of Character Data in a CASE Expression: Example 3

One THEN/ELSE expression in the following query has a Unicode column. The query is successful and
the result data type is UNICODE because the CASE expression contains 1 Unicode column and all other
literals can be successfully translated to Unicode.

 SELECT i, CASE
 WHEN i=1 THEN column_u
 WHEN i=2 THEN 'abc'
 WHEN i=3 THEN 8
 WHEN i=4 THEN _KanjiSJIS'4142'XC
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 4

One THEN/ELSE expression in the following query has a Latin column. The query is successful and the
result data type is Latin because the other literals can be successfully translated to Latin.

 SELECT i, CASE
 WHEN i=1 THEN 'abc'
 WHEN i=2 THEN column_l
 ELSE 'def'
 END
 FROM table_1
 ORDER BY 1;

THEN/ELSE Expressions Having Mixed Data Types

The rules for mixed data appear in the following table.

IF the THEN / ELSE
clause expressions … THEN …

consist of BYTE and/or
VARBYTE data types

if the data types of all of the THEN/ELSE expressions are BYTE, the result
data type is BYTE. If one or more expressions are VARBYTE, the result
data type is VARBYTE.
The result has a length equal to the maximum length of the different byte
data types.

contain a DateTime or
Interval data type

all of the THEN/ELSE clause expressions must have the same data type.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 325

IF the THEN / ELSE
clause expressions … THEN …

contain a FLOAT
(approximate numeric) and
no character strings

the CASE expression returns a FLOAT result.
Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types are
involved.

are composed only of
DECIMAL data

the CASE expression returns a DECIMAL result.
Note:
A DECIMAL arithmetic result can have up to 38 digits. A result larger than
38 digits produces a numeric overflow error.
For information about how the precision and scale of DECIMAL results are
calculated, see Binary Arithmetic Result Data Types.
all are implicitly converted to FLOAT and the CASE expression returns a
FLOAT result.

Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types are
involved. Implicit conversion of DECIMAL and INTEGER values to FLOAT
values may result in a loss of precision or produce a number that cannot
be represented exactly.

are composed only of
mixed DECIMAL,
BYTEINT, SMALLINT,
INTEGER, and BIGINT
data

are a mix of BYTEINT,
SMALLINT, INTEGER, and
BIGINT data

the resulting type is the largest type of any of the THEN/ELSE clause
expressions, where the following list orders the types from largest to
smallest:
• BIGINT
• INTEGER
• SMALLINT
• BYTEINT

are composed only of
numeric and character data

the numeric data is converted to CHARACTER with a length as determined
by the format associated with the numeric expression. Then, the rules for
the result data type for character, length, and character set are applied. For
details, see THEN/ELSE Character Type Expressions.
Note:
An error is generated if the server character set is GRAPHIC.

Examples of Numeric Data in a CASE Expression

For the following examples of numeric data behavior, assume the following table definitions for the CASE
examples:

 CREATE TABLE dec22
 (column_l INTEGER
 ,column_2 INTEGER
 ,column_3 DECIMAL(22,2));

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 326

Example: CASE Expression Fails

In the following statement, the CASE expression fails when column_2 contains the value 1 and column_3
contains the value 11223344556677889900.12 because the result is a DECIMAL value that requires
more than 38 digits of precision:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6.112233445566778800000
 ELSE column_3
 END)
 FROM dec22;

Example: Shortening the Scale of the Multiplier

The following query corrects the problem in Example: CASE Expression Fails by shortening the scale of
the multiplier in the THEN expression:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6.1122334455667788
 ELSE column_3
 END)
 FROM dec22;

Example: Returning a DECIMAL(38,2) Result

In the following query, the CASE expression returns a DECIMAL(38,2) result because the THEN  and  
ELSE clauses contain DECIMAL values:

 SELECT SUM (CASE
 WHEN column_2=1
 THEN column_3 * 6
 ELSE column_3
 END)
 FROM dec22;

Examples of Character and Numeric Data in a CASE Expression

The following examples illustrate the behavior of queries containing CASE expressions with a THEN/
ELSE clause composed of numeric and character data.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 327

Examples of Character and Numeric Data in a CASE Expression:
Example 1

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

 SELECT a, CASE
 WHEN a=1
 THEN TIME
 ELSE USER
 END
 FROM table_1
 ORDER BY 1;

Examples of Character and Numeric Data in a CASE Expression:
Example 2

For this example, assume the following table definition:

 CREATE table_1
 (i INTEGER,
 column_l CHARACTER(10) CHARACTER SET LATIN,
 column_u CHARACTER(10) CHARACTER SET UNICODE,
 column_j CHARACTER(10) CHARACTER SET KANJISJIS,
 column_g CHARACTER(10) CHARACTER SET GRAPHIC,
 column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character
set of the first THEN with a character type is GRAPHIC):

 SELECT i, CASE
 WHEN i=1 THEN 4
 WHEN i=2 THEN column_g
 WHEN i=3 THEN 5
 WHEN i=4 THEN column_l
 WHEN i=5 THEN column_k
 ELSE 10
 END
 FROM table_1
 ORDER BY 1;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 328

Related Topics
For more information, see:

• Binary Arithmetic Result Data Types

Format for a CASE Expression

Default Format
The result of a CASE expression is displayed using the default format for the resulting data type. The result
of a CASE expression does not apply the explicit format that may be defined for a column appearing in a
THEN/ELSE expression.

Consider the following table definition:

 CREATE TABLE duration
 (i INTEGER
 ,start_date DATE FORMAT 'EEEEBMMMBDD,BYYYY'
 ,end_date DATE FORMAT 'DDBM3BY4');

Assume the default format for the DATE data type is 'YY/MM/DD'.

The following query displays the result of the CASE expression using the 'YY/MM/DD' default DATE format,
not the format defined for the start_date or end_date columns:

 SELECT i, CASE
 WHEN i=1
 THEN start_date
 WHEN i=2
 THEN end_date
 END
 FROM duration
 ORDER BY 1;

Using Explicit Type Conversion to Change Format
To modify the format of the result of a CASE expression, use CAST and specify the FORMAT clause.

Here is an example that uses CAST to change the format of the result of the CASE expression in the
previous query.

 SELECT i, (CAST ((CASE
 WHEN i=1
 THEN start_date
 WHEN i=2

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 329

 THEN end_date
 END) AS DATE FORMAT 'M4BDD,BYYYY'))
 FROM duration
 ORDER BY 1;

For information on the default data type formats and the FORMAT phrase, see Teradata Vantage™ Data
Types and Literals, B035-1143.

CASE and Nulls
The ANSI SQL:2011 standard specifies that the CASE expression and its related expressions COALESCE
and NULLIF must be capable of returning a null result.

Nulls and CASE Expressions

The rules for null usage in CASE, NULLIF, and COALESCE expressions are as follows.

• If no ELSE clause is specified in a CASE expression and the evaluation falls through all the WHEN
clauses, the result is null.

• Nulls and expressions containing nulls are valid as value_expression_1 in a valued CASE expression.

The following examples are valid.

 SELECT CASE NULL
 WHEN 10
 THEN 'TEN'
 END;

 SELECT CASE NULL + 1
 WHEN 10
 THEN 'TEN'
 END;

Both of the preceding examples return NULL because no ELSE clause is specified, and the evaluation
falls through the WHEN clause because NULL is not equal to any value or to NULL.

• Comparing NULL to any value or to NULL is always FALSE. When testing for NULL, it is best to use
a searched CASE expression using IS NULL or IS NOT NULL in the WHEN condition.

The following example is valid.

 SELECT CASE
 WHEN column_1 IS NULL
 THEN 'NULL'
 END
 FROM table_1;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 330

Often, Teradata Database can detect when an expression that always evaluates to NULL is compared
to some other expression or NULL, and gives an error that recommends using IS NULL or IS NOT
NULL instead. Note that ANSI SQL does not consider this to be an error; however, Teradata Database
reports an error since it is unlikely that comparing NULL in this manner is the intent of the user.

The following examples are not legal.

 SELECT CASE column_1
 WHEN NULL
 THEN 'NULL'
 END
 FROM table_1;

 SELECT CASE column_1
 WHEN NULL + 1
 THEN 'NULL'
 END
 FROM table_1;
 SELECT CASE
 WHEN column_1 = NULL
 THEN 'NULL'
 END
 FROM table_1;
 SELECT CASE
 WHEN column_1 = NULL + 1
 THEN 'NULL'
 END
 FROM table_1;

• Nulls and expressions containing nulls are valid as THEN clause expressions.

The following example is valid.

 SELECT CASE
 WHEN column_1 = 10
 THEN NULL
 END
 FROM table_1

Note that, unlike the previous examples, the NULL in the THEN clause is an SQL keyword and not the
value of a character literal.

CASE Shorthands
ANSI also defines two shorthand special cases of CASE specifically for handling nulls.

• COALESCE expression (see COALESCE Expression)

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 331

• NULLIF expression (see NULLIF Expression)

COALESCE Expression
Purpose

Returns NULL if all its arguments evaluate to null. Otherwise, it returns the value of the first non-null
argument in the scalar_expression list.

COALESCE is a shorthand expression for the following full CASE expression:

 CASE
 WHEN scalar_expression_1 IS NOT NULL
 THEN scalar_expression_1
 ...
 WHEN scalar_expression_n IS NOT NULL
 THEN scalar_expression_n
 ELSE NULL
 END

Syntax

Syntax Elements

scalar_expression_n

An argument list.

Each COALESCE function must have at least two operands.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
A scalar_expression_n in the argument list may be evaluated twice: once as a search condition and again
as a return value for that search condition.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 332

Using a nondeterministic function, such as RANDOM, in a scalar_expression_n may have unexpected
results, because if the first calculation of scalar_expression_n is not NULL, the second calculation of that
scalar_expression_n, which is returned as the value of the COALESCE expression, might be NULL.

You can use a scalar subquery in a COALESCE expression. However, if you use a non-scalar subquery
(a subquery that returns more than one row), a runtime error is returned.

Default Title
The default title for a COALESCE expression appears as:

 <CASE expression>

Restrictions on the Data Types in a COALESCE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a COALESCE expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types because
Teradata Database does not perform implicit type conversion on UDTs in a COALESCE
expression.

Examples

Example: Querying for a Phone Number

The following example returns the home phone number of the named individual (if present), or office
phone if HomePhone is null, or MessageService if present and both home and office phone values are
null. Returns NULL if all three values are null.

 SELECT Name, COALESCE (HomePhone, OfficePhone, MessageService)
 FROM PhoneDir;

Example: Using COALESCE with an Arithmetic Operator

The following example uses COALESCE with an arithmetic operator.

 SELECT COALESCE(Boxes,0) * 100
 FROM Shipments;

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 333

Example: Using COALESCE with an Comparison Operator

The following example uses COALESCE with a comparison operator.

 SELECT Name
 FROM Directory
 WHERE Organization <> COALESCE (Level1, Level2, Level3);

Related Topics
For more information, see:

• For additional information, such as the rules for evaluation and result data type, see CASE.

NULLIF Expression
Purpose

Returns NULL if its arguments are equal. Otherwise, it returns its first argument, scalar_expression_1.

NULLIF is a shorthand expression for the following full CASE expression:

 CASE
 WHEN scalar_expression_1=scalar_expression_2
 THEN NULL
 ELSE scalar_expression_1
 END

Syntax

Syntax Elements

scalar_expression_1

The scalar expression to the left of the = in the expanded CASE expression, as shown in Purpose.

scalar_expression_2

The scalar expression to the right of the = in the expanded CASE expression, as shown in Purpose.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 334

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
The scalar_expression_1 argument may be evaluated twice: once as part of the search condition (see the
preceding expanded CASE expression) and again as a return value for the ELSE clause.

Using a nondeterministic function, such as RANDOM, may have unexpected results if the first calculation
of scalar_expression_1 is not equal to scalar_expression_2, in which case the result of the CASE
expression is the value of the second calculation of scalar_expression_1, which may be equal to
scalar_expression_2.

You can use a scalar subquery in a NULLIF expression. However, if you use a non-scalar subquery (a
subquery that returns more than one row), a runtime error is returned.

Default Title
The default title for a NULLIF expression appears as:

 <CASE expression>

Restrictions on the Data Types in a NULLIF Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a NULLIF expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types and have
an ordering definition.

Examples
The following examples show queries on the following table:

 CREATE TABLE Membership
 (FullName CHARACTER(39)
 ,Age SMALLINT
 ,Code CHARACTER(4));

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 335

Example: Querying with the ANSI-Compliant Form

Here is the ANSI-compliant form of the Teradata SQL NULLIFZERO(Age) function, and is more versatile.

 SELECT FullName, NULLIF (Age,0) FROM Membership;

Example: Blank Spaces

In the following query, blanks indicate no value.

 SELECT FullName, NULLIF (Code, ' ') FROM Membership;

Example: Querying for NULLIF in an Expression with an Arithmetic Operator

The following example uses NULLIF in an expression with an arithmetic operator.

 SELECT NULLIF(Age,0) * 100;

Related Topics
For more information, see:

• For additional information, such as the rules for evaluation and result data type, see CASE.

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 336

Module 5: CASE Expressions

Upon completion of this module, you should be able to:

 Return alternate values using the CASE expression.

 Use special variations of the CASE expression:

 NULLIF

 COALESCE

Teradata Vantage Analytics Certification: Learning Resource

The CASE expression allows for conditional processing of returned rows. It provides some IF-
THEN-ELSE logic on top of the normally set-based SQL.

There are two general categories of CASE expressions:

 Valued CASE expressions

 Searched CASE expressions

Valued case statements have simpler syntax, but they are limited. Searched case statements
have more complex syntax, but more flexibility.

In this course, we will look at valued case statements first.

Teradata Vantage Analytics Certification: Learning Resource

A valued CASE expression looks like this:

CASE value-expr WHEN expr1 THEN result1

 WHEN expr2 THEN result2

 :

 ELSE resultn

END

Value-expr is either a column or an expression involving columns. For each row, Teradata
database will compare value-expr with exprn values until there is a match:

1. If value-expr equals expr1, output result1. If they are not equal, go to step 2.

2. If value-expr equals expr2, output result2. If they are not equal, go to step 3.

3. If value-expr equals expr3, output result3. If they are not equal, go to step 4...

In this way, Teradata database will test all WHEN clauses until we get a match.

If there is no match, then we will use the ELSE condition and output resultn.

Teradata Vantage Analytics Certification: Learning Resource

Example

What fraction of the total salary of all employees is the sum of salaries from department 401?

SELECT SUM(CASE department_number

 WHEN 401 THEN salary_amount

 ELSE 0

 END) / SUM(salary_amount)

FROM employee;

(Sum(<CASE expression>)/Sum(salary_amount))

0.22

Things to Notice:

 The case statement says that if the department number is 401, then sum the salary amount.
If it is anything else, then sum a 0. This will get only the sum of salaries from department
401.

 To get the fraction of the total salary, we have a denominator that simply sums all the salary
amounts.

 The default output title is lengthy. You can use the AS clause to give it a better name.

SELECT SUM(CASE department_number

 WHEN 401 THEN salary_amount

 ELSE 0

 END) / SUM(salary_amount) AS sal_ratio

FROM employee;

Teradata Vantage Analytics Certification: Learning Resource

Here is another example of a valued case statement. From a performance standpoint, this might
be better to answer with a filter instead of a CASE statement, but this will still give you the
correct answer.

Example

Get the total of salaries for departments 401 and 501.

SELECT SUM(CASE department_number

 WHEN 401 THEN salary_amount

 WHEN 501 THEN salary_amount

 ELSE 0

 END) AS total_sals_401_501

FROM employee;

total_sals_401_501

445700.00

Things to Notice:

 The case statement says that if the department number is 401, then sum the salary amount.
If it is anything else, then sum a 0. This will get only the sum of salaries from department
401.

 To get the fraction of the total salary, we have a denominator that simply sums all the salary
amounts.

 The default output title is lengthy. You can use the AS clause to give it a better name.

Teradata Vantage Analytics Certification: Learning Resource

The searched case syntax is more complex, but offers more functionality than the valued CASE
statement. A searched CASE expression looks like this:

CASE WHEN condition1 THEN value-expr1

 WHEN condition2 THEN value-expr2

 :

 ELSE value-exprn

END

For each row, Teradata database will evaluate the conditions in order until there is a hit. If there
are no conditions met, then we will use the ELSE condition and output value-exprn. This is
similar to the valued CASE expression.

However, instead of a simple evaluation for equality like a valued CASE expression, the
conditions within a searched CASE expression allow you much greater flexibility:

 Each condition may involve equality or non-equality operators.

 Each condition may involve multiple columns.

 Condition1 and condition2 may involve different columns.

Teradata Vantage Analytics Certification: Learning Resource

In this example, you can see the flexibility provided by the searched case expression.

Example

Place each employee in a salary category: under $30K, under $40K, under $50K, and anything
above $50K.

SELECT last_name,

 CASE WHEN salary_amount < 30000 THEN 'Under $30K'

 WHEN salary_amount < 40000 THEN 'Under $40K'

 WHEN salary_amount < 50000 THEN 'Under $50K'

 ELSE '> = $50K'

 END

FROM employee

ORDER BY salary_amount;

last_name salary_category

Crane Under $30K

Phillips Under $30K

: :

Lombardo Under $40K

Ryan Under $40K

: :

Brown Under $50K

Brown Under $50K

: :

Daly > = $50K

Wilson > = $50K

: :

Things to Notice:

We are not restricted to an equality condition; in this case we use a less than (<) comparison.

Teradata Vantage Analytics Certification: Learning Resource

Example

Calculate the fraction of the total salaries represented by departments 401 and 501. Allow for a
10% salary increase for employees in department 501.

SELECT SUM (CASE WHEN department_number = 401 THEN salary_amount

 WHEN department_number = 501 THEN salary_amount * 1.1

 ELSE 0

 END) /

 SUM (CASE WHEN department_number = 501 THEN salary_amount * 1.1

 ELSE salary_amount

 END) AS sal_ratio

FROM employee;

sal_ratio

0.415

Things to Notice:

The numerator CASE calculates the sum of salaries for departments 401 and 501, including a
10% increase for 501 employees.

The denominator CASE calculates the sum of all salaries for all departments including a 10%
increase for 501 employees.

Teradata Vantage Analytics Certification: Learning Resource

Example

Find the people who qualify for early retirement and which plan they qualify for.

Plan Age Years Service

Gold Over 60 Over 20

Silver Over 55 Over 15

Bronze Over 50 Over 10

SELECT CAST(last_name AS CHAR(15))

 ,(CURRENT_DATE - hire_date)/365.25 AS On_The_Job

 ,(CURRENT_DATE - Birthdate)/365.25 AS Age

 ,CASE WHEN Age > 60 AND On_The_Job > 20 THEN 'Gold Plan'

 WHEN Age > 55 AND On_The_Job > 15 THEN 'Silver Plan'

 ELSE 'Bronze Plan'

 END AS Plan

FROM employee

WHERE Age > 50 AND On_The_Job > 10

ORDER BY 4 DESC;

Results will vary depending on when the query is executed.

Things to Notice:

A complex searched CASE expression may involve tests on multiple columns under multiple
conditions. The WHERE clause limits the number of rows to be returned, while the CASE
statement determines the disposition of the qualifying rows.

Teradata Vantage Analytics Certification: Learning Resource

NULLIF returns NULL if its arguments are equal. Otherwise, it returns its first argument,
scalar_expression_1.

NULLIF (scalar_expression1, scalar_expression2)

NULLIF is a special expression that is shorthand for the following full CASE expression:

CASE WHEN scalar_expression_1 = scalar_expression_2 THEN NULL

 ELSE scalar_expression_1

END

Teradata Vantage Analytics Certification: Learning Resource

We will use the below CALL_EMPLOYEE table in the next few examples. Note especially the
labor_hours column, which has 3 values (one of which is 0) and 3 nulls.

call_number employee_number call_status_code assigned_dat
e

assigned_tim
e

finished_date finished_

time

5 1004 5 1161216 1025

4 1010 1 1161215 1250

1 1004 1 1161215 0905 1161216 1625

6 1004 2 1161216 1110

3 1001 16 1161215 1215

2 1001 2 1161215 0930 1161216 1375

Teradata Vantage Analytics Certification: Learning Resource

NULLIF can transform a zero (0) into a null. It is the ANSI standard substitute for Teradata
database's NULLIFZERO function.

Example

SELECT call_number

,labor_hours (TITLE 'ACTUAL HOURS')

,NULLIF (labor_hours, 0) (TITLE 'NULLIF ZERO HOURS')

FROM call_employee

ORDER BY labor_hours;

call_number ACTUAL HOURS NULLIF ZERO HOURS

4 null null

5 null null

6 null null

3 .0 null

2 4.0 4.0

1 8.5 8.5

Things to Notice

Call_number 3 has zero labor_hours.

The third column shows 0 transformed to null through use of NULLIF function.

Teradata Vantage Analytics Certification: Learning Resource

A common use for NULLIF is in a denominator or divisor. Dividing by zero will abort a query and
produce an error message, but dividing by a null will simply result in a null.

Example

Find the ratio of hourly billing rate to hourly cost rate for all "analyst" jobs.

Without NULLIF:

SELECT description

, hourly_billing_rate/hourly_cost_rate

AS "Billing-Cost Ratio"

FROM job

WHERE description like '%analyst%' ;

Error Message: Division by zero in an expression involving

job.hourly_cost_rate.

With NULLIF:

SELECT description

, hourly_billing_rate /

NULLIF(hourly_cost_rate, 0)

AS "Billing-Cost Ratio"

FROM job

WHERE description like '%analyst%' ;

description Billing-Cost Ratio

Software Analyst 1.29

System Support Analyst null

System Analyst 1.14

Applying the NULLIF function to the denominator produces a null result. This avoids the error
and allows a report to be generated.

Teradata Vantage Analytics Certification: Learning Resource

COALESCE returns returns the value of the first non-null argument in the scalar_expression list.
If all of its arguments evaluate to null, it returns NULL.

COALESCE (scalar_expression_1, scalar_expression_2, ... ,

scalar_expression_n)

COALESCE is a special expression that is shorthand for the following full CASE expression:

CASE WHEN scalar_expression_1 IS NOT NULL THEN scalar_expression_1

...

 WHEN scalar_expression_n IS NOT NULL THEN scalar_expression_n

 ELSE NULL

END

Example

Show office phone number if present, else show home phone.

SELECT name

 ,COALESCE (office_phone, home_phone)

FROM phone_table;

Teradata Vantage Analytics Certification: Learning Resource

COALESCE can be used to convert a possible NULL value to zero. COALESCE is the ANSI
standard alternative for the Teradata database ZEROIFNULL function.

Example

Get the number of students in each course. If num_students is null, return a zero.

SELECT course_name

,COALESCE (num_students, 0) (TITLE '# Students')

FROM class_schedule;

course_name # Students

Teradata SQL 17

Physical DB Design 0

Teradata Vantage Analytics Certification: Learning Resource

COALESCE can also be used to convert possible NULL value to a string literal 'NULL VALUE'.
With COALESCE, you can change a null into whatever you want.

Example

SELECT course_name

,COALESCE (num_students, 'NULL VALUE') (TITLE '# Students')

FROM class_schedule;

course_name # Students

Teradata SQL 17

Physical DB Design NULL VALUE

Teradata Vantage Analytics Certification: Learning Resource

The default is to ignore nulls in aggregations. NULLIF and COALESCE allow you to change
that rule. In the example below (based on the call_employee table we saw earlier), you can see
how you can manipulate the same data to get very different results with a simple aggregation.
Which should you use? That depends on the meaning of the data, and what you are trying to
show.

Example

SELECT AVG (labor_hours) (TITLE 'Default AVG')

, AVG (NULLIF (labor_hours, 0)) (TITLE 'NullIfZero AVG')

, AVG (COALESCE (labor_hours, 0)) (TITLE 'ZeroIfNull AVG')

, COUNT (labor_hours) (TITLE 'Default COUNT')

, COUNT (NULLIF (labor_hours, 0)) (TITLE 'NullIfZero COUNT')

, COUNT (COALESCE (labor_hours, 0))(TITLE 'ZeroIfNull COUNT')

FROM call_employee;

call_number labor_hours

5

4

1 8.5

6

3 .0

2 4.0

Columns from CALL_EMPLOYEE

Default AVG NullIfZero AVG ZeroIfNull AVG Default COUNT NullIfZero COUNT ZeroIfNull COUNT

4.2 6.2 2.1 3 2 6

Teradata Vantage Analytics Certification: Learning Resource

If you have not set up your lab server connection, click on the Lab Setup button at the bottom of
the page to get instructions. You will need these instructions to log on to the Teradata database.
If you experience problems connecting to the lab server, contact
Training.Support@Teradata.com.

For this set of lab exercises you may need information from the Database Info document. Prior
to doing these labs, it will be helpful to reset your default database to the CustomerService
database (i.e. DATABASE CustomerService;).

Click on the Next button at the bottom of the page to see the answers.

1.) Calculate the fraction of the total company budget represented by departments 401 and 403.

2.) Calculate the fraction of the total company budget represented by departments 401 and 403
after department 403 has been given a 5% budget increase.

3.) Create a budget report from the department table. Show the total, average, minimum and
maximum budget amounts. Title the columns "Total", Avg", "Min" and "Max". Do the query
twice:

a.) once treating NULL values as zero,
b.) once excluding NULL values in aggregates.

Compare the results.

4.) Accounting wants to find out which way of slanting the statistics is most beneficial to the
company. Do a departmental salary list of the total salaries for each department, and the
average departmental salary three times:

 without any changes (treating NULLs as null and zero values as zero)

 treating NULL values as zero

 treating zero values as NULL

Also list the count of rows that are going into each averaging function. Sequence the report by
department.

Title your columns as follows: Dept, Tot #, Tot Sal, Avg Sal, ZIN #, ZIN Avg, NIZ #, NIZ Avg

Are there differences in these computations? Why or why not?

Teradata Vantage Analytics Certification: Learning Resource

Solution 1

SELECT SUM(CASE department_number WHEN 401 THEN budget_amount

WHEN 403 THEN budget_amount

ELSE 0

END) / SUM(budget_amount) AS "401/403 Bgt Ratio"

FROM department;

401/403 Bgt Ratio

.49

Solution 2

SELECT SUM(CASE WHEN department_number = 401 THEN budget_amount

WHEN department_number = 403 THEN budget_amount * 1.05

ELSE 0

END) /

SUM(CASE WHEN department_number = 403 THEN budget_amount * 1.05

ELSE budget_amount

END) AS Dept_401_403_Bgt_Ratio

FROM department;

Dept_401_403_Bgt_Ratio

.4949

Solution 3

This solution is for option a) treating NULL values as zero

SELECT SUM (COALESCE (budget_amount,0))(DEC(9,2)) AS "Total"

,AVG (COALESCE (budget_amount,0))(DEC(9,2)) AS "Avg"

,MIN (COALESCE (budget_amount,0))(DEC(9,2)) AS "Min"

,MAX (COALESCE (budget_amount,0))(DEC(9,2)) AS "Max"

FROM department;

 Total Avg Min Max

---------- --------- --------- ---------

3915700.00 435077.78 .00 982300.00

This solution is for option b) not including NULL values in aggregates.

SELECT SUM(budget_amount) AS "Total"

,AVG(budget_amount) AS "Avg"

,MIN(budget_amount) AS "Min"

,MAX(budget_amount) AS "Max"

FROM department;

 Total Avg Min Max

---------- --------- --------- ---------

3915700.00 489462.50 226000.00 982300.00

Teradata Vantage Analytics Certification: Learning Resource

Solution 4

SELECT department_number AS "Dept"

,COUNT(salary_amount) AS "Tot #"

,SUM(salary_amount) AS "Tot Sal"

,AVG(salary_amount) AS "Avg Sal"

,COUNT(COALESCE(salary_amount,0)) AS "ZIN #"

,AVG(COALESCE(salary_amount,0)) AS "ZIN Avg"

,COUNT(NULLIF(salary_amount,0)) AS "NIZ #"

,AVG(NULLIF(salary_amount,0)) AS "NIZ Avg"

FROM employee

GROUP BY 1

ORDER BY 1;

Dept Tot # Tot Sal Avg Sal ZIN # ZIN Avg NIZ # NIZ Avg

---- ----- --------- --------- ----- --------- ----- ----------

100 1 100000.00 100000.00 1 100000.00 1 100000.00

201 2 73450.00 36725.00 2 36725.00 2 36725.00

301 3 116400.00 38800.00 3 38800.00 3 38800.00

302 1 56500.00 56500.00 1 56500.00 1 56500.00

401 7 245575.00 35082.14 7 35082.14 7 35082.14

402 2 77000.00 38500.00 2 38500.00 2 38500.00

403 6 233000.00 38833.33 6 38833.33 6 38833.33

501 4 200125.00 50031.25 4 50031.25 4 50031.25

Teradata Vantage Analytics Certification: Learning Resource

1

1.10 - Given a scenario

including the need to connect

to an external data source,

identify the SQL code snippet

that should be used.

Teradata Vantage Analytics Certification:
Learning Resource

1

2

Explaining the Query

• Query initiated from IDW

• Local query on IDW run to select

qualifying rows; sales_quantity

aggregated

• Remote query on 1700 run to select

qualifying rows; sales_quantity

aggregated

• Qualifying rows returned from the

1700 and placed in spool on IDW

• IDW merges both data sets

• IDW applies ordering

SELECT sales_date, SUM(sales_quantity) AS

total_sales

FROM samples.sales_fact

GROUP BY 1

UNION ALL

SELECT *

FROM FOREIGN TABLE (

SELECT sales_date, SUM(sales_quantity)

AS total_sales

FROM samples.sales_fact_history

GROUP BY 1)@ td1700 old_sales

ORDER BY 1;

Query Result: 1,336 rows

Rows transferred: 1,002

Elapsed time: ~4 sec

1,336 rows

14 Million

~30 sec

© 2014 Teradata

3

QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

CREATE FOREIGN SERVER hdp USING

LINK(’TD2P')

DO IMPORT WITH TD_SYSFNLIB.QGINITIATORIMPORT ,

DO EXPORT WITH TD_SYSFNLIB.QGINITIATOREXPORT ;

Remaining name value

pairs obtained from QGM

from link name

QG 2.0 Foreign Server Definition

Teradata query joining current data with archive data in Presto/Hadoop

SELECT * FROM websales_current UNION ALL SELECT * FROM websales_archive@hdp;

Defined Using

Foreign Server

- The link configured in the QGM will be used to create the foreign server object in
Teradata, this object enables the @foreign_server name remote queries on Teradata

- Contrast the old FS with the new FS – simplicity.

© 2014 Teradata

4

QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

Remaining name value

pairs obtained from QGM

from link name
connector.name=qginitiator

qginitiator.linkName=P2TD

qginitiator.version=active

QG 2.0 Presto Catalog Properties

Presto query joining current data in Teradata with archive data in Presto/Hadoop

SELECT * FROM td.sales.websales_current UNION ALL SELECT * FROM

hive.sales.websales_archive;

Defined Using

Catalog Properties

- If your use case requires that the query to initiate from Presto, then create a link in
the QGM (P2TD) then use it to create a catalog (name: td) for Teradata, the catalog is
referenced in a remote query as in this example

© 2014 Teradata

5

QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

Remaining name value

pairs obtained from QGM

from link name
CREATE TABLE websales_current
ROW FORMAT SERDE 'com.teradata.querygrid.qgc.hive.QGSerDe’

STORED BY 'com.teradata.querygrid.qgc.hive.QGStorageHandler’

TBLPROPERTIES ("link"=”H2TD",

"table"=" sales.websales_current ");

QG 2.0 Hive Storage Handler Definition

Hive query joining current data in Teradata with archive data in Hive/Hadoop

SELECT * FROM websales_current UNION ALL SELECT * FROM websales_archive;

Defined Using

Storage Handlers

- If your use case requires that the query to initiate from Hive, then create a link in
the QGM (H2TD) then use it to create a storage handler for every table you want to
access remotely, the storage handler is referenced in a remote query as in this
example

© 2014 Teradata

6

Thank you.

©2018 Teradata

Thank you.

©2018 Teradata

6

tablename
column name

100 'Smith' 'Mary'

100 'Smith' 'Mary '

100 'smith' 'Mary'

100 'Smith' 'mary'

(No duplicate rows allowed)

(Duplicate rows allowed)

(Answers in the student manual.)

If both character columns are not case sensitive, which rows would be duplicates?

Answer: all but the second row.

If both character columns are case sensitive, which rows would be duplicates?
Answer: only the second row.

(blue indicate defaults)

tablename

n

n
n

(defaulted assignment)

Find employees whose salaries are greater than their department average.

Show the department name for those having a salary larger than their department average.

department_name last_name salary_amount AvgSal
------------------------------ -------------------- ------------- ------------
customer support Brown 43100.00 35545.83
customer support Trader 37850.00 35545.83
customer support Rogers 46000.00 35545.83
customer support Johnson 36300.00 35545.83
education Villegas 49700.00 38700.00
education Brown 43700.00 38700.00
marketing sales Wilson 53625.00 50031.25
marketing sales Ratzlaff 54000.00 50031.25
marketing sales Runyon 66000.00 50031.25
research and development Stein 29450.00 29350.00

(projection)

department_number last_name salary_amount AvgSal
----------------- -------------------- ------------- ------------

? Rogers 56500.00 43316.67
301 Stein 29450.00 29350.00
401 Trader 37850.00 35545.83
401 Brown 43100.00 35545.83
401 Johnson 36300.00 35545.83
401 Rogers 46000.00 35545.83
403 Villegas 49700.00 38700.00
403 Brown 43700.00 38700.00
501 Wilson 53625.00 50031.25
501 Runyon 66000.00 50031.25
501 Ratzlaff 54000.00 50031.25

(are available to all queries during the session)

Tables (not taught in this course)
(like volatile tables)

(e.g., a DBA creates the definition)
(like volatile tables)

(i.e., the DBA created table)

(projection)

(end transaction).

Table Name Table Id
------------- ------------
vt_deptsal1 30C0BC140000
vt_deptsal2 30C0BD140000

deptno avgsal maxsal minsal sumsal empcnt
------ ----------- ----------- ----------- ----------- ------

301 29350.00 29450.00 29250.00 58700.00 3
401 35545.83 46000.00 24500.00 213275.00 7
403 38700.00 49700.00 31000.00 193500.00 6
402 52500.00 52500.00 52500.00 52500.00 2

? 43316.67 56500.00 34700.00 129950.00 3
501 50031.25 66000.00 26500.00 200125.00 4
999 100000.00 100000.00 100000.00 100000.00 1

deptno avgsal maxsal minsal sumsal empcnt
------ ----------- ----------- ----------- ----------- ------

1 2.00 3.00 4.00 5.00 6

deptno avgsal maxsal minsal sumsal empcnt
------ ----------- ----------- ----------- ----------- ------

1 2.00 3.00 4.00 5.00 6

deptno avgsal maxsal minsal sumsal empcnt
------ ----------- ----------- ----------- ----------- ------

1 2.00 3.00 4.00 5.00 6

The following options are not permitted for volatile tables:

Referential integrity constraints
CHECK constraints
Permanent journaling
Compressed column values
DEFAULT clause
TITLE clause
Named indexes

targettable sourcetable

targettable
column1, column2, , , ,

sourcetable

Give everyone in all the support departments a 10% raise.
(Assume we don't know the department numbers for all of the support departments.)

Remove all of the employees who are assigned to a temporary department.

2.0 Data

Visualization &

Presentation

Teradata Vantage: Analytics Certification Learning Resource

Moving Data from Teradata Database to an External Target

Source: https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/VTx~L6axIqWGMO2RInPtzg

This chapter describes several methods for using Teradata PT to move data from a a Teradata Database into a non-
Teradata target. It includes the following topics:

 Data Flow Description

 Comparing Applicable Operators

 Using Access Modules to Process Data Before Writing to External Targets

 Common Data Movement Jobs

Data Flow Description

Teradata PT offers several paths for moving data from a Teradata Database into a non-Teradata target, as shown in
the following composite diagram.

Figure 36: Moving Data from a Teradata Database into a Non-Teradata Target

Note that many of the blocks in Figure 36 allows you to choose among several operators and access modules. Read
the following sections to understand how to make the best choices for specific data movement jobs.

Comparing Applicable Operators

Once you identify the requirements for moving data from Teradata Database to an external data source, you must
select the components that the script will use to execute the job. There are three types of components you need to
consider:

 A producer operator that reads data from a Teradata Database and places it in the data stream.

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/VTx~L6axIqWGMO2RInPtzg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wVelgdBtBqa29ueks9FM5w
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6tG6Vy25ChU_KzFk_aeSSw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/3vl_gxBDzbT9V2kqeIOyVQ
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/meCPQGl7ccHQL2IH1AUMAw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wVelgdBtBqa29ueks9FM5w

Teradata Vantage: Analytics Certification Learning Resource

and

 A consumer operator that takes data from the data stream and writes it to the data target.

or

 A consumer operator that uses an OUTMOD routine or access module to post-process the data before loading

the data target.

Producer Operators

The Teradata PT producer operators in this section read data from a Teradata Database and write it to the data
stream.

The Teradata PT job script invokes a producer operator, which employs the user-specified SQL SELECT statement to
access Teradata Database tables. For further information on using APPLY/SELECT to specify a producer operator,
see “Coding the APPLY Statement” on page 64 and the section on APPLY in Teradata Parallel Transporter
Reference.

The following table briefly describes and compares the function of each Teradata PT operator that can be used as a
producer when extracting data from a Teradata Database:

Operator Description

Export
Operator

Extracts large volumes of data from a Teradata Database at high
speed. Function is similar to the standalone Teradata FastExport
utility.

Features:

 Allows use of multiple parallel instances.

 For a sorted answer set, redistribution of the rows occurs over the

BYNET. This allows for easy recombination of the rows and data

blocks when they are sent to the client in sorted order.

Limitations:

 Cannot be used to retrieve data in TEXT mode and write it to target

files in the TEXT or VARTEXT (delimited) format. Use SQL Selector for

this where possible.

 A sorted answer set requires that only a single instance of the

Export operator can be used. Specifying ORDER BY in the SELECT

statement and multiple Export operator instances results in an error.

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/e4KwIz5NJHGl8xEVhIgabA

Teradata Vantage: Analytics Certification Learning Resource

For details, see Teradata Parallel Transporter Reference.

SQL Selector
Operator

Submits a single SQL SELECT statement to the Teradata Database to
retrieve data from a table.

Features:

 Use to retrieve data in TEXT mode and write it to target files in the

TEXT or VARTEXT (delimited) format.

 Can retrieve LOB, JSON and XML data from the Teradata Database.

Limitations:

 Much slower than Export operator.

Teradata strongly recommends that you specify XMLSERIALIZE on
selected XML columns so that the byte-order-mark (BOM) matches
the XML encoding when using the client UTF-16 character set.

For details, see Teradata Parallel Transporter Reference.

Consumer Operators

The Teradata PT consumer operators in this section read data from the data stream and write it to an external
target.

The Teradata PT job script invokes a consumer operator using an APPLY statement. For further information on
using SELECT to specify a producer operator, see “Coding the APPLY Statement” on page 64 and the section on
APPLY in Teradata Parallel Transporter Reference.

The following table briefly describes and compares the function of each Teradata PT operator that can be used as a
consumer when moving data from Teradata Database to an external data target:

Operator Description

Operators that Write Data to a non-Teradata Target

DataConnector Operator

Writes data to flat files and functions similarly to the
DataConnector standalone utility.

Features:

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/e4KwIz5NJHGl8xEVhIgabA

Teradata Vantage: Analytics Certification Learning Resource

 Can write directly to an external file or through an

access module.

 Writes to files and tables in Hadoop.

Limitations:

 Cannot write ZIP and GZIP files to a Hadoop/HDFS

data source.

For details, see Teradata Parallel Transporter Reference.

Operators that Pre-process Data before Writing to a non-Teradata Target

FastExport OUTMOD
Adapter Operator

Uses a FastExport OUTMOD routine to pre-process data
before writing it to the data target.

For details, see Teradata Parallel Transporter Reference.

Using Access Modules to Process Data Before Writing to External Targets

Access modules are dynamically attached software components of the Teradata standalone load and unload
utilities. Some access modules are usable with Teradata PT job scripts, and provide the input/output interface
between operators and various types of external data storage devices. Any operator that uses access modules can
interface with all available access modules.

The following access modules can be used as part of a job to move data from Teradata Database to an external
data target.

Access
Module

Description

OLE DB
Provides write access to a flat file or a table in an OLE DB-compliant
DBMS, such as SQL Server, Oracle or Connix.

Specifying an Access Module

Use the AccessModuleName attribute in the DataConnector (consumer) operator to specify the optional use of an
access module to interface with the target database. The DataConnector operator definition must also specify a
value for the AccessModuleInitStr attribute, to define the access module initialization string.

For detailed information on requirements for using access modules with Teradata PT, see Teradata Tools and
Utilities Access Module Reference.

For information on using access modules with z/OS, see “Using Access Modules to Read Data from an External
Data Source” on page 98.

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/hOdiX77oU6_CqHNcRCQK4A
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/hOdiX77oU6_CqHNcRCQK4A

Teradata Vantage: Analytics Certification Learning Resource

Using the DataConnector Operator to Write Files and Tables in Hadoop

In addition to writing flat files and interfacing with access modules, the DataConnector operator also has the ability
to write to Hadoop files and tables. The following table briefly describes and compares the two interfaces which
the DataConnector operator can use to move data from the data stream to Hadoop files and tables.

Interface Description

HDFS API

Provides access to Hadoop files via the Hadoop Distributed File System
Application Programming Interface, or HDFS API. The HDFS is a POSIX-
compatible file system with some minor restrictions. It does not support
updating files and it only supports writing files in truncate mode or
append mode. The Hadoop Software is written in Java and the HDFS API is
a Java JNI interface that exposes all the expected standard posix file
system interfaces for reading and writing HDFS files directly by a C/C++
program. The Data Connector Producer and Consumer operators have
been updated to directly access the HDFS file system using the HDFS API.
All standard Data Connector file system features are supported.

"TDCH-
TPT

Provides access to Hadoop files and tables via the Teradata Connector for
Hadoop, or TDCH. TDCH utilizes the MapReduce framework's distributed
nature to transfer large amounts of data in parallel from Hadoop files and
tables to the DataConnector operator. The TDCH-TPT interface gives TPT
users the ability to read and write HDFS files, Hive tables, and Hcat tables
in various Hadoop-specific formats. Because this interface relies on TDCH
to read and write data, many of the traditional DataConnector attributes
are unsupported.

For information, see the section “Processing Hadoop Files and Tables” in Teradata Parallel Transporter Reference.

Note: GZIP and ZIP files are not supported with Hadoop/HDFS.

Note: HDFS processing can be activated simply by adding the following attribute to a Data Connector Consumer or
Producer:

HadoopHost = 'default’

Common Data Movement Jobs

You can use any valid combination of producer and consumer operators, and where necessary access modules, to
create a job script for your data movement needs. However, the following list includes examples of some of the
most common job scenarios. Evaluate the examples and if possible use one of the associated sample job scripts
before creating your own.

 Job Example 12: Extracting Rows and Sending Them in Delimited Format

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/ZL8CRTeGqfdxHeDXdJkNgA

Teradata Vantage: Analytics Certification Learning Resource

 Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format

 Job Example 14: Export Data and Process It with an OUTMOD Routine

 Job Example 15: Export Data and Process It with an Access Module

 Job Example 16: Extract BLOB/CLOB/JSON Data and Write It to an External File

 Job Example 17: Extract Rows and Write Them to a Hadoop File

 Job Example 18: Extract Rows and Write Them to a Hadoop Table

Job Example 12: Extracting Rows and Sending Them in Delimited Format

Job Objective

Extract rows from Teradata Database tables and write them to an external target file as delimited data.

Data Flow Diagram

Figure 37 shows a diagram of the job elements for Job Example 10.

Figure 37: Job Example PTS00016, PTS00017 -- Extracting Rows and Sending Them in Delimited Format

Sample Script

For the sample script that corresponds to this job, see the following scripts in the sample/userguide directory:

PTS00016: Extracting Rows and Writing Them in Delimited Format using the Export operator.

PTS00017: Extracting Rows and Writing Them in Delimited Format using the SQL Selector operator.

Rationale

This job uses the:

 Export operator for exporting data from a Teradata Database table with the schema that matches the table.

 SQL Selector operator for extracting data from a Teradata Database table in field mode (character format).

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/_8IDLtZ_HtJ_AWAMw46E_Q
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6sNv5GJkGyXCEHJmMJVtUg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wlJ47ZBLLjmyoDB23vHhlA
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/OeTvmxQg5zfKRW4tGFBJLw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/JHIXF1~MG2u6iTt4qJWLvg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/uhQWvScyBnRDg5k~TQNgFw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/ZL8CRTeGqfdxHeDXdJkNgA

Teradata Vantage: Analytics Certification Learning Resource

 DataConnector operator because it is the only operator that can write character data to an external flat file in

delimited format.

Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format

Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format

Job Objective

Extract rows from Teradata Database tables using Export operator and write them to an external target as
indicator-mode data.

Data Flow Diagram

Figure 38 shows a diagram of the job elements for Job Example 11.

Figure 38: Job Example PTS00018 -- Extracting Rows and Sending Them in Binary or Indicator-mode Format

Sample Script

For the sample script that corresponds to this job, ee the following scripts in the sample/userguide directory:

PTS00018: Exporting Rows and Writing Them as Binary or Indicator Mode Data.

Rationale

This job uses the operators shown for the following reasons:

 Use Export operator because it can extract large amounts of data from a Teradata Database table at high

speeds.

 DataConnector operator because it can write data to an external flat file.

Job Example 14: Export Data and Process It with an OUTMOD Routine

Job Objective

Export data from a Teradata Database table and send it to an OUTMOD for post-processing before loading into an
external target. This job is applicable to OUTMODs written for the FastExport utility.

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/_8IDLtZ_HtJ_AWAMw46E_Q

Teradata Vantage: Analytics Certification Learning Resource

Data Flow Diagram

Figure 39 shows a diagram of the job elements for Job Example 12.

Figure 39: Job Example PTS00019 -- Export Data and Process It with an OUTMOD Routine

Sample Script

For the sample script that corresponds to this job, ee the following scripts in the sample/userguide directory:

PTS00019: Exporting Data and Processing It with an OUTMOD Routine.

Rationale

The job uses:

 Export operator because it is the fastest way to extract large amounts of data from a Teradata Database.

Note: The SQL operator extracts data more slowly than the Export operator. Use the SQL Selector operator only if
the Teradata Database is short on load slots, because the SQL Selector operator does not use Teradata Database
load slots.

 FastExport OUTMOD Adapter because it is the only operator that can interface with an OUTMOD routine written

for the FastExport utility.

Job Example 15: Export Data and Process It with an Access Module

Job Objective

Export rows from a Teradata Database table and send them to an Access Module for processing before loading the
data into an external target.

Data Flow Diagram

Figure 40 shows a diagram of the job elements for Job Example 13.

Figure 40: Job Example PTS00020 --- Export Data and Process It with an Access Module

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6sNv5GJkGyXCEHJmMJVtUg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wlJ47ZBLLjmyoDB23vHhlA

Teradata Vantage: Analytics Certification Learning Resource

Sample Script

For the sample script that corresponds to this job, see the following script in the sample/userguide directory:

PTS00020: Exporting Data and Processing It with an Access Module.

Rationale

The job uses:

 Export operator because it is the fastest at extracting large amounts of data from a Teradata Database.

Note: The SQL operator extracts data more slowly than the Export operator. Use the SQL Selector operator only if
the Teradata Database is short on load slots, because the SQL Selector operator does not use Teradata Database
load slots.

 DataConnector operator because it is the only consumer operator that can interface with all Teradata PT-

supported access modules.

Job Example 16: Extract BLOB/CLOB/JSON Data and Write It to an External File

Job Objective

Extract rows that include BLOB/CLOB/JSON data from a Teradata Database table and write them to an external flat
file.

Data Flow Diagram

Figure 41 shows a diagram of the elements for Job Example 14.

Figure 41: Job Example PTS00021, PS00027-- Extract BLOB/CLOB/JSON Data and Write It to an External File

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/OeTvmxQg5zfKRW4tGFBJLw

Teradata Vantage: Analytics Certification Learning Resource

Sample Script

For the sample script that corresponds to this job, see the following scripts in the sample/userguide directory:

PTS00021: Extracting BLOB/CLOB Data and Writing It to an External Target.

PTS00027: Extracting BLOB/CLOB/JSON Data and Writing It to an External Target.

Rationale

This job uses the operators shown for the following reasons:

 Use SQL Selector operator because it is the only operator that can read BLOB/CLOB/JSON data from a Teradata

Database and write it to separate external data files. One data file stores data for one LOB/JSON column.

 Use DataConnector operator because it is the only operator that can write LOB/JSON data to an external file.

Job Example 17: Extract Rows and Write Them to a Hadoop File

Job Objective

This Teradata Parallel Transporter sample script loads five rows from a teradata table to flat file in Hadoop.

Data Flow Diagram

Figure 42 shows a diagram of the elements for Job Example 17.

Figure 42: Job Example PTS00031-- Extract Rows and Write Them to a Hadoop File

Sample Script

For the sample script that corresponds to this job, see the following script in the sample/userguide directory:

PTS00031: Extract Rows and Write Them to a Hadoop File

Rationale

This job uses the operators shown for the following reasons:

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/JHIXF1~MG2u6iTt4qJWLvg

Teradata Vantage: Analytics Certification Learning Resource

 Export operator because it is the fastest way to extract large amounts of data from a Teradata Database table.

 DataConnector operator along with the HDFS Interface because it is the only producer operator that writes data

to Hadoop HDFS.

Job Example 18: Extract Rows and Write Them to a Hadoop Table

Job Objective

Extract rows from Teradata Database table and write them to a Hadoop table; the Hadoop table's data should be
stored in the RCFile format.

Data Flow Diagram

Figure 43 shows a diagram of the elements for Job Example 18.

Figure 43: Job Example PTS00032- Extract Rows and Write Them to a Hadoop Table

Sample Script

For the sample script that corresponds to this job, ee the following script in the sample/userguide directory:

PTS00032: Extract Rows and Write Them to a Hadoop Table

Rationale

This job uses the operators shown for the following reasons:

 Export operator because it is the fastest way to extract large amounts of data from a Teradata Database table.

 DataConnector operator along with the TDCH-TPT Interface because it is the only producer operator
https://docs.teradata.com/reader/b8dd8xEYJnxfsq4uFRrHQQ/uoSjTMZuwcIBx9l5tG0B1Q

 Rules For Call Arguments In ODBC And JDBC in Vantage
The following additional rules apply to a call argument when the CALL statement is submitted from an ODBC or
JDBC application:

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/uhQWvScyBnRDg5k~TQNgFw
https://docs.teradata.com/reader/b8dd8xEYJnxfsq4uFRrHQQ/uoSjTMZuwcIBx9l5tG0B1Q

Teradata Vantage: Analytics Certification Learning Resource

• An IN or INOUT argument must be one of the following:
o A value expression.

A value expression must not contain identifiers prefixed by the COLON character. It must be a
constant expression.

o A QUESTION MARK (?) character used as an input placeholder.

If you specify ?, the value for the corresponding IN or INOUT parameter of the called procedure
must be set using ODBC- or JDBC-specific calls prior to calling the procedure.

There is a 1:1 correspondence between the number of ? markers for IN and INOUT arguments and
the number of data items specified in the StatementInfo parcel in the request message.
StatementInfo does not contain entries for OUT arguments.

For example, consider the following SQL procedure definition and CALL statement:

 CREATE PROCEDURE sp3 (
 IN pil INTEGER,
 INOUT pio1 INTEGER,
 OUT po1 INTEGER)
 BEGIN
 SELECT j INTO :pio1
 FROM tb11
 WHERE i=2;
 SELECT k INTO :po1
 FROM tb11
 WHERE i=2;
 END;

 CALL sp3 (:?, :?, :?);

When this call is made, the StatementInfo parcel contains 2 entries: one each for the IN and INOUT
parameters.

• An OUT argument must be an OUT call placeholder.

that writes data to Hadoop tables in the RCFile format.

https://downloads.teradata.com/connectivity/articles/speed-up-your-jdbcodbc-applications

Speed up your JDBC/ODBC applications

https://downloads.teradata.com/connectivity/articles/speed-up-your-jdbcodbc-applications

Teradata Vantage: Analytics Certification Learning Resource

The Teradata JDBC Driver and ODBC Driver allow developers to quickly build applications that interact with the
Teradata Database. However, many developers are surprised when their fully functioning application suddenly hits
a performance roadblock when it is deployed to their production environment. And in many of these cases, the
blame is sometimes unfairly placed onto the JDBC and ODBC drivers. This article will highlight the programming
techniques available to maximize the performance when interacting with the database and help developers
choose the right implementation.

Quick and Easy but Slowest Performance

Many new database developers are more focused on how to create a database connection and pass a SQL
statement than they are with performance. A typical first implementation looks something like:

1

2

3

4

5

6

7

8

Connection conn = DriverManager.getConnection(url, username, password);

Statement stmt = conn.createStatement();

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(" + custID + ", " + tran_date + ", " + amount + ", " + desc + "')";

stmt.executeUpdate(sql);

stmt.close(); // Your real code should use try-finally blocks to manage resources.

conn.close(); // Let's not even get into connection pools! That's another article.

Sure this works for a demo and the beginning programmer is probably pretty happy with the results. But turn on
some production volume and this will quickly become a performance bottleneck, especially when your application
is processing many SQL inserts such as when batch loading. This type of database coding is pretty much like driving
your sports car and staying stuck in first gear!

Drivers Prepare Your Statements

A much better approach is to use Prepared Statements. These will provide significantly better performance by first
sending the database the outlines of the SQL statement using variable parameters in place of the actual data. The
database prepares the execution steps of the SQL statement to optimize performance, and the prepared
statement can then be used over and over again. This avoids recalculating the execution steps for each individual
request, which is what happens in the first example.

1 // These are done once …

Teradata Vantage: Analytics Certification Learning Resource

2

3

4

5

6

7

8

9

10

11

12

13

Connection conn = DriverManager.getConnection(url, username, password);

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(?,?,?,?)";

PreparedStatement ps = conn.prepareStatement(sql);

// … and these can be repeated many times with different values.

ps.setInt(1, custID);

ps.setDate(2, tran_date);

ps.setBigDecimal(3, amount);

ps.setString(4, desc);

ps.executeUpdate();

 Batch Ready

Prepared Statement batches take your performance to the next level. In addition to the benefits of reusing the
Prepared Statement, batching your input values also reduces the number of round trips to the database. A batch
size of roughly 5,000 to 10,000 works well for most applications. Using batches can be 10 to 40 times faster than
the previous approach.

1

2

3

4

5

6

7

8

9

10

11

// These are done once.

Connection conn = DriverManager.getConnection(url, username, password);

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(?,?,?,?)";

PreparedStatement ps = conn.prepareStatement(sql);

for (/* Loop through input values */)

{

 for (/* Loop through a subset of the input values - the desired batch size */)

 {

 ps.setInt(1, custID);

 ps.setDate(2, tran_date);

Teradata Vantage: Analytics Certification Learning Resource

12

13

14

15

16

17

18

19

 ps.setBigDecimal(3, amount);

 ps.setString(4, desc);

 ps.addBatch(); // adds the row of input values to the batch

 }

 // This is done once per the desired batch size.

 ps.executeBatch(); // sends all the batched rows to the database

}

 Full Speed Ahead

For loading truly huge amounts of data, JDBC FastLoad can provide even better performance. There are a couple of
caveats, however. JDBC FastLoad can only insert data into an empty table, and JDBC FastLoad is only
recommended for loading large amounts of data -- at least 100,000 rows total.

The nice thing is that your Java code doesn't need to change in order to use JDBC FastLoad. Your application uses
the exact same Prepared Statement batches as in the previous example. Just add TYPE=FASTLOAD to your
connection parameters, and the Teradata JDBC Driver will use JDBC FastLoad for particular SQL requests, if it can.

Note that the recommended batch size for JDBC FastLoad is much higher than for a regular SQL Prepared
Statement batch, which means you may need to increase your JVM heap size. To get top-notch performance, you
need to use a batch size of roughly 50,000 to 100,000. Using JDBC FastLoad can be 3 to 10 times faster than the
previous approach.

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html

Troubleshooting

This chapter provides information for troubleshooting problems that can occur when using the Teradata JDBC
Driver.

Socket Communication Failure

Error 804 with SQLState 08S01 and the error message "Socket communication failure for Packet receive" (or
"Packet transmit") means that a network communication failure occurred.

[Error 804] [SQLState 08S01] Socket communication failure for Packet receive ...

[Error 804] [SQLState 08S01] Socket communication failure for Packet transmit ...

A network communication failure can occur due to a variety of reasons. Here is a list of common causes of
connectivity problems, in order from most likely to less likely:

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html

Teradata Vantage: Analytics Certification Learning Resource

1. The Teradata session was forcibly logged off by Teradata Viewpoint, Teradata Manager, PMON, or some
other administrator process that checks for session inactivity and aborts idle sessions. This can be checked
by examining /var/log/messages on the database node, to look for messages that indicate that a session
was aborted. This is a common problem for JDBC connections in a connection pool, because JDBC
connections in a connection pool may spend a significant portion of their lifetime being idle. The database
administrator should not forcibly log off idle Teradata sessions that are pooled JDBC connections, because
that defeats the purpose of the JDBC connection pool.

2. Network problem and/or transient network failure. This can include situations such as a laptop switching
from a wired to a wireless network connection (or vice-versa), or connecting to, or disconnecting from, a
VPN.

3. Faulty network hardware, such as a faulty switch, router, or load balancer.
4. Database restart occurred. This can be checked by examining /var/log/messages on the database node, to

look for messages that indicate that a database restart occurred.

Numeric Data Truncation

Teradata Database V2R6.2 introduced support for the SQL data type BIGINT (64-bit integer) and introduced the
Large Decimal feature, which expands the maximum precision for the DECIMAL data type to DECIMAL(38).
Teradata Database V2R6.1 and earlier releases are limited to a maximum precision of DECIMAL(18).

Maximum precision varies by database release. This affects how numeric data is handled in the Teradata JDBC
Driver. If Large Decimal is not supported, the maximum precision for BigDecimal is 18. If Large Decimal is
supported, the maximum precision value is 38.

The Teradata JDBC Driver modification allows the PreparedStatement.setBigDecimal method to throw a
DataTruncation exception for BigDecimal values that have precision values greater than the maximum precision.

When the PreparedStatement setBigDecimal method is used to bind multiple values to a parameter, the Teradata
JDBC Driver determines the largest number of integral digits bound to the parameter, and then the fractional digits
for each of the values is rounded as necessary to fit within the database limit of maximum precision for a DECIMAL
value. The method PreparedStatement.setLong in the Teradata JDBC Driver throws a DataTruncation exception if
the maximum precision value is greater than 18 and the SQL data type BIGINT is not supported for the current
database.

Character Export Width

Using connection parameter CHARSET=UTF8 with fixed-width CHAR data type result set column values adds
trailing space padding per the database's Character Export Width behavior. The CHAR(n) data type is a fixed-width
data type (holding n characters), and the database reserves a fixed number of bytes for the CHAR(n) data type in
response spools and in network message traffic.

UTF8 is a variable-width character encoding scheme that requires a varying number of bytes for each character.
When the UTF8 session character set is used, the database reserves the maximum number of bytes that the
CHAR(n) data type could occupy in response spools and in network message traffic. When the UTF8 session
character set is used, the database appends padding characters to the tail end of CHAR(n) values smaller than the
reserved maximum size, so that the CHAR(n) values all occupy the same fixed number of bytes in response spools
and in network message traffic. In contrast, when using the UTF16 session character set, no character padding is
added.

Teradata Vantage: Analytics Certification Learning Resource

The following example illustrates how to work around this drawback by using CAST or TRIM in SQL SELECT
statements, or in views, to convert fixed-width CHAR data types to VARCHAR.

• Given a table with fixed-width CHAR columns

CREATE TABLE MyTable (Column1 CHAR(10), Column2 CHAR(10))

• Original query

SELECT Column1, Column2 FROM MyTable

• Modified query using CAST and TRIM

SELECT CAST(Column1 AS VARCHAR(10)), TRIM(TRAILING FROM Column2) FROM
MyTable

• View using CAST and TRIM

CREATE VIEW MyView (C1, C2) AS SELECT CAST(Column1 AS VARCHAR(10)),
TRIM(TRAILING FROM Column2) FROM MyTable

Alternatively, connection parameter CHARSET=UTF16 is recommended for applications that require fixed-width
CHAR data values without trailing space padding.

Transaction Isolation, Concurrency, and Deadlock

Create and Drop

The following error may be seen when creating or dropping a database object, such as a table or stored procedure.
It will include an error code of 2631 and an SQL state of 40001, which indicates that this is a retryable error:

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock.

If this error occurs, the application can choose to wait a short time and then resubmit the failed create or drop
operation.

JDBC FastLoad

The following error may be seen when using JDBC FastLoad and calling a PreparedStatement setter method. It will
include an error code of 2631 and an SQL state of 40001, which indicates that this is a retryable error:

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock

If this error occurs, the application can choose to wait a short time and then call the PreparedStatement setter
method again. Note that error 2631 may be in a chain of exceptions; it therefore is necessary to walk down the
chain of exceptions to get to error 2631.

Teradata Vantage: Analytics Certification Learning Resource

Transaction Isolation

A potential deadlock condition can occur with two separate applications, or a single application using two threads,
with each thread or application having its own JDBC connection to the database.

The problem occurs when one connection is inserting data into a table, while the other connection is attempting to
read data from the same table.

When using the default transaction isolation level of TRANSACTION_SERIALIZABLE, the following error may be seen
on the thread or application that is reading from the table, approximately 2 to 5 minutes after the situation occurs.
It includes an error code of 2631.

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock.

If this error occurs, either:

• Resubmit the failed read operation, or
• Use a transaction isolation level of TRANSACTION_READ_UNCOMMITTED on the connection
reading from the table.

Note: The transaction level is set using the java.sql.Connection.setTransactionIsolation method. Though
this prevents the problem from occurring, it has the side effect of allowing dirty, non-repeatable, and
phantom reads. Whether or not this is acceptable must be determined on an individual application basis.

Improving Performance

If the performance of the application seems very slow, here are some recommendations for improvement:

• Turn off debug parameters. Make sure all debugging is turned off. See Using the Teradata JDBC
Driver.
• Use PreparedStatement where possible. This applies whenever the same SQL statement is
submitted many times, but data values differ for each submission.
One example would be an INSERT statement that is submitted many times, but with different inserted
data values each time. Another example would be a SELECT statement that is submitted many times, but
with different comparison values in WHERE-clause conditions each time.

If data values are specified as literals in the SQL statement, and the SQL statement is changed with
different literal data values upon each submission, then the database must parse the SQL statement each
time before executing it.

For situations like these, a PreparedStatement should be used instead. The SQL statement must have
a ? placeholder for each data value that will be changed per submission.

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/jdbcug_chapter_2.html#CCHCBFCA
https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/jdbcug_chapter_2.html#CCHCBFCA

Teradata Vantage: Analytics Certification Learning Resource

The application must prepare the SQL statement once, using the Connection.prepareStatement method.
For each submission, the application must bind all the data values using the PreparedStatement.setXXX
methods, and then the application must execute the PreparedStatement.

The application can repeat the bind and execute steps over and over, with different bound data values
each time. This technique provides a substantial performance improvement, because the database only
needs to parse the SQL statement once, and can re-execute the parsed statement over and over.

• Inserting Small LOB Values. The recommended technique for inserting LOB values is to use a
PreparedStatement INSERT with ? parameter markers for all column values to be inserted. Use the
setBinaryStream method for binding BLOB values to the parameter markers corresponding to BLOB
columns, then use the setAsciiStream or setCharacterStream method for binding CLOB values to the
parameter markers corresponding to CLOB columns.
When the setBinaryStream, setAsciiStream, and setCharacterStream methods are used, the Teradata
JDBC Driver sends LOB data to the database separately from other bound parameter values, so that LOB
values do not count towards the database limit on total bytes of bound parameter values per inserted
row.

To improve the performance of a PreparedStatement INSERT, that is inserting one or more small (<=
64000 bytes) LOB values per row, the setString method is used to bind a value to a CLOB column, and the
setBytes method is used to bind a value to a BLOB column. The SQL INSERT statement must cast
the ? parameter marker to a CLOB or BLOB, respectively.

INSERT INTO MyTable(id,clob_col) VALUES(?,CAST(? AS CLOB))
prepStmt.setInt(1,id);
prepStmt.setString(2,"abc");

Using the setBytes method with a CAST expression forces the Teradata JDBC Driver to send the bound
parameter value as a VARBYTE value, so it is limited to 64000 bytes, even though the destination column
may be a BLOB that can hold values larger than 64000 bytes.

Using the setString method with a CAST expression forces the Teradata JDBC Driver to send the bound
parameter value as a VARCHAR value, so it limited to 64000 bytes, even though the destination column
may be a CLOB that can hold values larger than 64000 bytes. If a Unicode session character set (UTF8 or
UTF16) is used, and/or if the destination column is designated CHARACTER SET UNICODE, then the
database will convert the bound parameter value into two-byte Unicode characters. The value after
conversion is limited to 64000 bytes.

This technique works only if the total size of all the bound parameter values does not exceed the
database limit on total bytes for all the bound parameter values for an inserted row. This technique
should only be used when performance is critical, and it is known in advance that the total size of all the
bound parameter values, including LOB values, does not exceed 64000 bytes per inserted row.

Teradata Vantage: Analytics Certification Learning Resource

This technique is subject to a further limitation such that the total size of all the bound parameter values
must not exceed the database limit on total bytes for all the bound parameter values for an inserted row,
after any necessary character set conversions have been performed by the database. If a Unicode session
character set (UTF8 or UTF16) is used, and/or if a destination character column is designated CHARACTER
SET UNICODE, then the database will convert all the bound parameter values that are character data
types (CHAR, VARCHAR, CLOB) into two-byte Unicode characters. These two-byte Unicode characters are
counted towards the database limit on total bytes for all the bound parameter values for an inserted
row.

• Use executeBatch() where possible. Whenever there are many insert, update, or delete
statements that can be submitted together, use the executeBatch() method rather that executeUpdate()
or execute(). However, the total buffer length is limited to approximately 1 MB. Using executeBatch()
instead of executeUpdate() can improve your performance by more than 50%.
• Use connection pooling provided by an application server. Connection pooling is a technique
used for sharing server resources among requesting clients. It allows multiple clients to share a cached
set of connection objects that provide access to the database. It improves performance by eliminating
the overhead associated with establishing a new database connection for each request. However, there
are some restrictions. Since it is not currently possible to reset a database connection, users of
connection pooling must not change the following session parameters because these changes will be
inherited by the next user of the connection:

o Database

o Collation

o Character Set

o Transaction Semantics

o Dateform

o Timezone

o Default Date Format

• Use multi-threading. Where possible, use multi-threading with multiple sessions for those
requests that can be processed at the same time. It is important to remember, however, not to have
multiple concurrent requests on a single session. Teradata does not support this and even though the
driver will accept this, it blocks until the current request is complete. This may actually degrade
performance. For improved performance, use concurrent sessions with each session running only one
request at a time.
• Use a Transaction isolation level of TRANSACTION_READ_UNCOMMITTED. This feature can
speed up access to data though it comes at the cost of encountering dirty reads, non-repeatable reads,
and phantom reads. Whether or not this is suitable should be determined on an individual application
basis.
• Use TYPE_SCROLL_INSENSITIVE result sets. These can improve performance when used with
queries which can return large multiple result sets that do not require all rows to be processed.

Teradata Vantage: Analytics Certification Learning Resource

Beginning with Teradata Database 12.0, when the application requests the ResultSet type to be
ResultSet.TYPE_SCROLL_INSENSITIVE, the Teradata JDBC Driver is able to quickly and efficiently skip to
the next result of a multi-statement request by using cursor positioning to position to the last row of the
current result set. If forward-only result sets are used, the same skipping operation will require the JDBC
driver to fetch all rows of the current result set first, which can take significantly longer.

The following methods will create statements that return TYPE_SCROLL_INSENSITIVE result sets:

Connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY)
Connection.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY)
Connection.prepareCall(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY)

• Use a single database hostname in DNS. Improve connection time with the following steps.

o Define a single DNS name with multiple IP addresses for the database, such that each IP address
corresponds to a database node running a DBS Gateway. Omit the IP addresses of nodes that
don't normally run a DBS Gateway, such as Hot Standby Nodes in most configurations. Enable
DNS round-robin for the IP addresses, so that connections are distributed across all the nodes.

o Specify COP=OFF for Teradata JDBC Driver connections

This avoids the time-consuming COP discovery process. The Teradata JDBC Driver will attempt to
connect to the first IP address returned by the DNS lookup, and will use subsequent IP addresses in
case of a connection failure. Use DNS round-robin to distribute Teradata JDBC Driver connections
across all available nodes.

https://docs.teradata.com/reader/3AkrVQlhjJMha4KRVJmm1w/Qwm4xSjCLk6tol7XOMnMPA

Analytic Tools

Teradata AppCenter

Teradata AppCenter is a self-service execution platform for creating and running SQL and Basic Teradata Query
(BTEQ) applications (apps). You can query data and run jobs automatically or on demand based on selected
schedule options. AppCenter includes privacy settings for both apps and job results.

This self-service environment enables the easy creation and reuse of analytics. It is composed of numerous pre-
built features that allow data scientists and developers to build, share, and deploy analytics with AppCenter. Non-
technical users can run apps, visually study results, and share insights. The apps are easily accessed and deployed
on-premises or in the cloud.

https://docs.teradata.com/reader/3AkrVQlhjJMha4KRVJmm1w/Qwm4xSjCLk6tol7XOMnMPA

Teradata Vantage: Analytics Certification Learning Resource

https://docs.teradata.com/reader/B7Lgdw6r3719WUyiCSJcgw/_U8FBA1PgnQMYN0mWs8oNQ

Workload connections of tools through Account Strings Expansion

Considerations for Assigning ASE Variables to Different Workloads

Each ASE assignment depends on the type of usage being performed by the user ID. This has implications related
to user ID assignment.

In general, workloads can be broadly grouped into three categories as follows:

 Multisession/Multirequest

This workload can be identified by work typically done by MultiLoad, FastLoad, TPUMP or multisession BTEQ.
These types of activities are normally used for database maintenance. Each session used handles multiple requests
over time. The workload for this type of work tends to be more predictable and stable. It runs regularly and
processes the same way each time it runs.

 Single Session, nontactical

This workload is typically initiated through a single session BTEQ, SQL Assistant, MicroStrategy, or other query-
generating tool. Ad hoc users, or single session BTEQ jobs in the batch process can generate this type of activity.
The single session may generate one or many requests. The requests may be back to back, or there may be hours
of idle time between them. Typically, the requesting user has very broad and informal response time expectations.

 Single Session, tactical

This workload is similar to the Single Session workload category except that there is typically a very clear definition
of response time and the response time requirements normally range between less than a second to a few
seconds.

The following ASE variables are to be used for each of the workload categories listed above along with the
rationale for selecting the ASE variables.

 Multisession, Multirequest

For this workload, usage information need not be captured at the request level. Workloads in this category can

 Processes the same request over and over again across the multiple sessions it establishes (such as TPUMP and

multisession BTEQ).

 Generate multiple internal requests that are not easily correlated to specific user generated activity (as is the

case with MultiLoad and FastLoad).

https://docs.teradata.com/reader/B7Lgdw6r3719WUyiCSJcgw/_U8FBA1PgnQMYN0mWs8oNQ

Teradata Vantage: Analytics Certification Learning Resource

As a result, capturing usage detail at the request level typically does not provide especially meaningful information.
Therefore, the recommended standard is to capture usage at the session level using the '&S' ASE variable. The
account string for User Ids performing this workload category would have the following format:

Account String Format: XX_&S

Length: 12-15 characters (depending on PG length)

Capturing session level information for this workload category provides several benefits, including:

 All usage for a given job can be more easily captured. Furthermore, the job level usage can then be grouped to

associate all batch processing to an application.

 All usage for a given job step can be obtained. This can facilitate performance analysis for batch processes.

 Session usage within a multisession utility can be better analyzed to determine the optimal number of sessions

to log on to the system.

 Single Session, nontactical

For this workload, request level usage detail is desired. This type of activity is typically the most difficult to manage
and control in a mixed workload, data warehouse environment. They also typically represent the greatest
opportunity for optimization. Although request level detail requires some minor additional overhead to capture,
the benefits of gaining additional visibility into the impact of each request outweighs the increased overhead in
data collection. The account string for user IDs performing this workload category would have the following
format:

Format: XX_&I

Length: Up to 128 characters

Capturing request level information in this manner has numerous benefits, including:

 Usage associated with each SQL request can be identified. By applying specific metrics such as total CPU used,

total IO used, CPU skew percent, Disk to CPU ratio, and so forth, problem requests can quickly and easily be

identified and addressed.

 Request level usage detail can be correlated to SQL statements in DBQL to greatly simplify performance-tuning

efforts. DBQL captures the date and time of the request as well as the session and request number of the request.

 Performance tuning can become much more quantitative and definitive by comparing usage statistics for

alternative query approaches. Capturing the consumption at the individual request enables this benefit.

 Usage can be accumulated to the session level to provide same level aggregations and analysis to multisession,

multirequest processing. As such, the same benefits can also be achieved.

 Single Session, tactical

Teradata Vantage: Analytics Certification Learning Resource

For this workload, high-speed performance and minimal response time are the primary objectives. Even if the
Teradata Active EDW is not currently servicing this type of request, it is important to account for this type of work
within the standard. Typically, this workload tends to be very predictable in nature with queries typically designed
to be single AMP retrievals. For this workload, capturing information at the request level is unnecessary for two
reasons. First, the transactions are well defined and repeated over and over again. Second, the additional
overhead required to record usage for each request would represent a meaningful portion of the overall work
performed on behalf of the transaction. In other words, the additional overhead could materially impact request
response time.

As a result, the account string for this workload can, as one option, target usage detail at the session level. The
assumption in this case is that applications requiring high-volume, low response time requests will take advantage
of session pooling to avoid the overhead of continually logging on and logging off. The account string for User Ids
performing this workload category would have the following format:

Format: XX_&S

Length: 12-15 characters (depending on PG length)

Since this is the same ASE strategy as employed for the multisession, multirequest workload, all the same benefits
would accrue. In addition, as it pertains to this particular workload category, the following benefits could also be
achieved:

 Usage by session could assist in determining the optimal number of sessions to establish for the session pool.

 CPU and/or IO skew by session could help identify possible problems in the data model for the primary index

retrievals.

About Using ASE With Client Utilities

Except for the utilities and variables noted in the table that follows, you can use ASE with any utility that uses a
standard Teradata Database interface to log on, including:

 BTEQ

 FastLoad

 MultiLoad

 Teradata Parallel Transporter

 TPump (except for &T)

 FastExport

 Teradata SQL Assistant (formerly known as Queryman)

 Teradata Studio

Teradata Vantage: Analytics Certification Learning Resource

https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-

4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-

%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-

2c09999bb1e3

(Section 9)

POWER BI CONNECTIONS

DirectQuery vs Live Connection vs Imported Data

DirectQuery refers to relational data sources. Live Connection refers to Analysis Services sources. Though the
terms differ, they both represent the same type of functionality – Live Connectivity – where the source data
remains in the source.

Imported Data means the source data is replicated, or imported, into a data model stored in Power BI. Data refresh
operations are required for the data to remain current.

9.1 Live Connectivity

Live connectivity is best for the following situations:

1. The source data is complete and does *not* need to be augmented with additional data sources – for instance,
traditional data warehousing.

2. Near real-time (low latency) data is required.

3. Data is updated frequently in the source (and a secondary data refresh is not desired).

4. Corporate security standards dictate the data may *not* be replicated into another data source.

5. Higher data volumes are involved which exceed the 250 MB limit of a Power BI embedded data model.

6. Row-level security is centralized in an SSAS Tabular model or underlying data source.

NOTE: On-Prem data connectivity requires the enterprise gateway.

9.2 Imported data

Imported data is most suitable for the following situations:

1. Existing data is to be augmented with additional data sources (such as industry data, demographics, weather,
etc). This is frequently referred to as data mashups.

2. Additional calculations are required that do not exist in the data source.

3. Exploratory reporting scenarios, prototyping activities, and one-time projects.

https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3

Teradata Vantage: Analytics Certification Learning Resource

4. The data can fit into 250 MB (compressed), the max size for an embedded data model.

5. It is appropriate for row-level security to be specified for one specific data model in the Power BI Service. From a
governance standpoint, specifying row-level security for a single model is riskier than utilizing a centralized source.

NOTE: On-Prem data requires either the personal or enterprise gateway to keep data curre

DirectQuery refers to relational data sources. Live Connection refers to Analysis Services sources. Though the
terms differ, they both represent the same type of functionality – Live Connectivity – where the source data
remains in the source.

Imported Data means the source data is replicated, or imported, into a data model stored in Power BI. Data refresh
operations are required for the data to remain current.

9.1 Live Connectivity

Live connectivity is best for the following situations:

1. The source data is complete and does *not* need to be augmented with additional data sources – for instance,
traditional data warehousing.

2. Near real-time (low latency) data is required.

3. Data is updated frequently in the source (and a secondary data refresh is not desired).

4. Corporate security standards dictate the data may *not* be replicated into another data source.

5. Higher data volumes are involved which exceed the 250 MB limit of a Power BI embedded data model.

6. Row-level security is centralized in an SSAS Tabular model or underlying data source.

NOTE: On-Prem data connectivity requires the enterprise gateway.

9.2 Imported data

Imported data is most suitable for the following situations:

1. Existing data is to be augmented with additional data sources (such as industry data, demographics, weather,
etc). This is frequently referred to as data mashups.

2. Additional calculations are required that do not exist in the data source.

3. Exploratory reporting scenarios, prototyping activities, and one-time projects.

4. The data can fit into 250 MB (compressed), the max size for an embedded data model.

Teradata Vantage: Analytics Certification Learning Resource

5. It is appropriate for row-level security to be specified for one specific data model in the Power BI Service. From a
governance standpoint, specifying row-level security for a single model is riskier than utilizing a centralized source.

NOTE: On-Prem data requires either the personal or enterprise gateway to keep data curre

https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-

4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-

%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-

fb81a7efb9e7

(Slide 7, Slide 8)

and Teradata Performance Tuning Best Practices (High Level)

Teradata- Tableau Standard data flow diagrams

Below diagram is a high-level representation of standard data flow in Teradata-Tableau integrated platform:

Data flow is further broken down into Tableau components:

https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7

Teradata Vantage: Analytics Certification Learning Resource

Teradata Performance Tuning Tips For Tableau

Indexes

• Validate indexes (eliminate skew due to zeroes or nulls)

• Create secondary indexes on dimension fields

Data Compression/ Multi value compression (MVC) on low cardinality columns

Data Distribution

Collect Statistics

Semantic Layer Views

✓ Embed joins and business logic in views to minimize complexity in report queries, use join indexes,

✓ De-normalize the physical database design as and when necessary, where the associated costs are

justified by perceived benefits for the business

✓ Can be leveraged by multiple BI tools

Implement Aggregate Join Indexes to provide quicker response time and lessen resource usage for often executed

user queries that aggregate millions of rows

Detailed Performance Tuning

This section includes the detail of various performance tuning checkpoints and the best practices to
implement the tuning.

Performance Tuning checkpoints in Teradata:
1. Database Integrity Constraints
2. Aggregate Join Indexes
3. Indexing:

Validate Primary Indexes (Eliminate skew due to zeros / nulls)
Secondary indexes on Dimensions, Join and Hash Indexes

Teradata Vantage: Analytics Certification Learning Resource

4. Data Compression/ Multi value compression (MVC) on low cardinality columns
5. Data Distribution
6. Collect Statistics
7. Use Query logs to analyze Tableau queries inside database
8. Use Query Bands captured in tableau queries for further tuning

Performance Tuning checkpoints in Tableau:

1. Dashboard and Worksheets
2. Filtering
3. Summary Tables
4. Queries
5. Extracts
6. Performance Recording

Teradata features supported by Tableau:

Teradata Performance Tuning Best Practices (High Level)
This section lists some of the best practices (with short description) followed for the purpose of
optimizing BI queries and operation in Teradata. However, optimization is a scenario-based
requirement and every separate implementation would require specific tuning appropriate for the
same.

1. Teradata recommends that a combination of entity and referential integrity constraints be

used in an Enterprise Data Warehouse environment to support business user analytic
access

2. Teradata recommends the use of Aggregate Join Indexes to provide quicker response time

and lessen resource usage for often executed user queries that aggregate millions of rows.

3. Appropriate Indexing:

Primary Indexes

o Teradata Database uses the Primary indexes as a distribution index that must be chosen
based on followed considerations:

• To maximize one-AMP operations
• To optimize parallel processing
• To minimize expensive I/O operations

o Ideally, Primary Index should be created as a selection of column(s) that most often
used to access the data and column(s) with stable data value. No more than 64 columns
can be specified in a primary index definition.

o As Primary Index can be unique or non-unique, note that then more unique the PI that
better the distribution of values.

o Only one primary index can be defined on a table and a single-value Primary Index
access requires only one AMP and typically and disk I/O.

Secondary Indexes

o Secondary Indexes provide applications using an alternate access path with the better

Teradata Vantage: Analytics Certification Learning Resource

performance. Secondary Indexes are optional and may be:

• Unique or non-unique

• Dynamically created and dropped by the user for optimum performance,

according to application requirements

o Do not affect a table distribution and can reduce base table I/O during value and join

operations

o Secondary Indexes are recommended on dimensions and master tables to provide
enhanced performance on drilldowns

o The query workload should be analyzed regularly. Teradata Index Wizard should be used
to advise which indexes should be created to benefit query performance and decrease
overall resource usage

o The Teradata Index Wizard also identifies indexes that are being underutilized and can
be dropped so that an optimal number of indexes exist as query workloads change over
time.

 NoPI

PPI:

o A new type of Teradata table without a Primary Index (PI). This type of table is neither
hash distributed, nor hash ordered and allows rows to be appended to the end of a
table as if it were a spool file.

o Tableau may consider supporting this feature to ensure the quick creation of small
temporary tables necessary for certain types of analytical queries.

o Partitioned Primary Indexes (PPIs) is partitioning and indexing mechanism used in

physical database design.

o When using PPIs (single-level or multi-level):
• Multiple levels of partitioning are allowed (but beware of over partitioning).
• Rows are still hash distributed among the AMPs on the primary index’s columns
• Rows are ordered by the first level partitioning, then second, etc. and finally by

the hash value of the primary index columns.
• In many cases, better performance occurs when the partitioning column are

part of the primary index; however, adding columns to the primary index may
reduce the usefulness of the primary index for access, joins, and aggregations.

• PPIs are especially helpful for queries based on range access, such as date
ranges.

• PPIs are allowed for volatile tables or global temporary tables since V2R6.1, so
the SQL Engine automatically generates partitioned primary indexes when
creating temporary tables and provides enough control for performance
tuning.

For more information, refer to the Orange Book: Partitioned Primary Index Usage (Single-Level

and Multilevel Partitioning (541-0003869-E02)

4. Multi-Value Compression should also be used on low cardinality columns.
o Multi-value Compression (MVC) should be used on low cardinality columns or where a

small number of value (255 or less) occur very frequently compared to other values.
o Algorithmic Compression (ALC) should be used on wide values such as character strings

where there are usually effective algorithms to compress the data; however, consider
the trade-offs of less space usage and reduced I/O vs. the CPU overhead of compressing
decompressing the data.

Teradata Vantage: Analytics Certification Learning Resource

o Block-level compression (BLC) can also be used to reduce space usage and I/O with the
trade-off of increased CPU overhead to compress and decompress the data
blocks. Temperature-based BLC can used to reduce the impact of CPU overhead by
applying the compression automatically to cold data while leaving hot data
uncompressed (I am not sure which release temperature-based BLC was added so if the
BP is for a particular releases or set of releases you need to check this).

Refer to Orange Book “Compression in Teradata 13.10” 541 – 0008669 – A02

5. The data distribution strategy in Teradata is crucial to good performance

• Teradata is a parallel database system and the data is distributed across a set of AMPs. Each

AMP performs all database work such as reading, updating, sorting, journaling, locking and

Teradata Vantage: Analytics Certification Learning Resource

indexing. For maximum performance, it is important to design the database to evenly distribute

the data across AMPs to ensure that all AMPs in the system perform approximately the same

amount of work.

Any user tables joined to EDW tables need to be aware of how their data is distributed and how

that of the EDW tables is used? Large EDW tables joined together either need to have their data

distributed the same way or join indexes created to meet usage requirements

A limited amount of de-normalization should be used where it is beneficial to reduce the

number of joins for performance reasons and to simplify query optimization

6. The need for collection of statistics and keeping statistics fresh.

• In most cases, collecting statistics will help improve query performance. With Collected Statistics

the Teradata optimizer does not allow the user to “override” its decisions through constructs

like hints or rewritten SQL. The optimizer will select the best plan to access the data.

• Tips to consider: Do not collect stats if it is not improving your query. This is just adding more

process without any benefit. Use Explain <sql statement> and compare the plan, the cpu and

the IO. Note: elapsed time and the time is not a good comparison method.

o You may not need to collect stats of more than 3 or 4 columns together (multi column

stats).
o Start with single column stats recommendation from the diagnostic helpstats plus a few

multicolumn stats that says high confidence, if they are less than 3 or 4 columns. The
number of columns in the multicolumn stats depends on the size (in bytes) of each
column. The total should not be greater than 16 bytes, which is usually 4 columns of
integer data type.

• Remove unwanted and stale statistics.

• Please refer to the following documentation for Best Practices for Teradata Statistics Collection:
Orange Books:

o Automated Statistics Management Teradata 14.10 (541-0009628-A03)
o Teradata 14.0 Statistics Enhancements 2011-12 (541-0009064-A02)
o Statistics Extrapolations 2010-09 (541-0008668-A02)
o Collecting Teradata Statistics 2007-03 (541-0006463-A02)

Teradata Vantage: Analytics Certification Learning Resource

7. Using DBQL to analyze Tableau queries inside database

• With Teradata Administrator, from the main window, click Tools>Query Logging.

Extracts (Tableau)

• Persistent cache of data that is written to disk and reproducible
• Columnar data store - a format where the data has been optimized for analytic querying
• Completely disconnected from the database during querying
• Refreshable, either by completely regenerating the extract or by incrementally adding rows

of data to an existing extract
• Architecture-aware – unlike most in-memory technologies it is not constrained by the

amount of physical RAM available
• Portable – extracts are stored as files so can be copied to a local hard drive and used when

the user is not connected to the corporate network. They can also be used to embed data
into packaged workbooks that are distributed for use with Tableau Reader;

Often much faster than the underlying live data connection

Extracts vs. Live Connection(Tableau)

Teradata Vantage: Analytics Certification Learning Resource

• The speed of the Tableau fast data engine is relative. You must consider the source data and the

processing power you have already given that data, as well as the processing power you have on

Tableau before you can determine whether the data engine is going to offer an improvement.

• For a non-optimized database or file-based data source, the data engine’s processing is much

faster and will result in a better user experience. But a well optimized database with indexing

might be just as fast as the Tableau data engine.

At the other extreme, the Tableau data engine will probably be slower than a big cluster of machines

like you would find with Data Warehouse appliances such as Teradata. You might create an aggregated

extract to offload summary-style analysis, but then drill back to the detailed source data (using actions

or blending) which would remain in the DW

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 20

Source: https://datavizcatalogue.com/

Sankey Diagram

Description

Sankey Diagrams display flows and their quantities in proportion to one another. The width of the arrows

or lines are used to show their magnitudes, so the bigger the arrow, the larger the quantity of flow. Flow

arrows or lines can combine together or split through their paths on each stage of a process. Colour can

be used to divide the diagram into different categories or to show the transition from one state of the

process to another.

Typically, Sankey Diagrams are used to visually show the transfer of energy, money or materials, but they

can be used to show the flow of any isolated system process.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 20

Tree Diagram

Description

Also known as a Organisational chart, Linkage Tree.

A Tree Diagram is a way of visually representing hierarchy in a tree-like structure. Typically the structure

of a Tree Diagram consists of elements such as a root node, a member that has no superior/parent.

Then there are the nodes, which are linked together with line connections called branches that represent

the relationships and connections between the members. Finally, the leaf nodes (or end-nodes) are

members who have no children or child nodes.

Tree Diagrams are often used:

To show family relations and descent.

In taxonomy, the practice and science of classification.

In evolutionary science, to show the origin of species.

In computer science and mathematics.

In businesses and organisations for managerial purposes.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 20

Pie Charts

Description

Extensively used in presentations and offices, Pie Charts help show proportions and percentages

between categories, by dividing a circle into proportional segments. Each arc length represents a

proportion of each category, while the full circle represents the total sum of all the data, equal to 100%.

Pie Charts are ideal for giving the reader a quick idea of the proportional distribution of the data. However

the major downsides to pie charts are:

They cannot show more than a few values, because as the number of values shown increases, the
size of each segment/slice becomes smaller. This makes them unsuitable for large amounts of data.

They take up more space than their alternatives, like a 100% Stacked Bar Chart for example. Mainly
due to their size and for the usual need for a legend.

They are not great for making accurate comparisons between groups of Pie Charts. This being that it is
harder to distinguish the size of items via area when it is for length.

In spite of that, comparing a given category (one slice) within the total of a single Pie Chart, then it can

often be more effective.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 20

Chord Diagram

Description

This type of diagram visualises the inter-relationships between entities. The connections between entities

are used to display that they share something in common. This makes Chord Diagrams ideal for

comparing the similarities within a dataset or between different groups of data.

Nodes are arranged along a circle, with the relationships between points connected to each other either

through the use of arcs or Bézier curves. Values are assigned to each connection, which is represented

proportionally by the size of each arc. Colour can be used to group the data into different categories,

which aids in making comparisons and distinguishing groups.

Over-cluttering becomes an issue with Chord Diagrams when there are too many connections displayed.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 20

Scatterplot

Description

Also known as a Scatter Graph, Point Graph, X-Y Plot, Scatter Chart or Scattergram.

Scatterplots use a collection of points placed using Cartesian Coordinates to display values from two

variables. By displaying a variable in each axis, you can detect if a relationship or correlation between the

two variables exists.

Various types of correlation can be interpreted through the patterns displayed on Scatterplots. These

are: positive (values increase together), negative (one value decreases as the other increases), null (no

correlation), linear, exponential and U-shaped. The strength of the correlation can be determined by

how closely packed the points are to each other on the graph. Points that end up far outside the general

cluster of points are known as outliers.

Lines or curves are fitted within the graph to aid in analysis and are drawn as close to all the points as

possible and to show how all the points were condensed into a single line would look. This is typically

known as the Line of Best Fit or a Trend Line and can be used to make estimates via interpolation.

Scatterplots are ideal when you have paired numerical data and you want to see if one variable impacts

the other. However, do remember that correlation is not causation and another unnoticed variable may be

influencing results.

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 20

Scatterplot

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 7 of 20

Histogram

Description

A Histogram visualises the distribution of data over a continuous interval or certain time period. Each bar

in a histogram represents the tabulated frequency at each interval/bin.

Histograms help give an estimate as to where values are concentrated, what the extremes are and

whether there are any gaps or unusual values. They are also useful for giving a rough view of the

probability distribution.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 8 of 20

Box and Whisker Plot

Description

A Box and Whisker Plot (or Box Plot) is a convenient way of visually displaying the data distribution

through their quartiles.

The lines extending parallel from the boxes are known as the “whiskers”, which are used to indicate

variability outside the upper and lower quartiles. Outliers are sometimes plotted as individual dots that are

in-line with whiskers. Box Plots can be drawn either vertically or horizontally.

Although Box Plots may seem primitive in comparison to a Histogram or Density Plot, they have the

advantage of taking up less space, which is useful when comparing distributions between many groups or

datasets.

Here are the types of observations one can make from viewing a Box Plot:

What the key values are, such as: the average, median 25th percentile etc.

If there are any outliers and what their values are.

Is the data symmetrical.

How tightly is the data grouped.

If the data is skewed and if so, in what direction.

Two of the most commonly used variation of Box Plot are: variable-width Box Plots and notched Box

Plots.

Teradata Vantage: Analytics Certification Learning Resource

Page 9 of 20

Box and Whisker Plot

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 10 of 20

Bar Chart

Description

As known as Bar Graph or Column Graph.

The classic Bar Chart uses either horizontal or vertical bars (column chart) to show discrete, numerical

comparisons across categories. One axis of the chart shows the specific categories being compared and

the other axis represents a discrete value scale.

Bars Charts are distinguished from Histograms, as they do not display continuous developments over an

interval. Bar Chart's discrete data is categorical data and therefore answers the question of "how many?"

in each category.

One major flaw with Bar Charts is that labelling becomes problematic when there are a large number of

bars.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 11 of 20

Area Graph

Description

Area Graphs are Line Graphs but with the area below the line filled in with a certain colour or texture.

Area Graphs are drawn by first plotting data points on a Cartesian coordinate grid, joining a line between

the points and finally filling in the space below the completed line.

Like Line Graphs, Area Graphs are used to display the development of quantitative values over an

interval or time period. They are most commonly used to show trends, rather than convey specific values.

Two popular variations of Area Graphs are: grouped and Stacked Area Graphs. Grouped Area Graphs

start from the same zero axis, while Stacked Area Graphs have each data series start from the point left

by the previous data series.

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 12 of 20

Heatmap (Matrix)

Description

Heatmaps visualise data through variations in colouring. When applied to a tabular format, Heatmaps are

useful for cross-examining multivariate data, through placing variables in the rows and columns and

colouring the cells within the table. Heatmaps are good for showing variance across multiple variables,

revealing any patterns, displaying whether any variables are similar to each other, and for detecting if any

correlations exist in-between them.

Typically, all the rows are one category (labels displayed on the left or right side) and all the columns are

another category (labels displayed on the top or bottom). The individual rows and columns are divided

into the subcategories, which all match up with each other in a matrix. The cells contained within the table

either contain colour-coded categorical data or numerical data, that is based on a colour scale. The data

contained within a cell is based on the relationship between the two variables in the connecting row and

column.

Teradata Vantage: Analytics Certification Learning Resource

Page 13 of 20

A legend is required alongside a Heatmap in order for it to be successfully read. Categorical data is

colour-coded, while numerical data requires a colour scale that blends from one colour to another, in

order to represent the difference in high and low values. A selection of solid colours can be used to

represent multiple value ranges (0-10, 11-20, 21-30, etc) or you can use a gradient scale for a single

range (for example 0 - 100) by blending two or more colours together.

Because of their reliance on colour to communicate values, Heatmaps are a chart better suited to

displaying a more generalised view of numerical data, as it’s harder to accurately tell the differences

between colour shades and to extract specific data points from (unless of course, you include the raw

data in the cells).

Heatmaps can also be used to show the changes in data over time if one of the rows or columns are set

to time intervals. An example of this would be to use a Heatmap to compare the temperature changes

across the year in multiple cities, to see where’s the hottest or coldest places. So the rows could list the

cities to compare, the columns contain each month and the cells would contain the temperature values.

Heatmap (Matrix)

Anatomy

Teradata Vantage: Analytics Certification Learning Resource

Page 14 of 20

Treemap

Teradata Vantage: Analytics Certification Learning Resource

Page 15 of 20

Description

Treemaps are an alternative way of visualising the hierarchical structure of a Tree Diagram while also

displaying quantities for each category via area size. Each category is assigned a rectangle area with

their subcategory rectangles nested inside of it.

When a quantity is assigned to a category, its area size is displayed in proportion to that quantity and to

the other quantities within the same parent category in a part-to-whole relationship. Also, the area size of

the parent category is the total of its subcategories. If no quantity is assigned to a subcategory, then it's

area is divided equally amongst the other subcategories within its parent category.

The way rectangles are divided and ordered into sub-rectangles is dependent on the tiling algorithm used.

Many tiling algorithms have been developed, but the "squarified algorithm" which keeps each rectangle as

square as possible is the one commonly used.

Ben Shneiderman originally developed Treemaps as a way of visualising a vast file directory on a

computer, without taking up too much space on the screen. This makes Treemaps a more compact and

space-efficient option for displaying hierarchies, that gives a quick overview of the structure. Treemaps

are also great at comparing the proportions between categories via their area size.

The downside to a Treemap is that it doesn't show the hierarchal levels as clearly as other charts that

visualise hierarchal data (such as a Tree Diagram or Sunburst Diagram).

Treemap

Teradata Vantage: Analytics Certification Learning Resource

Page 16 of 20

Anatomy

Donut Chart

Teradata Vantage: Analytics Certification Learning Resource

Page 17 of 20

Description

A donut chart is essentially a Pie Chart with an area of the centre cut out.

Pie Charts are sometimes criticised for focusing readers on the proportional areas of the slices to one

another and to the chart as a whole. This makes it tricky to see the differences between slices, especially

when you try to compare multiple Pie Charts together.

A Donut Chart somewhat remedies this problem by de-emphasizing the use of the area. Instead, readers

focus more on reading the length of the arcs, rather than comparing the proportions between slices.

Also, Donut Charts are more space-efficient than Pie Charts because the blank space inside a Donut

Chart can be used to display information inside it.

Anatomy

Bubble Chart

Teradata Vantage: Analytics Certification Learning Resource

Page 18 of 20

Description

A Bubble Chart is a multi-variable graph that is a cross between a Scatterplot and a Proportional Area

Chart.

Like a Scatterplot, Bubble Charts use a Cartesian coordinate system to plot points along a grid where the

X and Y axis are separate variables. However. unlike a Scatterplot, each point is assigned a label or

category (either displayed alongside or on a legend). Each plotted point then represents a third variable

by the area of its circle. Colours can also be used to distinguish between categories or used to represent

an additional data variable. Time can be shown either by having it as a variable on one of the axis or by

animating the data variables changing over time.

Bubble Charts are typically used to compare and show the relationships between categorised circles, by

the use of positioning and proportions. The overall picture of Bubble Charts can be used to analyse

for patterns/correlations.

Too many bubbles can make the chart hard to read, so Bubble Charts have a limited data size capacity.

This can be somewhat remedied by interactivity: clicking or hovering over bubbles to display hidden

information, having an option to reorganise or filter out grouped categories.

Like with Proportional Area Charts, the sizes of the circles need to be drawn based on the circle’s area,

not its radius or diameter. Not only will the size of the circles change exponentially, but this will lead to

misinterpretations by the human visual system.

Bubble Chart

Teradata Vantage: Analytics Certification Learning Resource

Page 19 of 20

Anatomy

Sunburst Diagram

Teradata Vantage: Analytics Certification Learning Resource

Page 20 of 20

Description

As known as a Sunburst Chart, Ring Chart, Multi-level Pie Chart, Belt Chart, Radial Treemap.

This type of visualisation shows hierarchy through a series of rings, that are sliced for each category

node. Each ring corresponds to a level in the hierarchy, with the central circle representing the root node

and the hierarchy moving outwards from it.

Rings are sliced up and divided based on their hierarchical relationship to the parent slice. The angle of

each slice is either divided equally under its parent node or can be made proportional to a value.

Colour can be used to highlight hierarchal groupings or specific categories.

Anatomy

1

Integrating Custom Visualizations in

Teradata AppCenter

1

2

© Teradata 2020

• Bar chart

• Chord

• Decision tree

• Hierarchical
clustering tree

• Line chart

• Pie chart

• Sankey

• Sigma

• Statistics Line

• Tree

• Wordcloud

• Wordbubbles

wordcloud

Built-in Teradata AppCenter Visualizations

Bar chart compares at least one set of data points using x and y axes. Clustered bar
charts are effective for showing multiple data sets. Stacked bar charts helps with
assessing proportion across a data set.
Chord charts interrelationships between data in a matrix. Ex. affinity of products
bought together.
Decision tree is a type of flow diagram with endpoint values to assist in decision-
making. Ex loan approval decision
Hierarchical Clustering visualizes data that has a containment relationship. Ex. USA
CA Sacramento, San Francisco
Line chart are used to show trends with x and y axes
Pie chart illustrate break down in an individual dimension and represent proportion
across categories
Sankey is a specific type of flow diagram in which the width of the arrows is shown
proportionally to the flow quantity.
Sigma visualization is appropriate for depicting data networks and how they relate to
each other
Statistics line is a type of line chart that support cfilter visualization formats
Tree is a type of flow diagram that supports npath visualization formats
Wordcloud is a visual representation of text data that can show proportion between

2

values
Wordbubbles Wordcloud is a variation of the wordcloud that uses bubble size to
represent proportion

2

3

End goal : Visualize GDP growth and Inflation of
countries

3

4

Visualization quotes

The purpose of

visualization is insight, not

pictures.

– Ben Shneiderman

Computer scientist, a Distinguished University

Professor in the University of Maryland

Department of Computer Science.

Numbers have an important

story to tell. They rely on

you to give them a clear

and convincing voice.

– Stephen Few

IT innovator, consultant, and educator with

over 30 years of experience in the fields of

business intelligence and information design

The greatest value of a

picture is when it forces us

to notice what we never

expected to see.

– John w Tukey,

Mathematician best known for development of

the Fast Fourier Transform algorithm and box

plot.

4

5

© Teradata 2020

Examples of Custom Visualizations* : Hexbin map

* Not available as a built-in AppCenter

1. Custom visualizations are visualizations that are freely downloadable from the
web.

2. Each visualization is a self-contained HTML page written in Java Script, D3.js,
HTML5 and CSS.

3. Every visualization expects data to be transformed to the format that the
visualization expects.

A hexbin map, organizes areas around some specific geometries , in this case squares,
and these are called bins. The idea is to visualize density as color intensity within each
bin.

5

6

© Teradata 2020

Examples of Custom Visualizations*: Chloropleth
map

* Not available as a built-in AppCenter

Choropleth maps use color to highlight differences between areas of map. Values
depicted are categorical- red or blue. But there could be other chloropleth maps with
numerical values

6

7

© Teradata 2020

Examples of Custom Visualizations* : Stacked Area
Chart

* Not available as a built-in AppCenter

Music Timeline of a variety of music genres waxing and waning in popularity until 2010

7

8

© Teradata 2020

Examples of Custom Visualizations*:Diverging
stacked barchart

* Not available as a built-in AppCenter

We create a diverging stacked bar chart to plot a 5 point Likert scale. There a lots of
ways to plot a Likert scale but, a diverging stacked bar chart is the best

8

9

© Teradata 2020

Examples of Custom Visualizations*:
temporal line chart

* Not available as a built-in AppCenter

@Leto Peel et. al. ICDM 2015 paper "Predicting Sports Scoring Dynamics with Restoration and Anti-persistence"

Inferred skills for each season of NBA (2002-2010) from Leto Peel et. a.l ICDM 2015
paper "Predicting Sports Scoring Dynamics with Restoration and Anti-persistence".
Teams that are the overall winners of more than one season are highlighted
Similar map with code is discussed at https://bl.ocks.org/mbostock/3709000

9

10

© Teradata 2020

The challenge of integrating a Custom Visualization
with Teradata AppCenter lies in:

Selecting the

right

visualization for

your data

Transforming data

as required by the

visualization

Where a treemap is required, a bar chart won’t work.
For example, a grouped horizontal bar chart requires data to be a dictionary of
dictionaries. Any other structure will not work.

10

11

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6

Steps to integrate a Custom Visualization

Select and
download your
visualization

Pull data from
table in json
format using
query service

Package and
upload the
updated
visualization

Update
visualization to
accept data from
json

Run the app
Identify input
table to source
data to
visualization

11

12

© Teradata 2020

Steps 1 and 2 :

1. Select and download your custom visualization.

• Downloaded the visualization to display GDP growth and Inflation rate of countries

2. Identify input table to source data to visualization.

• Sampled rows from input table :

Obsid CountryName CountryCode Cluster_id GDP growth rate Inflation Rate

204 United States USA 5 2.5072999535297 1.6400434423906

69 United Kingdom GBR 5 1.6597541606755 3.2857142857149

65 France FRA 5 1.7247755947887 1.529639382277

51 Germany DEU 5 4.0124659135177 1.1038085608358

89 India IND 2 10.259963064554 11.992296918768

93 Iceland ISL 5 -4.0987774858702 5.3965047672074

distinct(countrycode) = 175
distinct(cluster_id) = 7 (1,2,3,4,5,7)
select cluster_id,count(*) from medkmeansoutput group by cluster_id order by
cluster_id;
1,1
2,11
3,39
4,61 // US is in this cluster
5,48
6,5
7,10

12

13

© Teradata 2020

Step 3: Pull data from table using query service

“--name=query1 “ helps associate the query with the visualization

13

14

© Teradata 2020

…run and browse the json returned by query service

14

15

© Teradata 2020

Step 4: Update Visualization to accept data from json

Run query without the “--name=query1“ from AppCenter UI and the json composed by
the query service on data that he query service pulled from source table will display.

15

16

© Teradata 2020

Step 5: Package and upload the updated Visualization

polymer-bundler is a library for packaging project assets for production to minimize
network round-trips. Web pages that use multiple HTML Imports, external scripts, and
stylesheets to load dependencies may end up making lots of network round-trips. In
many cases, this can lead to long initial load times and unnecessary bandwidth usage.
The polymer-bundler tool follows HTML Imports, external script and stylesheet
references, inlining these external assets into "bundles", to be used in production.

16

17

© Teradata 2020

Step 6: Run the app

17

18

The Custom Visualization is ready

18

19References

• Teradata AppCenter User Guide

• Readings in Information Visualization: Using Vision to Think
Jock D. Mackinlay and Stuart Card

• A Tour through the Visualization Zoo
Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky, Stanford University

July/August 2019 issue of AcmQueue

• Show Me the Numbers: Designing Tables and Graphs to Enlighten
Stephen Few

• Information Dashboard Design: The Effective Visual Communication of

Data
Stephen Few

• http://perceptualedge.com

19

20References

• Great Academic paper on D3
D3 Data-Driven Documents

Authors: Michael Bostock, Vadim Ogievetsky, Jeffrey Heer

IEEE Transactions on Visualization and Computer Graphics archive

Volume 17 Issue 12, December 2011

• IEEE Transactions on Visualization and Computer Graphics

• Effectiveness of Animation in Trend Visualization
George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John

Stasko

20

Misleading Graphs

Bar plots

A truncated graph is a graph (usually seen in bar plots) where the y-axis labels doesn’t start at
zero. Truncated graphs are typically used to highlight differences between categories, but these
can lead to misinformation and tend to overexaggerate the differences.

Since the scale changes, these graphs would seem to represent the data differently, thus
people generally overestimate and often incorrectly interpret the actual differences.

The following two graphs below demonstrate this, the chart on the left shows a bar plot
starting at 0, while the one on the right starts at a higher number (1700). While they use exactly
the same data, the chart on the right, shows a huge gap between, Company C, which might be
interpreted as Company C performing way below as compared to Company A and Company B,
at about 75% less. But in actuality, Company C is performing only about 30% less than that of
Company A / B.

0

500

1000

1500

2000

2500

3000

Company A Company B Company C
1700

1900

2100

2300

2500

2700

2900

Company A Company B Company C

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 4

The Boxplot and Its Pitfalls

Source: https://www.data-to-
viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20t
han%20the%20others.

Code

A boxplot gives a nice summary of one or more numeric variables. A boxplot is composed of several
elements:

The line that divides the box into 2 parts represents the median of the data. If the median is 10, it means
that there are the same number of data points below and above 10.

• The ends of the box shows the upper (Q3) and lower (Q1) quartiles. If the third quartile is 15, it
means that 75% of the observation are lower than 15.

• The difference between Quartiles 1 and 3 is called the interquartile range (IQR)
• The extreme line shows Q3+1.5xIQR to Q1-1.5xIQR (the highest and lowest value excluding

outliers).
• Dots (or other markers) beyond the extreme line shows potntial outliers.

Here is a diagram showing the boxplot anatomy:

A boxplot can summarize the distribution of a numeric variable for several groups. The problem is that
summarizing also means losing information, and that can be a pitfall. If we consider the boxplot below, it
is easy to conclude that group C has a higher value than the others. However, we cannot see the
underlying distribution of dots in each group or their number of observations.

https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Interquartile_range

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 4

Code

Let’s see what happens when the boxplot is improved using additional elements.

Adding jitter

If the amount of data you are working with is not too large, adding jitter on top of your boxplot can
make the graphic more insightful.

Code

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 4

Here some new patterns appear clearly. Group C has a small sample size compared to the other groups.
This is definitely something you want to find out before saying that group C has a higher value than the
others. Moreover, it looks like group B has a bimodal distribution: dots are distributed in 2 groups:
around y=18 and y=13.

Switching to violin plot

If you have a large sample size, using jitter is not an option anymore since dots will overlap, making the
figure uninterpretable. A alternative is the violin plot, which describes the distribution of the data for
each group:

CODE

Here it is very clear that the groups have different distributions. The bimodal distribution of
group B becomes obvious. Violin plots are a powerful way to display information–they are probably
under-utilized compared to boxplots.

Adding the sample size

On the previous chart, the sample size of each group is indicated on the x-axis, below the group name.
This is a good practice and shows that group C is under-represented. However, it is sometimes better to
show the data points themselves. Thus, a good alternative is a half violin plot showing the raw data. This
uses code coming from jbburant and David Robinson.

CODE

https://www.data-to-viz.com/violin.html
https://gist.github.com/jbburant/b3bd4961f3f5b03aeb542ed33a8fe062
https://gist.github.com/dgrtwo/eb7750e74997891d7c20#file-geom_flat_violin-r

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 4

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 6

Source: https://www.data-to-viz.com/caveat/calculation_error.html

C A L C U L A T I O N E R R O R S
A collection of common dataviz caveats by Data-to-Viz.com

This is probably the most obvious pitfall example of the collection, but is probably
the most frequent one as well. Number inconsistencies on a graphic make it
completely useless.

Percentages don’t add up to 100%

For example, when displaying percentages on a pie chart, double-check that the
percents sum to 100%:

Source: WTF Visualizations

Here, also note that using an exploded 3D pie chart is probably the worst way to
convey information ever invented. (Read more about it)

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 6

Values don’t match visuals

In the following example, the 45% annotation is linked with the biggest part of the
donut chart; clearly something is incorrect.

Source: WTF Visualizations

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 6

Source: https://www.data-to-viz.com/caveat/pie.html

T H E I S S U E W I T H P I E C H A R T
A collection of common dataviz caveats by Data-to-Viz.com

CODE

Bad by definition

A pie chart is a circle divided into sectors that each represent a
proportion of the whole. It is often used to show percentage, where
the sum of the sectors equals 100%.

The problem is that humans are pretty bad at reading angles. In the
adjacent pie chart, try to figure out which group is the biggest one
and try to order them by value. You will probably struggle to do so
and this is why pie charts must be avoided.

CODE

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 6

If you’re still not convinced, let’s try to compare several pie plots.
Once more, try to understand which group has the highest value in
these 3 graphics. Also, try to figure out what is the evolution of the
value among groups.

CODE

Now, let’s represent exactly the same data using a barplot:

CODE

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 6

As you can see on this barplot, there is a heavy difference between
the three pie plots with a hidden pattern that you definitely don’t
want to miss when you tell your story.

And often made even worse

Even if pie charts are bad by definition, it is still possible to make
them even worse by adding other bad features:

 3d
 legend aside
 percentages that do not sum to 100
 too many items
 exploded pie charts

Alternatives

The barplot is the best alternative to pie plots. If you have many
values to display, you can also consider a lollipop plot that is a bit
more elegant in my opinion. Here is an example based on
the amount of weapons sold by a few countries in the world:

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 6

CODE

Another possibility would be to create a treemap if your goal is to
describe what the whole is composed of.

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 3

Histograms

Source: https://statistics.laerd.com/statistical-guides/understanding-histograms.php

What is a histogram?

A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a

set of continuous data. This allows the inspection of the data for its underlying distribution (e.g., normal

distribution), outliers, skewness, etc. An example of a

histogram, and the raw data it was constructed from, is

shown below:

36 25 38 46 55 68 72 55 36 38

67 45 22 48 91 46 52 61 58 55

How do you construct a histogram from a continuous variable?

To construct a histogram from a continuous variable you first need to split the data into intervals,

called bins. In the example above, age has been split into bins, with each bin representing a 10-year

period starting at 20 years. Each bin contains the number of occurrences of scores in the data set that

are contained within that bin. For the above data set, the frequencies in each bin have been tabulated

along with the scores that contributed to the frequency in each bin (see below):

Bin Frequency Scores Included in Bin

20-30 2 25,22

30-40 4 36,38,36,38

40-50 4 46,45,48,46

50-60 5 55,55,52,58,55

60-70 3 68,67,61

70-80 1 72

80-90 0 -

90-100 1 91

https://statistics.laerd.com/statistical-guides/understanding-histograms.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 3

Notice that, unlike a bar chart, there are no "gaps" between the bars (although some bars might be

"absent" reflecting no frequencies). This is because a histogram represents a continuous data set, and as

such, there are no gaps in the data (although you will have to decide whether you round up or round

down scores on the boundaries of bins).

Choosing the correct bin width

There is no right or wrong answer as to how wide a bin should be, but there are rules of thumb. You

need to make sure that the bins are not too small or too large. Consider the histogram we produced

earlier (see above): the following histograms use the same data, but have either much smaller or larger

bins, as shown below:

We can see from the histogram on the left that the bin width is too small because it shows too much

individual data and does not allow the underlying pattern (frequency distribution) of the data to be

easily seen. At the other end of the scale is the diagram on the right, where the bins are too large, and

again, we are unable to find the underlying trend in the data.

Histograms are based on area, not height of bars

In a histogram, it is the area of the bar that indicates the frequency of occurrences for each bin. This

means that the height of the bar does not necessarily indicate how many occurrences of scores there

were within each individual bin. It is the product of height multiplied by the width of the bin that

indicates the frequency of occurrences within that bin. One of the reasons that the height of the bars is

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 3

often incorrectly assessed as indicating frequency and not the area of the bar is due to the fact that a lot

of histograms often have equally spaced bars (bins), and under these circumstances, the height of the

bin does reflect the frequency.

What is the difference between a bar chart and a histogram?

The major difference is that a histogram is only used to plot the frequency of score occurrences in a

continuous data set that has been divided into classes, called bins. Bar charts, on the other hand, can be

used for a great deal of other types of variables including ordinal and nominal data sets.

Teradata Vantage: Data Science Certification Learning Resource

Page 1 of 11

Source: https://blog.datawrapper.de/dualaxis/

Why not to use two axes, and what to use
instead
The case against dual axis charts

Tl;dr: We believe that charts with two different y-axes make it hard for most
people to intuitively make right statements about two data series. We recommend
two alternatives strongly: using two charts instead of one and using indexed
charts.

From time to time we get an email asking if it’s possible in our data visualization
tool Datawrapper to create charts with two different y-axes (also called double Y charts,
dual axis charts, dual-scale data charts or superimposed charts). It is not – and we
won’t add it any time soon. We’re sorry if that makes our user’s life harder, but we agree
with the many chart experts[1] who make cases against dual axis charts. We hope you’ll
hear us out.

We will first look at situations when people want to use dual axis charts, then we explain
their problems, and afterward we’ll look at four alternatives:

Why people use dual axis charts

Why do people use dual axis charts? We looked around and found that most people
used them to show…

1 …two data series with the same measure, but different magnitudes, e.g. the
global GDP on one axis and the GDP of Germany on the other one:

Teradata Vantage: Data Science Certification Learning Resource

Page 2 of 11

2 …two data series that show the relative and the absolute values of something,
e.g. the GDP per capita on one axis and the absolute GDP on the other one:

3 …two data series for totally different values, e.g. the GDP of a country on one axis
and the life expectancy of that country on the other one:

Teradata Vantage: Data Science Certification Learning Resource

Page 3 of 11

4 …one data series, but the y-axis shows different scales, e.g. the values in
Fahrenheit on one axis and in Celsius on the other one:

As you can see, dual axis charts are often used to show two different data series with
a different magnitude (=number range) and/or measure (GDP, life expectancy,
etc). Often, their goal is to compare two trends with each other. Giving readers the
possibility to do so makes a lot of sense – but there are some reasons why a dual axis
chart is not the way to go. In fact, of these four use cases, we think that only the last
dual axis chart can be used without any doubt, since it only uses the second Y-axis to
show an alternative scale and not a second data series.

Let’s have a look at the problems with dual axis charts before thinking about
alternatives:

The problems with dual axis charts

Here’s the problem in a nutshell: The scales of dual axis charts are arbitrary and can
therefore (deliberately) mislead readers about the relationship between the two
data series.

Let’s use some real Worldbank data for the German GDP and the global GDP between
2004 and 2016 to explain that:

Teradata Vantage: Data Science Certification Learning Resource

Page 4 of 11

This chart has two different y-axes: The left axis shows the global GDP with a range
from $40 to $80 trillion. The right axis shows the German GDP with a range between
$2.5 and $4 trillion. The measure (US-Dollar) is the same, but we have a wildly different
magnitude. A second axis sounds like a good solution – but there are three problems
we have with them:

Zero baselines at different heights can mislead

The proportions of the two scales are often different from each other in dual axis charts.
If the left axis would go down to zero, the chart would be twice as long. If the right axis
would go down to zero, the chart would be almost three times as long. This is how both
axes look like when we extend them to zero:

Teradata Vantage: Data Science Certification Learning Resource

Page 5 of 11

So while the chart looks like the German GDP and the global GDP go up at roughly
the same rate (at least until 2014), they don’t. The global GDP increased by 80% until
2014; the GDP of Germany by 40%.

Most readers are used to line charts with just one scale. So when they see a line chart
with two scales, their intuition goes into the normal “that’s how I read a line chart”-mode:
“Oh, two lines, cool, same rate, interesting”. Readers actively need to remind
themselves that these two lines have less of a relationship than they’re used to seeing
in a line chart.

So how small is the relationship between these two lines? Let’s go crazy. Nothing really
matters, right? We can make all kinds of statements with our two data sets if we
just tweak the scales a little bit:

Teradata Vantage: Data Science Certification Learning Resource

Page 6 of 11

But that’s a problem we can solve, isn’t it? We can just set the zero baseline to the
same height. Except:

Even zero baselines at the same height can mislead

This is how the chart looks like with the same baseline. (Meaning, if we extended both
y-axes to zero, they would have the same height.) In the best case, our readers will now
think: “Seems like the global GDP increased more than the German GDP”. Yes!
Success! Except, in the worst case, our readers will think: “In the first years, the
German GDP was higher than the global GDP. And then in 2011, the two GDP’s were
the same:”

Teradata Vantage: Data Science Certification Learning Resource

Page 7 of 11

Why would anyone think that? Because humans have a tendency to set things in
relation if they’re close-by, and this relationship becomes a huge part of the meaning
they see in things. Data points and data series are not an exception to this rule. We
automatically compare lines and points with each other; and it’s hard to remember that
different scales are involved. If things look close-by on a chart, it’s hard to
constantly remember that actually, they are miles apart.

They’re just hard to read

“Ha,” you might say, “readers just need to look closer. I stared at this chart for a minute
and I figured everything out.” Well, good for you. But most of our readers don’t like to
do math in their heads. (Which is ok: Our job is to do the math for them.)

A study from 2011 backs up that claim. Petra Isenberg, Anastasia Bezerianos, Pierre
Dragicevic and Jean-Daniel Fekete showed 15 people four different charts that all
showed values in different magnitudes, and observed how well these people could read

Teradata Vantage: Data Science Certification Learning Resource

Page 8 of 11

the charts. One of them was a chart with a dual axis, which the researchers call
“superimposed chart”. That’s what they found out:

We found across the board that the superimposed chart performed poorly both in
terms of accuracy and time. Participants’ feedback from the questionnaire was
also clearly against the superimposed chart and it was ranked lowest by all but
one participant. Participants called it very confusing and demanding too much
concentration or reflection to decipher the non-monotonic and discontinuous
nature of the two scales. – A Study on Dual-Scale Data Charts

The researchers go on and recommend to avoid dual axis charts altogether. We agree.
We tried to show here that the danger of dual axis charts is that they’re not intuitive.
Chart designers have the freedom to manipulate axes as they wish, which can lead to
first visual impressions which are way off what the data actually says.

Alternatives

However, there’s hope! There are alternatives. Here we will present four of them:
Creating two charts, indexed charts, labeling and connected scatterplots.

Solution 1: Side-by-side charts

If the problem is that the two lines create meaning because they’re so close together,
let’s separate them! The first solution is to create two different charts with our two data
series, also called side-by-side-charts. The advantage is that – like with a dual axis
chart – side-by-side charts don’t care how much the numbers differ: We can create
two different axes for two different charts. The disadvantage is that two charts might
need more space than one chart.

Solution 2: Indexed charts

Teradata Vantage: Data Science Certification Learning Resource

Page 9 of 11

If we want to keep both data series in one chart, we can create an indexed chart. That’s
a chart that doesn’t tell us anything about absolute numbers, but shows the relative
change of our data series over time: By what percentage a variable increased or
decreased over time. Labeling or tooltips can bring back information about the absolute
numbers. And one can even show more than two data series in the same chart, as
happened in this chart by my co-worker Gregor, who compares the growth and decline
of several cryptocurrencies with each other.
This approach works only for data series with a similar rate of change, though. Cole
Nussbaumer Knaflic makes that point really well in one of her articles: If one of data
series changes by +10000% and the other one by just +5%, the latter line will almost be
invisible.

Solution 3: Prioritizing & labeling

The third idea to prevent a dual axis is to just show one line: the more important data
series of the two. We can then use chart annotations to add information about the data
we leave out (the other data series). That’s also a recommendation by Cole
Nussbaumer Knaflic, although she called it “not exactly the eloquent solution I was
imagining”. Indeed, this solution won’t work well for most data (including ours), but can
be a great alternative for dual axis charts that present absolute and relative
numbers of the same measure. For example, the following chart shows the
unemployment rate in the US, but gives information about the absolute numbers in form
of annotations:

Teradata Vantage: Data Science Certification Learning Resource

Page 10 of 11

Solution 4: Connected Scatterplot

Here it gets fancy: A connected scatterplot keeps one variable on the y-axis – but
instead of time, it places the second variable on the x-axis. Suddenly, time doesn’t
move from left to right, but wiggles through space. It’s really unintuitive[2], but also lots of
fun. Stephanie Evergreen recommends it as an alternative to a dual axis chart in one of
her articles. In our case, a connected scatterplot might be overkill; but we’ve
seen cases in which they are the best chart type for showing an insight.

Of the four alternatives we show here, the first two will be useful in most cases. Let us
know if we missed anything! We hope we could make our concerns understandable and
show some ways how you can visualise your data even without a dual axis chart.

Teradata Vantage: Data Science Certification Learning Resource

Page 11 of 11

1. Here are articles by smart people who have opinions about using dual axis charts:
Dual-Scaled Axes in Graphs Are They Ever the Best Solution? by Stephen Few.
Looks first at column charts, then at line charts with dual axes and concludes that he
"cannot think of a situation that warrants them in light of other, better solutions."
Two Alternatives to Using a Second Y-Axis by Stephanie Evergreen. Explains two
alternatives to a second Y-axis, two side-by-side graphs and a connected scatterplot.
Be gone, dual y-axis! by Cole Nussbaumer Knaflic. Shows a case when indexed
charts as an alternative for dual axis charts fail, and suggests a labeled chart instead.
Hadley Wickham’s arguments against dual axis charts on StackOverflow. Gives
four arguments why it’s not possible to create dual axis charts with his charting library
ggplot2.
Dual axes time series plots may be ok sometimes after all by
Peter Ellis. Makes arguments against side-by-side charts, indexed charts, and
connected scatterplots, and explains Do’s and Don’ts of creating dual axis charts. ↩

2. Note that both the dual axis chart and the connected scatterplots are not intuitive, but
differently so: The dual axis chart promises the reader to be easily decipherable,
since it looks like the common line-chart that readers have seen so often and learned
how to read. Quickly glancing at a dual axis chart for a second can plant misleading
statements in a reader’s mind. Glancing at a connected scatterplot, on the other side,
just ends in a confused face and the realisation “I need to take my time to understand
this chart”. It’s not intuitive, but it also doesn’t lead to intuitive (and wrong) insights. ↩

Visualization Formats and Types Overview
AppCenter supports a variety of built-in visualizations formats and types based on specific table structures
for apps that run once or on schedule and SQL scripts. In addition, you can upload your own visualization
assets using the Custom (Upload) option when creating the app or uploading the script.

Built-In Visualization Formats and Types
AppCenter supports the following built-in visualization formats and types for apps that run once or on
schedule and SQL scripts:

Visualization
Format

Visualization
Types
Supported

Required Table Structure and Example

CFilter • Chord
• Sigma
• Bar
• Pie
• Line
• Statistics

Line

col1_item1 - varchar
col1_item2 - varchar
cntb - int
cnt1 - int
cnt2 - int

Example:

nPath® • Hierarchical
clustering
tree

• Sigma
• Tree
• Sankey

cnt - int
path - varchar

Example:

Sessionize • Bar
• Pie
• Line
• Statistics

Line

x - int
y - int

Example:

Tfidf • Wordcloud
• Wordbubbles

wordcloud

term - varchar
tf_idf - real

Example:

Visualization Formats, Types, and Table
Structures

Teradata® AppCenter User Guide, Release 1.8 37

Visualization
Format

Visualization
Types
Supported

Required Table Structure and Example

Find Named
Entity

• Wordcloud
• Wordbubbles

wordcloud

id - int
ENTITY - varchar
TYPE - varchar

Example:

Forest Drive • Dtree worker_ip - varchar
task_index - integer
tree_num - integer
tree - varchar

Example:

If you select a Bar visualization type with the Default format, AppCenter provides the following options to
customize the resulting chart:

• X-Axis (horizontal) and Y-Axis (vertical) labels
• Show Legend (identify data in visualization)
• Color Scheme (vivid, natural, cool, fire, solar, air, and more)

Visualization Code Example for SQL Scripts
The code for each visualization type must include --name=type, where type can be anything, followed by
the SQL. For example:

--name=bar1
select original_service, complete from appcenter_user.sdabc;

--name=line1
select original_service, complete from appcenter_user.sdabc;

--name=wordcloud1
select original_service as term, complete as tf_idf from appcenter_user.sdabc;

--name=bar2

A: Visualization Formats, Types, and Table Structures

Teradata® AppCenter User Guide, Release 1.8 38

3.0 Statistical

Techniques

Source: The Basic Practice of Statistics (6th ed.). Diana Mindrila, Ph.D.

Phoebe Balentyne, M.Ed.

Concepts:

 Displaying Relationships: Scatterplots

 Interpreting Scatterplots

 Adding Categorical Variables to Scatterplots

 Measuring Linear Association: Correlation

 Facts About Correlation

Objectives:

 Construct and interpret scatterplots.

 Add categorical variables to scatterplots.

 Calculate and interpret correlation.

 Describe facts about correlation.

References:

Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th

ed.). New York, NY: W. H. Freeman and Company.

Scatterplots and Correlation

Teradata Vantage Analytics Certification: Learning Resource

Scatterplot

 The most useful graph for displaying the relationship between two

quantitative variables is a scatterplot.

 Many research projects are correlational studies because they investigate

the relationships that may exist between variables. Prior to investigating the

relationship between two quantitative variables, it is always helpful to create

a graphical representation that includes both of these variables. Such a

graphical representation is called a scatterplot.

A scatterplot shows the relationship between two quantitative
variables measured for the same individuals. The values of one
variable appear on the horizontal axis, and the values of the other
variable appear on the vertical axis. Each individual in the data
appears as a point on the graph.

Student	 Student	GPA	 Motivation	

Joe	 2.0	 50	

Lisa	 2.0	 48	
Mary	 2.0	 100	
Sam	 2.0	 12	
Deana	 2.3	 34	
Sarah	 2.6	 30	
Jennifer	 2.6	 78	

Gregory	 3.0	 87	
Thomas	 3.1	 84	
Cindy	 3.2	 75	
Martha	 3.6	 83	
Steve	 3.8	 90	
Jamell	 3.8	 90	
Tammie	 4.0	 98	

	

Scatterplot Example

What is the relationship between students’ achievement motivation and GPA?

 In this example, the relationship between students’ achievement motivation

and their GPA is being investigated.

 The table on the left includes a small group of individuals for whom GPA and

scores on a motivation scale have been recorded. GPAs can range from 0 to 4

and motivation scores in this example range from 0 to 100. Individuals in

this table were ordered based on their GPA.

 Simply looking at the table shows that, in general, as GPA increases,

motivation scores also increase.

 However, with a real set of data, which may have hundreds or even

thousands of individuals, a pattern cannot be detected by simply looking at

the numbers. Therefore, a very useful strategy is to represent the two

variables graphically to illustrate the relationship between them.

 A graphical representation of individual scores on two variables is called a

scatterplot.

 The image on the right is an example of a scatterplot and displays the data

from the table on the left. GPA scores are displayed on the horizontal axis

and motivation scores are displayed on the vertical axis.

 Each dot on the scatterplot represents one individual from the data set. The

location of each point on the graph depends on both the GPA and motivation

scores. Individuals with higher GPAs are located further to the right and

individuals with higher motivation scores are located higher up on the graph.

 Sam, for example, has a GPA of 2 so his point is located at 2 on the right. He

also has a motivation score of 12, so his point is located at 12 going up.

 Scatterplots are not meant to be used in great detail because there are

usually hundreds of individuals in a data set.

 The purpose of a scatterplot is to provide a general illustration of the

relationship between the two variables.

 In this example, in general, as GPA increases so does an individual’s

motivation score.

 One of the students in this example does not seem to follow the general

pattern: Mary. She is one of the students with the lowest GPA, but she has

the maximum score on the motivation scale. This makes her an exception or

an outlier.

Interpreting Scatterplots

How to Examine a Scatterplot

As in any graph of data, look for the overall pattern and for striking
departures from that pattern.

• The overall pattern of a scatterplot can be described by the
direction, form, and strength of the relationship.

• An important kind of departure is an outlier, an individual
value that falls outside the overall pattern of the relationship.

Interpreting Scatterplots: Direction

 One important component to a scatterplot is the direction of the relationship

between the two variables.

This example compares

students’ achievement

motivation and their GPA.

These two variables have a

positive association because

as GPA increases, so does

motivation.

This example compares

students’ GPA and their number

of absences. These two

variables have a negative

association because, in general,

as a student’s number of

absences decreases, their GPA

increases.

Two variables have a positive association when above-average
values of one tend to accompany above-average values of the
other, and when below-average values also tend to occur together.

Two variables have a negative association when above-average
values of one tend to accompany below-average values of the
other.

Interpreting Scatterplots: Form

 Another important component to a scatterplot is the form of the relationship

between the two variables.

This example illustrates a linear

relationship. This means that the

points on the scatterplot closely

resemble a straight line. A

relationship is linear if one

variable increases by

approximately the same rate as the

other variables changes by one

unit.

 This example illustrates a

relationship that has the form of a

curve, rather than a straight line.

This is due to the fact that one

variable does not increase at a

constant rate and may even start

decreasing after a certain point.

This example describes a

curvilinear relationship between

the variable “age” and the variable

“working memory.” In this

example, working memory

increases throughout childhood,

remains steady in adulthood, and

begins decreasing around age 50.

Interpreting Scatterplots: Strength

 Another important component to a scatterplot is the strength of the

relationship between the two variables.

 The slope provides information on the strength of the relationship.

 The strongest linear relationship occurs when the slope is 1. This means that

when one variable increases by one, the other variable also increases by the

same amount. This line is at a 45 degree angle.

 The strength of the relationship between two variables is a crucial piece of

information. Relying on the interpretation of a scatterplot is too subjective.

More precise evidence is needed, and this evidence is obtained by computing

a coefficient that measures the strength of the relationship under

investigation.

Measuring Linear Association

 A scatterplot displays the strength, direction, and form of the relationship

between two quantitative variables.

 A correlation coefficient measures the strength of that relationship.

 Calculating a Pearson correlation coefficient requires the assumption that the

relationship between the two variables is linear.

 There is a rule of thumb for interpreting the strength of a relationship based

on its r value (use the absolute value of the r value to make all values

positive):

Absolute Value of r Strength of Relationship

r < 0.3 None or very weak

0.3 < r <0.5 Weak

0.5 < r < 0.7 Moderate

r > 0.7 Strong

 The relationship between two variables is generally considered strong when

their r value is larger than 0.7.

The correlation r measures the strength of the linear relationship
between two quantitative variables.

Pearson r:

• r is always a number between -1 and 1.
• r > 0 indicates a positive association.
• r < 0 indicates a negative association.
• Values of r near 0 indicate a very weak linear

relationship.
• The strength of the linear relationship increases as r

moves away from 0 toward -1 or 1.
• The extreme values r = -1 and r = 1 occur only in the

case of a perfect linear relationship.

Correlations

Example: There is a moderate, positive, linear relationship between GPA and

achievement motivation.

r = 0.62

 Based on the criteria listed on the previous page, the value of r in this case (r

= 0.62) indicates that there is a positive, linear relationship of moderate

strength between achievement motivation and GPA.

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Correlation

 The images below illustrate what the relationships might look like at

different degrees of strength (for different values of r).

 For a correlation coefficient of zero, the points have no direction, the shape is

almost round, and a line does not fit to the points on the graph.

 As the correlation coefficient increases, the observations group closer

together in a linear shape.

 The line is difficult to detect when the relationship is weak (e.g., r = -0.3), but

becomes more clear as relationships become stronger (e.g., r = -0.99)

Correlation Coefficients

The Statistical Significance of Correlation Coefficients:

 Correlation coefficients have a probability (p-value), which shows the

probability that the relationship between the two variables is equal to

zero (null hypotheses; no relationship).

 Strong correlations have low p-values because the probability that they have

no relationship is very low.

 Correlations are typically considered statistically significant if the p-value is

lower than 0.05 in the social sciences, but the researcher has the liberty to

decide the p-value for which he or she will consider the relationship to be

significant.

 The value of p for which a correlation will be considered statistically

significant is called the alpha level and must be reported.

 SPSS notation for p values: Sig. (2 tailed)

In the previous example, r = 0.62 and p-value = 0.03. The p-value of 0.03 is less than

the acceptable alpha level of 0.05, meaning the correlation is statistically significant.

Four things must be reported to describe a relationship:

1) The strength of the relationship given by the correlation coefficient.

2) The direction of the relationship, which can be positive or negative based on

the sign of the correlation coefficient.

3) The shape of the relationship, which must always be linear to computer a

Pearson correlation coefficient.

4) Whether or not the relationship is statistically significant, which is based

on the p-value.

Facts About Correlation

1) The order of variables in a correlation is not important.

2) Correlations provide evidence of association, not causation.

3) r has no units and does not change when the units of measure of x, y, or both

are changed.

4) Positive r values indicate positive association between the variables, and

negative r values indicate negative associations.

5) The correlation r is always a number between -1 and 1.

Pearson r: Assumptions

Assumptions:

 Correlation requires that both variables be quantitative.

 Correlation describes linear relationships. Correlation does not describe

curve relationships between variables, no matter how strong the relationship

is.

Cautions:

 Correlation is not resistant. r is strongly affected by outliers.

 Correlation is not a complete summary of two-variable data.

 For example:

 The correlation coefficient is based on means and standard deviations, so it is

not robust to outliers; it is strongly affected by extreme observations. These

individuals are sometimes referred to as influential observations because

they have a strong impact on the correlation coefficient.

 For instance, in the above example the correlation coefficient is 0.62 on the

left when the outlier is included in the analysis. However, when this outlier

is removed, the correlation coefficient increases significantly to 0.89.

 This one case, when included in the analysis, reduces a strong relationship to

a moderate relationship.

 This case makes such a big difference in this example because the data set

contains a very small number of individuals. As a general rule, as the size of

the sample increases, the influence of extreme observations decreases.

 When describing the relationship between two variables, correlations are

just one piece of the puzzle. This information is necessary, but not sufficient.

Other analyses should also be conducted to provide more information.

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 3

Histograms

Source: https://statistics.laerd.com/statistical-guides/understanding-histograms.php

What is a histogram?

A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a

set of continuous data. This allows the inspection of the data for its underlying distribution (e.g., normal

distribution), outliers, skewness, etc. An example of a

histogram, and the raw data it was constructed from, is

shown below:

36 25 38 46 55 68 72 55 36 38

67 45 22 48 91 46 52 61 58 55

How do you construct a histogram from a continuous variable?

To construct a histogram from a continuous variable you first need to split the data into intervals,

called bins. In the example above, age has been split into bins, with each bin representing a 10-year

period starting at 20 years. Each bin contains the number of occurrences of scores in the data set that

are contained within that bin. For the above data set, the frequencies in each bin have been tabulated

along with the scores that contributed to the frequency in each bin (see below):

Bin Frequency Scores Included in Bin

20-30 2 25,22

30-40 4 36,38,36,38

40-50 4 46,45,48,46

50-60 5 55,55,52,58,55

60-70 3 68,67,61

70-80 1 72

80-90 0 -

90-100 1 91

https://statistics.laerd.com/statistical-guides/understanding-histograms.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 3

Notice that, unlike a bar chart, there are no "gaps" between the bars (although some bars might be

"absent" reflecting no frequencies). This is because a histogram represents a continuous data set, and as

such, there are no gaps in the data (although you will have to decide whether you round up or round

down scores on the boundaries of bins).

Choosing the correct bin width

There is no right or wrong answer as to how wide a bin should be, but there are rules of thumb. You

need to make sure that the bins are not too small or too large. Consider the histogram we produced

earlier (see above): the following histograms use the same data, but have either much smaller or larger

bins, as shown below:

We can see from the histogram on the left that the bin width is too small because it shows too much

individual data and does not allow the underlying pattern (frequency distribution) of the data to be

easily seen. At the other end of the scale is the diagram on the right, where the bins are too large, and

again, we are unable to find the underlying trend in the data.

Histograms are based on area, not height of bars

In a histogram, it is the area of the bar that indicates the frequency of occurrences for each bin. This

means that the height of the bar does not necessarily indicate how many occurrences of scores there

were within each individual bin. It is the product of height multiplied by the width of the bin that

indicates the frequency of occurrences within that bin. One of the reasons that the height of the bars is

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 3

often incorrectly assessed as indicating frequency and not the area of the bar is due to the fact that a lot

of histograms often have equally spaced bars (bins), and under these circumstances, the height of the

bin does reflect the frequency.

What is the difference between a bar chart and a histogram?

The major difference is that a histogram is only used to plot the frequency of score occurrences in a

continuous data set that has been divided into classes, called bins. Bar charts, on the other hand, can be

used for a great deal of other types of variables including ordinal and nominal data sets.

Teradata Vantage: Data Science Certification Learning Resource

Page 1 of 2

Assumption of Linearity

Source: http://people.duke.edu/~rnau/testing.htm

There are four principal assumptions which justify the use of linear regression models for purposes of
inference or prediction:

(i) linearity and additivity of the relationship between dependent and independent variables:

 (a) The expected value of dependent variable is a straight-line function of each independent variable,
holding the others fixed.

 (b) The slope of that line does not depend on the values of the other variables.

 (c) The effects of different independent variables on the expected value of the dependent variable are
additive.

(ii) statistical independence of the errors (in particular, no correlation between consecutive errors in the
case of time series data)

(iii) homoscedasticity (constant variance) of the errors

 (a) versus time (in the case of time series data)

 (b) versus the predictions

 (c) versus any independent variable

(iv) normality of the error distribution.

If any of these assumptions is violated (i.e., if there are nonlinear relationships between dependent and
independent variables or the errors exhibit correlation, heteroscedasticity, or non-normality), then the
forecasts, confidence intervals, and scientific insights yielded by a regression model may be (at best)
inefficient or (at worst) seriously biased or misleading.

Violations of linearity or additivity are extremely serious: if you fit a linear model to data which are
nonlinearly or nonadditively related, your predictions are likely to be seriously in error, especially when
you extrapolate beyond the range of the sample data.

How to diagnose: nonlinearity is usually most evident in a plot of observed versus predicted values or a
plot of residuals versus predicted values, which are a part of standard regression output. The points
should be symmetrically distributed around a diagonal line in the former plot or around horizontal line in
the latter plot, with a roughly constant variance. (The residual-versus-predicted-plot is better than the
observed-versus-predicted plot for this purpose, because it eliminates the visual distraction of a sloping
pattern.) Look carefully for evidence of a "bowed" pattern, indicating that the model makes systematic
errors whenever it is making unusually large or small predictions. In multiple regression models,

http://people.duke.edu/~rnau/testing.htm

Teradata Vantage: Data Science Certification Learning Resource

Page 2 of 2

nonlinearity or nonadditivity may also be revealed by systematic patterns in plots of the residuals versus
individual independent variables.

How to fix: consider applying a nonlinear transformation to the dependent and/or independent
variables if you can think of a transformation that seems appropriate. For example, if the data are strictly
positive, the log transformation is an option. (The logarithm base does not matter--all log functions are
same up to linear scaling--although the natural log is usually preferred because small changes in the
natural log are equivalent to percentage changes. If a log transformation is applied to the dependent
variable only, this is equivalent to assuming that it grows (or decays) exponentially as a function of the
independent variables. If a log transformation is applied to both the dependent variable and the
independent variables, this is equivalent to assuming that the effects of the independent variables
are multiplicative rather than additive in their original units. This means that, on the margin, a
small percentage change in one of the independent variables induces a proportional percentage change
in the expected value of the dependent variable, other things being equal.

Another possibility to consider is adding another regressor that is a nonlinear function of one of the other
variables. For example, if you have regressed Y on X, and the graph of residuals versus predicted values
suggests a parabolic curve, then it may make sense to regress Y on both X and X^2 (i.e., X-squared). The
latter transformation is possible even when X and/or Y have negative values, whereas logging is
not. Higher-order terms of this kind (cubic, etc.) might also be considered in some cases. But don’t get
carried away! This sort of "polynomial curve fitting" can be a nice way to draw a smooth curve through a
wavy pattern of points (in fact, it is a trend-line option on scatterplots on Excel), but it is usually a terrible
way to extrapolate outside the range of the sample data.

Finally, it may be that you have overlooked some entirely different independent variable that explains or
corrects for the nonlinear pattern or interactions among variables that you are seeing in your residual
plots. In that case the shape of the pattern, together with economic or physical reasoning, may suggest
some likely suspects. For example, if the strength of the linear relationship between Y and X1 depends on
the level of some other variable X2, this could perhaps be addressed by creating a new independent
variable that is the product of X1 and X2. In the case of time series data, if the trend in Y is believed to
have changed at a particular point in time, then the addition of a piecewise linear trend variable (one
whose string of values looks like 0, 0, …, 0, 1, 2, 3, …) could be used to fit the kink in the data. Such a
variable can be considered as the product of a trend variable and a dummy variable. Again, though, you
need to beware of overfitting the sample data by throwing in artificially constructed variables that are
poorly motivated. At the end of the day you need to be able to interpret the model and explain (or sell)
it to others.

The UnivariateStatistics function calculates descriptive statistics for a set of target columns.

UnivariateStatistics Syntax
Version 1.2

SELECT * FROM UnivariateStatistics (
 ON { table | view | (query) } AS InputTable
 [OUT TABLE MomentsTableName (moments_table_name)]
 [OUT TABLE BasicTableName (basic_table_name)]
 [OUT TABLE QuantilesTableName (quantiles_table_name)]
 USING
 [TargetColumns ('target_column' [,...]) |
 ExcludeColumns ('exclude_column' [,...])
]
 [PartitionColumns ('partition_column' [,...])]
 [StatisticsGroups ('statistics_group' [,...])]
) AS alias;

UnivariateStatistics Syntax Elements
MomentsTableName

[Required if you omit StatisticsGroups syntax element or specify 'moments'.] Specify the name
for the output table that contains the moments.

BasicTableName
[Required if you omit StatisticsGroups or specify 'basic'.] Specify the name for the output table
that contains the basic statistics.

QuantilesTableName
[Required if you omit StatisticsGroups or specify 'quartiles'.] Specify the name for the output
table that contains the quantiles.

TargetColumns
[Optional] Specify the names of the InputTable columns for which to compute statistics.

Default: All numerical InputTable columns

ExcludeColumns
[Optional] Specify the names of the InputTable columns to exclude from statistics calculation.

UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 173

PartitionColumns
[Optional] Specify the names of the InputTable columns on which to partition the input. The
function copies these columns to the output table.

Default behavior: The function treats all rows as a single partition.

StatisticsGroups
[Optional] Specify the group or groups of statistics to calculate:

statistics_group Statistics to Calculate

'moments' • Number of observations
• Sum
• Mean
• Variance
• Standard deviation
• Standard error
• Skewness
• Kurtosis
• Coefficient of variation
• Uncorrected sum of squares
• Corrected sum of squares

'basic' • Number of observations
• Number of NULL values
• Number of positive, negative, and zero values
• Number of unique values
• Mode
• Median
• Mean
• Standard deviation
• Variance
• Range
• Interquartile range
• Harmonic mean
• Geometric mean
• Highest and lowest five values

'quantiles' • Minimum and maximum values
• 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles

Default behavior: The function calculates all three groups of statistics.

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 174

UnivariateStatistics Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

partition_
column

Any [Column appears once for each specified partition_column.]
Defines a partition for statistics calculation.

target_column SMALLINT, INT,
BIGINT, NUMERIC, or
DOUBLE PRECISION

[Column appears once for each target_column, which is either
specified by TargetColumns or omitted from ExcludeColumns.
] Column for which to compute statistics. At least one target_
column must be numeric.

UnivariateStatistics Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports whether function succeeded and saved output files.

MomentsStatistics, BasicStatistics, and QuantileStatistics Schema

The StatisticsGroups syntax element determines which statistics tables the function outputs:

• If you omit StatisticsGroups, the function calculates all statistics and outputs three tables, one for each
statistics_group.

• If you specify StatisticsGroups, the function outputs a table for each specified statistics_group.

For each table to be output, you must specify a name, using the MomentsTableName, BasicTableName,
or QuantilesTableName syntax element.

The tables have the same schema.

Column Data Type Description

partition_
column

Same as in input
table

[Column appears once for each specified partition_column.]
Column copied from input table.Defines a partition for statistics
calculation.

stats VARCHAR Identifies statistic in row; for example, "Coefficient of variation"
or "Corrected sum of squares."

result_value DOUBLE
PRECISION

[Column appears once for each specified target_column.]
Calculated statistic identified by statistics column.

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 175

UnivariateStatistics Examples

UnivariateStatistics Example: ExcludeColumns, All Statistics
This example excludes columns id and period from the target columns and outputs all three statistics
tables, by default.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE moments;
DROP TABLE basic;
DROP TABLE quantiles;

SELECT * FROM UnivariateStatistics (
ON finance_data3 AS InputTable
OUT TABLE MomentsTableName(moments)
OUT TABLE BasicTableName(basic)
OUT TABLE QuantilesTableName(quantiles)
USING
ExcludeColumns('id','period')
) AS dt ;

Output

 message
 --
 UnivariateStatistics succeeded. The output tables are saved.

SELECT * FROM moments;

 stats expenditure income investment
 -------------------------- ------------------ ------------------

 Standard deviation 590.923585337053 698.928750981727 210.746691977944
 Corrected sum of squares 3.17763522173913E7 4.44536273043478E7
4041689.30434783
 Skewness 0.473364666302052 0.446362736743103 0.422507147168344
 Number of observations 92.0 92.0 92.0
 Kurtosis -1.15712585537242 -1.1624376180194 -1.001282169732
 Variance 349190.683707597 488501.398948877 44414.1681796464
 Uncorrected sum of squares 1.5700013E8 2.13389608E8 2.4530266E7
 Coefficient of variation 0.506502784308876 0.515781476323667
0.446579502072297

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 176

 Standard error 61.6080425745307 72.868359489299 21.9718614961239
 Mean 1166.67391304348 1355.08695652174 471.913043478261
 Sum 107334.0 124668.0 43416.0

SELECT * FROM basic ORDER BY 1;

 stats expenditure income investment
 ------------------------- ---------------- ---------------- ----------------
 Bottom 5 (1) 415.0 451.0 179.0
 Bottom 5 (2) 421.0 465.0 180.0
 Bottom 5 (3) 434.0 485.0 185.0
 Bottom 5 (4) 448.0 493.0 192.0
 Bottom 5 (5) 458.0 509.0 202.0
 Geometric mean 1020.53565750432 1176.50711695451 425.089198191843
 Harmonic mean 891.824091552794 1017.9035289329 381.44257427176
 Interquartile range 997.0 1159.0 311.0
 Mean 1166.67391304348 1355.08695652174 471.913043478261
 Median 1013.0 1178.0 494.0
 Mode 574.0 799.0 519.0
 Number of negative values 0.0 0.0 0.0
 Number of NULL values 0.0 0.0 0.0
 Number of positive values 92.0 92.0 92.0
 Number of unique values 91.0 91.0 83.0
 Number of zero values 0.0 0.0 0.0
 Range 1856.0 2200.0 691.0
 Standard deviation 590.923585337053 698.928750981727 210.746691977944
 Top 5 (1) 2271.0 2651.0 870.0
 Top 5 (2) 2250.0 2639.0 860.0
 Top 5 (3) 2237.0 2628.0 853.0
 Top 5 (4) 2235.0 2620.0 852.0
 Top 5 (5) 2225.0 2618.0 844.0
 Variance 349190.683707597 488501.398948877 44414.1681796464

SELECT * FROM quantiles;

 stats expenditure income investment
 ------- ----------- ------ ----------
 1% 415.0 451.0 179.0
 10% 497.0 548.0 214.0
 25% 653.0 751.0 286.0
 5% 458.0 509.0 202.0
 50% 1013.0 1178.0 494.0
 75% 1650.0 1910.0 597.0
 90% 2102.0 2457.0 830.0
 95% 2206.0 2580.0 833.0
 99% 2250.0 2639.0 860.0

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 177

 Maximum 2271.0 2651.0 870.0
 Minimum 415.0 451.0 179.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

UnivariateStatistics Example: TargetColumns,
PartitionColumns
This example specifies the target columns explicitly and partitions the data.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE moments;
DROP TABLE basic;
DROP TABLE quantiles;

SELECT * FROM UnivariateStatistics(
 ON finance_data3 AS InputTable
 OUT TABLE MomentsTableName(moments)
 OUT TABLE BasicTableName(basic)
 OUT TABLE QuantilesTableName(quantiles)
 USING
 TargetColumns('expenditure','income','investment')
 PartitionColumns('id')
) AS dt;

Output

 message
 --
 UnivariateStatistics succeeded. The output tables are saved.

SELECT * FROM moments;

 id stats expenditure income investment
 -- -------------------------- ------------------ ------------------

 2 Coefficient of variation 0.298644349474261 0.296222528540145
0.255444956277228
 2 Kurtosis -0.816037129460566 -0.858783399504378
0.169604612557607
 1 Corrected sum of squares 5781986.4 7886360.4 666306.0
 1 Standard deviation 385.0403375472 449.682520486142

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 178

130.70871903117
 3 Corrected sum of squares 724349.666666667 1108844.91666667
141336.916666667
 3 Standard deviation 256.612489362793 317.496587908175
113.352594174375
 2 Mean 1355.6 1589.275 556.675
 2 Uncorrected sum of squares 7.9898048E7 1.09675485E8
1.3184093E7
 1 Number of observations 40.0 40.0 40.0
 1 Skewness 2.41487088335036 2.38651478870263
2.25360944369739
 3 Number of observations 12.0 12.0 12.0
 3 Skewness -0.779317508353147 -0.784652108192004
-0.736147966158991
2 Sum 54224.0 63571.0 22267.0

 2 Standard error 64.0111849200731 74.4367050647558
22.4837658670451
 1 Variance 148256.061538462 202214.369230769
17084.7692307692
 1 Kurtosis 4.8015109257614 4.71437243981462
4.42294797371972
 3 Variance 65849.9696969697 100804.083333333
12848.8106060606
 3 Kurtosis -1.54284162536314 -1.57575089282068
-1.61592354816352

1 Coefficient of variation 0.539121167106132 0.554342357601259
0.434248235983952
 2 Standard deviation 404.842280147308 470.779059045639
142.199821035626
 3 Coefficient of variation 0.125472653913842 0.132987505843069
0.149328261070645
 1 Uncorrected sum of squares 2.6185252E7 3.4208178E7
4290346.0
 2 Corrected sum of squares 6391993.6 8643683.975 788610.775
 3 Uncorrected sum of squares 5.091683E7 6.9505945E7
7055827.0
 1 Mean 714.2 811.2 301.0
 2 Skewness 0.539127192993609 0.475410247931558
0.806624515469788
 3 Mean 2045.16666666667 2387.41666666667 759.083333333333
 1 Standard error 60.8802228844601 71.1010494350768
20.6668631090747
 2 Number of observations 40.0 40.0 40.0
 3 Standard error 74.0776449055143 91.6533702477862

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 179

32.722075379959
 1 Sum 28568.0 32448.0 12040.0
 3 Sum 24542.0 28649.0 9109.0
 2 Variance 163897.271794872 221632.922435897
20220.7891025641

SELECT * FROM basic ORDER BY 1;

 id stats expenditure income investment
 -- ------------------------- ---------------- ---------------- ----------------
 1 Median 602.0 694.0 280.0
 1 Standard deviation 385.0403375472 449.682520486142 130.70871903117
 1 Top 5 (5) 779.0 897.0 322.0
 1 Bottom 5 (1) 415.0 451.0 179.0
 1 Number of zero values 0.0 0.0 0.0
 1 Bottom 5 (5) 458.0 509.0 202.0
 1 Geometric mean 652.322122537438 736.802888310562 282.108617595293
 1 Harmonic mean 614.458471878887 691.093427241673 268.951437475886
 1 Interquartile range 194.0 241.0 75.0
 1 Top 5 (1) 1842.0 2132.0 700.0
 1 Top 5 (3) 1807.0 2070.0 658.0
 1 Bottom 5 (3) 434.0 485.0 185.0
 1 Top 5 (4) 1774.0 2040.0 635.0
 1 Number of NULL values 0.0 0.0 0.0
 1 Top 5 (2) 1831.0 2121.0 675.0
 1 Bottom 5 (2) 421.0 465.0 180.0
 1 Variance 148256.061538462 202214.369230769 17084.7692307692
 1 Mean 714.2 811.2 301.0
 1 Mode 574.0 799.0 280.0
 1 Number of unique values 39.0 39.0 37.0
 1 Range 1427.0 1681.0 521.0
 1 Bottom 5 (4) 448.0 493.0 192.0
 1 Number of negative values 0.0 0.0 0.0
 1 Number of positive values 40.0 40.0 40.0
 2 Bottom 5 (3) 837.0 979.0 364.0
 2 Top 5 (3) 2061.0 2423.0 844.0
 2 Interquartile range 554.0 653.0 76.0
 2 Median 1267.0 1493.0 526.0
 2 Standard deviation 404.842280147308 470.779059045639 142.199821035626
 2 Bottom 5 (5) 881.0 1025.0 375.0
 2 Harmonic mean 1246.1032651127 1460.64283484258 524.31105430778
 2 Top 5 (5) 1994.0 2318.0 816.0
 2 Bottom 5 (1) 798.0 922.0 315.0
 2 Geometric mean 1299.05445462922 1523.24641529642 540.054672867882
 2 Number of zero values 0.0 0.0 0.0

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 180

 2 Top 5 (1) 2121.0 2470.0 853.0
 2 Number of positive values 40.0 40.0 40.0
 2 Number of negative values 0.0 0.0 0.0
 2 Range 1323.0 1548.0 538.0
 2 Top 5 (4) 2056.0 2369.0 830.0
 2 Number of NULL values 0.0 0.0 0.0
 2 Mean 1355.6 1589.275 556.675
 2 Number of unique values 40.0 40.0 36.0
 2 Top 5 (2) 2102.0 2457.0 852.0
 2 Bottom 5 (2) 816.0 949.0 339.0
 2 Mode NULL NULL 519.0
 2 Variance 163897.271794872 221632.922435897 20220.7891025641
 2 Bottom 5 (4) 858.0 988.0 371.0
 3 Number of zero values 0.0 0.0 0.0
 3 Harmonic mean 2012.97784954935 2344.96421517024 741.962569222229
 3 Top 5 (3) 2237.0 2628.0 833.0
 3 Interquartile range 513.0 644.0 220.0
 3 Standard deviation 256.612489362793 317.496587908175 113.352594174375
 3 Bottom 5 (5) 2145.0 2521.0 801.0
 3 Geometric mean 2029.47884297898 2366.7551731771 750.758507052472
 3 Bottom 5 (1) 1650.0 1910.0 597.0
 3 Top 5 (5) 2225.0 2618.0 830.0
 3 Bottom 5 (3) 1722.0 1976.0 611.0
 3 Top 5 (1) 2271.0 2651.0 870.0
 3 Median 2164.0 2545.0 824.0
 3 Variance 65849.9696969697 100804.083333333 12848.8106060606
 3 Number of unique values 12.0 12.0 11.0
 3 Number of negative values 0.0 0.0 0.0
 3 Range 621.0 741.0 273.0
 3 Number of NULL values 0.0 0.0 0.0
 3 Mean 2045.16666666667 2387.41666666667 759.083333333333
 3 Mode NULL NULL 830.0
 3 Bottom 5 (2) 1685.0 1943.0 603.0
 3 Top 5 (2) 2250.0 2639.0 860.0
 3 Number of positive values 12.0 12.0 12.0
 3 Bottom 5 (4) 1752.0 2018.0 619.0
 3 Top 5 (4) 2235.0 2620.0 831.0

SELECT * FROM quantiles ORDER BY 1,2;

 id stats expenditure income investment
 -- ------- ----------- ------ ----------
 1 1% 415.0 451.0 179.0
 1 10% 448.0 493.0 192.0
 1 25% 510.0 558.0 229.0

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 181

 1 5% 421.0 465.0 180.0
 1 50% 602.0 694.0 280.0
 1 75% 704.0 799.0 304.0
 1 90% 779.0 897.0 322.0
 1 95% 1807.0 2070.0 658.0
 1 99% 1842.0 2132.0 700.0
 1 Maximum 1842.0 2132.0 700.0
 1 Minimum 415.0 451.0 179.0
 2 1% 798.0 922.0 315.0
 2 10% 858.0 988.0 371.0
 2 25% 1013.0 1178.0 494.0
 2 5% 816.0 949.0 339.0
 2 50% 1267.0 1493.0 526.0
 2 75% 1567.0 1831.0 570.0
 2 90% 1994.0 2318.0 816.0
 2 95% 2061.0 2423.0 844.0
 2 99% 2121.0 2470.0 853.0
 2 Maximum 2121.0 2470.0 853.0
 2 Minimum 798.0 922.0 315.0
 3 1% 1650.0 1910.0 597.0
 3 10% 1650.0 1910.0 597.0
 3 25% 1722.0 1976.0 611.0
 3 5% 1650.0 1910.0 597.0
 3 50% 2164.0 2545.0 824.0
 3 75% 2235.0 2620.0 831.0
 3 90% 2250.0 2639.0 860.0
 3 95% 2250.0 2639.0 860.0
 3 99% 2271.0 2651.0 870.0
 3 Maximum 2271.0 2651.0 870.0
 3 Minimum 1650.0 1910.0 597.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

UnivariateStatistics Example: StatisticsGroups ('basic')
This example calculates and outputs only basic statistics.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE basic_2;

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 182

SELECT * FROM UnivariateStatistics(
 ON finance_data3 AS InputTable
 OUT TABLE BasicTableName(basic_2)
 USING
 ExcludeColumns('id','period')
 StatisticsGroups('BASIC')

) AS dt;

Output

 message
 --
 UnivariateStatistics succeeded. The output tables are saved.

The output table, basic_2, is the same as UnivariateStatistics Example: ExcludeColumns, All Statistics
output table basic.

SELECT * FROM basic_2 ORDER BY 1;

 stats expenditure income investment
 ------------------------- ---------------- ---------------- ----------------
 Bottom 5 (1) 415.0 451.0 179.0
 Bottom 5 (2) 421.0 465.0 180.0
 Bottom 5 (3) 434.0 485.0 185.0
 Bottom 5 (4) 448.0 493.0 192.0
 Bottom 5 (5) 458.0 509.0 202.0
 Geometric mean 1020.53565750432 1176.50711695451 425.089198191843
 Harmonic mean 891.824091552794 1017.9035289329 381.44257427176
 Interquartile range 997.0 1159.0 311.0
 Mean 1166.67391304348 1355.08695652174 471.913043478261
 Median 1013.0 1178.0 494.0
 Mode 574.0 799.0 519.0
 Number of negative values 0.0 0.0 0.0
 Number of NULL values 0.0 0.0 0.0
 Number of positive values 92.0 92.0 92.0
 Number of unique values 91.0 91.0 83.0
 Number of zero values 0.0 0.0 0.0
 Range 1856.0 2200.0 691.0
 Standard deviation 590.923585337053 698.928750981727 210.746691977944
 Top 5 (1) 2271.0 2651.0 870.0
 Top 5 (2) 2250.0 2639.0 860.0
 Top 5 (3) 2237.0 2628.0 853.0
 Top 5 (4) 2235.0 2620.0 852.0

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 183

 Top 5 (5) 2225.0 2618.0 844.0
 Variance 349190.683707597 488501.398948877 44414.1681796464

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

15: UnivariateStatistics (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 184

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 1/6

Published on STAT 504 (https://onlinecourses.science.psu.edu/stat504)

Home > A Review of the Principles of Statistics > Statistical Inference and Estimation > Hypothesis Testing

Hypothesis Testing
Key Topics:

Basic approach
Null and alternative hypothesis
Decision making and the p-value
Z-test & Nonparametric alternative

Basic approach to hypothesis testing

1. State a model describing the relationship between the explanatory variables and the outcome
variable(s) in the population and the nature of the variability. State all of your assumptions.

2. Specify the null and alternative hypotheses in terms of the parameters of the model.
3. Invent a test statistic that will tend to be different under the null and alternative hypotheses.
4. Using the assumptions of step 1, find the theoretical sampling distribution of the statistic

under the null hypothesis of step 2. Ideally the form of the sampling distribution should be one
of the “standard distributions”(e.g. normal, t, binomial..)

5. Calculate a p-value, as the area under the sampling distribution more extreme than your
statistic. Depends on the form of the alternative hypothesis.

6. Choose your acceptable type 1 error rate (alpha) and apply the decision rule: reject the
null hypothesis if the p-value is less than alpha, otherwise do not reject.

One sample z-test

1. Assume data are independently sampled from a normal distribution with unknown mean μ
and known variance σ2.

2. Specify:
H0: μ = μ0
H0: μ ≤ μ0
H0: μ ≥ μ0

vs. one of those
HA: μ ≠ μ0
HA: μ > μ0
HA: μ < μ0

3. Use a z-statistic:

general form is: (estimate - value we are testing)/(st.dev of the estimate)
z-statistic follows N(0,1) distribution

4. Calculate the p-value:
2 × the area above |z|, area above z,or area below z, or
compare the statistic to a critical value, |z| ≥ zα/2, z ≥ zα, or z ≤ - zα

5. Choose the acceptable level of Alpha = 0.05, we conclude …. ?

−X̄ μ0

σ/ n√

https://online.stat.psu.edu/stat504/
https://online.stat.psu.edu/stat504/
https://online.stat.psu.edu/stat504/node/5/
https://online.stat.psu.edu/stat504/node/16/

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 2/6

Making the Decision

It is either likely or unlikely that we would collect the evidence we did given the initial assumption.
(Note: “likely” or “unlikely” is measured by calculating a probability!)

If it is likely, then we “do not reject” our initial assumption. There is not enough evidence to do
otherwise.

If it is unlikely, then:

either our initial assumption is correct and we experienced an unusual event or,
our initial assumption is incorrect

In statistics, if it is unlikely, we decide to “reject” our initial assumption.

Example: Criminal Trial Analogy

First, state 2 hypotheses, the null hypothesis (“H0”) and the alternative hypothesis (“HA”)

H0: Defendant is not guilty.
HA: Defendant is guilty.

Usually the H0 is a statement of “no effect”, or “no change”, or “chance only” about a population
parameter.

While the HA , depending on the situation, is that there is a difference, trend, effect, or a relationship
with respect to a population parameter.

It can one-sided and two-sided.
In two-sided we only care there is a difference, but not the direction of it. In one-sided we care
about a particular direction of the relationship. We want to know if the value is strictly larger or
smaller.

Then, collect evidence, such as finger prints, blood spots, hair samples, carpet fibers, shoe prints,
ransom notes, handwriting samples, etc. (In statistics, the data are the evidence.)

Next, you make your initial assumption.

Defendant is innocent until proven guilty.

In statistics, we always assume the null hypothesis is true.

Then, make a decision based on the available evidence.

If there is sufficient evidence (“beyond a reasonable doubt”), reject the null hypothesis.
(Behave as if defendant is guilty.)
If there is not enough evidence, do not reject the null hypothesis. (Behave as if defendant is
not guilty.)

If the observed outcome, e.g., a sample statistic, is surprising under the assumption that the null
hypothesis is true, but more probable if the alternative is true, then this outcome is evidence against

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 3/6

H0 and in favor of HA.

An observed effect so large that it would rarely occur by chance is called statistically significant (i.e.,
not likely to happen by chance).

Using the p-value to make the decision

The p-value represents how likely we would be to observe such an extreme sample if the null
hypothesis were true. The p-value is a probability computed assuming the null hypothesis is true,
that the test statistic would take a value as extreme or more extreme than that actually observed.
Since it's a probability, it is a number between 0 and 1. The closer the number is to 0 means the
event is “unlikely.” So if p-value is “small,” (typically, less than 0.05), we can then reject the null
hypothesis.

Significance level and p-value

Significance level, α, is a decisive value for p-value. In this context, significant does not mean
“important”, but it means “not likely to happened just by chance”.

α is the maximum probability of rejecting the null hypothesis when the null hypothesis is true. If α =
1 we always reject the null, if α = 0 we never reject the null hypothesis. In articles, journals, etc…
you may read: “The results were significant (p<0.05).” So if p=0.03, it's significant at the level of α =
0.05 but not at the level of α = 0.01. If we reject the H0 at the level of α = 0.05 (which corresponds to
95% CI), we are saying that if H0 is true, the observed phenomenon would happen no more than
5% of the time (that is 1 in 20). If we choose to compare the p-value to α = 0.01, we are insisting on
a stronger evidence!

Very Important Point!

Neither decision of rejecting or not rejecting the H0 entails proving the null hypothesis or the
alternative hypothesis. We merely state there is enough evidence to behave one way or the
other. This is also always true in statistics!

So, what kind of error could we make? No matter what decision we make, there is always a chance
we made an error.

Errors in Criminal Trial:

 Truth
Jury Decision Not Guilty Guilty
Not Guilty OK ERROR

Guilty ERROR OK

Errors in Hypothesis Testing

Type I error (False positive): The null hypothesis is rejected when it is true.

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 4/6

α is the maximum probability of making a Type I error.

Type II error (False negative): The null hypothesis is not rejected when it is false.

β is the probability of making a Type II error

There is always a chance of making one of these errors. But, a good scientific study will minimize
the chance of doing so!

 Truth
Decision Null Hypothesis Alternative Hypothesis
Null Hypothesis OK TYPE II ERROR

Alternative
Hypothesis TYPE I ERROR OK

Power

The power of a statistical test is its probability of rejecting the null hypothesis if the null hypothesis is
false. That is, power is the ability to correctly reject H0 and detect a significant effect. In other words,
power is one minus the type II error risk.

Which error is worse?

Type I = you are innocent, yet accused of cheating on the test.

Type II = you cheated on the test, but you are found innocent.

This depends on the context of the problem too. But in most cases scientists are trying to be
“conservative”; it's worse to make a spurious discovery than to fail to make a good one. Our goal it
to increase the power of the test that is to minimize the length of the CI.

We need to keep in mind:

the effect of the sample size,
the correctness of the underlying assumptions about the population,
statistical vs. practical significance, etc…

(see the handout). To study the tradeoffs between the sample size, α, and Type II error we can use
power and operating characteristic curves.

Height Example

One sample z-test

Assume data are independently sampled from a normal distribution with unknown mean μ and
known variance σ2 = 9. Make an initial assumption that μ = 65.

Power = 1 − β = P (reject | is false)H0 H0

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 5/6

Specify the hypothesis: H0: μ = 65 HA: μ ≠ 65

z-statistic: 3.58

z-statistic follow N(0,1) distribution

The p-value, < 0.0001, indicates that, if the average height in the population is 65 inches, it is
unlikely that a sample of 54 students would have an average height of 66.4630.

Alpha = 0.05. Decision: p-value < alpha, thus reject the null hypothesis.

Conclude that the average height is not equal to 65.

What type of error might we have made?

Type I error is claiming that average student height is not 65 inches, when it really is.

Type II error is failing to claim that the average student height is not 65in when it is.

We rejected the null hypothesis, i.e., claimed that the height is not 65, thus making potentially a
Type I error. But sometimes the p-value is too low because of the large sample size, and we may
have statistical significance but not really practical significance! That's why most statisticians are
much more comfortable with using CI than tests.

Height Example

Graphical summary of the z-test

9/18/2020 https://online.stat.psu.edu/stat504/print/book/export/html/20/

https://online.stat.psu.edu/stat504/print/book/export/html/20/ 6/6

Based on the CI only, how do you know that you should reject the null hypothesis?

The 95% CI is (65.6628,67.2631) ...

What about practical and statistical significance now? Is there another reason to suspect this
test, and the p-value calculations?

There is a need for a further generalization. What if we can't assume that σ is known? In this case
we would use s (the sample standard deviation) to estimate σ.

If the sample is very large, we can treat σ as known by assuming that σ = s. According to the law of
large numbers, this is not too bad a thing to do. But if the sample is small, the fact that we have to
estimate both the standard deviation and the mean adds extra uncertainty to our inference. In
practice this means that we need a larger multiplier for the standard error.

We need one-sample t-test.

One sample t-test

1. Assume data are independently sampled from a normal distribution with unknown mean μ and
variance σ2. Make an initial assumption, μ0.

2. Specify:
H0: μ = μ0
H0: μ ≤ μ0
H0: μ ≥ μ0

vs. one of those
HA: μ ≠ μ0
HA: μ > μ0
HA: μ < μ0

3. t-statistic: where s is a sample st.dev.
4. t-statistic follows t-distribution with df = n - 1
5. p-value:
6. Alpha = 0.05, we conclude ….

Testing for the population proportion

Let's go back to our CNN poll. Assume we have a SRS of 1,017 adults.

We are interested in testing the following hypothesis: H0: p = 0.50 vs. p > 0.50

What is the test statistic?

If alpha = 0.05, what do we conclude?

We will see more details in the next lesson on proportions, then distributions, and possible tests.

Source URL: https://onlinecourses.science.psu.edu/stat504/node/20

−X̄ μ0

s/ n√

https://online.stat.psu.edu/stat504/node/20/

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 4

GLM Stats Model (Outcomes and Significance)

Source: https://stats.idre.ucla.edu/sas/output/glm/

This page shows an example of analysis of variance run through a general linear model (GLM) with
footnotes explaining the output. The data were collected on 200 high school students, with
measurements on various tests, including science, math, reading and social studies. The response
variable is writing test score (write), from which we explore its relationship with gender (female) and
academic program (prog). The model examined has the main effects of female and program type, as
well as their interaction. The dataset used in this page can be downloaded from

 Class Level Information

Class Levels Values
female 2 0 1
prog 3 1 2 3

Number of Observations Read 200
Number of Observations Used 200

Dependent Variable: write

 Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 4630.36091 926.07218 13.56 <.0001
Error 194 13248.51409 68.29131
Corrected Total 199 17878.87500

R-Square Coeff Var Root MSE write Mean
0.258985 15.65866 8.263856 52.77500

Source DF Type III SS Mean Square F Value Pr > F
female 1 1261.853291 1261.853291 18.48 <.0001
prog 2 3274.350821 1637.175410 23.97 <.0001
female*prog 2 325.958189 162.979094 2.39 0.0946

Class Level Information

 Class Level Information

Classa Levelsb Valuesc
female 2 0 1
prog 3 1 2 3

https://stats.idre.ucla.edu/sas/output/glm/

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 4

Number of Observations Readd 200
Number of Observations Usedd 200
a. Class – Underneath are the categorical (factor) variables, which were defined as such in
the class statement. Had the categorical variables not been defined in the class statement and just
entered in the model statement, the respective variables would be treated as continuous variables,

which would be inappropriate.

b. Levels – Underneath are the respective number of levels (categories) of the factor variables defined in

the class statement.

c. Values – Underneath are the respective values of the levels for the factor variables defined in

the class statement.

d. Number of Observations Read and Number of Observations Used – This is the number of
observations read and the number of observation used in the analysis. The Number of Observations
Used may be less than the Number of Observations Read if there are missing values for any variables in
the equation.

Model Information

Dependent Variablee: write

 Sum of
Sourcef DFg Squaresh Mean Squarei F Valuej Pr > Fj
Model 5 4630.36091 926.07218 13.56 <.0001
Error 194 13248.51409 68.29131
Corrected Total 199 17878.87500

R-Squarek Coeff Varl Root MSEm write Meann
0.258985 15.65866 8.263856 52.77500

Sourceo DFp Type III SSq Mean Squarer F Values Pr > Fs
female 1 1261.853291 1261.853291 18.48 <.0001
prog 2 3274.350821 1637.175410 23.97 <.0001
female*prog 2 325.958189 162.979094 2.39 0.0946

e. Dependent Variable – This is the dependent variable in our glm model.

f. Source – Underneath are the sources of variation of the dependent variable. There are three parts,
Model, Error, and Corrected Total. With glm, you must think in terms of the variation of the response
variable (sums of squares), and partitioning this variation. The variation in the response variable,
denoted by Corrected Total, can be partitioned into two unique parts. The first partition, Model, is the
variance in the response accounted by our model (female prog female*prog). The second source, Error,
is the variation not explained by the Model. These two sources, the explained (Model), and unexplained
(Error), add up to the Corrected Total, SSCorrected Total = SSModel + SSError.

The term “Corrected Total” is called such, as compared to “Total”, or more correctly, “Uncorrected
Total,” because the “Corrected Total” adjusts the sums of squares to incorporate information on the
intercept. Specifically, the Corrected Total is the sum of the squared difference between the response

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 4

variable and the mean of the response variable, whereas the Uncorrected Total is the sum of the
squared values of just the response variable.

g. DF – These are the degrees of freedom associated with the respective sources of variance. As with the
additive nature of the sums of squares, the degrees of freedom are also additve, DFCorrected Source =
DFModel + DFError. The DFCorrected Total has N-1 degrees of freedom, where N is the total sample size. See DF,
superscript p, for the calculation of the DF for each individual predictor variable, which add up to DFModel.
Hence, DFError =DFCorrected Total – DFModel. The DFModel and DFError define the parameters of the F-distribution

used to test F Value, superscript j.

h. Sum of Squares – These are the sums of squares that correspond to the three sources of variation.
SSModel – The Model sum of squares is the squared difference of the predicted value and the grand mean
summed over all observations. Suppose our model did not explain a significant proportion of variance,
then the predicted value would be near the grand mean, which would result with a small SSModel, and
SSError would nearly be equal to SSCorrected Total. SSError – The Error sum of squares is the squared difference
of the observed value from the predicted value summed over all observations. SSCorrected Total – The
Corrected Total sum of squares is the squared difference of the observed value from the grand mean
summed over all observations.

i. Mean Square – These are the Mean Squares (MS) that correspond to the partitions of the total
variance. The MS is defined as SS/DF.

j. F Value and Pr > F – These are the F Value and p-value, respectively, testing the null hypothesis that
the Model does not explain the variance of our response variable. F Value is computed as MSModel /
MSError, and under the null hypothesis, F Value follows a central F-distribution with numerator DF =
DFModel and denominator DF =DFError. The probability of observing an F Value as large as, or larger, than
13.56 under the null hypothesis is < 0.0001. If we set our alpha level at 0.05, our willingness to accept a
Type I error, we’d reject the null hypothesis and conclude that our model explains a statistically

significant proportion of the variance.

k. R-Square – This is the R-Square value for the model. R-Square defines the proportion of the total
variance explained by the Model and is calculated as R-Square = SSModel/SSCorrected Total =
4630.36/17878.88=0.259.

l. Coeff Var – This is the Coefficient of Variation (CV). The coefficient of variation is defined as the 100
times root MSE divided by the mean of response variable; CV = 100*8.26/52.775 = 15.659. The CV is a
dimensionless quantity and allows the comparison of the variation of populations.

m. Root MSE – This is the root mean square error. It is the square root of the MSError and defines the
standard deviation of an observation about the predicted value.

n. write Mean – This is the grand mean of the response variable.

o. Source – Underneath are the variables in the model. Our model has female, prog, and the interaction
of female and prog. The interaction disallows the effect of, say, prog, over the levels of female to be
additive. Also, our model follows the hierarchical principal, i.e., if an interaction term is in the model
(female*prog), the lower order terms (female and prog) must be included. Further, when there is a
significant interaction in the model, the main effects (the lower order terms) are difficult to interpret. If
the interaction term is not statistically significant, some would advise dropping the term and rerunning

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 4

the model with just the main effects, so that the main effects would have an unambiguous meaning. The
traditional anova approach would leave the nonsignificant interaction in the model and interpret the
main effects in the normal manner. If the interaction term is found statistically significant, one would
leave the model as is and evaluate the simple main effects.

p. DF – These are the degrees of freedom for the individual predictor variables in the model. From the
class level information section, the lower order term DF is given by the number of levels minus one. For
example, female as two levels, therefore DFfemale = 2-1=1. Also, prog has three levels and DFprog = 3-1=2.
For the interaction term, DFfemale*prog = DFprog* DFfemale = 1*2 =2. The DF of the predictor variables, along
with the DFError, define the parameters of the F-distribution used to test the significance of F Value,
superscript s.

q. Type III SS – These are the type III sum of squares, which are referred to as partial sum of squares. For
a particular variable, say female, SSfemale is calculated with respect to the other variables in the
model, prog and female*prog. Also, we showed earlier that SSCorrected Total = SSModel + SSError, and we might
expect that SSModel = SSfemale + SSprog+ SSprog*female; however, this is generally not the case (this is only true
for a balanced design).

r. Mean Square – These are the mean squares for the individual predictor variables in the model. They
are calculated as SS/DF, and along MSError, they are used to calculate F Value, superscript s.

s. F Value and Pr > F – These are the F Value and p-value, respectively, testing the null hypothesis that
an individual predictor in the model does not explain a significant proportion of the variance, given the
other variables are in the model. F Value is computed as MSSource Var / MSError. Under the null hypothesis, F
Value follows a central F-distribution with numerator DF = DFSource Var, where Source Var is the predictor
variable of interest, and denominator DF =DFError. Following the point made in Source, superscript o, we
focus only on the interaction term. female*prog – This is the F Value and p-value testing the interaction
of female and prog on the response variable, given the other variables are in the model. The probability
of observing an F Value, as large as, or larger, than 2.39 under the null hypothesis that there is not an
interaction of female and prog, given the other variables are in the model, is 0.0946. If we set our alpha
level at 0.05, the probability of a Type I error, we would fail to reject the null hypothesis
that female and prog do not interact. Based on this finding, some would advise rerunning the model
without the interaction term, including only the main effects in the model (and the intercept). This
would in turn permit a valid interpretation of the main effects of female and prog.

The GLM and GLML1L2 functions perform linear regression analysis for distribution functions using a user-
specified distribution family and link function. Their output is input to the GLMPredict_MLE and
GLML1L2Predict functions (respectively), which perform generalized linear model prediction on new input
data.

The GLM and GLML1L2 functions differ in these ways:

Function Description
Supported
Distribution
Families

Supported
Regularization
Models

Output Tables

GLM Unbiased ordinary
least square
estimator

See Supported
Family/Link Function
Combinations

None • Model table

GLML1L2 Biased estimator
based on
regularization

Binomial, Gaussian Ridge, LASSO, and
elastic net

• Model table
• [Optional] Factor

table

Regularization

Regularization is a technique for reducing overfitting and thus decreasing the variance of trained models.
GLM functions are fit by minimizing a loss function, such as the sum of squared errors. For example, given
a predictor vector X ϵ p, a response variable Y ϵ , and N observation pairs, you can find model parameters
β0 and β with this formula:

These fits can be regularized by adding a penalty function P(β) to the loss function being minimized. For
example:

where λ controls the strength of the penalty function.

For logistic regression, the loss function is based on the log likelihood, as follows:

Generalized Linear Model (GLM) Functions
(ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1110

These are three popular penalty functions:

• The sum of the absolute values of the model parameters:

which is the L1 norm of the model parameters. This regularization technique, also called Least Absolute
Shrinkage and Selection Operator (LASSO), was introduced by Robert Tibshirani in 1996. LASSO has
the potential to shrink some parameters to zero; therefore, you can also use it for variable selection.

• The sum of the squared values of the model parameters:

which is the L2 norm of the model parameters. This regularization technique is also called ridge
regression. With ridge regression, parameter values become smaller as λ increases, but never reach
zero.

• Elastic net regularization, which is a linear combination of L1 and L2 normalization:

References

• Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models
via Coordinate Descent. Journal of Statistical Software, 33(1), 1 - 22.doi (GLM regularization paths
article)

• Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. J. (2012), Strong
rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 74: 245–266. doi:10.1111/j.1467-9868.2011.01004.x

GLM
The generalized linear model (GLM) is an extension of the linear regression model that enables the linear
equation to relate to the dependent variables by a link function. The GLM function supports several
distribution families and associated link functions.

You can input the output table to the function GLMPredict_MLE.

The GLM function implementation uses the Fisher Scoring Algorithm, which scales better than the least-
squares algorithm that the glm() function in the R package stats uses. The results of the two algorithms

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1111

http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.18637/jss.v033.i01

usually match closely. However, when the input data is highly skewed or has a large variance, the Fisher
Scoring Algorithm can diverge, and you must use data set knowledge and trial and error to select the
optimal family and link functions.

If the predictors are collinear, Teradata recommends using GLML1L2 with regularization parameters.

For more information about generalized linear models, see:

• Dobson, A.J.; Barnett, A.G. (2008). Introduction to Generalized Linear Models (3rd ed.). Boca Raton,
FL: Chapman and Hall/CRC. ISBN 1-58488-165-8.

• Hardin, James; Hilbe, Joseph (2007). Generalized Linear Models and Extensions (2nd ed.). College
Station: Stata Press. ISBN 1-59718-014-9.

Related Information:

LikelihoodRatioTest (ML Engine)

GLM Syntax

GLM Syntax Elements
OutputTable

Specify the name for the output table of coefficients. This table must not exist.

TargetColumns
[Optional] Specify the name of the column that contains the dependent variable (Y) followed by
the names of the columns that contain the predictor variables (Xi), in this format: 'Y,X1,X2,...,Xp'.

Default behavior: The first column of the InputTable is Y and the remaining InputTable columns
are Xi, except for the column specified by the WeightColumn syntax element.

CategoricalColumns
[Optional] Specify columnname-value pairs, each of which contains the name of a categorical
input column and the category values in that column that the function is to include in the model
that it creates.

columnname_value_pair Description

'columnname:max_
cardinality'

Limits categories in column to max_cardinality to most common
ones and groups others together as 'others'.
For example, 'column_a:3' specifies that for column_a, function
uses 3 most common categories and sets category of rows that
do not belong to those 3 categories to 'others'.

'columnname:(category
[,...])'

Limits categories in column to those that you specify and groups
others together as 'others'.
For example, 'column_a : (red, yellow, blue)' specifies that for
column_a, function uses categories red, yellow, and blue, and
sets category of rows that do not belong to those categories to
'others'.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1112

columnname_value_pair Description

'columnname' All category values appear in model.

If you specify the TargetColumns syntax element, the columns that you specify in the
CategoricalColumns syntax element must also appear in the TargetColumns syntax element.

For information about columns that you must identify as numeric or categorical, see Identification
of Numeric and Categorical Columns.

Family
[Optional] Specify the distribution exponential family, which is one of the following:

• 'BINOMIAL' (Default)
• 'LOGISTIC' (equivalent to 'BINOMIAL')
• 'POISSON'
• 'GAUSSIAN'
• 'GAMMA'
• 'INVERSE_GAUSSIAN'
• 'NEGATIVE_BINOMIAL'

For Binomial/Logistic and Gaussian applications with high collinearity, Teradata recommends
using GLML1L2 with regularization parameters instead of GLM. GLML1L2 is expected to
provide better performance and accuracy.

LinkFunction
[Optional] Specify the link function.

Default: 'CANONICAL'. The canonical link functions (default link functions) and the link functions
that are allowed for each exponential family are listed in the tables in Supported Family/Link
Function Combinations.

WeightColumn
[Optional] Specify the name of an InputTable column that contains the weights to assign to
responses.

You can use non-NULL weights to indicate that different observations have different dispersions
(with the weights being inversely proportional to the dispersions). Equivalently, when the weights
are positive integers wi, each response yi is the mean of wi unit-weight observations. A binomial
GLM uses prior weights to give the number of trials when the response is the proportion of
successes. A Poisson GLM rarely uses weights.

If the weight is less than the response value, the function throws an exception. Therefore, if the
response value is greater than 1, you must specify a weight that is greater than or equal to the
response value.

Default behavior: All observations have equal weight.

StopThreshold
[Optional] Specify the convergence threshold.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1113

Default: 0.01

MaxIterNum
[Optional] Specify the maximum number of iterations that the algorithm runs before quitting if
the convergence threshold has not been met. The parameter max_iterations must be a positive
INTEGER value.

Default: 25

Intercept
[Optional] Specify whether the function uses an intercept. For example, in
ß0+ß1*X1+ß2*X2++ ßpXp, the intercept is ß0.

Default: 'true'

Supported Family/Link Function Combinations
Family
Name

Family
Function
Name

Link Link Function
Expression Used

Binomial
or Logistic

BINOMIAL or
LOGISTIC

logit (default)
probit
cloglog
log
cauchit

log(μ/(1-μ))
Φ-μ

log[-log(1-μ)]
log(μ)
tan(π(μ - 1/2))

When the dependent variable (Y) has
only two possible values (0 and 1).
The algorithm applies the model to the
data, predicts the most likely outcome for
each input, and supplies a logit
(logarithm of odds) for each outcome.

Gamma GAMMA inverse
(default)
identity
log

μ-1

μ
log(μ)

When data is continuous with constant
response variance and appears to be
right-skewed.

Gaussian GAUSSIAN identity
(default)
inverse
log

μ
μ-1

log(μ)

When the data is grouped around a
single mean and can be graphed in a
normal or bell curve distribution.

Inverse
Gaussian

INVERSE_
GAUSSIAN

inverse_mu_
squared
(default)
identity
inverse
log

μ-2

μ
μ-1

log(μ)

When the data is grouped around a
single mean but the graph appears to
have a right-skewed curve distribution.

Poisson POISSON log (default)
identity
square_root

log(μ)
μ
μ1/2

To model count data (nonnegative
integers) and contingency models
(matrixes of the frequency distribution of
variables).
The algorithm assumes that the
dependent variable (Y) has a Poisson
distribution (that is, that Y is segmented
into intervals of, for example, time or
geographic location) and then calculates
the discrete probability of one or more
events occurring within these segments.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1114

Family
Name

Family
Function
Name

Link Link Function
Expression Used

Negative
Binomial

NEGATIVE_
BINOMIAL

log (default)
identity

log(μ)
μ

To model count data (nonnegative
integers), usually over-dispersed
response variables.

The following table shows the common link functions for the common distribution exponential families. D
identifies the default link for each family.

Link Link Descriptive Binomial
(Logistic) Gamma Gaussian Inverse_

Gaussian Poisson Negative_
Binomial

logit LOGIT D

probit PROBIT *

cloglog COMPLEMENTARY_LOG_
LOG

*

identity IDENTITY * D * * *

inverse INVERSE D * *

log LOG * * * * D D

1/μ2 INVERSE_MU_SQUARED D

sqrt SQUARE_ROOT *

cauchit CAUCHIT *

GLM Input
InputTable Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

The table can have additional columns, but the function ignores them.

Column Data Type Description

dependent_
variable_column

Any numeric SQL data
type

Dependent/response variable. Cannot be NULL. Must be
first in TargetColumns syntax element. If Family is
BINOMIAL or LOGISTIC, each value in this column must
be either 0 or 1.

predictor_
variable_column

Any [Column appears one or more times.] Independent/
predictor variable. Cannot be NULL. Must follow
dependent_variable_column in TargetColumns syntax
element.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1115

Column Data Type Description

Teradata recommends using Scale function on numeric
predictors before calling function.

categorical_
column

CHARACTER,
VARCHAR, INTEGER,
BYTEINT, DATE, TIME
(without TIME ZONE)

[Column appears only with CategoricalColumns syntax
element.] Categorical variable. Must also appear in
TargetColumns syntax element.

weight_column INTEGER, DOUBLE
PRECISION

[Column appears only with WeightColumn syntax element.
] Weight to assign to response variable.

GLM Onscreen Output
The onscreen output of the GLM function is a table containing information about the regression analysis
of the data, in two sections:

• Information about the model intercept and coefficients
• Information about the regression (number of iterations and number of rows processed) and several

goodness-of-fit measures

Columns

Column Description

predictor Name of predictor or other reported result.
For categorical predictors, the function selects one category as the reference category, and
outputs one row for each other category for the column, in the format predictor.level.
For example, if column color has categories 'red', 'blue', and 'green', and green is the
reference category, the function outputs these rows:
color.red
color.blue

estimate For predictors, estimated value of coefficient.
For other reported results, calculated value.

std_error For predictors, standard deviation of the mean (standard error).
For other reported results, not applicable (value 0).

z_score For predictors, calculated z-score.
For other reported results, calculated value.

p_value For predictors, calculated p-value.
For other reported results, not applicable (value 0).

significance For predictors, indicator of predictor significance. For key to significance codes, see CoxPH
Output.
For other reported results, description of result.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1116

Rows

The onscreen output includes a row for each estimated parameter of the model and additional information
about the model and the regression.

Estimated Parameters of the Model
Parameter Description

(Intercept) Value of link function (Y) when all predictors are 0.

predictor [Column appears only for numerical predictor.] Predictor name.

predictor.level [Column appears only for categorical predictor.] Predictor name and level. Table has a
row for each level of the predictor except one, which serves as the reference level.

Model and Regression Information
Value Description

ITERATIONS# Number of Fisher Scoring iterations performed on function.

ROWS# Number of rows of data received as input.

Residual deviance Deviance, with degrees of freedom reported in significance column.
Residual deviance is not displayed when Family is GAMMA, NEGATIVE_
BINOMIAL, or INVERSE_GAUSSIAN

Pearson goodness of
fit

Sum of squared Pearson residual.

AIC Akaike information criterion, a measure of relative quality of model for given data
set.

BIC Bayesian information criterion, partly based on likelihood function and closely
related to AIC. BIC is a criterion for model selection among a finite set of models;
the model with the lowest BIC is preferred.

Wald Test Tests goodness of fit.

Dispersion parameter For GAUSSIAN, the value of this parameter is estimated from the data. For all
other families, this parameter value is 1.

The coefficients are also stored in the table output_table for later use.

For the Gamma distribution density, AIC and BIC might have the value NaN when the dispersion
parameter is very small and goodness-of-fit is poor.

GLM Output Table
The output table specified by the OutputTable syntax element stores the estimated coefficients and
statistics, which are used by the functions GLMPredict_MLE and LikelihoodRatioTest (ML Engine).

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1117

Columns

Column Description

attribute Numeric index of predictor.

predictor Predictor name.

category For categorical predictor, its level. For numeric predictor, NULL.

estimate Estimated coefficient.

std_error Standard error of coefficient.

t_score [Column appears only with Family ('GAUSSIAN').] The t_score follows a t(N-p-1)
distribution.

z_score [Column appears only without Family ('GAUSSIAN').] The z-score follows the N(0,1)
distribution.

p_value p-value for z_score. (p-value represents significance of each coefficient.)

significance Indicator of predictor significance. For key to symbols in this column, see CoxPH Output.

family Distribution exponential family, specified by Family syntax element.

Rows

The OutputTable includes a row for each of the following parameters.

Parameter Description

Loglik Log likelihood of model.

(Intercept) Value of link function (Y) when all predictors are 0.

Predictors Predictor name. For categorical predictor, table has a row for each level of the predictor.

Odds Ratio and Confidence Intervals
You can exponentiate the coefficients (the estimate column in the output table coefficient estimates) and
interpret them as odds ratios (ORs). To perform this type of computation, you can run the following SQL
queries on the output of the GLM function.

-- odds ratios only
SELECT predictor, category,
 EXP(estimate) AS odds_ratio
 FROM glm_output;
-- odds ratios and 95% CI
SELECT predictor, category,
 EXP(estimate) AS odds_ratio,

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1118

 EXP(estimate - 1.96 * std_err) AS lower_bound,
 EXP(estimate + 1.96 * std_err) AS upper_bound
FROM glm_output;

Goodness-of-Fit Tests
• Deviance
• Wald Test
• Pearson’s Chi-squared Statistic

Deviance

The deviance for a model M0, based on a data set y, is defined as follows:

In the preceding equation:

denotes the fitted values of the parameters in the model M0.

denotes the fitted parameters for the full model (or saturated model).

Both sets of fitted values are implicitly functions of the observations y. In this case, the full model is a
model with a parameter for every observation so that the data are fitted exactly.

The deviance is used to compare two models—in particular in the case of generalized linear models
where it has a similar role to residual variance from ANOVA in linear models (RSS).

Suppose in the framework of the GLM that there are two nested models, M1 and M2. In particular,
suppose that M1 contains the parameters in M2, and k additional parameters. Then, under the null
hypothesis that M2 is the true model, the difference between the deviances for the two models follows
an approximate chi-squared distribution with k-degrees of freedom. This provides us an alternative way
for computing the log-likelihood ratio of two models.

Deviance is implemented in the GLM function. It computes residual deviance from model deviance and
saturated deviance. The function does not compute null deviance.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1119

Wald Test

Significance tests can be performed for individual regression coefficients (that is, H0 : βj = 0) by
computing the Wald statistics, which are similar to the partial t-statistics from classical regression:

Under the null hypothesis that βj = 0, the Wald test statistic wj follows approximately a standard normal
distribution (and its square is approximately a chi-square on one-degree of freedom).

This quantity is computed by the GLM function as the Wald Test, as well as the corresponding 'p_value'.
It is in the output table, and also displayed on the screen.

Pearson’s Chi-squared Statistic

The deviance generalizes the sum of squared errors. Another generalization of sum of squared errors
is Pearson’s chi-squared statistic. Given a generalized linear model with responses yi, weights wi, fitted
means μi, variance function v(μ) and dispersion φ = 1, the Pearson goodness-of-fit statistic is

If the fitted model is correct and the observations yi are approximately normal, X2 is approximately

distributed as X2on the residual degrees of freedom for the model. Both the deviance and the generalized
Pearson X2 have exact X2 distributions for Normal-theory linear models (assuming of course that the
model is true), and asymptotic results are available for the other distributions. The deviance has a
general advantage as a measure of discrepancy in that it is additive for nested sets of models if
maximum-likelihood estimates are used, whereas X2 in general is not. However, X2 may sometimes be
preferred because of its more direct interpretation.

The GLM function computes the Pearson’s goodness of fit.

GLM Examples

GLM Example: Logistic Regression Analysis with Intercept

In logistic regression, the dependent variable (Y) has only two possible values (0 and 1, 'yes' and 'no',
or 'true' and 'false'). The algorithm applies the model to the data and predicts the most likely outcome.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1120

Input

The InputTable, admissions_train, contains data about applicants to an academic program. For each
applicant, attributes in the table include a Masters Degree indicator, a grade point average (on a 4.0
scale), a statistical skills indicator, a programming skills indicator, and an indicator of whether the
applicant was admitted. The Masters Degree, statistical skills, and programming skills indicators are
categorical variables. Masters degree has two categories (yes or no), while the other two have three
categories (Novice, Beginner and Advanced). For admitted status, 1 indicates that the student was
admitted and 0 indicates otherwise.

InputTable: admissions_train
id masters gpa stats programming admitted

1 yes 3.95 Beginner Beginner 0

2 yes 3.76 Beginner Beginner 0

3 no 3.7 Novice Beginner 1

4 yes 3.5 Beginner Novice 1

5 no 3.44 Novice Novice 0

6 yes 3.5 Beginner Advanced 1

7 yes 2.33 Novice Novice 1

8 no 3.6 Beginner Advanced 1

9 no 3.82 Advanced Advanced 1

10 no 3.71 Advanced Advanced 1

11 no 3.13 Advanced Advanced 1

12 no 3.65 Novice Novice 1

13 no 4 Advanced Novice 1

14 yes 3.45 Advanced Advanced 0

15 yes 4 Advanced Advanced 1

16 no 3.7 Advanced Advanced 1

17 no 3.83 Advanced Advanced 1

18 yes 3.81 Advanced Advanced 1

19 yes 1.98 Advanced Advanced 0

20 yes 3.9 Advanced Advanced 1

21 no 3.87 Novice Beginner 1

22 yes 3.46 Novice Beginner 0

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1121

id masters gpa stats programming admitted

23 yes 3.59 Advanced Novice 1

24 no 1.87 Advanced Novice 1

25 no 3.96 Advanced Advanced 1

26 yes 3.57 Advanced Advanced 1

27 yes 3.96 Advanced Advanced 0

28 no 3.93 Advanced Advanced 1

29 yes 4 Novice Beginner 0

30 yes 3.79 Advanced Novice 0

31 yes 3.5 Advanced Beginner 1

32 yes 3.46 Advanced Beginner 0

33 no 3.55 Novice Novice 1

34 yes 3.85 Advanced Beginner 0

35 no 3.68 Novice Beginner 1

36 no 3 Advanced Novice 0

37 no 3.52 Novice Novice 1

38 yes 2.65 Advanced Beginner 1

39 yes 3.75 Advanced Beginner 0

40 yes 3.95 Novice Beginner 0

SQL Call

The response variable (admitted, in this example) must be specified as the first variable listed in the
TargetColumns syntax element, followed by the other predictors.

DROP TABLE glm_admissions_model;

SELECT * FROM GLM (
 ON admissions_train AS InputTable
 OUT TABLE OutputTable (glm_admissions_model)
 USING
 TargetColumns ('admitted','masters', 'gpa', 'stats', 'programming')
 CategoricalColumns ('masters', 'stats', 'programming')
 Family ('LOGISTIC')
 LinkFunction ('LOGIT')

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1122

 WeightColumn ('1')
 StopThreshold (0.01)
 MaxIterNum (25)
 Intercept ('true')
) AS dt;

Output

The output table shows the model statistics.

 predictor estimate std_error z_score
p_value significance
 ----------------------- -------------------- ------------------
-------------------- --------------------

 (Intercept) 1.0775099992752075 2.920759916305542
0.36891400814056396 0.7121919989585876
 masters.no 2.21655011177063 1.0199899673461914
2.173110008239746 0.029771899804472923 *
 gpa -0.11393500119447708 0.802573025226593
-0.14196200668811798 0.8871099948883057
 stats.novice 0.04068480059504509 1.1156699657440186
0.036466699093580246 0.9709100127220154
 stats.beginner 0.5266180038452148 1.2229000329971313
0.43063101172447205 0.6667360067367554
 programming.beginner -1.769760012626648 1.069000005722046
-1.6555299758911133 0.09781769663095474 .
 programming.novice -0.9803500175476074 1.1400400400161743
-0.8599230051040649 0.389831006526947
 ITERATIONS # 4.0 0.0
0.0 0.0 Number of Fisher Scoring iterations
 ROWS # 40.0 0.0
0.0 0.0 Number of rows
 Residual deviance 38.90380096435547 0.0
0.0 0.0 on 33 degrees of freedom
 Pearson goodness of fit 37.79050064086914 0.0
0.0 0.0 on 33 degrees of freedom
 AIC 52.90380096435547 0.0
0.0 0.0 Akaike information criterion
 BIC 64.72595977783203 0.0
0.0 0.0 Bayesian information criterion
 Wald Test 9.896419525146484 0.0
0.0 0.19451963901519775
 Dispersion parameter 1.0 0.0
0.0 0.0 Taken to be 1 for BINOMIAL and POISSON.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1123

For categorical variables, the model selects a reference category. This example uses the Advanced
category as a reference for the stats variable.

This query returns the following table:

SELECT * FROM glm_admissions_model;

 attribute predictor category estimate std_err
z_score p_value significance family
 --------- ----------- -------- -------------------- ------------------
-------------------- -------------------- ------------ --------
 -1 Loglik NULL -19.451900482177734 40.0
6.0 0.0 NULL LOGISTIC
 0 (Intercept) NULL 1.0775099992752075 2.920759916305542
0.36891400814056396 0.7121919989585876 LOGISTIC
 1 masters yes NULL NULL
NULL NULL NULL LOGISTIC
 2 masters no 2.21655011177063 1.0199899673461914
2.173110008239746 0.029771899804472923 * LOGISTIC
 3 gpa NULL -0.11393500119447708 0.802573025226593
-0.14196200668811798 0.8871099948883057 LOGISTIC
 4 stats advanced NULL NULL
NULL NULL NULL LOGISTIC
 5 stats novice 0.04068480059504509 1.1156699657440186
0.036466699093580246 0.9709100127220154 LOGISTIC
 6 stats beginner 0.5266180038452148 1.2229000329971313
0.43063101172447205 0.6667360067367554 LOGISTIC
 7 programming advanced NULL NULL
NULL NULL NULL LOGISTIC
 8 programming beginner -1.769760012626648 1.069000005722046
-1.6555299758911133 0.09781769663095474 . LOGISTIC
 9 programming novice -0.9803500175476074 1.1400400400161743
-0.8599230051040649 0.389831006526947 LOGISTIC

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLM Example: Gaussian Distribution Analysis

For the Gaussian distribution the response variable must be a continuous numerical variable, where the
data is grouped around a single mean and the graph looks like a normal or bell curve distribution. This
example uses default options.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1124

Input

• InputTable: housing_train, as in DecisionForest Example: TreeType ('classification'), OutOfBag
('false')

SQL Call

The family is GAUSSIAN and the default family link is IDENTITY.

DROP TABLE glm_housing_model;

SELECT * FROM GLM (
 ON housing_train AS InputTable
 OUT TABLE OutputTable (glm_housing_model)
 USING
 TargetColumns ('price', 'lotsize', 'bedrooms', 'bathrms',
 'stories', 'garagepl', 'driveway', 'recroom',
 'fullbase', 'gashw', 'airco', 'prefarea', 'homestyle')
 CategoricalColumns ('driveway', 'recroom', 'fullbase', 'gashw',
 'airco', 'prefarea', 'homestyle')
 Family ('GAUSSIAN')
 LinkFunction ('IDENTITY')
 WeightColumn ('1')
 StopThreshold (0.01)
 MaxIterNum (25)
 Intercept ('true')
) AS dt;

Output

 predictor estimate std_error t_score
p_value significance
 ----------------------- ------------------ -------------------
------------------- ----------------------

 (Intercept) 36349.30078125 2733.462158203125
13.297897338867188 0.0 ***
 lotsize 2.0809500217437744 0.26133036613464355 7.962909698486328
1.2434497875801753E-14 ***
 bedrooms 782.093017578125 766.8397216796875
1.0198911428451538 0.3082960247993469
 bathrms 6772.31005859375 1106.7789306640625
6.118936538696289 1.963181173181283E-9 ***
 stories 2445.6201171875 694.1449584960938
3.523212194442749 4.673068760894239E-4 ***

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1125

 garagepl 1483.0999755859375 623.5965576171875
2.378300666809082 0.01778467558324337 *
 driveway.no -2822.6298828125 1481.2474365234375
-1.905576229095459 0.05730487406253815 .
 recroom.yes 1208.530029296875 1358.570556640625
0.8895599842071533 0.3741496801376343
 fullbase.yes 3588.300048828125 1167.3746337890625
3.0738205909729004 0.0022341914009302855 **
 gashw.yes 5787.25 2405.470458984375
2.4058704376220703 0.01651271991431713 *
 airco.yes 6478.7900390625 1152.1597900390625
5.623169422149658 3.1934060729099656E-8 ***
 prefarea.yes 6465.64013671875 1212.8397216796875
5.330992698669434 1.5088656368789088E-7 ***
 homestyle.classic -16550.900390625 1308.585205078125
-12.647933959960938 0.0 ***
 homestyle.bungalow 37577.69921875 1850.173828125
20.310361862182617 0.0 ***
 ITERATIONS # 2.0 0.0
0.0 0.0 Number of Fisher Scoring iterations
 ROWS # 492.0 0.0
0.0 0.0 Number of rows
 Residual deviance Infinity 0.0
0.0 0.0 on 478 degrees of freedom
 Pearson goodness of fit 5.3066899456E10 0.0
0.0 0.0 on 478 degrees of freedom
 AIC Infinity 0.0
0.0 0.0 Akaike information criterion
 BIC Infinity 0.0
0.0 0.0 Bayesian information criterion
 Wald Test 23174.041015625 0.0
0.0 0.0 ***
 Dispersion parameter 1.11018616E8 0.0
0.0 0.0 Taken to be 1 for BINOMIAL and POISSON.

Many predictors are significant at 95% confidence level (p-value < 0.05).

SELECT * FROM glm_housing_model ORDER BY attribute;

 attribute predictor category estimate std_err
z_score p_value significance family
 --------- ----------- -------- ------------------ -------------------
------------------- ---------------------- ------------ --------
 -1 Loglik NULL -Infinity 492.0
13.0 0.0 NULL GAUSSIAN

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1126

 0 (Intercept) NULL 36349.30078125 2733.462158203125
13.297897338867188 0.0 *** GAUSSIAN
 1 lotsize NULL 2.0809500217437744 0.26133036613464355
7.962909698486328 1.2434497875801753E-14 *** GAUSSIAN
 2 bedrooms NULL 782.093017578125 766.8397216796875
1.0198911428451538 0.3082960247993469 GAUSSIAN
 3 bathrms NULL 6772.31005859375 1106.7789306640625
6.118936538696289 1.963181173181283E-9 *** GAUSSIAN
 4 stories NULL 2445.6201171875 694.1449584960938
3.523212194442749 4.673068760894239E-4 *** GAUSSIAN
 5 garagepl NULL 1483.0999755859375 623.5965576171875
2.378300666809082 0.01778467558324337 * GAUSSIAN
 6 driveway yes NULL NULL
NULL NULL NULL GAUSSIAN
 7 driveway no -2822.6298828125 1481.2474365234375
-1.905576229095459 0.05730487406253815 . GAUSSIAN
 8 recroom no NULL NULL
NULL NULL NULL GAUSSIAN
 9 recroom yes 1208.530029296875 1358.570556640625
0.8895599842071533 0.3741496801376343 GAUSSIAN
 10 fullbase no NULL NULL
NULL NULL NULL GAUSSIAN
 11 fullbase yes 3588.300048828125 1167.3746337890625
3.0738205909729004 0.0022341914009302855 ** GAUSSIAN
 12 gashw no NULL NULL
NULL NULL NULL GAUSSIAN
 13 gashw yes 5787.25 2405.470458984375
2.4058704376220703 0.01651271991431713 * GAUSSIAN
 14 airco no NULL NULL
NULL NULL NULL GAUSSIAN
 15 airco yes 6478.7900390625 1152.1597900390625
5.623169422149658 3.1934060729099656E-8 *** GAUSSIAN
 16 prefarea no NULL NULL
NULL NULL NULL GAUSSIAN
 17 prefarea yes 6465.64013671875 1212.8397216796875
5.330992698669434 1.5088656368789088E-7 *** GAUSSIAN
 18 homestyle eclectic NULL NULL
NULL NULL NULL GAUSSIAN
 19 homestyle classic -16550.900390625 1308.585205078125
-12.647933959960938 0.0 *** GAUSSIAN
 20 homestyle bungalow 37577.69921875 1850.173828125
20.310361862182617 0.0 *** GAUSSIAN

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1127

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLMPredict_MLE
The GLMPredict_MLE function uses the model output by the function GLM to perform generalized linear
model prediction on new input data.

GLMPredict_MLE Syntax
Version 1.15

SELECT * FROM GLMPredict_MLE (
 ON { table | view | (query) } PARTITION BY ANY
 ON { table | view | (query) } AS Model DIMENSION [ORDER BY attribute, predictor]
 [USING
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
 [Family ('family')]
 [LinkFunction ('link')]
 [OutputProb ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [Responses ('response' [,...])]
]
) AS alias;

Related Information:

Comments in Queries
Column Specification Syntax Elements

GLMPredict_MLE Syntax Elements
Accumulate

[Optional] Specify the names of input table columns to copy to the output table.

Family
[Optional] Specify the distribution exponential family.

If you specify this syntax element, you must give it the same value that you used for the Family
syntax element of the function GLM when you created the Model table.

Default: Read from the Model table

LinkFunction
[Optional] Specify the link function. For the canonical link functions (default link functions) and
the link functions allowed for each exponential family, see Supported Family/Link Function
Combinations.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1128

If you specify this syntax element, you must give it the same value that you used for the
LinkFunction syntax element of the function GLM when you created the Model table.

Default: 'CANONICAL'

OutputProb
[Family must be BINOMIAL or LOGISTIC. Required with Responses, optional otherwise.]
Specify whether to output the probability for each response. If you omit Responses, the function
outputs the probability of the predicted response.

Default: 'false'

Responses
[Optional] Specify the labels for which to output probabilities. A label (response) must be 0 or 1.

Default behavior: The function outputs only the probability of the predicted class.

GLMPredict_MLE Input
Table Description

Input Contains new data.

Model GLM Output Table

Input Table Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

Column Data
Type Description

accumulate_column Any [Column appears once for each specified accumulate_
column.] Column to copy to output table.

dependent_variable_
column

Any Dependent/response variables. Cannot be NULL.

predictor_variable_column Any [Column appears one or more times.] Independent/predictor
variable. Cannot be NULL.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1129

GLMPredict_MLE Output
Output Table Schema

Column Data Type Description

accumulate_
column

Same as in
input table

[Column appears once for each specified accumulate_column.]
Column copied from input table.

fitted_value DOUBLE
PRECISION

Score of the input data, given by equation g-1(Xβ), where g-1 is the
inverse link function, X the predictors, and β is the vector of
coefficients estimated by the GLM function.
For BINOMIAL classification, a predicted value close to 1 indicates
a high probability of class 1. A predicted value close to 0 indicates
a high probability of class 0. For other values of Family, the scores
are the expected values of dependent/response variable,
conditional on the predictors.

prediction INTEGER [Column appears only with Family ('BINOMIAL') or Family
('LOGISTIC').] Predicted value (0 or 1).

prob DOUBLE
PRECISION

[Column appears only if you specify OutputProb ('true') and omit
Responses.] Probability that observation belongs to predicted class,
calculated as follows:

prediction prob

0 1 - fitted_value

1 fitted_value

prob_0 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 0, which is 1- fitted_
value.

prob_1 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 1, which is fitted_
value.

GLMPredict_MLE Examples

GLMPredict_MLE Example: Logistic Distribution Prediction

Input

• Input: admissions_test, which has admissions information for 20 students
• Model: glm_admissions_model, output by GLM Example: Logistic Regression Analysis with

Intercept

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1130

admissions_test
id masters gpa stats programming admitted

50 yes 3.95 Beginner Beginner 0

51 yes 3.76 Beginner Beginner 0

52 no 3.7 Novice Beginner 1

53 yes 3.5 Beginner Novice 1

54 yes 3.5 Beginner Advanced 1

55 no 3.6 Beginner Advanced 1

56 no 3.82 Advanced Advanced 1

57 no 3.71 Advanced Advanced 1

58 no 3.13 Advanced Advanced 1

59 no 3.65 Novice Novice 1

60 no 4 Advanced Novice 1

61 yes 4 Advanced Advanced 1

62 no 3.7 Advanced Advanced 1

63 no 3.83 Advanced Advanced 1

64 yes 3.81 Advanced Advanced 1

65 yes 3.9 Advanced Advanced 1

66 no 3.87 Novice Beginner 1

67 yes 3.46 Novice Beginner 0

68 no 1.87 Advanced Novice 1

69 no 3.96 Advanced Advanced 1

SQL Call

CREATE MULTISET TABLE glmpredict_admissions AS (
 SELECT * FROM GLMPredict_MLE (
 ON admissions_test PARTITION BY ANY
 ON glm_admissions_model AS Model DIMENSION
 USING
 Accumulate ('id', 'masters', 'gpa', 'stats', 'programming', 'admitted')
 Family ('LOGISTIC')
 LinkFunction ('LOGIT')
 OutputProb ('t')

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1131

) AS dt
) WITH DATA;

Output

SELECT * FROM glmpredict_admissions ORDER BY 1;

 id masters gpa stats programming admitted fitted_value prediction
prob
 -- ------- ---- -------- ----------- -------- ------------------ ----------

 50 yes 3.95 beginner beginner 0 0.3507656829365149 0
0.6492343170634851
 51 yes 3.76 beginner beginner 0 0.3557112671780229 0
0.6442887328219771
 52 no 3.7 novice beginner 1 0.7583079903427496 1
0.7583079903427496
 53 yes 3.5 beginner novice 1 0.5560152436940663 1
0.5560152436940663
 54 yes 3.5 beginner advanced 1 0.7694761266019933 1
0.7694761266019933
 55 no 3.6 beginner advanced 1 0.9680314543695169 1
0.9680314543695169
 56 no 3.82 advanced advanced 1 0.9457732442937538 1
0.9457732442937538
 57 no 3.71 advanced advanced 1 0.9464124273756033 1
0.9464124273756033
 58 no 3.13 advanced advanced 1 0.949666669516694 1
0.949666669516694
 59 no 3.65 novice novice 1 0.8741907950304955 1
0.8741907950304955
 60 no 4.0 advanced novice 1 0.8650601698708184 1
0.8650601698708184
 61 yes 4.0 advanced advanced 1 0.6506209990774642 1
0.6506209990774642
 62 no 3.7 advanced advanced 1 0.9464701812067841 1
0.9464701812067841
 63 no 3.83 advanced advanced 1 0.9457147816580886 1
0.9457147816580886
 64 yes 3.81 advanced advanced 1 0.6555256147282206 1
0.6555256147282206
 65 yes 3.9 advanced advanced 1 0.6532064285302687 1
0.6532064285302687
 66 no 3.87 novice beginner 1 0.7547403697792542 1
0.7547403697792542

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1132

 67 yes 3.46 novice beginner 0 0.2600362186838019 0
0.7399637813161981
 68 no 1.87 advanced novice 1 0.8909664987530864 1
0.8909664987530864
 69 no 3.96 advanced advanced 1 0.9449493421287761 1
0.9449493421287761

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLMPredict_MLE Example: Gaussian Distribution Prediction

The example uses the Gaussian model created in GLM Example: Gaussian Distribution Analysis to
predict house prices. To evaluate the accuracy of the model, the example calculates the root mean
square error (RMSE) between the known actual price from the input table and the price predicted by
the model.

Input

• Input table: housing_test, which contains test data for 54 houses
• Model: glm_housing_model from the output section of GLM Example: Gaussian Distribution

Analysis

housing_test
sn price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea homestyle

13 27000 1700 3 1 2 yes no no no no 0 no Classic

16 37900 3185 2 1 1 yes no no no yes 0 no Classic

25 42000 4960 2 1 1 yes no no no no 0 no Classic

38 67000 5170 3 1 4 yes no no no yes 0 no Eclectic

53 68000 9166 2 1 1 yes no yes no yes 2 no Eclectic

104 132000 3500 4 2 2 yes no no yes no 2 no bungalow

111 43000 5076 3 1 1 no no no no no 0 no Classic

117 93000 3760 3 1 2 yes no no yes no 2 no Eclectic

132 44500 3850 3 1 2 yes no no no no 0 no Classic

140 43000 3750 3 1 2 yes no no no no 0 no Classic

142 40000 2650 3 1 2 yes no yes no no 1 no Classic

157 60000 2953 3 1 2 yes no yes no yes 0 no Eclectic

161 63900 3162 3 1 2 yes no no no yes 1 no Eclectic

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1133

sn price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea homestyle

...

SQL Call

The canonical link specifies the default family link, which is "identity" for the Gaussian distribution.

CREATE MULTISET TABLE glmpredict_housing AS (
 SELECT * FROM GLMPredict_MLE (
 ON housing_test PARTITION BY ANY
 ON glm_housing_model AS Model DIMENSION
 USING
 Accumulate ('sn', 'price')
 Family ('GAUSSIAN')
 LinkFunction ('CANONICAL')
) AS dt
) WITH DATA;

Output

The fitted_value column gives the predicted home price.

SELECT * FROM glmpredict_housing ORDER BY 1;

 sn price fitted_value
 --- -------- ------------------
 13 27000.0 37345.84477329254
 16 37900.0 43687.13245987892
 25 42000.0 40902.02870941162
 38 67000.0 72487.67201280594
 53 68000.0 79238.69493055344
 104 132000.0 111528.00744915009
 111 43000.0 39102.882046699524
 117 93000.0 66936.95215988159
 132 44500.0 41819.88732004166
 140 43000.0 41611.79231786728
 142 40000.0 44394.14731836319
 157 60000.0 66571.26562905312
 161 63900.0 64900.98411035538
 162 130000.0 107759.1224937439
 176 57500.0 73438.73871564865
 177 70000.0 62378.35326194763
 195 33000.0 37197.9376707077
 198 40500.0 47308.08242368698
 224 78500.0 67232.86958527565

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1134

 234 32500.0 35237.16528749466
 237 43000.0 46593.47125959396
 239 26000.0 43377.86666679382
 249 44500.0 37863.84167766571
 251 48500.0 45096.38719415665
 254 60000.0 74665.70030021667
 255 61000.0 60214.16523933411
 260 41000.0 43066.21673202515
 274 64900.0 67232.45221805573
 294 47000.0 38987.55468940735
 301 55000.0 55621.6930809021
 306 64000.0 67339.69788479805
 317 80000.0 65655.120470047
 329 115442.0 123612.01978111267
 339 141000.0 126282.07774448395
 340 62500.0 58474.835211753845
 353 78500.0 67485.69113445282
 355 86900.0 68425.80433177948
 364 72000.0 77422.12543773651
 367 114000.0 128556.01284217834
 377 140000.0 127201.90244436264
 401 92500.0 84040.80987596512
 403 77500.0 79857.25416207314
 408 87500.0 76218.38956928253
 411 90000.0 78179.1003665924
 440 69000.0 80549.23930311203
 441 51900.0 64670.294174194336
 443 65000.0 61704.09422302246
 459 44555.0 42818.367908000946
 463 49000.0 49293.44947862625
 469 55000.0 61779.35452270508
 472 60500.0 63767.0579059124
 527 105000.0 119762.26224088669
 530 108000.0 116119.24969100952
 540 85000.0 73146.08736228943

RMSE

This query returns the following table:

SELECT SQRT(AVG(POWER(glmpredict_housing.price -
glmpredict_housing.fitted_value, 2))) AS RMSE FROM glmpredict_housing;

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1135

 RMSE

 10246.752127962065

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2
The GLML1L2 function differs from the GLM function in these ways:

• GLML1L2 supports the regularization models ridge, LASSO, and elastic net.
• GLML1L2 outputs a model table and, optionally, a factor table (GLM outputs only a model table).

You can input the model table and factor table to the GLML1L2Predict function.

GLML1L2 Syntax
Version 1.17

SELECT * FROM GLML1L2 (
 ON { table | view | (query) } AS InputTable
 [OUT TABLE FactorTable (factor_table)]
 USING
 TargetColumns ('target_column' [,...])
 [CategoricalColumns (({ 'categorical_column' [,...])]
 ResponseColumn ('response_column')
 [Family ({ 'BINOMIAL' | 'GAUSSIAN' })]
 [Alpha (alpha)]
 [RegularizationLambda (lambda)]
 [StopThreshold (threshold)]
 [MaxIterNum (max_iterations)]
) AS alias;

GLML1L2 Syntax Elements
FactorTable

[Optional] Specify the name for the FactorTable. The function encodes categorical predictors as
integer values in the FactorTable and copies numeric predictors to the FactorTable unchanged.

You must also specify CategoricalColumns.

You can use factor_table as InputTable for future GLML1L2 function calls, thereby saving the
function from repeating the categorical-to-numerical conversion.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1136

TargetColumns
Specify the names of the InputTable columns that contain the variables to use as predictors
(independent variables) in the model.

CategoricalColumns
[Optional] Specify the names of the InputTable columns to treat as categorical variables, and
which of their categories to use in the model.

categorical_column_and_
categories Descriptions

'categorical_column:
max_cardinality'

Uses most common categories in categorical_column and
groups other categories into category 'others'.
For example, 'column_a:3' specifies that for column_a, function
uses 3 most common categories and sets category of rows that
do not belong to those 3 categories to 'others'.

'categorical_column:
(category [,...])'

Uses specified categories of categorical_column and groups
other categories into category 'others'.
For example, 'column_a : (red, yellow, blue)' specifies that for
column_a, function uses categories red, yellow, and blue, and
sets category of rows that do not belong to those categories to
'others'.

'categorical_column' Uses all categories in categorical_column.

If you use this syntax element, you must also specify the FactorTable syntax element, and in
the TargetColumns syntax element, you must specify each categorical_column.

For information about columns that you must identify as numeric or categorical, see Identification
of Numeric and Categorical Columns.

Default behavior: The function treats all variables as numerical.

ResponseColumn
Specify the name of the InputTable column that contains the responses.

Family
[Optional] Specify the distribution exponential family.

Default: 'GAUSSIAN'

Alpha
[Optional] Specify the mixing parameter for penalty computation (see the following table). The
alpha must be in [0, 1]. If alpha is in (0,1), it represents α in the elastic net regularization formula
in Generalized Linear Model (GLM) Functions (ML Engine).

alpha Regularization Type Parameter Description

0 Ridge

½

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1137

alpha Regularization Type Parameter Description

(0,1) Elastic net

1 LASSO

Default: 0

RegularizationLambda
[Optional] Specify the parameter that controls the magnitude of the regularization term. The
value lambda must be in the range [0, 100]. The value 0 disables regularization.

Default: 0

StopThreshold
[Optional] Specify the convergence threshold. The threshold must be a nonnegative DOUBLE
PRECISION value.

Default: 1.0e-7

MaxIterNum
[Optional] Specify the maximum number of iterations over the data. The parameter
max_iterations must be a positive INTEGER value in the range [1, 100000].

Default: 10000

GLML1L2 Input
InputTable Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

The table can have additional columns, but the function ignores them.

Column Data Type Description

response_
column

Any numeric SQL
data type

Dependent/response variable.
Tip:
Remove NULL values to optimize function execution time.

target_column Any [Column appears one or more times.] Independent/
predictor variable.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1138

Column Data Type Description

Tip:
• Remove NULL values to optimize function execution

time.
• Use Scale function on numeric predictors before calling

the function.

categorical_
column

CHARACTER,
VARCHAR, INTEGER,
BYTEINT, DATE, TIME

[Column appears once for each categorical target_column.
] Categorical independent/predictor variable. Variable name
cannot be a Teradata reserved keyword, start with a digit,
or contain any nonalphabetic character except underscore
(_).
Do not enclose variable name in single quotation marks.

GLML1L2 Output
Output Table Schema

The function displays the output table to the screen.

Column Data Type Description

attribute VARCHAR Name of model attribute.

category VARCHAR [Column appears only for categorical predictor.] Category (level)
of predictor.

estimate DOUBLE
PRECISION

Estimate of model coefficient.

information VARCHAR Value of nonnumeric attribute, followed by "p" if predictor is used
in model.

FactorTable Schema

Each row in the factor table corresponds to a row in the input table.

Column Data Type Description

target_column Categorical column: INTEGER
Numeric column: Same as in InputTable

Categorical column: dummy variable
Numeric column: Same as in InputTable.

response_column DOUBLE PRECISION Column copied from InputTable.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1139

GLML1L2 Examples

GLML1L2 Example: Ridge Regression, Family ('BINOMIAL')

Input

The input table is admission_train, as in GLM Example: Logistic Regression Analysis with Intercept.

SQL Call

Because the response variable is binary (the admitted column has two possible values), the call specifies
Family ('BINOMIAL'). Alpha (0) indicates L2 (ridge regression) regularization.

DROP TABLE admissions_model;
DROP TABLE admissions_factor_table;

CREATE MULTISET TABLE admissions_model AS (
 SELECT * FROM GLML1L2 (
 ON admissions_train AS InputTable
 OUT TABLE FactorTable (admissions_factor_table)
 USING
 TargetColumns ('masters', 'gpa', 'stats', 'programming')
 CategoricalColumns ('masters', 'stats', 'programming')
 ResponseColumn ('admitted')
 Family ('BINOMIAL')
 Alpha (0)
 RegularizationLambda (0.02)
) AS dt
) WITH DATA;

Output

SELECT * FROM admissions_model;

 attribute category estimate information
 -------------- -------- --------------------- -----------
 AIC NULL 15.21927981934978 NULL
 programming beginner -1.0259430213730834 p
 Features # NULL 6.0 NULL
 programming novice -0.0820786516340258 p
 masters yes -1.2652530272653697 p
 Iterations # NULL 28.0 NULL
 Lambda NULL 0.02 NULL
 Alpha NULL 0.0 NULL
 stats beginner 0.08063465501463249 p

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1140

 Regularization NULL NULL Ridge
 stats novice -0.026716553307241597 p
 Family NULL NULL Binomial
 Converged NULL NULL true
 gpa NULL 0.38346423433872745 p
 Rows # NULL 40.0 NULL
 BIC NULL 27.041435998147332 NULL
 (Intercept) NULL 0.3838162407664626 p

select * from admissions_factor_table;

 masters_yes stats_beginner stats_novice programming_beginner programming_novice
gpa admitted
 ----------- -------------- ------------ -------------------- ------------------
---- --------
 1 0 1 1 0 3.95 0.0
 0 0 0 0 0 3.83 1.0
 1 0 1 0 1 2.33 1.0
 1 0 0 1 0 3.85 0.0
 1 0 1 1 0 3.46 0.0
 0 0 0 0 1 4.0 1.0
 1 0 0 1 0 3.75 0.0
 1 0 0 1 0 3.46 0.0
 0 0 1 0 1 3.52 1.0
 0 0 0 0 0 3.13 1.0
 0 0 1 1 0 3.68 1.0
 0 0 0 0 0 3.82 1.0
 0 0 1 0 1 3.65 1.0
 0 0 0 0 0 3.93 1.0
 1 0 0 0 0 3.96 0.0
 0 0 0 0 0 3.7 1.0
 1 1 0 0 1 3.5 1.0
 0 0 1 0 1 3.55 1.0
 1 0 0 0 0 1.98 0.0
 0 0 0 0 0 3.71 1.0
 0 0 0 0 1 3.0 0.0
 1 0 0 1 0 2.65 1.0
 1 0 0 0 0 4.0 1.0
 1 0 0 0 0 3.57 1.0
 1 0 0 0 1 3.79 0.0
 0 0 1 0 1 3.44 0.0
 1 0 0 0 0 3.45 0.0
 0 0 0 0 1 1.87 1.0
 1 0 0 1 0 3.5 1.0
 0 0 1 1 0 3.7 1.0

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1141

 1 0 1 1 0 4.0 0.0
 1 1 0 1 0 3.95 0.0
 1 1 0 0 0 3.5 1.0
 1 0 0 0 0 3.9 1.0
 1 0 0 0 1 3.59 1.0
 1 0 0 0 0 3.81 1.0
 0 0 1 1 0 3.87 1.0
 0 1 0 0 0 3.6 1.0
 0 0 0 0 0 3.96 1.0
 1 1 0 1 0
3.76 0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2 Example: Factor Table as InputTable

Input

The input table is admissions_factor_table, output by GLML1L2 Example: Ridge Regression, Family
('BINOMIAL'). In admissions_factor_table, categorical predictors were converted to integers.

SQL Call

Because the admissions_factor_table has only integers, this call does not specify CategoricalColumns.

DROP TABLE admissions_model_2;

CREATE MULTISET TABLE admissions_model_2 AS (
 SELECT * FROM GLML1L2 (
 ON admissions_factor_table AS InputTable
 USING
 TargetColumns ('[0:5]')
 ResponseColumn ('admitted')
 Family ('BINOMIAL')
 Alpha (0)
 RegularizationLambda (0.02)
) AS dt
) WITH DATA;

Output

SELECT * FROM admissions_model_2;

 attribute estimate information
 -------------------- --------------------- -----------

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1142

 AIC 15.21927981934978 NULL
 Iterations # 28.0 NULL
 Features # 6.0 NULL
 Alpha 0.0 NULL
 Lambda 0.02 NULL
 stats_novice -0.026716553307241597 p
 programming_novice -0.0820786516340258 p
 Regularization NULL Ridge
 Family NULL Binomial
 Converged NULL true
 gpa 0.38346423433872745 p
 Rows # 40.0 NULL
 BIC 27.041435998147332 NULL
 (Intercept) 0.3838162407664626 p
 programming_beginner -1.0259430213730834 p
 stats_beginner 0.08063465501463249 p
 masters_yes -1.2652530272653697 p

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2 Example: LASSO, Family ('GAUSSIAN')

Input

The input table is housing_train, as in GLM Example: Gaussian Distribution Analysis.

SQL Call

Because the response variable has a Gaussian distribution, the call specifies Family ('GAUSSIAN').
Alpha (1) indicates L1 (LASSO) regularization.

DROP TABLE housing_model;
DROP TABLE housing_factor_table;

CREATE MULTISET TABLE housing_model AS (
 SELECT * FROM GLML1L2 (
 ON housing_train AS InputTable
 OUT TABLE FactorTable (housing_factor_table)
 USING
 TargetColumns
('lotsize','bedrooms','bathrms','stories','garagepl','driveway',
 'recroom','fullbase','gashw','airco','prefarea','homestyle')
 CategoricalColumns
('driveway','recroom','fullbase','gashw','airco','prefarea','homestyle')

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1143

 ResponseColumn ('price')
 Family ('GAUSSIAN')
 Alpha (1)
 RegularizationLambda (0.02)
) AS dt
) WITH DATA;

Output

SELECT * FROM housing_model;

 attribute category estimate information
 -------------- -------- ------------------- -----------
 AIC NULL -8.992753699712395 NULL
 Iterations # NULL 53.0 NULL
 stories NULL 2445.6699824701327 p
 bathrms NULL 6772.387864268141 p
 homestyle classic -54128.100924908955 p
 Alpha NULL 1.0 NULL
 homestyle eclectic -37577.28812836616 p
 prefarea yes 6465.606895601109 p
 Features # NULL 13.0 NULL
 airco yes 6478.800674992518 p
 Lambda NULL 0.02 NULL
 fullbase yes 3588.313479183023 p
 Family NULL NULL Gaussian
 recroom yes 1208.5016271782713 p
 Converged NULL NULL true
 bedrooms NULL 782.1333264902945 p
 Rows # NULL 492.0 NULL
 gashw yes 5787.049927907821 p
 driveway yes 2822.6466305663917 p
 Regularization NULL NULL Lasso
 RMSE NULL 10385.734127243657 NULL
 lotsize NULL 2.080984013010899 p
 BIC NULL 49.78594833117991 NULL
 (Intercept) NULL 71103.48563681456 p
 garagepl NULL 1483.1186058015555 p

(housing_factor_table not shown here.)

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2Predict

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1144

The GLML1L2Predict function uses the model output by the GLML1L2 function to perform generalized
linear model prediction on new input data.

GLML1L2Predict Syntax
Version 1.7

SELECT * FROM GLML1L2Predict (
 ON { table | view | (query) } PARTITION BY ANY
 ON { table | view | (query) } AS Model DIMENSION
 USING
 [OutputProb ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [Responses ('response' [,...])]
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

GLML1L2Predict Syntax Elements
OutputProb

Specify whether to output the calculated probability for each observation.

Default: 'false'

Responses
[Optional with OutputProb ('true'), disallowed otherwise] Specify the labels for which to output
probabilities. A label (response) must be 0 or 1.

Default behavior: The function outputs only the probability of the class "1".

Accumulate
Specify the names of input columns to copy to the output table.

GLML1L2Predict Input
Input Table Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

Column Data Type Description

feature_column Any numeric SQL data
type or VARCHAR

Copied from InputTable used in GLML1L2 call that
output Model table.

accumulate_column Any [Column appears once for each specified
accumulate_column.] Column to copy to output table.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1145

GLML1L2Predict Output
Output Table Schema

The table is a set of predictions for each test point.

Column Data Type Description

accumulate_
column

Same as in input
table

[Column appears once for each specified accumulate_column.]
Column copied from input table.

prediction DOUBLE
PRECISION

Predicted value.

prob DOUBLE
PRECISION

[Column appears only if you specify OutputProb ('true') and omit
Responses.] Probability that observation belongs to class "1".
This value is sigmoid(Xβ + b), where X is set of predictors and β
and b are, respectively, vector of coefficients and intercept
estimated by GLML1L2 function.
Note:
If GLML1L2 call that created model specified Family
('GAUSSIAN'), all values in this column are NULL.

prob_0 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 0. This value is
1 - prob, where prob is value in column prob.

prob_1 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 1. This value is
value in column prob.

GLML1L2Predict Examples

GLML1L2Predict Example: Ridge Regression, Family ('BINOMIAL')

Input

The input table is admissions_test, as in GLMPredict_MLE GLMPredict_MLE Example: Logistic
Distribution Prediction.

The model table is admissions_model, output of GLML1L2 Example: Ridge Regression, Family
('BINOMIAL').

SQL Call

SELECT * FROM GLML1L2Predict (
 ON admissions_test PARTITION BY ANY
 ON admissions_model AS Model DIMENSION

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1146

 USING
 OutputProb ('true')
 Accumulate ('id')
) AS dt ORDER BY id;

Output

 id prediction prob
 -- ---------- -------------------
 50 0.0 0.42261164778201094
 51 0.0 0.4049408918235976
 52 1.0 0.6791731064692488
 53 1.0 0.6128348254047428
 54 1.0 0.6321200551583135
 55 1.0 0.8635298008802573
 56 1.0 0.8639684744611825
 57 1.0 0.8589345247253525
 58 1.0 0.8297786450140937
 59 1.0 0.8421968614075399
 60 1.0 0.8624268462528424
 61 1.0 0.6575556307139581
 62 1.0 0.8584692566063056
 63 1.0 0.8644185196041072
 64 1.0 0.640966603964
 65 1.0 0.6488695133874245
 66 1.0 0.693208669498573
 67 0.0 0.35267304201513183
 68 1.0 0.7347418494287773
 69 1.0 0.8701555291596779

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2Predict Example: LASSO, Family ('GAUSSIAN')

Input

• Input table: housing_test, as in GLMPredict_MLE Example: Gaussian Distribution Prediction
• Model: housing_model, output of GLML1L2 Example: LASSO, Family ('GAUSSIAN')

SQL Call

SELECT * FROM GLML1L2Predict (
 ON housing_test PARTITION BY ANY
 ON housing_model AS Model DIMENSION

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1147

 USING
 Accumulate ('sn')
) AS dt ORDER BY sn;

Output

 sn prediction
 --- ------------------
 13 37345.831973269815
 16 43687.09059862308
 25 40902.03654672491
 38 72487.79993489318
 53 79238.81946777017
 104 111527.51245186775
 111 39102.91738815808
 117 66936.75897612597
 132 41819.94760124324
 140 41611.84919994215
 142 44394.19887061475
 157 66571.23189229079
 161 64900.96267762861
 162 107758.84817140205
 176 73438.6189187027
 177 62378.41894444322
 195 37197.885003565505
 198 47307.96151089168
 224 67232.91218470069
 234 35237.08241678744
 237 46593.6202622758
 239 43377.85857200969
 249 37863.799887728994
 251 45096.43470435488
 254 74665.80555260641
 255 60214.195570911885
 260 43066.25992025624
 274 67232.40606270777
 294 38987.53125475488
 301 55621.583411818116
 306 67339.67883609686
 317 65655.23197768882
 329 123611.91388294056
 339 126281.82379649683
 340 58474.80959843659
 353 67485.79160065402

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1148

 355 68425.99104737997
 364 77422.31599327197
 367 128556.01523545264
 377 127201.67378365475
 401 84040.85339019273
 403 79857.24053097825
 408 76218.4796684783
 411 78179.19706290774
 440 80549.3290271716
 441 64670.20979822652
 443 61703.972586623415
 459 42818.2957274824
 463 49293.44779989387
 469 61779.16835629488
 472 63766.92478426945
 527 119762.09345887038
 530 116119.0226758564
 540 73146.29611369228

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

69: Generalized Linear Model (GLM) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1149

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 1/17

Linear regression
In statistics, linear regression is a linear approach to modeling the relationship between a scalar
response (or dependent variable) and one or more explanatory variables (or independent variables). The
case of one explanatory variable is called simple linear regression. For more than one explanatory
variable, the process is called multiple linear regression.[1] This term is distinct from multivariate
linear regression, where multiple correlated dependent variables are predicted, rather than a single
scalar variable.[2]

In linear regression, the relationships are modeled using linear predictor functions whose unknown
model parameters are estimated from the data. Such models are called linear models.[3] Most
commonly, the conditional mean of the response given the values of the explanatory variables (or
predictors) is assumed to be an affine function of those values; less commonly, the conditional median or
some other quantile is used. Like all forms of regression analysis, linear regression focuses on the
conditional probability distribution of the response given the values of the predictors, rather than on the
joint probability distribution of all of these variables, which is the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to be used
extensively in practical applications.[4] This is because models which depend linearly on their unknown
parameters are easier to fit than models which are non-linearly related to their parameters and because
the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the following two broad
categories:

If the goal is prediction, forecasting, or error reduction, linear regression can be used to fit a
predictive model to an observed data set of values of the response and explanatory variables. After
developing such a model, if additional values of the explanatory variables are collected without an
accompanying response value, the fitted model can be used to make a prediction of the response.
If the goal is to explain variation in the response variable that can be attributed to variation in the
explanatory variables, linear regression analysis can be applied to quantify the strength of the
relationship between the response and the explanatory variables, and in particular to determine
whether some explanatory variables may have no linear relationship with the response at all, or to
identify which subsets of explanatory variables may contain redundant information about the
response.

Linear regression models are often fitted using the least squares approach, but they may also be fitted in
other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations
regression), or by minimizing a penalized version of the least squares cost function as in ridge regression
(L2-norm penalty) and lasso (L1-norm penalty). Conversely, the least squares approach can be used to fit
models that are not linear models. Thus, although the terms "least squares" and "linear model" are
closely linked, they are not synonymous.

Introduction
Assumptions

Contents

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Linearity
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Multivariate_linear_regression
https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Parameters
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Multivariate_analysis
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Least_absolute_deviations
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Lasso_(statistics)

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 2/17

Interpretation

Extensions
Simple and multiple linear regression
General linear models
Heteroscedastic models
Generalized linear models
Hierarchical linear models
Errors-in-variables
Others

Estimation methods
Least-squares estimation and related techniques
Maximum-likelihood estimation and related techniques
Other estimation techniques

Applications
Trend line
Epidemiology
Finance
Economics
Environmental science
Machine learning

History
See also
References

Citations
Sources

Further reading
External links

Given a data set of n statistical units, a linear regression model assumes that the
relationship between the dependent variable y and the p-vector of regressors x is linear. This
relationship is modeled through a disturbance term or error variable ε — an unobserved random
variable that adds "noise" to the linear relationship between the dependent variable and regressors. Thus
the model takes the form

where T denotes the transpose, so that xi
Tβ is the inner product between vectors xi and β.

Often these n equations are stacked together and written in matrix notation as

Introduction

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Multivector
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Transpose
https://en.wikipedia.org/wiki/Inner_product
https://en.wikipedia.org/wiki/Coordinate_vector
https://en.wikipedia.org/wiki/Matrix_notation

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 3/17

In linear regression, the
observations (red) are assumed to
be the result of random deviations
(green) from an underlying
relationship (blue) between a
dependent variable (y) and an
independent variable (x).

where

Some remarks on notation and terminology:

 is a vector of observed values of the variable called the regressand, endogenous
variable, response variable, measured variable, criterion variable, or dependent variable. This
variable is also sometimes known as the predicted variable, but this should not be confused with
predicted values, which are denoted . The decision as to which variable in a data set is modeled as
the dependent variable and which are modeled as the independent variables may be based on a
presumption that the value of one of the variables is caused by, or directly influenced by the other
variables. Alternatively, there may be an operational reason to model one of the variables in terms of
the others, in which case there need be no presumption of causality.

 may be seen as a matrix of row-vectors or of n-dimensional column-vectors , which are
known as regressors, exogenous variables, explanatory variables, covariates, input variables,
predictor variables, or independent variables (not to be confused with the concept of independent
random variables). The matrix is sometimes called the design matrix.

Usually a constant is included as one of the regressors. In particular, for .
The corresponding element of β is called the intercept. Many statistical inference procedures for
linear models require an intercept to be present, so it is often included even if theoretical
considerations suggest that its value should be zero.
Sometimes one of the regressors can be a non-linear function of another regressor or of the
data, as in polynomial regression and segmented regression. The model remains linear as long
as it is linear in the parameter vector β.
The values xij may be viewed as either observed values of random variables Xj or as fixed values
chosen prior to observing the dependent variable. Both interpretations may be appropriate in
different cases, and they generally lead to the same estimation procedures; however different
approaches to asymptotic analysis are used in these two situations.

 is a -dimensional parameter vector, where is the intercept term (if one is included in the
model—otherwise is p-dimensional). Its elements are known as effects or regression coefficients

https://en.wikipedia.org/wiki/File:Linear_least_squares_example2.png
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Independent_random_variables
https://en.wikipedia.org/wiki/Design_matrix
https://en.wikipedia.org/wiki/Y-intercept
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Segmented_regression
https://en.wikipedia.org/wiki/Random_variable

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 4/17

(although the latter term is sometimes reserved for the estimated effects). Statistical estimation and
inference in linear regression focuses on β. The elements of this parameter vector are interpreted as
the partial derivatives of the dependent variable with respect to the various independent variables.

 is a vector of values . This part of the model is called the error term, disturbance term, or
sometimes noise (in contrast with the "signal" provided by the rest of the model). This variable
captures all other factors which influence the dependent variable y other than the regressors x. The
relationship between the error term and the regressors, for example their correlation, is a crucial
consideration in formulating a linear regression model, as it will determine the appropriate estimation
method.

Fitting a linear model to a given data set usually requires estimating the regression coefficients such
that the error term is minimized. For example, it is common to use the sum of squared
errors as the quality of the fit.

Example. Consider a situation where a small ball is being tossed up in the air and then we measure its
heights of ascent hi at various moments in time ti. Physics tells us that, ignoring the drag, the
relationship can be modeled as

where β1 determines the initial velocity of the ball, β2 is proportional to the standard gravity, and εi is
due to measurement errors. Linear regression can be used to estimate the values of β1 and β2 from the
measured data. This model is non-linear in the time variable, but it is linear in the parameters β1 and β2;
if we take regressors xi = (xi1, xi2) = (ti, ti

2), the model takes on the standard form

Standard linear regression models with standard estimation techniques make a number of assumptions
about the predictor variables, the response variables and their relationship. Numerous extensions have
been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in
some cases eliminated entirely. Generally these extensions make the estimation procedure more
complex and time-consuming, and may also require more data in order to produce an equally precise
model.

The following are the major assumptions made by standard linear regression models with standard
estimation techniques (e.g. ordinary least squares):

Weak exogeneity. This essentially means that the predictor variables x can be treated as fixed
values, rather than random variables. This means, for example, that the predictor variables are
assumed to be error-free—that is, not contaminated with measurement errors. Although this
assumption is not realistic in many settings, dropping it leads to significantly more difficult errors-in-
variables models.

Assumptions

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Standard_gravity
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Errors-in-variables_model

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 5/17

Example of a cubic polynomial regression, which is a
type of linear regression.

Linearity. This means that the mean of the
response variable is a linear combination of the
parameters (regression coefficients) and the
predictor variables. Note that this assumption is
much less restrictive than it may at first seem.
Because the predictor variables are treated as
fixed values (see above), linearity is really only a
restriction on the parameters. The predictor
variables themselves can be arbitrarily
transformed, and in fact multiple copies of the
same underlying predictor variable can be added,
each one transformed differently. This technique
is used, for example, in polynomial regression,
which uses linear regression to fit the response
variable as an arbitrary polynomial function (up to
a given rank) of a predictor variable. With this
much flexibility, models such as polynomial
regression often have "too much power", in that
they tend to overfit the data. As a result, some
kind of regularization must typically be used to
prevent unreasonable solutions coming out of the estimation process. Common examples are ridge
regression and lasso regression. Bayesian linear regression can also be used, which by its nature is
more or less immune to the problem of overfitting. (In fact, ridge regression and lasso regression can
both be viewed as special cases of Bayesian linear regression, with particular types of prior
distributions placed on the regression coefficients.)
Constant variance (a.k.a. homoscedasticity). This means that different values of the response
variable have the same variance in their errors, regardless of the values of the predictor variables. In
practice this assumption is invalid (i.e. the errors are heteroscedastic) if the response variable can
vary over a wide scale. In order to check for heterogeneous error variance, or when a pattern of
residuals violates model assumptions of homoscedasticity (error is equally variable around the 'best-
fitting line' for all points of x), it is prudent to look for a "fanning effect" between residual error and
predicted values. This is to say there will be a systematic change in the absolute or squared
residuals when plotted against the predictive variables. Errors will not be evenly distributed across
the regression line. Heteroscedasticity will result in the averaging over of distinguishable variances
around the points to get a single variance that is inaccurately representing all the variances of the
line. In effect, residuals appear clustered and spread apart on their predicted plots for larger and
smaller values for points along the linear regression line, and the mean squared error for the model
will be wrong. Typically, for example, a response variable whose mean is large will have a greater
variance than one whose mean is small. For example, a given person whose income is predicted to
be $100,000 may easily have an actual income of $80,000 or $120,000 (a standard deviation of
around $20,000), while another person with a predicted income of $10,000 is unlikely to have the
same $20,000 standard deviation, which would imply their actual income would vary anywhere
between -$10,000 and $30,000. (In fact, as this shows, in many cases—often the same cases where
the assumption of normally distributed errors fails—the variance or standard deviation should be
predicted to be proportional to the mean, rather than constant.) Simple linear regression estimation
methods give less precise parameter estimates and misleading inferential quantities such as
standard errors when substantial heteroscedasticity is present. However, various estimation
techniques (e.g. weighted least squares and heteroscedasticity-consistent standard errors) can
handle heteroscedasticity in a quite general way. Bayesian linear regression techniques can also be
used when the variance is assumed to be a function of the mean. It is also possible in some cases to
fix the problem by applying a transformation to the response variable (e.g. fit the logarithm of the
response variable using a linear regression model, which implies that the response variable has a
log-normal distribution rather than a normal distribution).

https://en.wikipedia.org/wiki/File:Polyreg_scheffe.svg
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Overfit
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Lasso_regression
https://en.wikipedia.org/wiki/Bayesian_linear_regression
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Lasso_regression
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Homoscedasticity
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Heteroscedasticity
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
https://en.wikipedia.org/wiki/Bayesian_linear_regression
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 6/17

Independence of errors. This assumes that the errors of the response variables are uncorrelated
with each other. (Actual statistical independence is a stronger condition than mere lack of correlation
and is often not needed, although it can be exploited if it is known to hold.) Some methods (e.g.
generalized least squares) are capable of handling correlated errors, although they typically require
significantly more data unless some sort of regularization is used to bias the model towards
assuming uncorrelated errors. Bayesian linear regression is a general way of handling this issue.
Lack of perfect multicollinearity in the predictors. For standard least squares estimation methods,
the design matrix X must have full column rank p; otherwise, we have a condition known as perfect
multicollinearity in the predictor variables. This can be triggered by having two or more perfectly
correlated predictor variables (e.g. if the same predictor variable is mistakenly given twice, either
without transforming one of the copies or by transforming one of the copies linearly). It can also
happen if there is too little data available compared to the number of parameters to be estimated
(e.g. fewer data points than regression coefficients). In the case of perfect multicollinearity, the
parameter vector β will be non-identifiable—it has no unique solution. At most we will be able to
identify some of the parameters, i.e. narrow down its value to some linear subspace of Rp. See
partial least squares regression. Methods for fitting linear models with multicollinearity have been
developed;[5][6][7][8] some require additional assumptions such as "effect sparsity"—that a large
fraction of the effects are exactly zero.
Note that the more computationally expensive iterated algorithms for parameter estimation, such as
those used in generalized linear models, do not suffer from this problem.

Beyond these assumptions, several other statistical properties of the data strongly influence the
performance of different estimation methods:

The statistical relationship between the error terms and the regressors plays an important role in
determining whether an estimation procedure has desirable sampling properties such as being
unbiased and consistent.
The arrangement, or probability distribution of the predictor variables x has a major influence on the
precision of estimates of β. Sampling and design of experiments are highly developed subfields of
statistics that provide guidance for collecting data in such a way to achieve a precise estimate of β.

A fitted linear regression model can be used to identify the relationship between a single predictor
variable xj and the response variable y when all the other predictor variables in the model are "held
fixed". Specifically, the interpretation of βj is the expected change in y for a one-unit change in xj when
the other covariates are held fixed—that is, the expected value of the partial derivative of y with respect
to xj. This is sometimes called the unique effect of xj on y. In contrast, the marginal effect of xj on y can
be assessed using a correlation coefficient or simple linear regression model relating only xj to y; this
effect is the total derivative of y with respect to xj.

Care must be taken when interpreting regression results, as some of the regressors may not allow for
marginal changes (such as dummy variables, or the intercept term), while others cannot be held fixed
(recall the example from the introduction: it would be impossible to "hold ti fixed" and at the same time
change the value of ti

2).

It is possible that the unique effect can be nearly zero even when the marginal effect is large. This may
imply that some other covariate captures all the information in xj, so that once that variable is in the
model, there is no contribution of xj to the variation in y. Conversely, the unique effect of xj can be large
while its marginal effect is nearly zero. This would happen if the other covariates explained a great deal

Interpretation

https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Generalized_least_squares
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Bayesian_linear_regression
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Column_rank
https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Non-identifiable
https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Sampling_(statistics)
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Pearson_correlation
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Total_derivative
https://en.wikipedia.org/wiki/Dummy_variable_(statistics)

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 7/17

The data sets in the Anscombe's quartet are designed to have
approximately the same linear regression line (as well as nearly identical
means, standard deviations, and correlations) but are graphically very
different. This illustrates the pitfalls of relying solely on a fitted model to
understand the relationship between variables.

of the variation of y, but they mainly
explain variation in a way that is
complementary to what is captured
by xj. In this case, including the other
variables in the model reduces the
part of the variability of y that is
unrelated to xj, thereby
strengthening the apparent
relationship with xj.

The meaning of the expression "held
fixed" may depend on how the values
of the predictor variables arise. If the
experimenter directly sets the values
of the predictor variables according
to a study design, the comparisons of
interest may literally correspond to
comparisons among units whose
predictor variables have been "held
fixed" by the experimenter.
Alternatively, the expression "held
fixed" can refer to a selection that
takes place in the context of data
analysis. In this case, we "hold a
variable fixed" by restricting our attention to the subsets of the data that happen to have a common value
for the given predictor variable. This is the only interpretation of "held fixed" that can be used in an
observational study.

The notion of a "unique effect" is appealing when studying a complex system where multiple interrelated
components influence the response variable. In some cases, it can literally be interpreted as the causal
effect of an intervention that is linked to the value of a predictor variable. However, it has been argued
that in many cases multiple regression analysis fails to clarify the relationships between the predictor
variables and the response variable when the predictors are correlated with each other and are not
assigned following a study design.[9] Commonality analysis may be helpful in disentangling the shared
and unique impacts of correlated independent variables.[10]

Numerous extensions of linear regression have been developed, which allow some or all of the
assumptions underlying the basic model to be relaxed.

The very simplest case of a single scalar predictor variable x and a single scalar response variable y is
known as simple linear regression. The extension to multiple and/or vector-valued predictor variables
(denoted with a capital X) is known as multiple linear regression, also known as multivariable linear
regression. Nearly all real-world regression models involve multiple predictors, and basic descriptions of
linear regression are often phrased in terms of the multiple regression model. Note, however, that in
these cases the response variable y is still a scalar. Another term, multivariate linear regression, refers
to cases where y is a vector, i.e., the same as general linear regression.

Extensions

Simple and multiple linear regression

https://en.wikipedia.org/wiki/File:Anscombe%27s_quartet_3.svg
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Commonality_analysis
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Euclidean_vector

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 8/17

Example of simple linear regression, which has one independent
variable

The general linear model considers the
situation when the response variable is not
a scalar (for each observation) but a vector,
yi. Conditional linearity of

 is still assumed, with a
matrix B replacing the vector β of the
classical linear regression model.
Multivariate analogues of ordinary least
squares (OLS) and generalized least
squares (GLS) have been developed.
"General linear models" are also called
"multivariate linear models". These are not
the same as multivariable linear models
(also called "multiple linear models").

Various models have been created that allow for heteroscedasticity, i.e. the errors for different response
variables may have different variances. For example, weighted least squares is a method for estimating
linear regression models when the response variables may have different error variances, possibly with
correlated errors. (See also Weighted linear least squares, and Generalized least squares.)
Heteroscedasticity-consistent standard errors is an improved method for use with uncorrelated but
potentially heteroscedastic errors.

Generalized linear models (GLMs) are a framework for modeling response variables that are bounded or
discrete. This is used, for example:

when modeling positive quantities (e.g. prices or populations) that vary over a large scale—which are
better described using a skewed distribution such as the log-normal distribution or Poisson
distribution (although GLMs are not used for log-normal data, instead the response variable is simply
transformed using the logarithm function);
when modeling categorical data, such as the choice of a given candidate in an election (which is
better described using a Bernoulli distribution/binomial distribution for binary choices, or a categorical
distribution/multinomial distribution for multi-way choices), where there are a fixed number of choices
that cannot be meaningfully ordered;
when modeling ordinal data, e.g. ratings on a scale from 0 to 5, where the different outcomes can be
ordered but where the quantity itself may not have any absolute meaning (e.g. a rating of 4 may not
be "twice as good" in any objective sense as a rating of 2, but simply indicates that it is better than 2
or 3 but not as good as 5).

Generalized linear models allow for an arbitrary link function, g, that relates the mean of the response
variable(s) to the predictors: . The link function is often related to the distribution of
the response, and in particular it typically has the effect of transforming between the range of
the linear predictor and the range of the response variable.

General linear models

Heteroscedastic models

Generalized linear models

https://en.wikipedia.org/wiki/File:Linear_regression.svg
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/General_linear_model
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Generalized_least_squares
https://en.wikipedia.org/wiki/Heteroscedasticity
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)#Weighted_linear_least_squares
https://en.wikipedia.org/wiki/Generalized_least_squares
https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Skewed_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Categorical_data
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Ordinal_data
https://en.wikipedia.org/wiki/Mean

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 9/17

Some common examples of GLMs are:

Poisson regression for count data.
Logistic regression and probit regression for binary data.
Multinomial logistic regression and multinomial probit regression for categorical data.
Ordered logit and ordered probit regression for ordinal data.

Single index models allow some degree of nonlinearity in the relationship between x and y, while
preserving the central role of the linear predictor β′x as in the classical linear regression model. Under
certain conditions, simply applying OLS to data from a single-index model will consistently estimate β
up to a proportionality constant.[11]

Hierarchical linear models (or multilevel regression) organizes the data into a hierarchy of regressions,
for example where A is regressed on B, and B is regressed on C. It is often used where the variables of
interest have a natural hierarchical structure such as in educational statistics, where students are nested
in classrooms, classrooms are nested in schools, and schools are nested in some administrative grouping,
such as a school district. The response variable might be a measure of student achievement such as a test
score, and different covariates would be collected at the classroom, school, and school district levels.

Errors-in-variables models (or "measurement error models") extend the traditional linear regression
model to allow the predictor variables X to be observed with error. This error causes standard estimators
of β to become biased. Generally, the form of bias is an attenuation, meaning that the effects are biased
toward zero.

In Dempster–Shafer theory, or a linear belief function in particular, a linear regression model may be
represented as a partially swept matrix, which can be combined with similar matrices representing
observations and other assumed normal distributions and state equations. The combination of swept
or unswept matrices provides an alternative method for estimating linear regression models.

A large number of procedures have been developed for parameter estimation and inference in linear
regression. These methods differ in computational simplicity of algorithms, presence of a closed-form
solution, robustness with respect to heavy-tailed distributions, and theoretical assumptions needed to
validate desirable statistical properties such as consistency and asymptotic efficiency.

Some of the more common estimation techniques for linear regression are summarized below.

Hierarchical linear models

Errors-in-variables

Others

Estimation methods

Least-squares estimation and related techniques

https://en.wikipedia.org/wiki/Poisson_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_probit
https://en.wikipedia.org/wiki/Ordered_logit
https://en.wikipedia.org/wiki/Ordered_probit
https://en.wikipedia.org/wiki/Hierarchical_linear_models
https://en.wikipedia.org/wiki/Errors-in-variables_model
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory
https://en.wikipedia.org/wiki/Linear_belief_function
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Consistent_estimator
https://en.wikipedia.org/wiki/Efficiency_(statistics)

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 10/17

Francis Galton's 1875 illustration of the correlation between the heights of
adults and their parents. The observation that adult children's heights
tended to deviate less from the mean height than their parents suggested
the concept of "regression toward the mean", giving regression its name.
The "locus of horizontal tangential points" passing through the leftmost
and rightmost points on the ellipse (which is a level curve of the bivariate
normal distribution estimated from the data) is the OLS estimate of the
regression of parents' heights on children's heights, while the "locus of
vertical tangential points" is the OLS estimate of the regression of
children's heights on parent's heights. The major axis of the ellipse is the
TLS estimate.

Let's assume that the independent
variable is
and the model's parameters are

, then the
model's prediction would be

. If is

extended to
then would become a dot product
of the parameter and the
independent variable, i.e.

. In the

least-squares setting, the optimum
parameter is defined as such that
minimizes the sum of mean squared
loss:

Now putting the independent and dependent variables in matrices and respectively, the loss
function can be rewritten as:

As the loss is convex the optimum solution lies at gradient zero. The gradient of the loss function is
(using Denominator layout convention):

https://en.wikipedia.org/wiki/File:Galton%27s_correlation_diagram_1875.jpg
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Regression_toward_the_mean
https://en.wikipedia.org/wiki/Level_curve
https://en.wikipedia.org/wiki/Bivariate_normal_distribution
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Total_least_squares
https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 11/17

Setting the gradient to zero produces the optimum parameter:

Note: To prove that the obtained is indeed the local minimum, one needs to differentiate once more to
obtain the Hessian matrix and show that it is positive definite. This is provided by the Gauss–Markov
theorem.

Linear least squares methods include mainly:

Ordinary least squares
Weighted least squares
Generalized least squares

Maximum likelihood estimation can be performed when the distribution of the error terms is known
to belong to a certain parametric family ƒθ of probability distributions.[12] When fθ is a normal
distribution with zero mean and variance θ, the resulting estimate is identical to the OLS estimate.
GLS estimates are maximum likelihood estimates when ε follows a multivariate normal distribution
with a known covariance matrix.
Ridge regression[13][14][15] and other forms of penalized estimation, such as Lasso regression,[5]

deliberately introduce bias into the estimation of β in order to reduce the variability of the estimate.
The resulting estimates generally have lower mean squared error than the OLS estimates,
particularly when multicollinearity is present or when overfitting is a problem. They are generally
used when the goal is to predict the value of the response variable y for values of the predictors x
that have not yet been observed. These methods are not as commonly used when the goal is
inference, since it is difficult to account for the bias.
Least absolute deviation (LAD) regression is a robust estimation technique in that it is less
sensitive to the presence of outliers than OLS (but is less efficient than OLS when no outliers are
present). It is equivalent to maximum likelihood estimation under a Laplace distribution model for
ε.[16]

Adaptive estimation. If we assume that error terms are independent of the regressors, ,
then the optimal estimator is the 2-step MLE, where the first step is used to non-parametrically
estimate the distribution of the error term.[17]

Maximum-likelihood estimation and related techniques

Other estimation techniques

https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Generalized_least_squares
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Bias_of_an_estimator
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Least_absolute_deviation
https://en.wikipedia.org/wiki/Robust_regression
https://en.wikipedia.org/wiki/Efficiency_(statistics)
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Independence_(probability_theory)

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 12/17

Comparison of the Theil–Sen
estimator (black) and simple linear
regression (blue) for a set of points
with outliers.

Bayesian linear regression applies the framework of Bayesian
statistics to linear regression. (See also Bayesian multivariate
linear regression.) In particular, the regression coefficients β are
assumed to be random variables with a specified prior
distribution. The prior distribution can bias the solutions for the
regression coefficients, in a way similar to (but more general
than) ridge regression or lasso regression. In addition, the
Bayesian estimation process produces not a single point
estimate for the "best" values of the regression coefficients but
an entire posterior distribution, completely describing the
uncertainty surrounding the quantity. This can be used to
estimate the "best" coefficients using the mean, mode, median,
any quantile (see quantile regression), or any other function of
the posterior distribution.
Quantile regression focuses on the conditional quantiles of y
given X rather than the conditional mean of y given X. Linear
quantile regression models a particular conditional quantile, for
example the conditional median, as a linear function βTx of the
predictors.
Mixed models are widely used to analyze linear regression relationships involving dependent data
when the dependencies have a known structure. Common applications of mixed models include
analysis of data involving repeated measurements, such as longitudinal data, or data obtained from
cluster sampling. They are generally fit as parametric models, using maximum likelihood or Bayesian
estimation. In the case where the errors are modeled as normal random variables, there is a close
connection between mixed models and generalized least squares.[18] Fixed effects estimation is an
alternative approach to analyzing this type of data.
Principal component regression (PCR)[7][8] is used when the number of predictor variables is
large, or when strong correlations exist among the predictor variables. This two-stage procedure first
reduces the predictor variables using principal component analysis then uses the reduced variables
in an OLS regression fit. While it often works well in practice, there is no general theoretical reason
that the most informative linear function of the predictor variables should lie among the dominant
principal components of the multivariate distribution of the predictor variables. The partial least
squares regression is the extension of the PCR method which does not suffer from the mentioned
deficiency.
Least-angle regression[6] is an estimation procedure for linear regression models that was
developed to handle high-dimensional covariate vectors, potentially with more covariates than
observations.
The Theil–Sen estimator is a simple robust estimation technique that chooses the slope of the fit
line to be the median of the slopes of the lines through pairs of sample points. It has similar statistical
efficiency properties to simple linear regression but is much less sensitive to outliers.[19]

Other robust estimation techniques, including the α-trimmed mean approach, and L-, M-, S-, and R-
estimators have been introduced.

Linear regression is widely used in biological, behavioral and social sciences to describe possible
relationships between variables. It ranks as one of the most important tools used in these disciplines.

Applications

Trend line

https://en.wikipedia.org/wiki/File:Thiel-Sen_estimator.svg
https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Bayesian_linear_regression
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Bayesian_multivariate_linear_regression
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Lasso_regression
https://en.wikipedia.org/wiki/Posterior_distribution
https://en.wikipedia.org/wiki/Quantile_regression
https://en.wikipedia.org/wiki/Quantile_regression
https://en.wikipedia.org/wiki/Mixed_model
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Fixed_effects_estimation
https://en.wikipedia.org/wiki/Principal_component_regression
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://en.wikipedia.org/wiki/Least-angle_regression
https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator
https://en.wikipedia.org/wiki/Robust_regression
https://en.wikipedia.org/wiki/Outlier

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 13/17

A trend line represents a trend, the long-term movement in time series data after other components
have been accounted for. It tells whether a particular data set (say GDP, oil prices or stock prices) have
increased or decreased over the period of time. A trend line could simply be drawn by eye through a set
of data points, but more properly their position and slope is calculated using statistical techniques like
linear regression. Trend lines typically are straight lines, although some variations use higher degree
polynomials depending on the degree of curvature desired in the line.

Trend lines are sometimes used in business analytics to show changes in data over time. This has the
advantage of being simple. Trend lines are often used to argue that a particular action or event (such as
training, or an advertising campaign) caused observed changes at a point in time. This is a simple
technique, and does not require a control group, experimental design, or a sophisticated analysis
technique. However, it suffers from a lack of scientific validity in cases where other potential changes can
affect the data.

Early evidence relating tobacco smoking to mortality and morbidity came from observational studies
employing regression analysis. In order to reduce spurious correlations when analyzing observational
data, researchers usually include several variables in their regression models in addition to the variable
of primary interest. For example, in a regression model in which cigarette smoking is the independent
variable of primary interest and the dependent variable is lifespan measured in years, researchers might
include education and income as additional independent variables, to ensure that any observed effect of
smoking on lifespan is not due to those other socio-economic factors. However, it is never possible to
include all possible confounding variables in an empirical analysis. For example, a hypothetical gene
might increase mortality and also cause people to smoke more. For this reason, randomized controlled
trials are often able to generate more compelling evidence of causal relationships than can be obtained
using regression analyses of observational data. When controlled experiments are not feasible, variants
of regression analysis such as instrumental variables regression may be used to attempt to estimate
causal relationships from observational data.

The capital asset pricing model uses linear regression as well as the concept of beta for analyzing and
quantifying the systematic risk of an investment. This comes directly from the beta coefficient of the
linear regression model that relates the return on the investment to the return on all risky assets.

Linear regression is the predominant empirical tool in economics. For example, it is used to predict
consumption spending,[20] fixed investment spending, inventory investment, purchases of a country's
exports,[21] spending on imports,[21] the demand to hold liquid assets,[22] labor demand,[23] and labor
supply.[23]

Linear regression finds application in a wide range of environmental science applications. In Canada, the
Environmental Effects Monitoring Program uses statistical analyses on fish and benthic surveys to
measure the effects of pulp mill or metal mine effluent on the aquatic ecosystem.[24]

Epidemiology

Finance

Economics

Environmental science

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Tobacco_smoking
https://en.wikipedia.org/wiki/Morbidity
https://en.wikipedia.org/wiki/Observational_studies
https://en.wikipedia.org/wiki/Spurious_correlation
https://en.wikipedia.org/wiki/Socioeconomic_status
https://en.wikipedia.org/wiki/Confounding
https://en.wikipedia.org/wiki/Randomized_controlled_trial
https://en.wikipedia.org/wiki/Instrumental_variables
https://en.wikipedia.org/wiki/Capital_asset_pricing_model
https://en.wikipedia.org/wiki/Beta_(finance)
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Consumption_(economics)
https://en.wikipedia.org/wiki/Fixed_investment
https://en.wikipedia.org/wiki/Inventory_investment
https://en.wikipedia.org/wiki/Exports
https://en.wikipedia.org/wiki/Imports
https://en.wikipedia.org/wiki/Money_demand
https://en.wikipedia.org/wiki/Labour_economics
https://en.wikipedia.org/wiki/Labor_supply
https://en.wikipedia.org/wiki/Benthic_zone

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 14/17

Linear regression plays an important role in the field of artificial intelligence such as machine learning.
The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due
to its relative simplicity and well-known properties.[25]

Least squares linear regression, as a means of finding a good rough linear fit to a set of points was
performed by Legendre (1805) and Gauss (1809) for the prediction of planetary movement. Quetelet was
responsible for making the procedure well-known and for using it extensively in the social sciences.[26]

Analysis of variance
Blinder–Oaxaca decomposition
Censored regression model
Cross-sectional regression
Curve fitting
Empirical Bayes methods
Errors and residuals
Lack-of-fit sum of squares
Line fitting
Linear classifier
Linear equation
Logistic regression

M-estimator
Multivariate adaptive regression splines
Nonlinear regression
Nonparametric regression
Normal equations
Projection pursuit regression
Segmented linear regression
Stepwise regression
Structural break
Support vector machine
Truncated regression model

1. David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press.
p. 26. "A simple regression equation has on the right hand side an intercept and an explanatory
variable with a slope coefficient. A multiple regression e right hand side, each with its own slope
coefficient"

2. Rencher, Alvin C.; Christensen, William F. (2012), "Chapter 10, Multivariate regression – Section
10.1, Introduction", Methods of Multivariate Analysis (https://books.google.com/books?id=0g-PAuKub
3QC&pg=PA19), Wiley Series in Probability and Statistics, 709 (3rd ed.), John Wiley & Sons, p. 19,
ISBN 9781118391679.

3. Hilary L. Seal (1967). "The historical development of the Gauss linear model". Biometrika. 54 (1/2):
1–24. doi:10.1093/biomet/54.1-2.1 (https://doi.org/10.1093%2Fbiomet%2F54.1-2.1).
JSTOR 2333849 (https://www.jstor.org/stable/2333849).

Machine learning

History

See also

References

Citations

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Gauss
https://en.wikipedia.org/wiki/Quetelet
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Blinder%E2%80%93Oaxaca_decomposition
https://en.wikipedia.org/wiki/Censored_regression_model
https://en.wikipedia.org/wiki/Cross-sectional_regression
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Empirical_Bayes_methods
https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares
https://en.wikipedia.org/wiki/Line_fitting
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_equation
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/M-estimator
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
https://en.wikipedia.org/wiki/Nonlinear_regression
https://en.wikipedia.org/wiki/Nonparametric_regression
https://en.wikipedia.org/wiki/Normal_equations
https://en.wikipedia.org/wiki/Projection_pursuit_regression
https://en.wikipedia.org/wiki/Segmented_regression
https://en.wikipedia.org/wiki/Stepwise_regression
https://en.wikipedia.org/wiki/Structural_break
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Truncated_regression_model
https://en.wikipedia.org/wiki/David_A._Freedman
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://books.google.com/books?id=0g-PAuKub3QC&pg=PA19
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781118391679
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fbiomet%2F54.1-2.1
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2333849

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 15/17

4. Yan, Xin (2009), Linear Regression Analysis: Theory and Computing (https://books.google.com/book
s?id=MjNv6rGv8NIC&pg=PA1), World Scientific, pp. 1–2, ISBN 9789812834119, "Regression
analysis ... is probably one of the oldest topics in mathematical statistics dating back to about two
hundred years ago. The earliest form of the linear regression was the least squares method, which
was published by Legendre in 1805, and by Gauss in 1809 ... Legendre and Gauss both applied the
method to the problem of determining, from astronomical observations, the orbits of bodies about the
sun."

5. Tibshirani, Robert (1996). "Regression Shrinkage and Selection via the Lasso". Journal of the Royal
Statistical Society, Series B. 58 (1): 267–288. JSTOR 2346178 (https://www.jstor.org/stable/234617
8).

6. Efron, Bradley; Hastie, Trevor; Johnstone, Iain; Tibshirani, Robert (2004). "Least Angle Regression".
The Annals of Statistics. 32 (2): 407–451. arXiv:math/0406456 (https://arxiv.org/abs/math/0406456).
doi:10.1214/009053604000000067 (https://doi.org/10.1214%2F009053604000000067).
JSTOR 3448465 (https://www.jstor.org/stable/3448465).

7. Hawkins, Douglas M. (1973). "On the Investigation of Alternative Regressions by Principal
Component Analysis". Journal of the Royal Statistical Society, Series C. 22 (3): 275–286.
JSTOR 2346776 (https://www.jstor.org/stable/2346776).

8. Jolliffe, Ian T. (1982). "A Note on the Use of Principal Components in Regression". Journal of the
Royal Statistical Society, Series C. 31 (3): 300–303. JSTOR 2348005 (https://www.jstor.org/stable/23
48005).

9. Berk, Richard A. (2007). "Regression Analysis: A Constructive Critique". Criminal Justice Review. 32
(3): 301–302. doi:10.1177/0734016807304871 (https://doi.org/10.1177%2F0734016807304871).

10. Warne, Russell T. (2011). "Beyond multiple regression: Using commonality analysis to better
understand R2 results". Gifted Child Quarterly. 55 (4): 313–318. doi:10.1177/0016986211422217 (htt
ps://doi.org/10.1177%2F0016986211422217).

11. Brillinger, David R. (1977). "The Identification of a Particular Nonlinear Time Series System".
Biometrika. 64 (3): 509–515. doi:10.1093/biomet/64.3.509 (https://doi.org/10.1093%2Fbiomet%2F64.
3.509). JSTOR 2345326 (https://www.jstor.org/stable/2345326).

12. Lange, Kenneth L.; Little, Roderick J. A.; Taylor, Jeremy M. G. (1989). "Robust Statistical Modeling
Using the t Distribution" (https://cloudfront.escholarship.org/dist/prd/content/qt27s1d3h7/qt27s1d3h7.
pdf) (PDF). Journal of the American Statistical Association. 84 (408): 881–896. doi:10.2307/2290063
(https://doi.org/10.2307%2F2290063). JSTOR 2290063 (https://www.jstor.org/stable/2290063).

13. Swindel, Benee F. (1981). "Geometry of Ridge Regression Illustrated". The American Statistician. 35
(1): 12–15. doi:10.2307/2683577 (https://doi.org/10.2307%2F2683577). JSTOR 2683577 (https://ww
w.jstor.org/stable/2683577).

14. Draper, Norman R.; van Nostrand; R. Craig (1979). "Ridge Regression and James-Stein Estimation:
Review and Comments". Technometrics. 21 (4): 451–466. doi:10.2307/1268284 (https://doi.org/10.2
307%2F1268284). JSTOR 1268284 (https://www.jstor.org/stable/1268284).

15. Hoerl, Arthur E.; Kennard, Robert W.; Hoerl, Roger W. (1985). "Practical Use of Ridge Regression: A
Challenge Met". Journal of the Royal Statistical Society, Series C. 34 (2): 114–120. JSTOR 2347363
(https://www.jstor.org/stable/2347363).

16. Narula, Subhash C.; Wellington, John F. (1982). "The Minimum Sum of Absolute Errors Regression:
A State of the Art Survey". International Statistical Review. 50 (3): 317–326. doi:10.2307/1402501 (ht
tps://doi.org/10.2307%2F1402501). JSTOR 1402501 (https://www.jstor.org/stable/1402501).

17. Stone, C. J. (1975). "Adaptive maximum likelihood estimators of a location parameter" (https://doi.or
g/10.1214/aos/1176343056). The Annals of Statistics. 3 (2): 267–284. doi:10.1214/aos/1176343056
(https://doi.org/10.1214%2Faos%2F1176343056). JSTOR 2958945 (https://www.jstor.org/stable/295
8945).

18. Goldstein, H. (1986). "Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least
Squares". Biometrika. 73 (1): 43–56. doi:10.1093/biomet/73.1.43 (https://doi.org/10.1093%2Fbiome
t%2F73.1.43). JSTOR 2336270 (https://www.jstor.org/stable/2336270).

https://books.google.com/books?id=MjNv6rGv8NIC&pg=PA1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9789812834119
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2346178
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/math/0406456
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2F009053604000000067
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/3448465
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2346776
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2348005
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1177%2F0734016807304871
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1177%2F0016986211422217
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fbiomet%2F64.3.509
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2345326
https://cloudfront.escholarship.org/dist/prd/content/qt27s1d3h7/qt27s1d3h7.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2290063
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2290063
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2683577
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2683577
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F1268284
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/1268284
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2347363
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F1402501
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/1402501
https://doi.org/10.1214/aos/1176343056
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1214%2Faos%2F1176343056
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2958945
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fbiomet%2F73.1.43
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2336270

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 16/17

Cohen, J., Cohen P., West, S.G., & Aiken, L.S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (https://books.google.com/books?id=98p4AgAAQBAJ&printsec=
frontcover&dq=%22Applied+multiple+regression/correlation+analysis+for+the+behavioral+science
s%22&hl=en&sa=X&ved=0ahUKEwjRwv_Z79fiAhUB_1QKHdBQCgoQ6AEIKjAA#v=onepage&q=%2
2Applied%20multiple%20regression%2Fcorrelation%20analysis%20for%20the%20behavioral%20sc
iences%22&f=false). (2nd ed.) Hillsdale, NJ: Lawrence Erlbaum Associates
Charles Darwin. The Variation of Animals and Plants under Domestication. (1868) (Chapter XIII
describes what was known about reversion in Galton's time. Darwin uses the term "reversion".)
Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN 978-0-471-
17082-2.
Francis Galton. "Regression Towards Mediocrity in Hereditary Stature," Journal of the
Anthropological Institute, 15:246-263 (1886). (Facsimile at: [1] (http://www.mugu.com/galton/essays/
1880-1889/galton-1886-jaigi-regression-stature.pdf))
Robert S. Pindyck and Daniel L. Rubinfeld (1998, 4h ed.). Econometric Models and Economic
Forecasts, ch. 1 (Intro, incl. appendices on Σ operators & derivation of parameter est.) & Appendix
4.3 (mult. regression in matrix form).

Pedhazur, Elazar J (1982). Multiple regression in behavioral research: Explanation and prediction
(2nd ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-041760-3.
Mathieu Rouaud, 2013: Probability, Statistics and Estimation (http://www.incertitudes.fr/book.pdf)
Chapter 2: Linear Regression, Linear Regression with Error Bars and Nonlinear Regression.
National Physical Laboratory (1961). "Chapter 1: Linear Equations and Matrices: Direct Methods".
Modern Computing Methods. Notes on Applied Science. 16 (2nd ed.). Her Majesty's Stationery

19. Theil, H. (1950). "A rank-invariant method of linear and polynomial regression analysis. I, II, III".
Nederl. Akad. Wetensch., Proc. 53: 386–392, 521–525, 1397–1412. MR 0036489 (https://www.ams.
org/mathscinet-getitem?mr=0036489).; Sen, Pranab Kumar (1968). "Estimates of the regression
coefficient based on Kendall's tau". Journal of the American Statistical Association. 63 (324): 1379–
1389. doi:10.2307/2285891 (https://doi.org/10.2307%2F2285891). JSTOR 2285891 (https://www.jsto
r.org/stable/2285891). MR 0258201 (https://www.ams.org/mathscinet-getitem?mr=0258201)..

20. Deaton, Angus (1992). Understanding Consumption. Oxford University Press. ISBN 978-0-19-
828824-4.

21. Krugman, Paul R.; Obstfeld, M.; Melitz, Marc J. (2012). International Economics: Theory and Policy
(9th global ed.). Harlow: Pearson. ISBN 9780273754091.

22. Laidler, David E. W. (1993). The Demand for Money: Theories, Evidence, and Problems (4th ed.).
New York: Harper Collins. ISBN 978-0065010985.

23. Ehrenberg; Smith (2008). Modern Labor Economics (10th international ed.). London: Addison-
Wesley. ISBN 9780321538963.

24. EEMP webpage (http://www.ec.gc.ca/esee-eem/default.asp?lang=En&n=453D78FC-1) Archived (htt
ps://web.archive.org/web/20110611114740/http://www.ec.gc.ca/esee-eem/default.asp?lang=En&n=4
53D78FC-1) 2011-06-11 at the Wayback Machine

25. "Linear Regression (Machine Learning)" (https://people.cs.pitt.edu/~milos/courses/cs2750-Spring03/l
ectures/class6.pdf) (PDF). University of Pittsburgh.

26. Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900 (h
ttps://archive.org/details/historyofstatist00stig). Cambridge: Harvard. ISBN 0-674-40340-1.

Sources

Further reading

https://books.google.com/books?id=98p4AgAAQBAJ&printsec=frontcover&dq=%22Applied+multiple+regression/correlation+analysis+for+the+behavioral+sciences%22&hl=en&sa=X&ved=0ahUKEwjRwv_Z79fiAhUB_1QKHdBQCgoQ6AEIKjAA#v=onepage&q=%22Applied%20multiple%20regression%2Fcorrelation%20analysis%20for%20the%20behavioral%20sciences%22&f=false
https://en.wikipedia.org/wiki/Charles_Darwin
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-17082-2
http://www.mugu.com/galton/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-03-041760-3
http://www.incertitudes.fr/book.pdf
https://en.wikipedia.org/wiki/Her_Majesty%27s_Stationery_Office
https://en.wikipedia.org/wiki/Henri_Theil
https://en.wikipedia.org/wiki/MR_(identifier)
https://www.ams.org/mathscinet-getitem?mr=0036489
https://en.wikipedia.org/wiki/Pranab_K._Sen
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2285891
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2285891
https://en.wikipedia.org/wiki/MR_(identifier)
https://www.ams.org/mathscinet-getitem?mr=0258201
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-828824-4
https://en.wikipedia.org/wiki/Paul_Krugman
https://en.wikipedia.org/wiki/Maurice_Obstfeld
https://en.wikipedia.org/wiki/Marc_Melitz
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780273754091
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0065010985
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780321538963
http://www.ec.gc.ca/esee-eem/default.asp?lang=En&n=453D78FC-1
https://web.archive.org/web/20110611114740/http://www.ec.gc.ca/esee-eem/default.asp?lang=En&n=453D78FC-1
https://en.wikipedia.org/wiki/Wayback_Machine
https://people.cs.pitt.edu/~milos/courses/cs2750-Spring03/lectures/class6.pdf
https://en.wikipedia.org/wiki/Stephen_Stigler
https://archive.org/details/historyofstatist00stig
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-674-40340-1

9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 17/17

Office.

Least-Squares Regression (https://phet.colorado.edu/en/simulation/least-squares-regression), PhET
Interactive simulations, University of Colorado at Boulder
DIY Linear Fit (http://www.geocities.ws/diylf/DIYLF.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=977730584"

This page was last edited on 10 September 2020, at 16:37 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site,
you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a
non-profit organization.

External links

https://en.wikipedia.org/wiki/Her_Majesty%27s_Stationery_Office
https://phet.colorado.edu/en/simulation/least-squares-regression
https://en.wikipedia.org/wiki/PhET
http://www.geocities.ws/diylf/DIYLF.html
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=977730584
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 4

Source: https://www.thebalancesmb.com/what-is-simple-linear-regression-2296697

What A Simple Linear Regression Model Is
and How It Works

A basic statistical method of finding relationships between
variables

BY

GIGI DEVAULT

Updated January 09, 2020

Linear regression models are used to show or predict the relationship between

two variables or factors. The factor that is being predicted (the factor that the

equation solves for) is called the dependent variable. The factors that are used to

predict the value of the dependent variable are called the independent variables.

In linear regression, each observation consists of two values. One value is for the

dependent variable and one value is for the independent variable. In this simple model,

a straight line approximates the relationship between the dependent variable and the

independent variable.1

When two or more independent variables are used in regression analysis, the model is

no longer a simple linear one. This is known as multiple regression.2

Formula For a Simple Linear Regression Model

The two factors that are involved in simple linear regression analysis are

designated x and y. The equation that describes how y is related to x is known as

the regression model.

The simple linear regression model is represented by:

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 4

y = β0 +β1x+ε

The linear regression model contains an error term that is represented by ε. The error

term is used to account for the variability in y that cannot be explained by the linear

relationship between x and y. If ε were not present, that would mean that

knowing x would provide enough information to determine the value of y.

There also parameters that represent the population being studied. These parameters

of the model are represented by β0 and β1.

The simple linear regression equation is graphed as a straight line, where:

1. β0 is the y-intercept of the regression line.

2. β1 is the slope.

3. Ε(y) is the mean or expected value of y for a given value of x.

A regression line can show a positive linear relationship, a negative linear relationship,

or no relationship3.

1. No relationship: The graphed line in a simple linear regression is flat (not sloped).

There is no relationship between the two variables.

2. Positive relationship: The regression line slopes upward with the lower end of the line

at the y-intercept (axis) of the graph and the upper end of the line extending upward into

the graph field, away from the x-intercept (axis). There is a positive linear relationship

between the two variables: as the value of one increases, the value of the other also

increases.

3. Negative relationship: The regression line slopes downward with the upper end of the

line at the y-intercept (axis) of the graph and the lower end of the line extending

downward into the graph field, toward the x-intercept (axis). There is a negative linear

relationship between the two variables: as the value of one increases, the value of the

other decreases.4

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 4

The Estimated Linear Regression Equation

If the parameters of the population were known, the simple linear regression equation

(shown below) could be used to compute the mean value of y for a known value of x.

Ε(y) = β0 +β1x+ε

In practice, however, parameter values generally are not known so they must be

estimated by using data from a sample of the population. The population parameters

are estimated by using sample statistics. The sample statistics are represented

by β0 and β1. When the sample statistics are substituted for the population parameters,

the estimated regression equation is formed.3

The estimated regression equation is:

(ŷ) = β0 +β1x+ε

Note: (ŷ) is pronounced y hat.

The graph of the estimated simple regression equation is called the estimated

regression line.

1. β0 is the y-intercept of the regression line.

2. β1 is the slope.

3. (ŷ) is the estimated value of y for a given value of x.

Limits of Simple Linear Regression

Even the best data does not tell a complete story.

Regression analysis is commonly used in research to establish that a correlation exists

between variables. But correlation is not the same as causation: a relationship between

two variables does not mean one causes the other to happen. Even a line in a simple

linear regression that fits the data points well may not guarantee a cause-and-effect

relationship.

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 4

Using a linear regression model will allow you to discover whether a relationship

between variables exists at all. To understand exactly what that relationship is, and

whether one variable causes another, you will need additional research and statistical

analysis.1

Article Sources
1. Anderson, D. R., Sweeney, D. J., and Williams, T. A. "Essentials of Statistics for

Business and Economics (3rd edition)." Accessed January 8, 2020.

2. North Carolina State University. Using Cigarette Data for An Introduction to Multiple
Regression. Journal of Statistics Education, 2(1). Accessed January 8, 2020.

3. Massachusetts Institute of Technology: MIT OpenCourseWare. "Statistics for
Applications: Simple Linear Regression." Accessed January 8, 2020.

4. Mendenhall, W., and Sincich, T. (1992). "Statistics for Engineering and the Sciences
(5th edition)." Accessed January 8, 2020.

4.0 Data

Analytics

Methods &

Algorithms

ACCESSING THIS CUSTOM DOCUMENT BEAR THE ENTIRE RISK OF ANY RELIANCE ON THIS CUSTOM
DOCUMENT, INCLUDING AS TO QUALITY, ACCURACY, AND RESULTS.

POSTagger (ML Engine)

The POSTagger function creates part-of-speech (POS) tags for the words in the input text. POS tagging is

the first step in the syntactic analysis of a language, and an important preprocessing step in many natural

language-processing applications.

The POSTagger function was developed on the Penn Treebank Project and Chinese Penn Treebank Project

data set. Its POS tags comply with the tags defined by the two projects.

For the parts of speech used, see the following:

Text Language Parts of Speech

English https://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html

Chinese https://www.sketchengine.co.uk/chinese-penn-treebank-part-of-speech-tagset/

POSTagger uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

POSTagger Syntax

Version 2.8

SELECT * FROM POSTagger (

 ON { table | view | (query) }

 USING

 TextColumn ('text_column')]

 [InputLanguage ({ 'en' | 'zh_Cn' })]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

POSTagger Syntax Elements

TextColumn

Specify the name of the input column that contains the text to tag.

InputLanguage

[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

VA4.1

Page 2 of 103

Accumulate

[Optional] Specify the names of the input table columns to copy to the output table.

If you intend to use the POSTagger output table as input to the function TextChunker (ML Engine),

then this syntax element must specify the input table columns that comprise the partition key.

POSTagger Input

Table Description

Input table Contains text to tag.

Model table Determined by InputLanguage syntax element:

InputLanguage Model File

English pos_model_2.0_en_141008.bin

Simplified

Chinese

pos_model_2.0_zh_cn_141008.bin

These model files are preinstalled on ML Engine.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

accumulate_column Any Column to copy to output table.

text_column VARCHAR Text to tag. Each row of this column must contain a well-

formatted sentence. To convert English text to formatted

sentences, use SentenceExtractor (ML Engine) function.

POSTagger Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table

[Column appears once for each specified accumulate_column.]

Column copied from input table.

word_sn INTEGER Word serial number (position of word in input text).

word VARCHAR Word extracted from input text.

pos_tag VARCHAR POS tag of word.

VA4.1

Page 3 of 103

POSTagger Example

Input

• Input table: Output table of SentenceExtractor Example

SQL Call

SELECT * FROM POSTagger (

 ON SentenceExtractor (

 ON paragraphs_input

 USING

 TextColumn ('paratext')

 Accumulate ('paraid')

)

 USING

 TextColumn ('sentence')

 Accumulate ('sentence','sentence_sn')

) AS dt ORDER BY sentence_sn, word_sn;

Output

 sentence

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

VA4.1

Page 4 of 103

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

VA4.1

Page 5 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

VA4.1

Page 6 of 103

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

VA4.1

Page 7 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

VA4.1

Page 8 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

VA4.1

Page 9 of 103

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

VA4.1

Page 10 of 103

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

VA4.1

Page 11 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 in statistics, simple linear regression is the least squares estimator of a linear regression model with a single exp

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 logistic regression was developed by statistician david cox in 1958[2][3](although much work was done in the single i

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

VA4.1

Page 12 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

VA4.1

Page 13 of 103

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 decision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusion

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 association rule learning is a method for discovering interesting relations between variables in large databases. it

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

 cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextChunker (ML Engine)

The TextChunker function divides text into phrases and assigns each phrase a tag that identifies its type.

VA4.1

Page 14 of 103

Text chunking (also called shallow parsing) divides text into phrases in such a way that syntactically related

words become members of the same phrase. Phrases do not overlap; that is, a word is a member of only

one chunk.

For example, the sentence "He reckons the current account deficit will narrow to only # 1.8 billion in

September ." can be divided as follows, with brackets delimiting phrases:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in]

[NP September]

After each opening bracket is a tag that identifies the chunk type (NP, VP, and so on). For information

about chunk types, see TextChunker Output.

For more information about text chunking, see:

• Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking.

In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

• Fei Sha and Fernando Pereira, Shallow Parsing with Conditional Random Fields. [2003]

TextChunker uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

TextChunker Syntax

Version 1.6

SELECT * FROM TextChunker (

 ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn

 USING

 WordColumn ('word_column')

 POSColumn ('pos_tag_column')

) AS alias;

The input_table is output table of the POSTagger (ML Engine) function, which contains the columns

partition_key and word_sn.

TextChunker Syntax Elements

WordColumn

VA4.1

Page 15 of 103

Specify the name of the input table column that contains the words to chunk into phrases. Typically,

this is the word column of the output table of the POSTagger function (described in POSTagger

Output).

POSColumn

Specify the name of the input table column the part-of-speech (POS) tag of words. Typically, this is

the pos_tag column of the output table of the POSTagger function (described in "POSTagger

Output").

TextChunker Input

Table Description

Input table POSTagger Output table.

When running POSTagger to create this table,

specify in the Accumulate syntax element the

name of the input column that contains the unique

row identifiers.

Model file chunker_default_model.bin, provided with function.

TextChunker Output

Output Table Schema

Column Data Type Description

partition_key VARCHAR Key of partition that

contains text.

chunk_sn INTEGER Sequence number of

phrase in sentence.

chunk VARCHAR Text chunk (syntactically

related words).

chunk_tag VARCHAR Phrase type tag (see

following table).

Phrase Type Tags

Tag Phrase Type

NP noun phrase

VP verb phrase

PP prepositional phrase

ADVP adverb phrase

SBAR subordinated clause

ADJP adjective phrase

PRT particles

VA4.1

Page 16 of 103

Tag Phrase Type

CONJP conjunction phrase

INTJ interjection

LST list marker

UCP unlike coordinated phrase

O punctuation marks

TextChunker Examples

TextChunker Example: POSTagger Output as Input

Input

• Input table: pos_tmp, created by inputting the table cities to the POSTagger function

cities

paraid paratext

1 I live in Los Angeles.

2 New York is a great city.

3 Chicago is a lot of fun, but the winters are very cold

and windy.

4 Philadelphia and Boston have many historical sites.

This statement creates pos_tmp:

CREATE multiset table pos_tmp AS (

 SELECT * FROM POSTagger (

 ON cities

 USING

 Accumulate ('paraid')

 TextColumn ('paratext')

) AS dt1

) WITH DATA;

SQL Call

SELECT * FROM TextChunker (

 ON pos_tmp PARTITION BY paraid ORDER BY paraid, word_sn

 USING

 WordColumn ('word')

 POSColumn ('pos_tag')

) AS dt;

VA4.1

Page 17 of 103

Output

 partition_key chunk_sn chunk chunk_tag

 ------------- -------- ----------------------- ---------

 1 1 i NP

 1 2 live VP

 1 3 in PP

 1 4 los angeles NP

 1 5 . O

 2 1 new york NP

 2 2 is VP

 2 3 a great city NP

 2 4 , filled VP

 2 5 with PP

 2 6 arts and culture NP

 2 7 . O

 3 1 chicago NP

 3 2 is VP

 3 3 a lot NP

 3 4 of PP

 3 5 fun NP

 3 6 , O

 3 7 but O

 3 8 the winters NP

 3 9 are VP

 3 10 very cold and windy NP

 3 11 . O

 4 1 philadelphia and boston NP

 4 2 have VP

 4 3 many historical sites NP

 4 4 . O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextChunker Example: SentenceExtractor and POSTagger Output as Input

Input

paragraphs_input

VA4.1

Page 18 of 103

paraid paratopic paratext

1 Decision Trees Decision tree learning uses a

decision tree as a predictive

model which maps observations

about an item to conclusions

about the items target value. It is

one of the predictive modeling

approaches used in statistics,

data mining and machine

learning. Tree models where the

target variable can take a finite

set of values are called

classification trees. In these tree

structures, leaves represent class

labels and branches represent

conjunctions of features that lead

to those class labels. Decision

trees where the target variable

can take continuous values

(typically real numbers) are

called regression trees.

2 Simple Regression In statistics, simple linear

regression is the least squares

estimator of a linear regression

model with a single explanatory

variable. In other words, simple

linear regression fits a straight

line through the set of n points in

such a way that makes the sum

of squared residuals of the model

(that is, vertical distances

between the points of the data

set and the fitted line) as small as

possible.

VA4.1

Page 19 of 103

paraid paratopic paratext

3 Logistic Regression Logistic regression was

developed by statistician David

Cox in 1958[2][3] (although much

work was done in the single

independent variable case almost

two decades earlier). The binary

logistic model is used to estimate

the probability of a binary

response based on one or more

predictor (or independent)

variables (features). As such it is

not a classification method. It

could be called a qualitative

response/discrete choice model in

the terminology of economics.

4 Cluster analysis Cluster analysis or clustering is

the task of grouping a set of

objects in such a way that objects

in the same group (called a

cluster) are more similar (in some

sense or another) to each other

than to those in other groups

(clusters). It is a main task of

exploratory data mining, and a

common technique for statistical

data analysis, used in many

fields, including machine

learning, pattern recognition,

image analysis, information

retrieval, and bioinformatics.

Cluster analysis itself is not one

specific algorithm, but the

general task to solve. It can be

achieved by various algorithms

that differ significantly in their

notion of what constitutes a

cluster and how to efficiently find

them.

VA4.1

Page 20 of 103

paraid paratopic paratext

5 Association rule learning Association rule learning is a

method for discovering

interesting relations between

variables in large databases. It is

intended to identify strong rules

discovered in databases using

different measures of

interestingness. Based on the

concept of strong rules, Rakesh

Agrawal et al.[2] introduced

association rules for discovering

regularities between products in

large-scale transaction data

recorded by point-of-sale (POS)

systems in supermarkets. For

example, the rule {onions,

potatoes} => {burger} found in

the sales data of a supermarket

would indicate that if a customer

buys onions and potatoes

together, they are likely to also

buy hamburger meat.

SQL Call

TextChunker requires each sentence to have a unique identifier, and the input to TextChunker must be

partitioned by that identifier.

SELECT * FROM TextChunker (

 ON (

 SELECT * FROM POSTagger (

 ON (

 SELECT paraid*1000+sentence_sn AS sentence_id, sentence FROM SentenceExtractor (

 ON paragraphs_input

 USING

 TextColumn ('paratext')

 Accumulate ('paraid')

) AS dt1

)

 USING

 TextColumn ('sentence')

 Accumulate ('sentence_id')

) AS dt2

) PARTITION BY sentence_id ORDER BY word_sn

 USING

 WordColumn('word')

VA4.1

Page 21 of 103

 POSColumn('pos_tag')

) AS dt;

Output

 partition_key chunk_sn chunk

 ------------- -------- --

 1001 1 decision tree learning

 1001 2 uses

 1001 3 a decision tree

 1001 4 as

 1001 5 a predictive model

 1001 6 which

 1001 7 maps

 1001 8 observations

 1001 9 about

 1001 10 an item

 1001 11 to

 1001 12 conclusions

 1001 13 about

 1001 14 the items target value

 1001 15 .

 1001 16 it

 1001 17 is

 1001 18 one

 1001 19 of

 1001 20 the predictive modelling approaches

 1001 21 used

 1001 22 in

 1001 23 statistics , data mining and machine learning . tree models

 1001 24 where

 1001 25 the target variable

 1001 26 can take

 1001 27 a finite set

 1001 28 of

 1001 29 values

 1001 30 are called

 1001 31 classification trees

 1001 32 .

 1001 33 in

 1001 34 these tree structures

 1001 35 ,

 1001 36 leaves

 1001 37 represent class labels and branches

 1001 38 represent

 1001 39 conjunctions

 1001 40 of

 1001 41 features

VA4.1

Page 22 of 103

 1001 42 that

 1001 43 lead

 1001 44 to

 1001 45 those class labels . decision trees

 1001 46 where

 1001 47 the target variable

 1001 48 can take

 1001 49 continuous values

 1001 50 (typically real numbers

 1001 51)

 1001 52 are called

 1001 53 regression trees

 1001 54 .

 2001 1 in

 2001 2 statistics

 2001 3 ,

 2001 4 simple linear regression

 2001 5 is

 2001 6 the least squares estimator

 2001 7 of

 2001 8 a linear regression model

 2001 9 with

 2001 10 a single explanatory variable .

 2001 11 in

 2001 12 other words

 2001 13 ,

 2001 14 simple linear regression

 2001 15 fits

 2001 16 a straight line

 2001 17 through

 2001 18 the set

 2001 19 of

 2001 20 n points

 2001 21 in

 2001 22 such a way

 2001 23 that

 2001 24 makes

 2001 25 the sum

 2001 26 of

 2001 27 squared residuals

 2001 28 of

 2001 29 the model (

 2001 30 that

 2001 31 is

 2001 32 , vertical distances

 2001 33 between

 2001 34 the points

 2001 35 of

VA4.1

Page 23 of 103

 2001 36 the data

 2001 37 set

 2001 38 and

 2001 39 the fitted line

 2001 40)

 2001 41 as small

 2001 42 as

 2001 43 possible

 2001 44 .

 3001 1 logistic regression

 3001 2 was developed

 3001 3 by

 3001 4 statistician david cox

 3001 5 in

 3001 6 1958[2][3](although much work

 3001 7 was done

 3001 8 in

 3001 9 the single independent variable case

 3001 10 almost

 3001 11 two decades

 3001 12 earlier)

 3001 13 .

 3001 14 the binary logistic model

 3001 15 is used to estimate

 3001 16 the probability

 3001 17 of

 3001 18 a binary response

 3001 19 based

 3001 20 on

 3001 21 one or more predictor (or independent) variables (features) .

 3001 22 as

 3001 23 such

 3001 24 it

 3001 25 is

 3001 26 not

 3001 27 a classification method

 3001 28 .

 3001 29 it

 3001 30 could be called

 3001 31 a qualitative response/discrete choice model

 3001 32 in

 3001 33 the terminology

 3001 34 of

 3001 35 economics

 3001 36 .

 4001 1 cluster analysis or clustering

 4001 2 is

 4001 3 the task

VA4.1

Page 24 of 103

 4001 4 of

 4001 5 grouping

 4001 6 a set

 4001 7 of

 4001 8 objects

 4001 9 in

 4001 10 such a way

 4001 11 that

 4001 12 objects

 4001 13 in

 4001 14 the same group

 4001 15 (called

 4001 16 a cluster)

 4001 17 are

 4001 18 more similar

 4001 19 (

 4001 20 in

 4001 21 some sense

 4001 22 or

 4001 23 another)

 4001 24 to

 4001 25 each other

 4001 26 than

 4001 27 to

 4001 28 those

 4001 29 in

 4001 30 other groups

 4001 31 (clusters)

 4001 32 .

 4001 33 it

 4001 34 is

 4001 35 a main task

 4001 36 of

 4001 37 exploratory data mining

 4001 38 ,

 4001 39 and

 4001 40 a common technique

 4001 41 for

 4001 42 statistical data analysis

 4001 43 , used

 4001 44 in

 4001 45 many fields

 4001 46 ,

 4001 47 including

 4001 48 machine learning

 4001 49 ,

 4001 50 pattern recognition , image analysis , information retrieval , and bioinformatics . cluster an

 4001 51 itself

VA4.1

Page 25 of 103

 4001 52 is

 4001 53 not

 4001 54 one specific algorithm

 4001 55 ,

 4001 56 but

 4001 57 the general task

 4001 58 to be solved

 4001 59 .

 4001 60 it

 4001 61 can be achieved

 4001 62 by

 4001 63 various algorithms

 4001 64 that

 4001 65 differ

 4001 66 significantly

 4001 67 in

 4001 68 their notion

 4001 69 of

 4001 70 what

 4001 71 constitutes

 4001 72 a cluster

 4001 73 and

 4001 74 how

 4001 75 to efficiently find

 4001 76 them

 4001 77 .

 5001 1 association rule learning

 5001 2 is

 5001 3 a method

 5001 4 for

 5001 5 discovering

 5001 6 interesting relations

 5001 7 between

 5001 8 variables

 5001 9 in

 5001 10 large databases

 5001 11 .

 5001 12 it

 5001 13 is intended to identify

 5001 14 strong rules

 5001 15 discovered

 5001 16 in

 5001 17 databases

 5001 18 using

 5001 19 different measures

 5001 20 of

 5001 21 interestingness

 5001 22 . based

VA4.1

Page 26 of 103

 5001 23 on

 5001 24 the concept

 5001 25 of

 5001 26 strong rules

 5001 27 ,

 5001 28 rakesh agrawal et al.[2] introduced association rules

 5001 29 for

 5001 30 discovering regularities

 5001 31 between

 5001 32 products

 5001 33 in

 5001 34 large-scale transaction data

 5001 35 recorded

 5001 36 by

 5001 37 point-of-sale (pos) systems

 5001 38 in

 5001 39 supermarkets

 5001 40 .

 5001 41 for

 5001 42 example

 5001 43 ,

 5001 44 the rule { onions , potatoes}=>{burger

 5001 45 } found

 5001 46 in

 5001 47 the sales data

 5001 48 of

 5001 49 a supermarket

 5001 50 would indicate

 5001 51 that

 5001 52 if

 5001 53 a customer

 5001 54 buys

 5001 55 onions

 5001 56 and

 5001 57 potatoes

 5001 58 together

 5001 59 ,

 5001 60 they

 5001 61 are

 5001 62 likely

 5001 63 to also buy

 5001 64 hamburger meat

 5001 65 .

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

VA4.1

Page 27 of 103

TextParser (ML Engine)

The TextParser function tokenizes an input stream of words, optionally stems them (reduces them to their

root forms), and then outputs them. The function can either output all words in one row or output each

word in its own row with (optionally) the number of times that the word appears.

The TextParser function uses Porter2 as the stemming algorithm.

The TextParser function reads a document into a memory buffer and creates a hash table. The dictionary

for the document must not exceed available memory; however, a million-word dictionary with an average

word length of ten bytes requires only 10 MB of memory.

TextParser uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

TextParser Syntax

Version 1.14

SELECT * FROM TextParser (

 ON { table | view | (query) } [PARTITION BY expression [,...]]

 USING

 TextColumn ('text_column')

 [ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [Delimiter ('delimiter_regular_expression')]

 [OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [Punctuation ('punctuation_regular_expression')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

 [TokenColName ('token_column')]

 [FrequencyColName ('frequency_column')]

 [TotalColName ('total_column')]

 [RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [PositionColName ('position_column')]

 [ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [StemExceptions ('exception_rule_file')]

 [StopWordsList ('stop_word_file')]

) AS alias;

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

VA4.1

Page 28 of 103

TextParser Syntax Elements

TextColumn

Specify the name of the input column with contents to tokenize.

ConvertToLowerCase

[Optional] Specify whether to convert input text to lowercase.

The function ignores this syntax element if the StemTokens syntax element has the value 'true'.

Default: 'true'

StemTokens

[Optional] Specify whether to stem the tokens—that is, whether to apply the Porter2 stemming

algorithm to each token to reduce it to its root form. Before stemming, the function converts the

input text to lowercase and applies the RemoveStopWords syntax element.

Default: 'false'

Delimiter

[Optional] Specify a regular expression that represents the word delimiter.

The function uses only specified characters as delimiters. For example, if you specify Delimiter ('-'),

the function uses only the hyphen character as a delimiter.To use the hyphen and the default

delimiters, specify Delimiter ('[- \t\f\r\n]+').

Default: '[\t\f\r\n]+'

OutputTotalWords

[Optional] Specify whether to output a column that contains the total number of words in the input

document.

Default: 'false'

Punctuation

[Optional] Specify a regular expression that represents the punctuation characters to remove from

the input text. With StemTokens ('true'), the recommended value is '[\\\[.,?\!:;~()\\\]]+'.

Default: '[.,!?]'

Accumulate

[Optional] Specify the names of the input columns to copy to the output table.

No accumulate_column can be the same as token_column or total_column.

Default: All input columns

TokenColName

[Optional] Specify the name of the output column that contains the tokens.

Default: 'token'

FrequencyColName

[Optional] Specify the name of the output column that contains the frequency of each token.

The function ignores this syntax element if the OutputByWord syntax element has the value 'false'.

Default: 'frequency'

TotalColName

[Optional] Specify the name of the output column that contains the total number of words in the

input document.

Default: 'total_count'

RemoveStopWords

[Optional] Specify whether to remove stop words from the input text before parsing.

Default: 'false'

PositionColName

[Optional] Specify the name of the output column that contains the position of a word within a

document.

VA4.1

Page 29 of 103

Default: 'location'

ListPositions

[Optional] Specify whether to output the position of a word in list form.

The function ignores this syntax element if the OutputByWord syntax element has the value 'false'.

Default: 'false' (The function outputs a row for each occurrence of the word.)

OutputByWord

[Optional] Specify whether to output each token of each input document in its own row in the output

table. If you specify 'false', then the function outputs each tokenized input document in one row of

the output table.

Default: 'true'

StemExceptions

[Optional] Specify the location of the file that contains the stemming exceptions. A stemming

exception is a word followed by its stemmed form. The word and its stemmed form are separated by

white space. Each stemming exception is on its own line in the file. For example:

bias bias

news news

goods goods

lying lie

ugly ugli

sky sky

early earli

The words 'lying', 'ugly', and 'early' are to become 'lie', 'ugli', and 'earli', respectively. The other

words are not to change.

Default: No stemming exceptions

StopWordsList

[Optional] Specify the location of the file that contains the stop words (words to ignore when parsing

text). Each stop word is on its own line in the file. For example:

a

an

the

and

this

with

but

will

Default: No stop words

TextParser Input

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.

VA4.1

Page 30 of 103

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to parse.

accumulate_column Any [Column appears once for each specified accumulate_column.]

Column to copy to output table.

TextParser Output

The output table schema depends on the OutputByWord syntax element.

Output Table Schema, Output_By_Word ('true') (Default)

Column Data Type Description

accumulate_column Same as in

input table

[Column appears once for each specified

accumulate_column.] Column copied from input table.

token_column CLOB Token.

frequency_column INTEGER Frequency of token.

position_column VARCHAR Position of word within document.

Output Table Schema, Output_By_Word ('false')

Column Data Type Description

accumulate_column Same as in

input table

[Column appears once for each specified

accumulate_column.] Column copied from input table.

token_column CLOB Token.

TextParser Examples

TextParser Example: StopWordsList, No StemExceptions

Input

• InputTable: complaints, a log of vehicle complaints.

The category column indicates whether the vehicle was in a crash.

• Stop words file: stopwords.txt, which is preinstalled on ML Engine (shown in TextClassifierTrainer

Example)

complaints

VA4.1

Page 31 of 103

doc_id text_data category

1 consumer was driving

approximately 45 mph hit a deer

with the front bumper and then

ran into an embankment head-on

passenger's side air bag did

deploy hit windshield and

deployed outward. driver's side

airbag cover opened but did not

inflate it was still folded causing

injuries.

crash

2 when vehicle was involved in a

crash totalling vehicle driver's

side/ passenger's side air bags

did not deploy. vehicle was

making a left turn and was hit by

a ford f350 traveling about 35

mph on the front passenger's

side. driver hit his head-on the

steering wheel. hurt his knee and

received neck and back injuries.

crash

3 consumer has experienced

following problems; 1.) both lower

ball joints wear out excessively;

2.) head gasket leaks; and 3.)

cruise control would shut itself off

while driving without foot

pressing on brake pedal.

no_crash

...

SQL Call

SELECT * FROM TextParser (

 ON complaints

 USING

 TextColumn ('text_data')

 ConvertToLowerCase ('true')

 StemTokens ('false')

 OutputByWord ('true')

 Punctuation ('\[.,?\!\]')

 RemoveStopWords ('true')

 ListPositions ('true')

 Accumulate ('doc_id', 'category')

 StopWordsList ('stopwords.txt')

) AS dt ORDER BY doc_id,category,token,frequency,location;

VA4.1

Page 32 of 103

Output

 doc_id category token frequency location

 ------ -------- -------------- --------- ----------

 1 crash 45 1 4

 1 crash air 1 22

 1 crash airbag 1 33

 1 crash approximately 1 3

 1 crash bag 1 23

 1 crash bumper 1 12

 1 crash causing 1 44

 1 crash consumer 1 0

 1 crash cover 1 34

 1 crash deer 1 8

 1 crash deploy 1 25

 1 crash deployed 1 29

 1 crash did 2 24,37

 1 crash driver's 1 31

 1 crash driving 1 2

 1 crash embankment 1 18

 1 crash folded 1 43

 1 crash front 1 11

 1 crash head-on 1 19

 1 crash hit 2 6,26

 1 crash inflate 1 39

 1 crash injuries 1 45

 1 crash it 1 40

 1 crash mph 1 5

 1 crash not 1 38

 1 crash opened 1 35

 1 crash outward 1 30

 1 crash passenger's 1 20

 1 crash ran 1 15

 1 crash side 2 21,32

 1 crash still 1 42

 1 crash then 1 14

 1 crash windshield 1 27

 2 crash 35 1 33

 2 crash about 1 32

 2 crash air 1 13

 2 crash back 1 54

 2 crash bags 1 14

 2 crash by 1 27

 2 crash crash 1 6

 2 crash deploy 1 17

 2 crash did 1 15

 2 crash driver 1 40

VA4.1

Page 33 of 103

 2 crash driver's 1 9

 2 crash f350 1 30

 2 crash ford 1 29

 2 crash front 1 37

 2 crash head-on 1 43

 2 crash his 2 42,48

 2 crash hit 2 26,41

 2 crash hurt 1 47

 2 crash injuries 1 55

 2 crash involved 1 3

 2 crash knee 1 49

 2 crash left 1 22

 2 crash making 1 20

 2 crash mph 1 34

 2 crash neck 1 52

 2 crash not 1 16

 2 crash on 1 35

 2 crash passenger's 2 11,38

 2 crash received 1 51

 2 crash side 2 12,39

 2 crash side/ 1 10

 2 crash steering 1 45

 2 crash totalling 1 7

 2 crash traveling 1 31

 2 crash turn 1 23

 2 crash vehicle 3 1,8,18

 2 crash wheel 1 46

 2 crash when 1 0

 3 no_crash 1) 1 5

 3 no_crash 2) 1 13

 3 no_crash 3) 1 18

 3 no_crash ball 1 8

 3 no_crash both 1 6

 3 no_crash brake 1 31

 3 no_crash consumer 1 0

 3 no_crash control 1 20

 3 no_crash cruise 1 19

 3 no_crash driving 1 26

 3 no_crash excessively; 1 12

 3 no_crash experienced 1 2

 3 no_crash following 1 3

 3 no_crash foot 1 28

 3 no_crash gasket 1 15

 3 no_crash has 1 1

 3 no_crash head 1 14

 3 no_crash itself 1 23

 3 no_crash joints 1 9

 3 no_crash leaks; 1 16

VA4.1

Page 34 of 103

 3 no_crash lower 1 7

 3 no_crash off 1 24

 3 no_crash on 1 30

 3 no_crash out 1 11

 3 no_crash pedal 1 32

 3 no_crash pressing 1 29

 3 no_crash problems; 1 4

 3 no_crash shut 1 22

 3 no_crash wear 1 10

 3 no_crash while 1 25

 3 no_crash without 1 27

 3 no_crash would 1 21

 4 no_crash after 1 6

 4 no_crash back 1 18

 4 no_crash been 1 40

 4 no_crash case 2 1,36

 4 no_crash completed 1 10

 4 no_crash consumer 1 15

 4 no_crash dealer 2 20,22

 4 no_crash driveshaft 1 31

 4 no_crash has 1 39

 4 no_crash heard 1 13

 4 no_crash hitting 1 33

 4 no_crash informed 1 26

 4 no_crash intermittently 1 14

 4 no_crash manufacturer 1 38

 4 no_crash noise 1 11

 4 no_crash notfied 1 41

 4 no_crash owner 1 28

 4 no_crash recall 1 5

 4 no_crash reinspected 1 23

 4 no_crash repaired 1 3

 4 no_crash that 1 29

 4 no_crash took 1 16

 4 no_crash transfer 2 0,35

 4 no_crash under 1 4

 4 no_crash vehicle 2 17,24

 4 no_crash work 1 8

 5 no_crash & 2 21,27

 5 no_crash 10mph 1 8

 5 no_crash 3 1 14

 5 no_crash accurate 1 41

 5 no_crash almost 1 33

 5 no_crash also 1 36

 5 no_crash at 1 19

 5 no_crash be 1 12

 5 no_crash blew 1 34

 5 no_crash by 1 56

VA4.1

Page 35 of 103

 5 no_crash checked 1 18

 5 no_crash dealership 1 20

 5 no_crash defect 1 32

 5 no_crash does 1 38

 5 no_crash factory 1 31

 5 no_crash fail 1 48

 5 no_crash had 1 16

 5 no_crash if 1 43

 5 no_crash increasedit 1 46

 5 no_crash informed 1 23

 5 no_crash it's 1 29

 5 no_crash just 1 7

 5 no_crash keep 1 40

 5 no_crash manufacturer 1 57

 5 no_crash mechanic 1 55

 5 no_crash not 1 39

 5 no_crash over 1 13

 5 no_crash referred 1 53

 5 no_crash rpms 1 10

 5 no_crash slip 1 4

 5 no_crash speed 1 44

 5 no_crash speedometer 1 37

 5 no_crash speeds 1 42

 5 no_crash start 1 2

 5 no_crash stuck 1 26

 5 no_crash that 1 28

 5 no_crash thousand 1 15

 5 no_crash transmission 2 0,24

 5 no_crash traveling 1 6

 5 no_crash up 1 35

 5 no_crash vehicle 1 17

 5 no_crash when 1 5

 5 no_crash work 1 50

 5 no_crash would 3 1,11,47

 6 no_crash also 1 21

 6 no_crash belts/speed 1 27

 6 no_crash burned 1 7

 6 no_crash cable 1 5

 6 no_crash coil 1 9

 6 no_crash controlcable 1 28

 6 no_crash could 1 15

 6 no_crash crash 1 20

 6 no_crash dealer 1 22

 6 no_crash defective 1 3

 6 no_crash drive 1 26

 6 no_crash due 1 0

 6 no_crash further 1 36

 6 no_crash have 1 16

VA4.1

Page 36 of 103

 6 no_crash ignition 1 4

 6 no_crash information 1 37

 6 no_crash performed 1 30

 6 no_crash please 1 34

 6 no_crash provide 1 35

 6 no_crash r&r 1 25

 6 no_crash replaced 1 23

 6 no_crash resulted 1 17

 6 no_crash stalled 1 12

 6 no_crash tune 1 32

 6 no_crash unexpectedly 1 13

 6 no_crash up 1 33

 6 no_crash vehicle 2 11,31

 6 no_crash which 2 6,14

 7 no_crash & 1 16

 7 no_crash 97v017000 1 28

 7 no_crash by 1 25

 7 no_crash do 1 22

 7 no_crash have 1 12

 7 no_crash jiggle 1 14

 7 no_crash move 1 20

 7 no_crash not 1 8

 7 no_crash off/on 1 24

 7 no_crash on 1 4

 7 no_crash properly 1 10

 7 no_crash recall 1 27

 7 no_crash switch 2 1,15

 7 no_crash themselves 1 26

 7 no_crash then 1 17

 7 no_crash turn 1 23

 7 no_crash turned 1 3

 7 no_crash when 1 0

 7 no_crash windshield 1 5

 7 no_crash wipers 3 6,18,21

 7 no_crash work 1 9

 7 no_crash would 3 7,11,19

 8 no_crash consumer 1 0

 8 no_crash driving 1 2

 8 no_crash happened 1 13

 8 no_crash periodcally 1 14

 8 no_crash rain 1 5

 8 no_crash stopped 1 11

 8 no_crash storm 1 6

 8 no_crash when 1 7

 8 no_crash windshield 1 9

 8 no_crash wipers 1 10

 9 no_crash *ml 1 21

 9 no_crash 66900 1 1

VA4.1

Page 37 of 103

 9 no_crash at 2 0,16

 9 no_crash expense 1 18

 9 no_crash first 1 11

 9 no_crash gear 1 12

 9 no_crash has 1 4

 9 no_crash made 1 15

 9 no_crash malfunctioned 1 5

 9 no_crash miles 1 2

 9 no_crash not 1 8

 9 no_crash owner's 1 17

 9 no_crash reimbursement 1 20

 9 no_crash repairs 1 13

 9 no_crash shift 1 9

 9 no_crash transmission 1 3

 9 no_crash wants 1 19

 9 no_crash were 1 14

 10 no_crash 1998 1 33

 10 no_crash aware 1 14

 10 no_crash been 1 21

 10 no_crash by 1 27

 10 no_crash corrected 1 22

 10 no_crash has 1 19

 10 no_crash hill 1 29

 10 no_crash incline 1 6

 10 no_crash it 1 7

 10 no_crash its 1 10

 10 no_crash manufactured 1 31

 10 no_crash manufacturer 1 12

 10 no_crash not 1 20

 10 no_crash of 1 15

 10 no_crash on 2 4,9

 10 no_crash own 1 11

 10 no_crash owned 1 26

 10 no_crash problem 2 17,18

 10 no_crash recker 1 30

 10 no_crash rolled 1 8

 10 no_crash sitting 1 3

 10 no_crash truck 2 1,24

 10 no_crash walnut 1 28

 10 no_crash when 1 0

 11 crash approximately 1 23

 11 crash been 1 20

 11 crash building 1 17

 11 crash car 3 0,7,18

 11 crash condition 1 32

 11 crash crashed 1 11

 11 crash engine 1 1

 11 crash fence 1 14

VA4.1

Page 38 of 103

 11 crash for 1 29

 11 crash forward 1 9

 11 crash had 1 19

 11 crash high 1 30

 11 crash idle 1 31

 11 crash incident 1 28

 11 crash lurched 1 8

 11 crash one 1 24

 11 crash park 1 6

 11 crash prior 1 26

 11 crash raced 1 2

 11 crash shop 1 22

 11 crash slowing 1 4

 11 crash week 1 25

 11 crash while 1 3

 12 crash 65 1 5

 12 crash 70mph 1 7

 12 crash airbags 1 15

 12 crash another 1 2

 12 crash at 1 4

 12 crash dealer 1 17

 12 crash deployed 1 16

 12 crash driver's 1 10

 12 crash ended 1 1

 12 crash has 1 18

 12 crash neither 1 9

 12 crash or 1 12

 12 crash passenger's 1 13

 12 crash rear 1 0

 12 crash side 2 11,14

 12 crash vehicle 2 3,19

 13 no_crash around 1 27

 13 no_crash coming 1 25

 13 no_crash compartment 1 17

 13 no_crash drivers 1 28

 13 no_crash ea02-025 1 34

 13 no_crash engine 1 16

 13 no_crash fire 2 8,24

 13 no_crash for 1 4

 13 no_crash from 1 26

 13 no_crash front 1 30

 13 no_crash hour 1 6

 13 no_crash left 1 12

 13 no_crash of 1 14

 13 no_crash on 1 10

 13 no_crash owner 1 22

 13 no_crash owners 1 18

 13 no_crash parked 1 3

VA4.1

Page 39 of 103

 13 no_crash referenced 1 32

 13 no_crash saw 1 23

 13 no_crash side 2 13,29

 13 no_crash smelled 1 20

 13 no_crash smoke 1 21

 13 no_crash son 1 19

 13 no_crash started 1 9

 13 no_crash vehicle 1 1

 13 no_crash wheel 1 31

 13 no_crash while 1 0

 14 no_crash 1 14

 14 no_crash 99v029000 1 6

 14 no_crash after 1 0

 14 no_crash airbag 1 10

 14 no_crash been 1 21

 14 no_crash dealer 1 16

 14 no_crash has 1 20

 14 no_crash ignition 1 7

 14 no_crash light 1 11

 14 no_crash manufacturer 1 19

 14 no_crash notified 1 22

 14 no_crash on 1 13

 14 no_crash recall 1 5

 14 no_crash repaired 1 3

 14 no_crash stayed 1 12

 14 no_crash switch 1 8

 14 no_crash under 1 4

 14 no_crash vehicle 1 1

 15 no_crash 4 1 27

 15 no_crash alternator/ 1 20

 15 no_crash battery 1 21

 15 no_crash become 1 13

 15 no_crash cannot 1 33

 15 no_crash causing 2 6,37

 15 no_crash change 1 19

 15 no_crash consumer 1 16

 15 no_crash control 1 1

 15 no_crash defect 1 30

 15 no_crash determine 1 34

 15 no_crash electrical 1 0

 15 no_crash engine 1 11

 15 no_crash had 1 17

 15 no_crash inoperative 1 15

 15 no_crash module 2 2,25

 15 no_crash occurring 1 32

 15 no_crash out 1 5

 15 no_crash problem 1 39

 15 no_crash replaced 1 26

VA4.1

Page 40 of 103

 15 no_crash shortening 1 4

 15 no_crash stall 1 10

 15 no_crash starter 1 23

 15 no_crash still 1 31

 15 no_crash times 1 28

 15 no_crash totally 1 14

 15 no_crash vehicle 1 8

 15 no_crash what 1 35

 16 no_crash 68000 1 1

 16 no_crash also 1 17

 16 no_crash at 1 0

 16 no_crash broke 1 5

 16 no_crash caused 1 18

 16 no_crash causing 1 10

 16 no_crash down 1 23

 16 no_crash housing 1 8

 16 no_crash loss 1 12

 16 no_crash miles 1 2

 16 no_crash of 1 13

 16 no_crash off 1 6

 16 no_crash power 2 3,14

 16 no_crash pump 1 9

 16 no_crash shut 1 22

 16 no_crash steering 2 4,15

 16 no_crash total 1 11

 16 no_crash vehicle 1 20

 16 no_crash which 1 16

 17 crash 50 1 14

 17 crash 80 1 17

 17 crash air 2 25,37

 17 crash airbags 1 4

 17 crash another 1 10

 17 crash approximately 1 13

 17 crash at 2 12,16

 17 crash bags 2 26,38

 17 crash consumer 1 8

 17 crash deploy 3 7,29,41

 17 crash determine 1 35

 17 crash did 4 5,27,33,39

 17 crash driver 1 30

 17 crash dual 1 3

 17 crash head-on 1 22

 17 crash hit 1 19

 17 crash impact 1 24

 17 crash injuriesdealer 1 32

 17 crash mph 1 18

 17 crash mphand 1 15

 17 crash not 4 6,28,34,40

VA4.1

Page 41 of 103

 17 crash occasions 1 2

 17 crash on 1 0

 17 crash rearended 1 9

 17 crash sustained 1 31

 17 crash truck 1 21

 17 crash two 1 1

 17 crash upon 1 23

 17 crash vehicle 1 11

 17 crash why 1 36

 18 no_crash leaking 1 2

 18 no_crash sunroof 1 0

 18 no_crash yh 1 3

 19 no_crash be 1 9

 19 no_crash frame 1 3

 19 no_crash from 1 5

 19 no_crash manufacturer 1 7

 19 no_crash motor 1 0

 19 no_crash notified 1 10

 19 no_crash separated 1 4

 19 no_crash vehicle 1 6

 20 no_crash about 1 19

 20 no_crash bearing 1 3

 20 no_crash brake's 1 17

 20 no_crash broke 1 4

 20 no_crash can't 1 25

 20 no_crash causing 1 5

 20 no_crash consumer 1 15

 20 no_crash dealer 1 24

 20 no_crash determine 1 26

 20 no_crash down 1 14

 20 no_crash four 1 20

 20 no_crash front 1 1

 20 no_crash had 1 16

 20 no_crash left 1 11

 20 no_crash problem 1 28

 20 no_crash pull 1 8

 20 no_crash rear 1 0

 20 no_crash replaced 1 18

 20 no_crash slowing 1 13

 20 no_crash still 1 23

 20 no_crash times 1 21

 20 no_crash vehicle 1 6

 20 no_crash wheel 1 2

 20 no_crash when 1 12

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

VA4.1

Page 42 of 103

TextParser Example: StemExceptions, No StopWordsList

Input

• Input table: complaints_mini, which is the first two rows of complaints, the TextParser Example:

StopWordsList, No StemExceptions InputTable

complaints_mini

doc_id text_data category

1 consumer was driving

approximately 45 mph hit a deer

with the front bumper and then

ran into an enbankment head-on

passenger's side air bag did

deploy hit windshield and

deployed outward. driver's side

airbag cover opened but did not

inflate it was still folded causing

injuries.

crash

2 when vehicle was involved in a

crash totalling vehicle driver's

side/ passenger's side air bags

did not deploy. vehicle was

making a left turn and was hit by

a ford f350 traveling about 35

mph on the front passenger's

side. driver hit his head-on the

steering wheel. hurt his knee and

received neck and back injuries.

crash

The stemming exceptions table, stemmingexception.text, contains:

consumer customer

enbankment embankment

SQL Call

SELECT * FROM TextParser (

 ON complaints_mini

 USING

 TextColumn ('text_data')

 ConvertToLowerCase ('true')

 StemTokens ('true')

 OutputByWord ('false')

 Punctuation ('\[.,?\!\]')

 Accumulate ('doc_id', 'category')

 StemExceptions ('stemmingexception.txt')

) AS dt ORDER BY doc_id;

VA4.1

Page 43 of 103

Output

 doc_id category tokens

 ------ -------- ---

 1 crash customer was drive approxim 45 mph hit a deer with the front bumper and then ran into an embankment h

 2 crash when vehicl was involv in a crash total vehicl driver side/ passeng side air bag did not deploy vehic

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger (ML Engine)

The TextTagger function tags text documents according to user-defined rules that use text-processing and

logical operators. The text in the documents can include Unicode emoticons (also called emojis).

You can run queries with emojis only from the bteq prompt, not using Teradata Studio™.

TextTagger Syntax

Version 1.7

SELECT * FROM TextTagger (

 ON { table | view | (query) } PARTITION BY ANY

 [ON { table | view | (query) } AS Rules DIMENSION]

 USING

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [TaggingRules ('rule AS tag' [,...])]

 [Tokenize ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [OutputByTag ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [TagDelimiter ('delimiter')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

TextTagger Syntax Elements

InputLanguage

[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

VA4.1

Page 44 of 103

TaggingRules

[Required if you do not specify a Rules table, disallowed otherwise.] Specify the tag names and

tagging rules. For information about defining tagging rules, see Defining Tagging Rules.

Tokenize

[Optional] Specify whether the function tokenizes the input text before evaluating the rules and

tokenizes the text string parameter in the rule definition when parsing a rule.

If you specify 'true', then you must also specify the InputLanguage syntax element. The function

uses the value of InputLanguage to create the word tokenizer.

Default: 'false'

OutputByTag

[Optional] Specify whether the function outputs a tuple when a text document matches multiple

tags.

Default: 'false' (One tuple in the output stands for one document and the matched tags are listed in

the output column tag.)

TagDelimiter

[Optional]

Specify the delimiter, a string, that separates multiple tags in the output column tag if OutputByTag

has the value 'false'. If OutputByTag has the value 'true', specifying this syntax element causes an

error.

Default: ',' (comma)

Accumulate

[Optional] Specify the names of text table columns to copy to the output table.

Do not use the name 'tag' for an accumulate_column, because the function uses that name for the

output table column that contains the tags.

Defining Tagging Rules

You can specify tagging rules with either the TaggingRules syntax element or a Rules table.

Rules for Rule Operations Table

• The operand opn (where n is 1, 2, or 3) can be any of the following:

VA4.1

Page 45 of 103

opn Rules for opn

String literal Enclose string literal in double quotation marks

(for example, "Start countdown").

If string literal contains double quotation marks,

precede each double quotation mark with two

backslashes (for example, "\\"Start countdown\

\"").

Do not use the empty string ("").

If an operation has only string literal operands,

matches are case-insensitive and do not

consider overlapping.

Java regular expression (regex"exp") An operation with one or more Java regular

expression operands uses fuzzy matching. Fuzzy

matching evaluates original text input; that is,

matching is case-sensitive and text is not

tokenized.

[superdist operation only] List of string literals

or Java regular expressions

For details, see description of superdist

operation in following table.

• The operands lower and upper are nonnegative integers.

You can omit either lower or upper, but not both. For example, all of the following are valid syntax

for the contain operation:

contain (col, op1, lower, upper)

contain (col, op1, lower,)

contain (col, op1,, upper)

If x is the number of times that op1 appears in col, then the preceding operations have the following

meanings, respectively:

lower <= x <= upper

lower <= x

x <= upper

The meanings of lower, x, and upper depend on the operation.

Rule Operations

This table summarizes the operations that a rule can use. For simplicity, the table shows only the syntax

that specifies both lower and upper.

Syntax Description

equal (col, op1) Returns 'true' if the text in column col and the value of op1 are

equal; 'false' otherwise.

VA4.1

Page 46 of 103

Syntax Description

contain (col, op1, lower, upper) Returns 'true' if, in column col, the number of times that the value of

op1 appears is in the range [lower, upper]; 'false' otherwise.

dist (col, op1, op2, lower, upper) Returns 'true' if, in column col, the distance between the values of

op1 and op2 (that is, the number of words between them) is in the

range [lower, upper]; 'false' otherwise.

The distance computation depends on the InputLanguage and

UseTokenizer syntax elements.

By default, InputLanguage is 'en' (English) and UseTokenizer is

'false', and words are delimited by whitespace characters.

If InputLanguage is 'zh_cn' (Simplified Chinese) or 'zh_tw'

(Traditional Chinese) and UseTokenizer is 'true', then the function

performs word segmentation before computing the distance

between words.

VA4.1

Page 47 of 103

superdist (col, op1, op2, con1,

op3, con2)

Returns 'true' if, in column col, the values of op1, op2, and op3

satisfy the context rules con1 and con2; 'false' otherwise.

The rules con1 and con2 specify the context for inclusion and

exclusion, as the following table shows.

con1 or con2 Value con1 Meaning con2 Meaning

nwn op2 appears n or

fewer words before

or after op1.

op3 does not appear

n or fewer words

before or after op1.

nrn op2 appears n or

fewer words after

op1.

op3 does not appear

n or fewer words

after op1.

para op2 appears in the

same paragraph as

op1.

op3 does not appear

in the same

paragraph as op1.

sent op2 appears in the

same sentence as

op1.

op3 does not appear

in the same

sentence as op1.

The distance computation depends on the InputLanguage and

UseTokenizer syntax elements (for details, see the description of the

dist operation).

A paragraph ends with either "\n" or "\r\n". A sentence ends with

either period (.), question mark (?), or exclamation mark (!). The

function fragments the input into paragraphs or sentences and then

checks the context rule on each piece of text. If one piece satisfies

the rule, then the function tags the whole input.

opn (where n is 1, 2, or 3) can be a list of words. Enclose the list in

double quotation marks and separate the words with semicolons.

For example: "good;bad;neutral"

If opn is a Java regular expression, then exp can be a list. Separate

the items with semicolons. For example:

regex"invest[\w]*;volatil[\w]*;risk"

When a list appears in an inclusion context, the rule is satisfied if at

least one item appears in the context. When a list appears in an

exclusion context, the rule is satisfied if no item appears in the

context.

The operand-context pairs after op1 are optional; that is, the

following are valid syntax:

superdist(col, op1,,,,)

superdist(col, op1, op2, con1,,)

superdist(col, op1,,, op3, con2)

superdist(col, op1, op2, con1, op3, con2)

superdist(col, op1,,,,)

The final syntax in the preceding list returns 'true' if op1 appears in

col.

VA4.1

Page 48 of 103

Syntax Description

dict (col,

"[schema/]dictionary",lower,

upper)

Returns 'true' if, in column col, the number of items (lines in the

dictionary file) is in the range [lower, upper]; 'false' otherwise.

This operation requires that dictionary file [schema.] dictionary is

installed on ML Engine. Dictionary name, dictionary, is case-

sensitive. If dictionary is in public schema, you can omit schema

name, schema.

operation1 and operation2 Returns 'true' if both operation1 and operation2 return 'true'; 'false'

otherwise.

operation1 or operation2 Returns 'true' if one or both operation1 or operation2 returns 'true';

'false' otherwise.

not operation Returns 'true' if operation returns 'false'; 'false' if operation returns

'true'.

TextTagger Input

Table Description

Input table Contains text to tag.

Rules [Optional] Contains tagging rules. If you omit this

table, specify tagging rules with TaggingRules

syntax element.

InputTable Schema

The table can have additional columns, but the function ignores them unless you specify them in rules.

Column Data Type Description

text_column VARCHAR Text to tag.

accumulate_column Any [Column appears once for each specified

accumulate_column.] Column to copy to output table.

Rules Schema

Column Data Type Description

tagname VARCHAR Name of tag.

definition VARCHAR Definition of tag.

VA4.1

Page 49 of 103

TextTagger Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

InputTable

[Column appears once for each specified accumulate_column.]

Column copied from InputTable. Typically, one

accumulate_column contains document identifiers.

tag VARCHAR Tuple of tags that match text document. Tag names come from

either TaggingRules syntax element or rules table. If text

document matches no tag, its value in this column is an empty

string.

TextTagger Examples

TextTagger Example: TaggingRules

Input

text_inputs

id title content catalog

1 Chennai Floods Chennai floods have

battered the capital city

of Tamil Nadu and its

adjoining areas. Normal

life came to a standstill

when roads were

submerged in water and

all modes of transport

were severely affected.

In the past, Chennai has

had tsunamis and

earthquakes

Regional

2 Tennis Superstars Roger Federer born on 8

August 1981, is a

greatest tennis player,

who has been

continuously ranked

inside the top 10 since

October 2002 and has

won Wimbledon,

USOpen, Australian and

FrenchOpen titles

mutiple times

sports

VA4.1

Page 50 of 103

id title content catalog

3 Sports Rivalry The Federer Nadal

rivalry, known by many

as Fedal, is between two

professional tennis

players, Roger Federer of

Switzerland and Rafael

Nadal of Spain. They are

currently engaged in a

storied rivalry, which

many consider to be the

greatest in tennis

history. They have

played 34 times, most

recently in the 2015

Swiss Indoors final, and

Nadal leads their eleven-

year-old rivalry with an

overall record of 231

sports

4 Sports Rivalry The India Pakistan

cricket rivalry is one of

the most intense sports

rivalries in the world. An

India-Pakistan cricket

match has been

estimated to attract up

to one billion viewers,

according to TV ratings

firms and various other

reports. The 2011 World

Cup semifinal between

the two teams attracted

around 988 million

television viewers

sports

VA4.1

Page 51 of 103

id title content catalog

5 Sports Rivalry An Ashes series is

traditionally of five Tests,

hosted in turn by

England and Australia at

least once every four

years. As of August

2015, England hold the

ashes, having won three

of the five Tests in the

2015 Ashes series.

Overall, Australia has

won 32 series, England

32 and five series have

been drawn.

sports

SQL Call

SELECT * FROM TextTagger (

 ON text_inputs

 USING

 TaggingRules ('contain(content, "floods", 1,) or

 contain(content, "tsunamis", 1,) AS Natural-Disaster',

 'contain(content, "Roger", 1,) and

 contain(content, "Nadal", 1,) AS Tennis-Rivalry',

 'contain(title, "Tennis", 1,) and

 contain(content, "Roger", 1,) AS Tennis-Greats',

 'contain(content, "India", 1,) and

 contain(content, "Pakistan", 1,) AS Cricket-Rivalry',

 'contain(content,"Australia",1,) and

 contain(content, "England", 1,) AS The-Ashes'

)

 OutputByTag ('true')

 Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag

 -- ----------------

 1 Natural-Disaster

 2 Tennis-Greats

 3 Tennis-Rivalry

 4 Cricket-Rivalry

 5 The-Ashes

VA4.1

Page 52 of 103

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: Rules Table

The Rules table, rule_inputs, defines the same rules as the TaggingRules syntax element in TextTagger

Example: TaggingRules.

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules

• Rules: rule_inputs

rule_inputs

tagname definition

Cricket-Rivalry contain(content,"India",1,) and

contain(content,"Pakistan",1,)

Natural-Disaster contain(content, "floods",1,) or

contain(content,"tsunamis",1,)

Tennis-Greats contain(title,"Tennis",1,) and

contain(content,"Roger",1,)

Tennis-Rivalry contain(content,"Roger",1,) and

contain(content,"Nadal",1,)

The-Ashes contain(content,"Australia",1,) and

contain(content,"England",1,)

SQL Call

SELECT * FROM TextTagger (

 ON text_inputs PARTITION BY ANY

 ON rule_inputs AS Rules DIMENSION

 USING

 Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag

 -- ----------------

 1 Natural-Disaster

 2 Tennis-Greats

 3 Tennis-Rivalry

 4 Cricket-Rivalry

 5 The-Ashes

VA4.1

Page 53 of 103

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: TaggingRules, Dictionary File

This example uses this dictionary file, keywords.txt:

floods

tsunamis

Roger

Nadal

India

Pakistan

England

Australia

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules

SQL Call

SELECT * FROM TextTagger (

 ON text_inputs

 USING

 TaggingRules ('dict(content, "keywords.txt", 1,) AND

 equal(titles, "Chennai Floods") AS Natural-Disaster',

 'dict(content, "keywords.txt", 2,) AND

 equal(catalog, "sports") AS Great-Sports-Rivalry '

)

 Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag

 -- --------------------

 1 Natural-Disaster

 2

 3 Great-Sports-Rivalry

 4 Great-Sports-Rivalry

 5 Great-Sports-Rivalry

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

VA4.1

Page 54 of 103

TextTagger Example: TaggingRules, Superdist

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules

SQL Call

SELECT * FROM TextTagger (

 ON text_inputs

 USING

 TaggingRules ('superdist(content, "Chennai", "floods", sent, ,)

 AS Chennai-Flood-Disaster',

 'superdist(content, "Roger", "titles", para, "Nadal", para)

 AS Roger-Champion',

 'superdist(content, "Roger", "Nadal", para, ,)

 AS Tennis-Rivalry',

 'contain(content, regex"[A|a]shes", 2,)

 AS Aus-Eng-Cricket',

 'superdist(content, "Australia", "won", nw5, ,)

 AS Aus-victory'

)

 Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag

 -- ---------------------------

 1 Chennai-Flood-Disaster

 2 Roger-Champion

 3 Tennis-Rivalry

 4

 5 Aus-Eng-Cricket,Aus-victory

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: Text, Unicode Emoticons (Emojis)

You can run queries with emojis only from the bteq prompt, not using Teradata Studio™.

Input

==

Input

==

VA4.1

Page 55 of 103

 id | title_1 |

----+-------------------+---

 1 | Chennai Floods | Chennai floods have battered the capital city of Tamil Nadu and its adjoining areas

 2 | Tennis Superstars | Roger Federer born on 8 August 1981, is a greatest 01F
44D tennis player, who has been continuousl

 3 | Sports Rivalry | The Federer Nadal rivalry, known by many as Fedal, is between two professional tennis player

 4 | Sports Rivalry | The India Pakistan cricket rivalry is one of the most intense 😣 sports rivalries in the worl

 5 | Sports Rivalry | An Ashes series is traditionally of five Tests, hosted in turn by England and Australia at l

(5 rows)

SQL Call

SELECT * FROM TextTagger(

ON text_inputs_emojis

USING

TaggingRules (

 'contain(contents, "01F
44D", 1,) AS Thumbs',

 'contain(contents, "01F
44D", 1,) or

 contain(contents, "greatest", 1,) AS Fabulous',

 'contain(contents, "greatest", 1,) AS Wonderful',

 'contain(contents, "😩", 1,) AS Weary',

 'contain(title_1, "Tennis", 1,) and

 contain(contents, "Roger", 1,) AS Tennis-Greats',

 'contain(contents, "India", 1,) and

 contain(contents, "Pakistan", 1,) AS Cricket-Rivalry',

 'contain(contents,"Australia",1,) and

 contain(contents, "England", 1,) AS The-Ashes'

)

 OutputByTag ('true')

 Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag

----------- ---

 1 Weary

 2 Wonderful

 2 Fabulous

 2 Tennis-Greats

 2 Thumbs

 3 Wonderful

 3 Fabulous

 4 Cricket-Rivalry

 5 The-Ashes

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

VA4.1

Page 56 of 103

TFIDF (ML Engine)

TF-IDF stands for "term frequency-inverse document frequency," a technique for evaluating the importance

of a specific term in a specific document in a document set. Term frequency (tf) is the number of times that

the term appears in the document and inverse document frequency (idf) is the number of times that the

term appears in the document set. The TF-IDF score for a term is tf *idf. A term with a high TF-IDF score is

especially relevant to the specific document.

The TFIDF function can do either of the following:

• Take any document set and output the inverse document frequency (IDF) and term frequency-

inverse document frequency (TF-IDF) scores for each term.

• Use the output of a previous run of the TFIDF function on a training document set to predict TFIDF

scores of an input (test) document set.

You can use the TF-IDF scores as input for many document clustering and classification algorithms,

including:

• Cosine-similarity

• Latent Dirichlet allocation

• K-means clustering

• K-nearest neighbors

You can use the TF-IDF scores derived from a training document set to create a model in a classification

function (for example, SVMSparse (ML Engine)) and then use the resulting TF-IDF scores in a classification

prediction function (for example, SVMSparsePredict_MLE (ML Engine)).

The TFIDF function represents each document as an N-dimensional vector, where N is the number of terms

in the document set (therefore, the document vector is usually very sparse). Each entry in the document

vector is the TF-IDF score of a term.

TFIDF Syntax

TFIDF version 2.3, TF version 1.2

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 [ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION]

 [ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

]

 [ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

 AS IDF PARTITION BY term

]

) AS alias;

VA4.1

Page 57 of 103

Large Document Sets

For large documents sets, the DocPerTerm table is required.

For training, this is the syntax for large document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION

 ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

) AS alias ORDER BY docid;

For prediction, this is the syntax for large document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 [ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

]

 [ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

 AS IDF PARTITION BY term

]

) AS alias ORDER BY docid;

Small Document Sets

This syntax is acceptable for small document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

) AS TF PARTITION BY term

 ON (SELECT COUNT (DISTINCT docid) FROM input_table) AS DocCount DIMENSION

) AS alias ORDER BY docid;

TFIDF Syntax Elements

Formula

[Optional] Specify the formula for calculating the term frequency (tf) of term t in document d:

VA4.1

Page 58 of 103

Option Description

'normal' (Default) Normalized frequency:

tf(t,d) = f ((t,d) / sum {w,w ∈d}

This value is rf divided by number of terms in document.

'bool' Boolean frequency:

tf((t,d) = 1 if t occurs in d; otherwise, tf((t,d) = 0.

'log' Logarithmically-scaled frequency:

tf((t,d) = log(f((t,d)+1)

where f((t,d) is the number of times t occurs in d (that is, raw frequency,

rf).

'augment' Augmented frequency, which prevents bias towards longer documents:

tf((t,d) = 0.5 + (0.5 × f ((t,d) / max {f(w,d) : w ∈d })

This value is rf divided by maximum raw frequency of any term in

document.

When using the output of a previous run of the TFIDF function on a training document set to predict

TFIDF scores on an input document set, use the same Formula value for the input document set that

you used for the training document set.

TFIDF Input

The TFIDF function always requires as input the output of the TF function. Whether the other TFIDF input

tables are required or optional depend on your reason for running the function.

Table Description

TF TF function input; document set.

DocCount Required if running function to output IDF and TF-

IDF values for each term in document set.

DocPerTerm Optional if running function to output IDF and TF-

IDF values for each term in document set.

If you omit this table, the function creates it by

processing the entire document set, which can

require a large amount of memory. If there is not

enough memory to process the entire document

set, the DocPerTerm table is required.

VA4.1

Page 59 of 103

Table Description

IDF Required if running function to predict TF-IDF

scores.

This table is the output of an earlier call to TFIDF,

using the training document set as input to the TF

function, the DocCount table, and optionally, the

DocPerTerm table.

TF Schema

Column Data Type Description

docid Any Document identifier.

term VARCHAR Term.

count INTEGER Number of times that

term appears in

document.

TF Output and TFIDF Input Table Schema

Column Data Type Description

docid Any Document identifier.

term VARCHAR Term.

tf DOUBLE

PRECISION

Term frequency.

count INTEGER Number of times that term appears in document.

DocCount Schema

Column Data Type Description

count BIGINT Number of documents

in document set.

DocPerTerm Schema

Column Data Type Description

term VARCHAR Term.

count BIGINT Number of documents

that contain term.

VA4.1

Page 60 of 103

TFIDF Output

Output Schema

Column Data Type Description

docid Any Document identifier of document d.

term VARCHAR Term t.

tf DOUBLE

PRECISION

Term frequency of term t in document d, calculated as specified by

Formula syntax element.

idf DOUBLE

PRECISION

Inverse document frequency of term t in document d, calculated by

this formula:

IDF(t) = log (doccount / doccount (t))

where doccount is the number of documents in the document set

and doccount (t) is the number of documents that contain the term t.

tf_idf DOUBLE

PRECISION

TFIDF score of term t in document d, calculated by this formula:

TFIDF(t, d) = TF(t, d) * IDF(t)

TFIDF Examples

TFIDF Example: Tokenized Training Document Set

This example uses the NGramSplitter_MLE function to tokenize a training document set, from which it

creates the input table for the TFIDF function.

NGramSplitter_MLE Input: tfidf_train

docid content

1 Chennai floods have battered the capital city of

Tamil Nadu and its adjoining areas. Normal life

came to a standstill when roads were submerged in

water and all modes of transport were severely

affected. In the past, Chennai has had tsunamis

and earthquakes

2 Roger Federer born on 8 August 1981, is a greatest

tennis player, who has been continuously ranked

inside the top 10 since October 2002 and has won

Wimbledon, USOpen, Australian and FrenchOpen

titles mutiple times

VA4.1

Page 61 of 103

docid content

3 The Federer Nadal rivalry, known by many as Fedal,

is between two professional tennis players, Roger

Federer of Switzerland and Rafael Nadal of Spain.

They are currently engaged in a storied rivalry,

which many consider to be the greatest in tennis

history. They have played 34 times, most recently

in the 2015 Swiss Indoors final, and Nadal leads

their eleven-year-old rivalry with an overall record

of 23–11

4 The India Pakistan cricket rivalry is one of the most

intense sports rivalries in the world. An India-

Pakistan cricket match has been estimated to

attract up to one billion viewers, according to TV

ratings firms and various other reports. The 2011

World Cup semifinal between the two teams

attracted around 988 million television viewers

5 An Ashes series is traditionally of five Tests, hosted

in turn by England and Australia at least once every

four years. As of August 2015, England hold the

ashes, having won three of the five Tests in the

2015 Ashes series. Overall, Australia has won 32

series, England 32 and five series have been

drawn.

NGramSplitter_MLE SQL Call

This call creates a table of tokenized input, tfidf_token1, from tfidf_train.

CREATE MULTISET TABLE tfidf_token1 AS (

 SELECT * FROM NGramSplitter_MLE (

 ON tfidf_train

 USING

 TextColumn ('content')

 Delimiter (' ')

 Grams ('1')

 Overlapping ('false')

 ConvertToLowerCase ('true')

 Punctuation ('\[.,?\!\]')

 Reset ('\[.,?\!\]')

 OutputTotalGramCount ('false')

 Accumulate ('docid')

) AS dt

) WITH DATA;

VA4.1

Page 62 of 103

SQL Call to Create TFIDF Input Table tfidf_input1

The TFIDF input table must have the tokenized input in the column term.

CREATE MULTISET TABLE tfidf_input1 AS (

 SELECT docid, ngram AS term, frequency AS "count"

 FROM tfidf_token1 AS dt

) WITH DATA;

This query returns the following table:

SELECT * FROM tfidf_input1 ORDER BY 1, 3, 2;

 docid term count

 ----- --------------- -----

 1 a 1

 1 adjoining 1

 1 affected 1

 1 all 1

 1 areas 1

 1 battered 1

 1 came 1

 1 capital 1

 1 city 1

 1 earthquakes 1

 1 floods 1

 1 had 1

 1 has 1

 1 have 1

 1 its 1

 1 life 1

 1 modes 1

 1 nadu 1

 1 normal 1

 1 past 1

 1 roads 1

 1 severely 1

 1 standstill 1

 1 submerged 1

 1 tamil 1

 1 to 1

 1 transport 1

 1 tsunamis 1

 1 water 1

 1 when 1

 1 chennai 2

 1 in 2

 1 of 2

 1 the 2

VA4.1

Page 63 of 103

 1 were 2

 1 and 3

 2 10 1

 2 1981 1

 2 2002 1

 2 8 1

 2 a 1

 2 august 1

 2 australian 1

 2 been 1

 2 born 1

 2 continuously 1

 2 federer 1

 2 frenchopen 1

 2 greatest 1

 2 inside 1

 2 is 1

 2 mutiple 1

 2 october 1

 2 on 1

 2 player 1

 2 ranked 1

 2 roger 1

 2 since 1

 2 tennis 1

 2 the 1

 2 times 1

 2 titles 1

 2 top 1

 2 usopen 1

 2 who 1

 2 wimbledon 1

 2 won 1

 2 and 2

 2 has 2

 3 2015 1

 3 23â??11 1

 3 34 1

 3 a 1

 3 an 1

 3 are 1

 3 as 1

 3 be 1

 3 between 1

 3 by 1

 3 consider 1

 3 currently 1

 3 eleven-year-old 1

VA4.1

Page 64 of 103

 3 engaged 1

 3 fedal 1

 3 final 1

 3 greatest 1

 3 have 1

 3 history 1

 3 indoors 1

 3 is 1

 3 known 1

 3 leads 1

 3 most 1

 3 overall 1

 3 played 1

 3 players 1

 3 professional 1

 3 rafael 1

 3 recently 1

 3 record 1

 3 roger 1

 3 spain 1

 3 storied 1

 3 swiss 1

 3 switzerland 1

 3 their 1

 3 times 1

 3 to 1

 3 two 1

 3 which 1

 3 with 1

 3 and 2

 3 federer 2

 3 many 2

 3 tennis 2

 3 they 2

 3 in 3

 3 nadal 3

 3 of 3

 3 rivalry 3

 3 the 3

 4 2011 1

 4 988 1

 4 according 1

 4 an 1

 4 and 1

 4 around 1

 4 attract 1

 4 attracted 1

 4 been 1

VA4.1

Page 65 of 103

 4 between 1

 4 billion 1

 4 cup 1

 4 estimated 1

 4 firms 1

 4 has 1

 4 in 1

 4 india 1

 4 india-pakistan 1

 4 intense 1

 4 is 1

 4 match 1

 4 million 1

 4 most 1

 4 of 1

 4 other 1

 4 pakistan 1

 4 ratings 1

 4 reports 1

 4 rivalries 1

 4 rivalry 1

 4 semifinal 1

 4 sports 1

 4 teams 1

 4 television 1

 4 tv 1

 4 two 1

 4 up 1

 4 various 1

 4 cricket 2

 4 one 2

 4 viewers 2

 4 world 2

 4 to 3

 4 the 5

 5 an 1

 5 as 1

 5 at 1

 5 august 1

 5 been 1

 5 by 1

 5 drawn 1

 5 every 1

 5 four 1

 5 has 1

 5 have 1

 5 having 1

 5 hold 1

VA4.1

Page 66 of 103

 5 hosted 1

 5 is 1

 5 least 1

 5 once 1

 5 overall 1

 5 three 1

 5 traditionally 1

 5 turn 1

 5 years 1

 5 2015 2

 5 32 2

 5 and 2

 5 australia 2

 5 in 2

 5 tests 2

 5 won 2

 5 ashes 3

 5 england 3

 5 five 3

 5 of 3

 5 the 3

 5 series 4

SQL Call to Create TFIDF Input Table tf1

CREATE MULTISET TABLE tf1 AS (

 SELECT * FROM tf (

 ON tfidf_input1 PARTITION BY docid

) AS dt1

) WITH DATA;

TFIDF SQL Call

CREATE MULTISET TABLE tfidf_output1 AS (

 SELECT * FROM TFIDF (

 ON tf1 AS TF PARTITION BY term

 ON (

 SELECT CAST(COUNT(DISTINCT(docid)) AS integer) AS "count"

 FROM tfidf_input1

) AS DocCount DIMENSION

) AS dt

) WITH DATA;

TFIDF Output

This query returns the following table:

SELECT * FROM tfidf_output1 ORDER BY tfidf DESC;

VA4.1

Page 67 of 103

 docid term tf idf tf_idf

 ----- --------------- -------------------- ------------------- ---------------------

 5 series 0.07272727272727272 1.6094379124341003 0.11705002999520729

 5 ashes 0.05454545454545454 1.6094379124341003 0.08778752249640547

 5 england 0.05454545454545454 1.6094379124341003 0.08778752249640547

 5 five 0.05454545454545454 1.6094379124341003 0.08778752249640547

 1 chennai 0.046511627906976744 1.6094379124341003 0.07485757732251629

 1 were 0.046511627906976744 1.6094379124341003 0.07485757732251629

 3 nadal 0.04477611940298507 1.6094379124341003 0.07206438413884031

 4 one 0.037037037037037035 1.6094379124341003 0.05960881157163334

 4 cricket 0.037037037037037035 1.6094379124341003 0.05960881157163334

 4 viewers 0.037037037037037035 1.6094379124341003 0.05960881157163334

 4 world 0.037037037037037035 1.6094379124341003 0.05960881157163334

 5 tests 0.03636363636363636 1.6094379124341003 0.058525014997603646

 5 australia 0.03636363636363636 1.6094379124341003 0.058525014997603646

 5 32 0.03636363636363636 1.6094379124341003 0.058525014997603646

 3 many 0.029850746268656716 1.6094379124341003 0.04804292275922687

 3 they 0.029850746268656716 1.6094379124341003 0.04804292275922687

 2 mutiple 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 10 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 inside 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 on 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 player 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 october 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 frenchopen 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 since 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 titles 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 2002 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 continuously 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 australian 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 usopen 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 wimbledon 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 1981 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 who 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 ranked 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 born 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 8 0.02857142857142857 1.6094379124341003 0.04598394035526001

 2 top 0.02857142857142857 1.6094379124341003 0.04598394035526001

 3 rivalry 0.04477611940298507 0.9162907318741551 0.04102794321824575

 1 earthquakes 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 submerged 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 past 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 transport 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 capital 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 city 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 battered 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 roads 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 areas 0.023255813953488372 1.6094379124341003 0.03742878866125814

VA4.1

Page 68 of 103

 1 tamil 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 standstill 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 nadu 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 life 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 severely 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 adjoining 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 all 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 had 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 came 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 modes 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 its 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 affected 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 tsunamis 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 when 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 floods 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 normal 0.023255813953488372 1.6094379124341003 0.03742878866125814

 1 water 0.023255813953488372 1.6094379124341003 0.03742878866125814

 5 2015 0.03636363636363636 0.9162907318741551 0.033319662977242

 5 won 0.03636363636363636 0.9162907318741551 0.033319662977242

 4 around 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 teams 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 india 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 television 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 tv 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 estimated 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 other 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 india-pakistan 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 various 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 cup 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 ratings 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 988 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 attracted 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 up 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 rivalries 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 reports 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 billion 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 attract 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 match 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 million 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 sports 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 pakistan 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 semifinal 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 intense 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 firms 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 2011 0.018518518518518517 1.6094379124341003 0.02980440578581667

 4 according 0.018518518518518517 1.6094379124341003 0.02980440578581667

 5 having 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 turn 0.01818181818181818 1.6094379124341003 0.029262507498801823

VA4.1

Page 69 of 103

 5 drawn 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 four 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 traditionally 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 years 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 hosted 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 at 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 hold 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 every 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 once 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 least 0.01818181818181818 1.6094379124341003 0.029262507498801823

 5 three 0.01818181818181818 1.6094379124341003 0.029262507498801823

 4 to 0.05555555555555555 0.5108256237659907 0.028379201320332816

 3 tennis 0.029850746268656716 0.9162907318741551 0.027351962145497167

 3 federer 0.029850746268656716 0.9162907318741551 0.027351962145497167

 2 won 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 roger 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 federer 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 greatest 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 times 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 tennis 0.02857142857142857 0.9162907318741551 0.02617973519640443

 2 august 0.02857142857142857 0.9162907318741551 0.02617973519640443

 3 played 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 spain 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 swiss 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 leads 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 are 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 with 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 34 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 recently 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 history 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 indoors 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 storied 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 23â??11 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 engaged 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 switzerland 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 consider 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 currently 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 record 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 which 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 fedal 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 their 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 rafael 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 be 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 players 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 known 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 eleven-year-old 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 final 0.014925373134328358 1.6094379124341003 0.024021461379613435

 3 professional 0.014925373134328358 1.6094379124341003 0.024021461379613435

VA4.1

Page 70 of 103

 4 between 0.018518518518518517 0.9162907318741551 0.016968346886558426

 4 two 0.018518518518518517 0.9162907318741551 0.016968346886558426

 4 rivalry 0.018518518518518517 0.9162907318741551 0.016968346886558426

 4 most 0.018518518518518517 0.9162907318741551 0.016968346886558426

 5 overall 0.01818181818181818 0.9162907318741551 0.016659831488621

 5 by 0.01818181818181818 0.9162907318741551 0.016659831488621

 5 as 0.01818181818181818 0.9162907318741551 0.016659831488621

 5 august 0.01818181818181818 0.9162907318741551 0.016659831488621

 2 been 0.02857142857142857 0.5108256237659907 0.014595017821885449

 2 a 0.02857142857142857 0.5108256237659907 0.014595017821885449

 3 greatest 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 roger 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 as 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 overall 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 most 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 2015 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 times 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 between 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 two 0.014925373134328358 0.9162907318741551 0.013675981072748583

 3 by 0.014925373134328358 0.9162907318741551 0.013675981072748583

 2 has 0.05714285714285714 0.22314355131420976 0.0127510600750977

 5 of 0.05454545454545454 0.22314355131420976 0.012171466435320532

 1 a 0.023255813953488372 0.5108256237659907 0.011879665668976528

 1 have 0.023255813953488372 0.5108256237659907 0.011879665668976528

 1 to 0.023255813953488372 0.5108256237659907 0.011879665668976528

 1 in 0.046511627906976744 0.22314355131420976 0.010378769828567896

 1 of 0.046511627906976744 0.22314355131420976 0.010378769828567896

 3 in 0.04477611940298507 0.22314355131420976 0.009991502297651183

 3 of 0.04477611940298507 0.22314355131420976 0.009991502297651183

 4 been 0.018518518518518517 0.5108256237659907 0.009459733773444272

 4 an 0.018518518518518517 0.5108256237659907 0.009459733773444272

 5 been 0.01818181818181818 0.5108256237659907 0.009287738613927104

 5 have 0.01818181818181818 0.5108256237659907 0.009287738613927104

 5 an 0.01818181818181818 0.5108256237659907 0.009287738613927104

 5 in 0.03636363636363636 0.22314355131420976 0.008114310956880354

 3 have 0.014925373134328358 0.5108256237659907 0.007624263041283444

 3 to 0.014925373134328358 0.5108256237659907 0.007624263041283444

 3 an 0.014925373134328358 0.5108256237659907 0.007624263041283444

 3 a 0.014925373134328358 0.5108256237659907 0.007624263041283444

 2 is 0.02857142857142857 0.22314355131420976 0.00637553003754885

 1 has 0.023255813953488372 0.22314355131420976 0.005189384914283948

 4 in 0.018518518518518517 0.22314355131420976 0.004132287987300181

 4 has 0.018518518518518517 0.22314355131420976 0.004132287987300181

 4 is 0.018518518518518517 0.22314355131420976 0.004132287987300181

 4 of 0.018518518518518517 0.22314355131420976 0.004132287987300181

 5 has 0.01818181818181818 0.22314355131420976 0.004057155478440177

 5 is 0.01818181818181818 0.22314355131420976 0.004057155478440177

 3 is 0.014925373134328358 0.22314355131420976 0.0033305007658837277

VA4.1

Page 71 of 103

 4 the 0.09259259259259259 0.0 0.0

 4 and 0.018518518518518517 0.0 0.0

 2 the 0.02857142857142857 0.0 0.0

 2 and 0.05714285714285714 0.0 0.0

 3 and 0.029850746268656716 0.0 0.0

 3 the 0.04477611940298507 0.0 0.0

 5 the 0.05454545454545454 0.0 0.0

 5 and 0.03636363636363636 0.0 0.0

 1 the 0.046511627906976744 0.0 0.0

 1 and 0.06976744186046512 0.0 0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TFIDF Example: Tokenized Test Set

This example uses the IDF values from tfidf_output1, output by TFIDF Example: Tokenized Training

Document Set to predict the TFIDF scores of a test document set.

NGramSplitter_MLE Input: tfidf_test

docid content

6 In Chennai, India, floods have closed roads and

factories, turned off power, shut down the airport

and forced thousands of people out of their homes.

7 Spanish tennis star Rafael Nadal said he was happy

with the improvement in his game after a below-

par year, and looked forward to reigniting his long-

time rivalry with Roger Federer in India.

8 Nadal, the world number five, said he has always

enjoyed playing against Federer and hoped they

would do so for years to come.

NGramSplitter_MLE SQL Call

This call creates a table of tokenized input, tfidf_token1, from tfidf_test.

CREATE MULTISET TABLE tfidf_token1 AS (

 SELECT * FROM NGramSplitter_MLE (

 ON tfidf_test

 USING

 TextColumn ('content')

 Delimiter (' ')

 Grams ('1')

 Overlapping ('false')

 ConvertToLowerCase ('true')

 Punctuation ('\[.,?\!\]')

VA4.1

Page 72 of 103

 Reset ('\[.,?\!\]')

 OutputTotalGramCount ('false')

 Accumulate ('docid')

) AS dt

) WITH DATA;

SQL Call to Create TFIDF Input Table tfidf_input1

CREATE MULTISET TABLE tfidf_input1 AS (

 SELECT docid, ngram AS term, frequency AS "count" FROM tfidf_token1 AS dt

) WITH DATA;

SQL Call to Create TFIDF Input Table tf1

CREATE MULTISET TABLE tf1 AS (

 SELECT * FROM tf (

 ON tfidf_input1 PARTITION BY docid

 USING

 Formula ('normal')

) AS dt1

) WITH DATA;

TFIDF SQL Call

CREATE MULTISET TABLE tfidf_output2 AS (

 SELECT * FROM TFIDF (

 ON tf2 AS TF PARTITION BY TERM

ON (SELECT CAST(COUNT(DISTINCT(docid)) AS INTEGER) AS "count"

 FROM tfidf_output1) AS DocCount DIMENSION

) AS dt

) WITH DATA;

TFIDF Output

This query returns the following table:

SELECT * FROM tfidf_output2 ORDER BY tf_idf DESC;

 docid term tf idf tf_idf

 ----- ----------- -------------------- ------------------ --------------------

 6 of 0.08 1.6094379124341003 0.128755032994728

 7 his 0.0625 1.6094379124341003 0.10058986952713127

 7 with 0.0625 1.6094379124341003 0.10058986952713127

 8 so 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 world 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 always 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 enjoyed 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 they 0.043478260869565216 1.6094379124341003 0.06997556141017827

VA4.1

Page 73 of 103

 8 come 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 has 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 playing 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 hoped 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 years 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 number 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 against 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 would 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 five 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 do 0.043478260869565216 1.6094379124341003 0.06997556141017827

 8 for 0.043478260869565216 1.6094379124341003 0.06997556141017827

 6 chennai 0.04 1.6094379124341003 0.064377516497364

 6 down 0.04 1.6094379124341003 0.064377516497364

 6 turned 0.04 1.6094379124341003 0.064377516497364

 6 factories 0.04 1.6094379124341003 0.064377516497364

 6 their 0.04 1.6094379124341003 0.064377516497364

 6 people 0.04 1.6094379124341003 0.064377516497364

 6 have 0.04 1.6094379124341003 0.064377516497364

 6 off 0.04 1.6094379124341003 0.064377516497364

 6 airport 0.04 1.6094379124341003 0.064377516497364

 6 thousands 0.04 1.6094379124341003 0.064377516497364

 6 forced 0.04 1.6094379124341003 0.064377516497364

 6 out 0.04 1.6094379124341003 0.064377516497364

 6 roads 0.04 1.6094379124341003 0.064377516497364

 6 shut 0.04 1.6094379124341003 0.064377516497364

 6 power 0.04 1.6094379124341003 0.064377516497364

 6 closed 0.04 1.6094379124341003 0.064377516497364

 6 floods 0.04 1.6094379124341003 0.064377516497364

 6 homes 0.04 1.6094379124341003 0.064377516497364

 7 in 0.0625 0.9162907318741551 0.057268170742134694

 7 star 0.03125 1.6094379124341003 0.050294934763565634

 7 after 0.03125 1.6094379124341003 0.050294934763565634

 7 long-time 0.03125 1.6094379124341003 0.050294934763565634

 7 improvement 0.03125 1.6094379124341003 0.050294934763565634

 7 was 0.03125 1.6094379124341003 0.050294934763565634

 7 looked 0.03125 1.6094379124341003 0.050294934763565634

 7 reigniting 0.03125 1.6094379124341003 0.050294934763565634

 7 rafael 0.03125 1.6094379124341003 0.050294934763565634

 7 spanish 0.03125 1.6094379124341003 0.050294934763565634

 7 forward 0.03125 1.6094379124341003 0.050294934763565634

 7 year 0.03125 1.6094379124341003 0.050294934763565634

 7 rivalry 0.03125 1.6094379124341003 0.050294934763565634

 7 happy 0.03125 1.6094379124341003 0.050294934763565634

 7 tennis 0.03125 1.6094379124341003 0.050294934763565634

 7 a 0.03125 1.6094379124341003 0.050294934763565634

 7 below-par 0.03125 1.6094379124341003 0.050294934763565634

 7 game 0.03125 1.6094379124341003 0.050294934763565634

 7 roger 0.03125 1.6094379124341003 0.050294934763565634

VA4.1

Page 74 of 103

 6 and 0.08 0.5108256237659907 0.04086604990127926

 8 to 0.043478260869565216 0.9162907318741551 0.039838727472789354

 8 he 0.043478260869565216 0.9162907318741551 0.039838727472789354

 8 nadal 0.043478260869565216 0.9162907318741551 0.039838727472789354

 8 said 0.043478260869565216 0.9162907318741551 0.039838727472789354

 8 federer 0.043478260869565216 0.9162907318741551 0.039838727472789354

 6 india 0.04 0.9162907318741551 0.03665162927496621

 6 in 0.04 0.9162907318741551 0.03665162927496621

 7 nadal 0.03125 0.9162907318741551 0.028634085371067347

 7 to 0.03125 0.9162907318741551 0.028634085371067347

 7 india 0.03125 0.9162907318741551 0.028634085371067347

 7 he 0.03125 0.9162907318741551 0.028634085371067347

 7 federer 0.03125 0.9162907318741551 0.028634085371067347

 7 said 0.03125 0.9162907318741551 0.028634085371067347

 8 the 0.043478260869565216 0.5108256237659907 0.022209809728956118

 8 and 0.043478260869565216 0.5108256237659907 0.022209809728956118

 6 the 0.04 0.5108256237659907 0.02043302495063963

 7 and 0.03125 0.5108256237659907 0.01596330074268721

 7 the 0.03125 0.5108256237659907 0.01596330074268721

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Recognition (NER) Functions (ML Engine)

Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple

news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle" in

the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine

provides two sets of NER functions:

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional Chinese

NER Functions (Maximum Entropy Model

Implementation)

English

NER Functions (CRF Model Implementation)

Function Description

NERTrainer (ML Engine) Takes training data and outputs CRF model (binary

file).

VA4.1

Page 75 of 103

Function Description

NERExtractor (ML Engine) Takes input documents and extracts specified

entities, using one or more CRF models and, if

appropriate, rules (regular expressions) or a

dictionary.

Uses models to extract names of persons,

locations, and organizations; rules to extract

entities that conform to rules (such as phone

numbers, times, and dates); and dictionary to

extract known entities.

NEREvaluator (ML Engine) Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related information

Related information

NER Functions (Maximum Entropy Model Implementation)

NERTrainer (ML Engine)

The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified in

the function NERExtractor (ML Engine) and NEREvaluator (ML Engine).

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NERTrainer Syntax

Version 1.8

SELECT * FROM NERTrainer (

 ON { table | view | (query) } PARTITION BY 1

 USING

 ModelFileName (model_file)

 TextColumn ('text_column')

 [ExtractorJAR ('jar_file')]

 FeatureTemplate ('template_file')

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [MaxIterNum (max_iteration_times)]

 [Eta (eta_threshhold_value)]

 [MinOccurNum (threshhold_value)]

) AS alias;

VA4.1

Page 76 of 103

NERTrainer Syntax Elements

ModelFileName

Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn

Specify the name of the input table column that contains the text to analyze.

ExtractorJAR

[Optional] Specify the name of the JAR file that contains the Java classes that extract features. You

must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support existing

JAR files—for installation instructions, see Teradata Vantage™ User Guide, B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate

Specify the name of the file that specifies how to create features when training the model.

InputLanguage

[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

MaxIterNum

[Optional] Specify the maximum number of iterations.

Default: 1000

Eta

[Optional] Specify the tolerance of the termination criterion. Defines the differences of the values of

the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the

function calculates the loss or cost function on the training samples. If the loss function value

change is very small between two sequential epochs, the function considers the training process to

have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1)

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum

[Optional] Specify the minimum number times that a feature must occur in the input text before the

function uses the feature to construct the model.

Default: 0

VA4.1

Page 77 of 103

NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this

syntax:

<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time

and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)

• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train

id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END>

TAKE OVER AT TOP AFTER INNINGS VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .

5 Their stay on top

VA4.1

Page 78 of 103

id content

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at <START:LOC>

Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

... ...

SQL Call

SELECT * FROM NERTrainer (

 ON ner_sports_train PARTITION BY 1

 USING

 TextColumn ('content')

 FeatureTemplate ('template_1.txt')

 OutputModelFile ('ner_model.bin')

) AS dt;

Output

 train_result

 Model generated.

 Training time(s): 3.129

 File size(KB): 374

 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NERExtractor (ML Engine)

The NERExtractor function takes input documents and extracts specified entities, using one or more CRF

models (output by the function NERTrainer (ML Engine)) and, if appropriate, rules (regular expressions) or a

dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract

entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract

known entities.

VA4.1

Page 79 of 103

NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (

 ON input_table PARTITION BY { ANY | key }

 [ON rules_table AS Rules DIMENSION]

 [ON dictionary_table AS Dict DIMENSION]

 USING

 TextColumn ('text_column')

 [InputModelFiles ('input_model_file[:jar_file]' [,...])]

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [ShowContext ('n')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

InputModelFiles

[Optional] Specify the CRF models (binary files) to use, output by NERTrainer (ML Engine). If you

specified the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then

you must specify the same jar_file in this syntax element. You must install input_model_file and

jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage

[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext

[Optional] Specify the number of context words to output (a positive integer). The function outputs

the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate

[Optional] Specify the names of the input table columns to copy to the output table.

VA4.1

Page 80 of 103

NERExtractor Input

Table Description

Input table Text to analyze.

Tip: To optimize function performance, remove

punctuation marks from text with TextParser (ML

Engine) function.

Rules [Optional] Rules to use when extracting entities

from text.

Dict [Optional] Dictionary to use when extracting

entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table.

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that

represents an entity of this type.

Expression must conform to Java

Regex standard, documented at

http://docs.oracle.com/javase/

tutorial/essential/regex/

quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.

VA4.1

Page 81 of 103

NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.

context VARCHAR [Column appears only with ShowContent syntax element.]

Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.

• Rules: rule_table, which is preinstalled on ML Engine.

• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2

id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583 GENEVA 1996-08-30

584 UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in

an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .

VA4.1

Page 82 of 103

id content

587 Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he

protested about a Karlsruhe goal

588 Karlsruhe won the August 20 match 3-1 thanks to two late goals .

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592 MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take

part in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had

allowed organisers to hold a men s triple jump as well as the women s long jump on the one

usable runway at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in

the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the

Balkans -- two days after the grand prix final in Milan .

596 Edwards was quoted as saying : What type of character do we show by going to the IAAF

Grand Prix Final in Milan where there is a lot of money to make but refusing to make the trip to

Sarajevo as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599 NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division

side Nice

601 Baratelli

602 Nice have been unable to win any of their four league matches played this season and are

lying a lowly 18th in the table .

Rules: rule_table

type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (

 ON ner_sports_test2 PARTITION BY ANY

 ON rule_table AS Rules DIMENSION

 USING

 TextColumn ('content')

 InputModelFiles ('ner_model.bin')

 ShowContext (2)

 Accumulate ('id')

) AS dt ORDER BY id, sn;

VA4.1

Page 83 of 103

Output

 id sn entity type_ner start_ner end_ner context approach

 --- -- ------------------- -------- --------- ------- -- --------

 528 1 sports@espn.com email 2 2 ... email sports@espn.com to contact RULE

 529 1 cricket@espn.com email 2 2 ... email cricket@espn.com to contact RULE

 530 1 tennis@espn.com email 2 2 ... email tennis@espn.com to contact RULE

 531 1 Igor Trandenkov PER 2 3 ... 1= Igor Trandenkov (Russia) 5.86 CRF

 532 1 Maksim Tarasov PER 2 3 ... 3. Maksim Tarasov (Russia) 5.86 CRF

 533 1 Tim Lobinger PER 2 3 ... 4. Tim Lobinger (Germany) 5.80 CRF

 534 1 Igor Potapovich PER 2 3 ... 5. Igor Potapovich (Kazakstan) 5.80 CRF

 535 1 Jean Galfione PER 2 3 ... 6. Jean Galfione (France) 5.65 CRF

 536 1 Pyotr Bochkary PER 2 3 ... 7. Pyotr Bochkary (Russia) 5.65 CRF

 537 1 Dmitri Markov PER 2 3 ... 8. Dmitri Markov (Belarus) 5.65 CRF

 583 1 GENEVA LOC 1 1 GENEVA 1996-08-30 ... CRF

 584 1 Standard Liege PER 8 9 Belgian club Standard Liege on Friday CRF

 587 1 Roberto Bisconti PER 1 2 Roberto Bisconti will be CRF

 591 1 HARRISON PER 3 3 ATHLETICS - HARRISON CRF

 592 1 MONTE CARLO PER 1 2 MONTE CARLO 1996-08-30 ... CRF

 593 1 Kenny Harrison PER 3 4 Olympic champion Kenny Harrison and world CRF

 593 2 Jonathan Edwards PER 9 10 record holder Jonathan Edwards will both CRF

 596 1 What ORG 7 7 saying : What type of CRF

 598 1 BARATELLI TO PER 3 4 SOCCER - BARATELLI TO COACH NICE CRF

 599 1 NICE PER 1 1 NICE CRF

 600 1 Dominique Baratelli PER 4 5 international goalkeeper Dominique Baratelli is to CRF

 600 2 Nice PER 14 14 division side Nice CRF

 601 1 Baratelli PER 1 1 Baratelli CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NEREvaluator (ML Engine)

The NEREvaluator function evaluates a CRF model (output by the function NERTrainer (ML Engine)).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (

 ON { table | view | (query) } PARTITION BY 1

 USING

 TextColumn ('text_column')

 ModelFile ('model_file[:jar_file]')

VA4.1

Page 84 of 103

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

) AS alias;

NEREvaluator Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

ModelFile

Specify the CRF model file to evaluate, created and automatically installed by NERTrainer (ML

Engine).

If you specified the ExtractorJAR syntax element in the NERTrainer call that created model_file, then

you must specify the same jar_file in this syntax element. You must install the jar_file on ML Engine

before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.

InputLanguage

[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.

Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.

Final row value: Average precision

value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.

Final row value: Average recall

value for all entity types.

VA4.1

Page 85 of 103

Column Data Type Description

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity

type.

Final row value: Average F1 score

for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function in

terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example

SQL Call

SELECT * FROM NEREvaluator (

 ON ner_sports_test2 PARTITION BY 1

 USING

 TextColumn ('content')

 ModelFile ('ner_model.bin')

) AS dt;

Output

 type_ner precision_ner recall f1_measure

 -------- ------------- ------ ----------

 LOC 1 0.4444 0.6154

 ORG 0 0 -1

 PER 0.7222 0.8125 0.7647

 -AVG- 0.7778 0.4884 0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NER Functions (Maximum Entropy Model Implementation)

Function Description

NamedEntityFinderTrainer (ML Engine) Takes training data and outputs a maximum

entropy model (binary file).

VA4.1

Page 86 of 103

Function Description

NamedEntityFinder (ML Engine) Evaluates input, identifies tokens based on

specified model, and outputs tokens with detailed

information.

Uses model to extract entity types 'PERSON',

'LOCATION', and 'ORGANIZATION' and rules to

extract entity types 'DATE', 'TIME', 'EMAIL' and

'MONEY'. If you specify these entity names, the

function invokes the default model types and

model file names. To extract all entities in one

NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator (ML Engine) Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related information

Related information

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer (ML Engine)

The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.

The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That

Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (

 ON { table | view | (query) } PARTITION BY 1 [ORDER BY order_column]

 USING

 OutputModelFile (output_model_file)

 TextColumn ('text_column')

 EntityType ('entity_type')

 [IterNum (iterator)]

 [Cutoff (cutoff)]

) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for each

row.

VA4.1

Page 87 of 103

NamedEntityFinderTrainer Syntax Elements

OutputModelFile

Specify the name of the data model file to create.

TextColumn

Specify the name of the input table column that contains the text to analyze.

EntityType

Specify the entity type to train (for example, PERSON). The input training documents must contain

the same tag.

IterNum

[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff

[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5

NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this

syntax:

<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML

Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train

VA4.1

Page 88 of 103

id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END>

TAKE OVER AT TOP AFTER INNINGS VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at

<START:LOCATION> Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION>

England <END> hopeful <START:PER> Mark

Butcher <END> who made 70 as <START:ORG>

Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (

 ON nermem_sports_train PARTITION BY 1

 USING

 EntityType ('LOCATION')

 TextColumn ('content')

 OutputModelFile (location.sports)

) AS dt;

Output

 train_result

 model installed

The model table, location.sports, is in binary format.

VA4.1

Page 89 of 103

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NamedEntityFinder (ML Engine)

The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and

outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.

Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That

Functions Use.

NamedEntityFinder Syntax

Version 1.6

SELECT * FROM NamedEntityFinder (

 ON { table | view | (query) } PARTITION BY ANY

 [ON (configure_table) AS ConfigurationTable DIMENSION]

 USING

 TextColumn ('text_column')

 [Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 'all' })]

 [ShowContext ('context_words')]

 [EntityColName ('entity_column')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

Models

[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify 'all'.

Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified

model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL), which

appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by

training.

VA4.1

Page 90 of 103

model_type Description

'rule' Rule-based model, a plain text file with one

regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with

one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes

entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the

ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can specify

Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-organization.bin').

 For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax element, then

the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext

[Optional] Specify the number of context words to output. If context_words is n (which must be a

positive integer), the function outputs the n words that precede the entity, the entity, and the n

words that follow the entity.

Default: 0

EntityColName

[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate

[Optional] Specify the names of input columns to copy to the output table. No accumulate_column

can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create the

table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (

 model_name VARCHAR(50),

 model_type VARCHAR(50),

 model_file VARCHAR(50)

);

Default English-language models are provided with the SQL functions. Before using these models, you

must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-person.bin');

INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-location.bin');

INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-organization.bin');

VA4.1

Page 91 of 103

INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');

INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');

INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');

INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');

INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');

INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table

nameFind_configure

model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-

location.bin

organization max entropy en-ner-

organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table.

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or

EMAIL).

VA4.1

Page 92 of 103

Column Data Type Description

model_type VARCHAR One of these model types:

model_type Description

'max entropy' Maximum entropy language

model created by training

'rule' Rule-based model, a plain

text file with one regular

expression on each line

'dictionary' Dictionary-based model, a

plain text file with one word

on each line

'reg exp' Regular expression that

describes entity_type

model_file VARCHAR Name of model file that describes the entity type. This

column appears if model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This

column appears if model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table

Column copied from input table.

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax

element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax

element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax

element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input

id source content

1001 misc contact Alan by email at

sports@espn.com for all sport

info

VA4.1

Page 93 of 103

id source content

1002 misc contact Mark at

cricket@espn.com for all cricket

info

1003 misc contact Roger at

tennis@espn.com for all tennis

info

1004 wiki The contiguous United States

consists of the 48 adjoining U.S.

states plus Washington, D.C., on

the continent of North America

1005 wiki California's economy is centered

onTechnology,Finance,real estate

services, Government, and

professional, Scientific and

Technical business Services;

together comprising 58% of the

State Government economy

1006 wiki Houston is the largest city in

Texas and the fourth-largest in

the United States, while San

Antonio is the second largest and

seventh largest in the state.

1007 wiki Thomas is a photographer whose

natural landscapes of the West

are also a statement about the

importance of the preservation of

the wildness

SQL Call

SELECT * FROM NamedEntityFinder (

 ON assortedtext_input PARTITION BY ANY

 ON namefind_configure AS ConfigurationTable DIMENSION

 USING

 TextColumn ('content')

 Models ('all')

 Accumulate ('id', 'source')

) AS dt ORDER BY id;

Output

 id source entity entity_type

 ---- ------ ---------------- ------------

 1001 misc sports@espn.com email

 1002 misc cricket@espn.com email

VA4.1

Page 94 of 103

 1002 misc Mark person

 1003 misc Roger person

 1003 misc tennis@espn.com email

 1004 wiki Washington location

 1004 wiki U.S. location

 1004 wiki North America location

 1004 wiki United States location

 1005 wiki State Government organization

 1005 wiki 58% percentage

 1006 wiki San Antonio location

 1006 wiki United States location

 1006 wiki Texas location

 1007 wiki Thomas person

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Finder Evaluator (ML Engine)

The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a row

and a partition function, respectively. Each function takes a set of evaluating data and creates the

precision, recall, and F-measure values of a specified maximum entropy data model. Neither function

supports regular-expression-based or dictionary-based models.

Related information

Related information

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,

NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (

 ON NamedEntityFinderEvaluatorMap (

 ON { table | view | (query) }

 USING

 TextColumn ('text_column')

 InputModelFile ('input_model_file')

) AS alias_1 PARTITION BY 1

) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

VA4.1

Page 95 of 103

InputModelFile

Specify name of the model file to evaluate.

NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this

syntax:

<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the

model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news

• model_file: location.sports, output by NamedEntityFinderTrainer Example

Input Table: nermem_sports_test

id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .

VA4.1

Page 96 of 103

id content

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at

<START:LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION>

England <END> hopeful <START:PER> Mark

Butcher <END> who made 70 as <START:ORG>

Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took

six for 82 but <START:PER> Chris Adams <END>

16 They were held up by a gritty 84 from

<START:PER> Paul Johnson <END> but ex-England

fast bowler <START:PER> Martin McCague <END>

took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> :

<START:ORG> Leicestershire <END> beat

<START:ORG> Somerset <END> by an innings and

39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (

 ON NamedEntityFinderEvaluatorMap (

 ON nermem_sports_test

 USING

 InputModelFile ('location.sports')

 TextColumn ('content')

) PARTITION BY 1

) AS dt;

Output

 precision_val recall f_measure

 ----------------- ------------------ -----------------

 0.847457627118644 0.7936507936507936 0.819672131147541

VA4.1

Page 97 of 103

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,

NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (

 ON NamedEntityFinderEvaluatorMap (

 ON { table | view | (query) }

 USING

 TextColumn ('text_column')

 InputModelFile ('input_model_file')

) AS alias_1 PARTITION BY 1

) AS alias_2;

NamedEntityFinder Syntax

Version 1.6

SELECT * FROM NamedEntityFinder (

 ON { table | view | (query) } PARTITION BY ANY

 [ON (configure_table) AS ConfigurationTable DIMENSION]

 USING

 TextColumn ('text_column')

 [Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 'all' })]

 [ShowContext ('context_words')]

 [EntityColName ('entity_column')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (

 ON { table | view | (query) } PARTITION BY 1 [ORDER BY order_column]

 USING

 OutputModelFile (output_model_file)

 TextColumn ('text_column')

VA4.1

Page 98 of 103

 EntityType ('entity_type')

 [IterNum (iterator)]

 [Cutoff (cutoff)]

) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for each

row.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (

 ON { table | view | (query) } PARTITION BY 1

 USING

 TextColumn ('text_column')

 ModelFile ('model_file[:jar_file]')

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

) AS alias;

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (

 ON input_table PARTITION BY { ANY | key }

 [ON rules_table AS Rules DIMENSION]

 [ON dictionary_table AS Dict DIMENSION]

 USING

 TextColumn ('text_column')

 [InputModelFiles ('input_model_file[:jar_file]' [,...])]

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [ShowContext ('n')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

NERTrainer Syntax

Version 1.8

SELECT * FROM NERTrainer (

 ON { table | view | (query) } PARTITION BY 1

VA4.1

Page 99 of 103

 USING

 ModelFileName (model_file)

 TextColumn ('text_column')

 [ExtractorJAR ('jar_file')]

 FeatureTemplate ('template_file')

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [MaxIterNum (max_iteration_times)]

 [Eta (eta_threshhold_value)]

 [MinOccurNum (threshhold_value)]

) AS alias;

POSTagger Syntax

Version 2.8

SELECT * FROM POSTagger (

 ON { table | view | (query) }

 USING

 TextColumn ('text_column')]

 [InputLanguage ({ 'en' | 'zh_Cn' })]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

TextChunker Syntax

Version 1.6

SELECT * FROM TextChunker (

 ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn

 USING

 WordColumn ('word_column')

 POSColumn ('pos_tag_column')

) AS alias;

The input_table is output table of the POSTagger (ML Engine) function, which contains the columns

partition_key and word_sn.

VA4.1

Page 100 of 103

TextParser Syntax

Version 1.14

SELECT * FROM TextParser (

 ON { table | view | (query) } [PARTITION BY expression [,...]]

 USING

 TextColumn ('text_column')

 [ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [Delimiter ('delimiter_regular_expression')]

 [OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [Punctuation ('punctuation_regular_expression')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

 [TokenColName ('token_column')]

 [FrequencyColName ('frequency_column')]

 [TotalColName ('total_column')]

 [RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [PositionColName ('position_column')]

 [ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [StemExceptions ('exception_rule_file')]

 [StopWordsList ('stop_word_file')]

) AS alias;

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

TextTagger Syntax

Version 1.7

SELECT * FROM TextTagger (

 ON { table | view | (query) } PARTITION BY ANY

 [ON { table | view | (query) } AS Rules DIMENSION]

 USING

 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]

 [TaggingRules ('rule AS tag' [,...])]

 [Tokenize ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [OutputByTag ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [TagDelimiter ('delimiter')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

) AS alias;

VA4.1

Page 101 of 103

Related information

Related information

Column Specification Syntax Elements

TFIDF Syntax

TFIDF version 2.3, TF version 1.2

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 [ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION]

 [ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

]

 [ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

 AS IDF PARTITION BY term

]

) AS alias;

Large Document Sets

For large documents sets, the DocPerTerm table is required.

For training, this is the syntax for large document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION

 ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

) AS alias ORDER BY docid;

For prediction, this is the syntax for large document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

 [USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' })]

) AS TF PARTITION BY term

 [ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

 AS DocPerTerm PARTITION BY term

]

VA4.1

Page 102 of 103

 [ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

 AS IDF PARTITION BY term

]

) AS alias ORDER BY docid;

Small Document Sets

This syntax is acceptable for small document sets:

SELECT * FROM TFIDF (

 ON TF (

 ON { table | view | (query) } PARTITION BY docid

) AS TF PARTITION BY term

 ON (SELECT COUNT (DISTINCT docid) FROM input_table) AS DocCount DIMENSION

) AS alias ORDER BY docid;

VA4.1

Page 103 of 103

The POSTagger function creates part-of-speech (POS) tags for the words in the input text. POS tagging is
the first step in the syntactic analysis of a language, and an important preprocessing step in many natural
language-processing applications.

The POSTagger function was developed on the Penn Treebank Project and Chinese Penn Treebank Project
data set. Its POS tags comply with the tags defined by the two projects.

For the parts of speech used, see the following:

Text Language Parts of Speech

English https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Chinese https://www.sketchengine.co.uk/chinese-penn-treebank-part-of-speech-tagset/

POSTagger uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

POSTagger Syntax
Version 2.8

SELECT * FROM POSTagger (
 ON { table | view | (query) }
 USING
 TextColumn ('text_column')]
 [InputLanguage ({ 'en' | 'zh_Cn' })]
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

Related Information:

Column Specification Syntax Elements

POSTagger Syntax Elements
TextColumn

Specify the name of the input column that contains the text to tag.

InputLanguage
[Optional] Specify the language of the input text:

POSTagger (ML Engine)

78

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1285

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

If you intend to use the POSTagger output table as input to the function TextChunker (ML
Engine), then this syntax element must specify the input table columns that comprise the
partition key.

POSTagger Input
Table Description

Input table Contains text to tag.

Model table Determined by InputLanguage syntax element:

InputLanguage Model File

English pos_model_2.0_en_141008.bin

Simplified Chinese pos_model_2.0_zh_cn_141008.bin

These model files are preinstalled on ML Engine.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

accumulate_column Any Column to copy to output table.

text_column VARCHAR Text to tag. Each row of this column must contain a well-formatted
sentence. To convert English text to formatted sentences, use
SentenceExtractor (ML Engine) function.

POSTagger Output
Output Table Schema

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.

78: POSTagger (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1286

Column Data Type Description

word_sn INTEGER Word serial number (position of word in input text).

word VARCHAR Word extracted from input text.

pos_tag VARCHAR POS tag of word.

POSTagger Example
Input

• Input table: Output table of SentenceExtractor Example

SQL Call

SELECT * FROM POSTagger (
 ON SentenceExtractor (
 ON paragraphs_input
 USING
 TextColumn ('paratext')
 Accumulate ('paraid')
)
 USING
 TextColumn ('sentence')
 Accumulate ('sentence','sentence_sn')
) AS dt ORDER BY sentence_sn, word_sn;

Output

sentence

 sentence_sn word_sn word
pos_tag

78: POSTagger (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1287

--- ----------- -------
------------------- -------
 in statistics, simple linear regression is the least squares estimator of a linear
regression model with a single explanatory variable. in other words, simple linear
regression fits a straight line through the set of n points in such a way that
makes the sum of squared residuals of the model (that is, vertical distances
between the points of the data set and the fitted line) as small as
possible.

 1
1 in IN
 logistic regression was developed by statistician david cox in 1958[2][3]
(although much work was done in the single independent variable case almost two
decades earlier). the binary logistic model is used to estimate the probability of
a binary response based on one or more predictor (or independent) variables
(features). as such it is not a classification method. it could be called a
qualitative response/discrete choice model in the terminology of
economics.

1 1 logistic JJ
 association rule learning is a method for discovering interesting relations
between variables in large databases. it is intended to identify strong rules
discovered in databases using different measures of interestingness. based on the
concept of strong rules, rakesh agrawal et al.[2] introduced association rules for
discovering regularities between products in large-scale transaction data recorded
by point-of-sale (pos) systems in supermarkets. for example, the rule {onions,
potatoes}=>{burger} found in the sales data of a supermarket would indicate that
if a customer buys onions and potatoes together, they are likely to also buy
hamburger meat. 1
1 association NN
 decision tree learning uses a decision tree as a predictive model which maps
observations about an item to conclusions about the items target value. it is one
of the predictive modelling approaches used in statistics, data mining and machine
learning. tree models where the target variable can take a finite set of values
are called classification trees. in these tree structures, leaves represent class
labels and branches represent conjunctions of features that lead to those class
labels. decision trees where the target variable can take continuous values
(typically real numbers) are called regression

78: POSTagger (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1288

trees.
 1 1 decision NN
 cluster analysis or clustering is the task of grouping a set of objects in such
a way that objects in the same group (called a cluster) are more similar (in some
sense or another) to each other than to those in other groups (clusters). it is a
main task of exploratory data mining, and a common technique for statistical data
analysis, used in many fields, including machine learning, pattern recognition,
image analysis, information retrieval, and bioinformatics. cluster analysis itself
is not one specific algorithm, but the general task to be solved. it can be
achieved by various algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them. 1 1
cluster NN
 cluster analysis or clustering is the task of grouping a set of objects in such
a way that objects in the same group (called a cluster) are more similar (in some
sense or another) to each other than to those in other groups (clusters). it is a
main task of exploratory data mining, and a common technique for statistical data
analysis, used in many fields, including machine learning, pattern recognition,
image analysis, information retrieval, and bioinformatics. cluster analysis itself
is not one specific algorithm, but the general task to be solved. it can be
achieved by various algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them. 1 2
analysis NN
 logistic regression was developed by statistician david cox in 1958[2][3]
(although much work was done in the single independent variable case almost two
decades earlier). the binary logistic model is used to estimate the probability of
a binary response based on one or more predictor (or independent) variables
(features). as such it is not a classification method. it could be called a
qualitative response/discrete choice model in the terminology of
economics.

1 2 regression NN
 decision tree learning uses a decision tree as a predictive model which maps
observations about an item to conclusions about the items target value. it is one
of the predictive modelling approaches used in statistics, data mining and machine
learning. tree models where the target variable can take a finite set of values
are called classification trees. in these tree structures, leaves represent class
labels and branches represent conjunctions of features that lead to those class
labels. decision trees where the target variable can take continuous values
(typically real numbers) are called regression
trees.
 1 2 tree NN
 association rule learning is a method for discovering interesting relations
between variables in large databases. it is intended to identify strong rules

78: POSTagger (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1289

The TextChunker function divides text into phrases and assigns each phrase a tag that identifies its type.

Text chunking (also called shallow parsing) divides text into phrases in such a way that syntactically related
words become members of the same phrase. Phrases do not overlap; that is, a word is a member of only
one chunk.

For example, the sentence "He reckons the current account deficit will narrow to only # 1.8 billion in
September ." can be divided as follows, with brackets delimiting phrases:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in]
[NP September]

After each opening bracket is a tag that identifies the chunk type (NP, VP, and so on). For information about
chunk types, see TextChunker Output.

For more information about text chunking, see:

• Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking.
In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

• Fei Sha and Fernando Pereira, Shallow Parsing with Conditional Random Fields. [2003]

TextChunker uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

TextChunker Syntax
Version 1.6

SELECT * FROM TextChunker (
 ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn
 USING
 WordColumn ('word_column')
 POSColumn ('pos_tag_column')
) AS alias;

TextChunker (ML Engine)

81

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1410

The input_table is output table of the POSTagger (ML Engine) function, which contains the columns
partition_key and word_sn.

TextChunker Syntax Elements
WordColumn

Specify the name of the input table column that contains the words to chunk into phrases.
Typically, this is the word column of the output table of the POSTagger function (described in
POSTagger Output).

POSColumn
Specify the name of the input table column the part-of-speech (POS) tag of words. Typically, this
is the pos_tag column of the output table of the POSTagger function (described in "POSTagger
Output").

TextChunker Input
Table Description

Input table POSTagger Output table.
When running POSTagger to create this table, specify in the Accumulate syntax element the
name of the input column that contains the unique row identifiers.

Model file chunker_default_model.bin, provided with function.

TextChunker Output
Output Table Schema

Column Data Type Description

partition_key VARCHAR Key of partition that contains text.

chunk_sn INTEGER Sequence number of phrase in sentence.

chunk VARCHAR Text chunk (syntactically related words).

chunk_tag VARCHAR Phrase type tag (see following table).

Phrase Type Tags

Tag Phrase Type

NP noun phrase

VP verb phrase

PP prepositional phrase

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1411

Tag Phrase Type

ADVP adverb phrase

SBAR subordinated clause

ADJP adjective phrase

PRT particles

CONJP conjunction phrase

INTJ interjection

LST list marker

UCP unlike coordinated phrase

O punctuation marks

TextChunker Examples

TextChunker Example: POSTagger Output as Input
Input

• Input table: pos_tmp, created by inputting the table cities to the POSTagger function

cities
paraid paratext

1 I live in Los Angeles.

2 New York is a great city.

3 Chicago is a lot of fun, but the winters are very cold and windy.

4 Philadelphia and Boston have many historical sites.

This statement creates pos_tmp:

CREATE multiset table pos_tmp AS (
 SELECT * FROM POSTagger (
 ON cities
 USING
 Accumulate ('paraid')
 TextColumn ('paratext')
) AS dt1
) WITH DATA;

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1412

SQL Call

SELECT * FROM TextChunker (
 ON pos_tmp PARTITION BY paraid ORDER BY paraid, word_sn
 USING
 WordColumn ('word')
 POSColumn ('pos_tag')
) AS dt;

Output

 partition_key chunk_sn chunk chunk_tag
 ------------- -------- ----------------------- ---------
 1 1 i NP
 1 2 live VP
 1 3 in PP
 1 4 los angeles NP
 1 5 . O
 2 1 new york NP
 2 2 is VP
 2 3 a great city NP
 2 4 , filled VP
 2 5 with PP
 2 6 arts and culture NP
 2 7 . O
 3 1 chicago NP
 3 2 is VP
 3 3 a lot NP
 3 4 of PP
 3 5 fun NP
 3 6 , O
 3 7 but O
 3 8 the winters NP
 3 9 are VP
 3 10 very cold and windy NP
 3 11 . O
 4 1 philadelphia and boston NP
 4 2 have VP
 4 3 many historical sites NP
 4 4 . O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1413

TextChunker Example: SentenceExtractor and POSTagger
Output as Input
Input

paragraphs_input
paraid paratopic paratext

1 Decision
Trees

Decision tree learning uses a decision tree as a predictive model which maps
observations about an item to conclusions about the items target value. It is one
of the predictive modeling approaches used in statistics, data mining and
machine learning. Tree models where the target variable can take a finite set
of values are called classification trees. In these tree structures, leaves
represent class labels and branches represent conjunctions of features that
lead to those class labels. Decision trees where the target variable can take
continuous values (typically real numbers) are called regression trees.

2 Simple
Regression

In statistics, simple linear regression is the least squares estimator of a linear
regression model with a single explanatory variable. In other words, simple
linear regression fits a straight line through the set of n points in such a way that
makes the sum of squared residuals of the model (that is, vertical distances
between the points of the data set and the fitted line) as small as possible.

3 Logistic
Regression

Logistic regression was developed by statistician David Cox in 1958[2][3]
(although much work was done in the single independent variable case almost
two decades earlier). The binary logistic model is used to estimate the
probability of a binary response based on one or more predictor (or
independent) variables (features). As such it is not a classification method. It
could be called a qualitative response/discrete choice model in the terminology
of economics.

4 Cluster
analysis

Cluster analysis or clustering is the task of grouping a set of objects in such a
way that objects in the same group (called a cluster) are more similar (in some
sense or another) to each other than to those in other groups (clusters). It is a
main task of exploratory data mining, and a common technique for statistical
data analysis, used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, and bioinformatics. Cluster
analysis itself is not one specific algorithm, but the general task to solve. It can
be achieved by various algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them.

5 Association
rule learning

Association rule learning is a method for discovering interesting relations
between variables in large databases. It is intended to identify strong rules
discovered in databases using different measures of interestingness. Based on
the concept of strong rules, Rakesh Agrawal et al.[2] introduced association
rules for discovering regularities between products in large-scale transaction
data recorded by point-of-sale (POS) systems in supermarkets. For example,
the rule {onions, potatoes} => {burger} found in the sales data of a supermarket
would indicate that if a customer buys onions and potatoes together, they are
likely to also buy hamburger meat.

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1414

SQL Call

TextChunker requires each sentence to have a unique identifier, and the input to TextChunker must be
partitioned by that identifier.

SELECT * FROM TextChunker (
 ON (
 SELECT * FROM POSTagger (
 ON (
 SELECT paraid*1000+sentence_sn AS sentence_id, sentence FROM
SentenceExtractor (
 ON paragraphs_input
 USING
 TextColumn ('paratext')
 Accumulate ('paraid')
) AS dt1
)
 USING
 TextColumn ('sentence')
 Accumulate ('sentence_id')
) AS dt2
) PARTITION BY sentence_id ORDER BY word_sn
 USING
 WordColumn('word')
 POSColumn('pos_tag')
) AS dt;

Output

 partition_key chunk_sn
chunk
 chunk_tag
 ------------- --------
--
-------------------- ---------
 1001 1 decision tree
learning NP
 1001 2
uses
 VP
 1001 3 a decision
tree
NP
 1001 4
as

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1415

 PP
 1001 5 a predictive
model NP
 1001 6
which
 NP
 1001 7
maps
 VP
 1001 8
observations
 NP
 1001 9
about
 PP
 1001 10 an
item
 NP
 1001 11
to
 PP
 1001 12
conclusions
 NP
 1001 13
about
 PP
 1001 14 the items target
value NP
 1001
15 .
 O
 1001 16
it
 NP
 1001 17
is
 VP
 1001 18
one
 NP
 1001 19
of
 PP

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1416

 1001 20 the predictive modelling
approaches NP
 1001 21
used
 VP
 1001 22
in
 PP
 1001 23 statistics , data mining and machine learning . tree
models NP
 1001 24
where
 ADVP
 1001 25 the target
variable
NP
 1001 26 can
take
VP
 1001 27 a finite
set
NP
 1001 28
of
 PP
 1001 29
values
 NP
 1001 30 are
called
VP
 1001 31 classification
trees NP
 1001
32 .
 O
 1001 33
in
 PP
 1001 34 these tree
structures
NP
 1001
35 ,

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1417

 O
 1001 36
leaves
 VP
 1001 37 represent class labels and
branches NP
 1001 38
represent
 VP
 1001 39
conjunctions
 NP
 1001 40
of
 PP
 1001 41
features
 NP
 1001 42
that
 NP
 1001 43
lead
 VP
 1001 44
to
 PP
 1001 45 those class labels . decision
trees NP
 1001 46
where
 ADVP
 1001 47 the target
variable
NP
 1001 48 can
take
VP
 1001 49 continuous
values
NP
 1001 50 (typically real
numbers NP
 1001

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1418

51)
 NP
 1001 52 are
called
VP
 1001 53 regression
trees
NP
 1001
54 .
 O
 2001 1
in
 PP
 2001 2
statistics
 NP
 2001
3 ,
 O
 2001 4 simple linear
regression NP
 2001 5
is
 VP
 2001 6 the least squares
estimator NP
 2001 7
of
 PP
 2001 8 a linear regression
model NP
 2001 9
with
 PP
 2001 10 a single explanatory
variable . NP
 2001 11
in
 PP
 2001 12 other
words
NP
 2001

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1419

13 ,
 O
 2001 14 simple linear
regression NP
 2001 15
fits
 VP
 2001 16 a straight
line
NP
 2001 17
through
 PP
 2001 18 the
set
NP
 2001 19
of
 PP
 2001 20 n
points
 NP
 2001 21
in
 PP
 2001 22 such a
way
NP
 2001 23
that
 NP
 2001 24
makes
 VP
 2001 25 the
sum
NP
 2001 26
of
 PP
 2001 27 squared
residuals
NP
 2001 28

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1420

of
 PP
 2001 29 the model
(
 NP
 2001 30
that
 NP
 2001 31
is
 VP
 2001 32 , vertical
distances
NP
 2001 33
between
 PP
 2001 34 the
points
NP
 2001 35
of
 PP
 2001 36 the
data
NP
 2001 37
set
 VP
 2001 38
and
 O
 2001 39 the fitted
line
NP
 2001
40)
 VP
 2001 41 as
small
 ADJP
 2001 42
as
 PP

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1421

 2001 43
possible
 ADJP
 2001
44 .
 O
 3001 1 logistic
regression
NP
 3001 2 was
developed
 VP
 3001 3
by
 PP
 3001 4 statistician david
cox NP
 3001 5
in
 PP
 3001 6 1958[2][3](although much
work NP
 3001 7 was
done
VP
 3001 8
in
 PP
 3001 9 the single independent variable
case NP
 3001 10
almost
 ADVP
 3001 11 two
decades
NP
 3001 12
earlier)
 VP
 3001
13 .
 O
 3001 14 the binary logistic
model NP

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1422

 3001 15 is used to
estimate
VP
 3001 16 the
probability
 NP
 3001 17
of
 PP
 3001 18 a binary
response
NP
 3001 19
based
 VP
 3001 20
on
 PP
 3001 21 one or more predictor (or independent) variables
(features) . NP
 3001 22
as
 PP
 3001 23
such
 ADJP
 3001 24
it
 NP
 3001 25
is
 VP
 3001 26
not
 O
 3001 27 a classification
method NP
 3001
28 .
 VP
 3001 29
it
 NP
 3001 30 could be

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1423

called
VP
 3001 31 a qualitative response/discrete choice
model NP
 3001 32
in
 PP
 3001 33 the
terminology
 NP
 3001 34
of
 PP
 3001 35
economics
 NP
 3001
36 .
 O
 4001 1 cluster analysis or
clustering NP
 4001 2
is
 VP
 4001 3 the
task
NP
 4001 4
of
 PP
 4001 5
grouping
 VP
 4001 6 a
set
 NP
 4001 7
of
 PP
 4001 8
objects
 NP
 4001 9
in

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1424

 PP
 4001 10 such a
way
NP
 4001 11
that
 NP
 4001 12
objects
 VP
 4001 13
in
 PP
 4001 14 the same
group
NP
 4001 15
(called
 VP
 4001 16 a
cluster)
 NP
 4001 17
are
 VP
 4001 18 more
similar
ADJP
 4001 19
(
 O
 4001 20
in
 PP
 4001 21 some
sense
NP
 4001 22
or
 O
 4001 23
another)
 NP
 4001 24

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1425

to
 PP
 4001 25 each
other
NP
 4001 26
than
 PP
 4001 27
to
 PP
 4001 28
those
 NP
 4001 29
in
 PP
 4001 30 other
groups
NP
 4001 31
(clusters)
 NP
 4001
32 .
 O
 4001 33
it
 NP
 4001 34
is
 VP
 4001 35 a main
task
NP
 4001 36
of
 PP
 4001 37 exploratory data
mining NP
 4001
38 ,
 O
 4001 39

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1426

and
 O
 4001 40 a common
technique
NP
 4001 41
for
 PP
 4001 42 statistical data
analysis NP
 4001 43 ,
used
 VP
 4001 44
in
 PP
 4001 45 many
fields
NP
 4001
46 ,
 O
 4001 47
including
 PP
 4001 48 machine
learning
NP
 4001
49 ,
 O
 4001 50 pattern recognition , image analysis , information
retrieval , and bioinformatics . cluster analysis NP
 4001 51
itself
 NP
 4001 52
is
 VP
 4001 53
not
 O
 4001 54 one specific
algorithm

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1427

NP
 4001
55 ,
 O
 4001 56
but
 O
 4001 57 the general
task
NP
 4001 58 to be
solved
VP
 4001
59 .
 O
 4001 60
it
 NP
 4001 61 can be
achieved
VP
 4001 62
by
 PP
 4001 63 various
algorithms
NP
 4001 64
that
 NP
 4001 65
differ
 VP
 4001 66
significantly
 ADVP
 4001 67
in
 PP
 4001 68 their
notion
NP
 4001 69

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1428

of
 PP
 4001 70
what
 NP
 4001 71
constitutes
 VP
 4001 72 a
cluster
 NP
 4001 73
and
 O
 4001 74
how
 ADVP
 4001 75 to efficiently
find VP
 4001 76
them
 NP
 4001
77 .
 O
 5001 1 association rule
learning NP
 5001 2
is
 VP
 5001 3 a
method
 NP
 5001 4
for
 PP
 5001 5
discovering
 VP
 5001 6 interesting
relations
NP
 5001 7
between

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1429

 PP
 5001 8
variables
 NP
 5001 9
in
 PP
 5001 10 large
databases
NP
 5001
11 .
 O
 5001 12
it
 NP
 5001 13 is intended to
identify VP
 5001 14 strong
rules
NP
 5001 15
discovered
 VP
 5001 16
in
 PP
 5001 17
databases
 NP
 5001 18
using
 VP
 5001 19 different
measures
NP
 5001 20
of
 PP
 5001 21
interestingness
 NP
 5001 22 .
based

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1430

 VP
 5001 23
on
 PP
 5001 24 the
concept
NP
 5001 25
of
 PP
 5001 26 strong
rules
NP
 5001
27 ,
 O
 5001 28 rakesh agrawal et al.[2] introduced association
rules NP
 5001 29
for
 PP
 5001 30 discovering
regularities
NP
 5001 31
between
 PP
 5001 32
products
 NP
 5001 33
in
 PP
 5001 34 large-scale transaction
data NP
 5001 35
recorded
 VP
 5001 36
by
 PP
 5001 37 point-of-sale (pos)
systems NP
 5001 38

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1431

in
 PP
 5001 39
supermarkets
 NP
 5001
40 .
 O
 5001 41
for
 PP
 5001 42
example
 NP
 5001
43 ,
 O
 5001 44 the rule { onions ,
potatoes}=>{burger NP
 5001 45 }
found
 VP
 5001 46
in
 PP
 5001 47 the sales
data
NP
 5001 48
of
 PP
 5001 49 a
supermarket
 NP
 5001 50 would
indicate
VP
 5001 51
that
 SBAR
 5001 52
if
 SBAR
 5001 53 a

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1432

customer
 NP
 5001 54
buys
 VP
 5001 55
onions
 NP
 5001 56
and
 O
 5001 57
potatoes
 VP
 5001 58
together
 ADVP
 5001
59 ,
 O
 5001 60
they
 NP
 5001 61
are
 VP
 5001 62
likely
 ADJP
 5001 63 to also
buy
VP
 5001 64 hamburger
meat
NP
 5001
65 .
 O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1433

The TextParser function tokenizes an input stream of words, optionally stems them (reduces them to their
root forms), and then outputs them. The function can either output all words in one row or output each word
in its own row with (optionally) the number of times that the word appears.

The TextParser function uses Porter2 as the stemming algorithm.

The TextParser function reads a document into a memory buffer and creates a hash table. The dictionary
for the document must not exceed available memory; however, a million-word dictionary with an average
word length of ten bytes requires only 10 MB of memory.

TextParser uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

TextParser Syntax
Version 1.14

SELECT * FROM TextParser (
 ON { table | view | (query) } [PARTITION BY expression [,...]]
 USING
 TextColumn ('text_column')
 [ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [Delimiter ('delimiter_regular_expression')]
 [OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [Punctuation ('punctuation_regular_expression')]
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
 [TokenColName ('token_column')]
 [FrequencyColName ('frequency_column')]
 [TotalColName ('total_column')]
 [RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [PositionColName ('position_column')]
 [ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [StemExceptions ('exception_rule_file')]
 [StopWordsList ('stop_word_file')]
) AS alias;

TextParser (ML Engine)

83

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1446

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single
document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

TextParser Syntax Elements
TextColumn

Specify the name of the input column with contents to tokenize.

ConvertToLowerCase
[Optional] Specify whether to convert input text to lowercase.

The function ignores this syntax element if the StemTokens syntax element has the value 'true'.

Default: 'true'

StemTokens
[Optional] Specify whether to stem the tokens—that is, whether to apply the Porter2 stemming
algorithm to each token to reduce it to its root form. Before stemming, the function converts the
input text to lowercase and applies the RemoveStopWords syntax element.

Default: 'false'

Delimiter
[Optional] Specify a regular expression that represents the word delimiter.

The function uses only specified characters as delimiters. For example, if you specify Delimiter
('-'), the function uses only the hyphen character as a delimiter.To use the hyphen and the default
delimiters, specify Delimiter ('[- \t\f\r\n]+').

Default: '[\t\f\r\n]+'

OutputTotalWords
[Optional] Specify whether to output a column that contains the total number of words in the input
document.

Default: 'false'

Punctuation
[Optional] Specify a regular expression that represents the punctuation characters to remove
from the input text. With StemTokens ('true'), the recommended value is '[\\\[.,?\!:;~()\\
\]]+'.

Default: '[.,!?]'

Accumulate
[Optional] Specify the names of the input columns to copy to the output table.

No accumulate_column can be the same as token_column or total_column.

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1447

Default: All input columns

TokenColName
[Optional] Specify the name of the output column that contains the tokens.

Default: 'token'

FrequencyColName
[Optional] Specify the name of the output column that contains the frequency of each token.

The function ignores this syntax element if the OutputByWord syntax element has the value
'false'.

Default: 'frequency'

TotalColName
[Optional] Specify the name of the output column that contains the total number of words in the
input document.

Default: 'total_count'

RemoveStopWords
[Optional] Specify whether to remove stop words from the input text before parsing.

Default: 'false'

PositionColName
[Optional] Specify the name of the output column that contains the position of a word within a
document.

Default: 'location'

ListPositions
[Optional] Specify whether to output the position of a word in list form.

The function ignores this syntax element if the OutputByWord syntax element has the value
'false'.

Default: 'false' (The function outputs a row for each occurrence of the word.)

OutputByWord
[Optional] Specify whether to output each token of each input document in its own row in the
output table. If you specify 'false', then the function outputs each tokenized input document in
one row of the output table.

Default: 'true'

StemExceptions
[Optional] Specify the location of the file that contains the stemming exceptions. A stemming
exception is a word followed by its stemmed form. The word and its stemmed form are separated
by white space. Each stemming exception is on its own line in the file. For example:

bias bias
news news
goods goods

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1448

lying lie
ugly ugli
sky sky
early earli

The words 'lying', 'ugly', and 'early' are to become 'lie', 'ugli', and 'earli', respectively. The other
words are not to change.

Default: No stemming exceptions

StopWordsList
[Optional] Specify the location of the file that contains the stop words (words to ignore when
parsing text). Each stop word is on its own line in the file. For example:

a
an
the
and
this
with
but
will

Default: No stop words

TextParser Input
If you include the PARTITION BY clause, the function treats all rows in the same partition as a single
document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to parse.

accumulate_column Any [Column appears once for each specified accumulate_column.]
Column to copy to output table.

TextParser Output
The output table schema depends on the OutputByWord syntax element.

Output Table Schema, Output_By_Word ('true') (Default)

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1449

Column Data Type Description

token_column CLOB Token.

frequency_column INTEGER Frequency of token.

position_column VARCHAR Position of word within document.

Output Table Schema, Output_By_Word ('false')

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.

token_column CLOB Token.

TextParser Examples

TextParser Example: StopWordsList, No StemExceptions
Input

• InputTable: complaints, a log of vehicle complaints.

The category column indicates whether the vehicle was in a crash.

• Stop words file: stopwords.txt, which is preinstalled on ML Engine (shown in TextClassifierTrainer
Example)

complaints
doc_id text_data category

1 consumer was driving approximately 45 mph hit a deer with the front bumper and
then ran into an embankment head-on passenger's side air bag did deploy hit
windshield and deployed outward. driver's side airbag cover opened but did not
inflate it was still folded causing injuries.

crash

2 when vehicle was involved in a crash totalling vehicle driver's side/ passenger's
side air bags did not deploy. vehicle was making a left turn and was hit by a ford
f350 traveling about 35 mph on the front passenger's side. driver hit his head-on
the steering wheel. hurt his knee and received neck and back injuries.

crash

3 consumer has experienced following problems; 1.) both lower ball joints wear out
excessively; 2.) head gasket leaks; and 3.) cruise control would shut itself off while
driving without foot pressing on brake pedal.

no_crash

...

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1450

SQL Call

SELECT * FROM TextParser (
 ON complaints
 USING
 TextColumn ('text_data')
 ConvertToLowerCase ('true')
 StemTokens ('false')
 OutputByWord ('true')
 Punctuation ('\[.,?\!\]')
 RemoveStopWords ('true')
 ListPositions ('true')
 Accumulate ('doc_id', 'category')
 StopWordsList ('stopwords.txt')
) AS dt ORDER BY doc_id,category,token,frequency,location;

Output

 doc_id category token frequency location
 ------ -------- -------------- --------- ----------
 1 crash 45 1 4
 1 crash air 1 22
 1 crash airbag 1 33
 1 crash approximately 1 3
 1 crash bag 1 23
 1 crash bumper 1 12
 1 crash causing 1 44
 1 crash consumer 1 0
 1 crash cover 1 34
 1 crash deer 1 8
 1 crash deploy 1 25
 1 crash deployed 1 29
 1 crash did 2 24,37
 1 crash driver's 1 31
 1 crash driving 1 2
 1 crash embankment 1 18
 1 crash folded 1 43
 1 crash front 1 11
 1 crash head-on 1 19
 1 crash hit 2 6,26
 1 crash inflate 1 39
 1 crash injuries 1 45
 1 crash it 1 40
 1 crash mph 1 5

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1451

 1 crash not 1 38
 1 crash opened 1 35
 1 crash outward 1 30
 1 crash passenger's 1 20
 1 crash ran 1 15
 1 crash side 2 21,32
 1 crash still 1 42
 1 crash then 1 14
 1 crash windshield 1 27
 2 crash 35 1 33
 2 crash about 1 32
 2 crash air 1 13
 2 crash back 1 54
 2 crash bags 1 14
 2 crash by 1 27
 2 crash crash 1 6
 2 crash deploy 1 17
 2 crash did 1 15
 2 crash driver 1 40
 2 crash driver's 1 9
 2 crash f350 1 30
 2 crash ford 1 29
 2 crash front 1 37
 2 crash head-on 1 43
 2 crash his 2 42,48
 2 crash hit 2 26,41
 2 crash hurt 1 47
 2 crash injuries 1 55
 2 crash involved 1 3
 2 crash knee 1 49
 2 crash left 1 22
 2 crash making 1 20
 2 crash mph 1 34
 2 crash neck 1 52
 2 crash not 1 16
 2 crash on 1 35
 2 crash passenger's 2 11,38
 2 crash received 1 51
 2 crash side 2 12,39
 2 crash side/ 1 10
 2 crash steering 1 45
 2 crash totalling 1 7
 2 crash traveling 1 31
 2 crash turn 1 23

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1452

 2 crash vehicle 3 1,8,18
 2 crash wheel 1 46
 2 crash when 1 0
 3 no_crash 1) 1 5
 3 no_crash 2) 1 13
 3 no_crash 3) 1 18
 3 no_crash ball 1 8
 3 no_crash both 1 6
 3 no_crash brake 1 31
 3 no_crash consumer 1 0
 3 no_crash control 1 20
 3 no_crash cruise 1 19
 3 no_crash driving 1 26
 3 no_crash excessively; 1 12
 3 no_crash experienced 1 2
 3 no_crash following 1 3
 3 no_crash foot 1 28
 3 no_crash gasket 1 15
 3 no_crash has 1 1
 3 no_crash head 1 14
 3 no_crash itself 1 23
 3 no_crash joints 1 9
 3 no_crash leaks; 1 16
 3 no_crash lower 1 7
 3 no_crash off 1 24
 3 no_crash on 1 30
 3 no_crash out 1 11
 3 no_crash pedal 1 32
 3 no_crash pressing 1 29
 3 no_crash problems; 1 4
 3 no_crash shut 1 22
 3 no_crash wear 1 10
 3 no_crash while 1 25
 3 no_crash without 1 27
 3 no_crash would 1 21
 4 no_crash after 1 6
 4 no_crash back 1 18
 4 no_crash been 1 40
 4 no_crash case 2 1,36
 4 no_crash completed 1 10
 4 no_crash consumer 1 15
 4 no_crash dealer 2 20,22
 4 no_crash driveshaft 1 31
 4 no_crash has 1 39

83: TextParser (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1453

Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple
news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle"
in the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine
provides two sets of NER functions:

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional
Chinese

NER Functions (Maximum Entropy Model Implementation) English

NER Functions (CRF Model Implementation)
Function Description

NERTrainer Takes training data and outputs CRF model (binary file).

NERExtractor Takes input documents and extracts specified entities, using one or more CRF models
and, if appropriate, rules (regular expressions) or a dictionary.
Uses models to extract names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and dictionary
to extract known entities.

NEREvaluator Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related Information:

NER Functions (Maximum Entropy Model Implementation)

NERTrainer
The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified
in the function NERExtractor and NEREvaluator.

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERTrainer Syntax

Named Entity Recognition (NER) Functions
(ML Engine)

90

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1577

Version 1.8

SELECT * FROM NERTrainer (
 ON { table | view | (query) } PARTITION BY 1
 USING
 ModelFileName (model_file)
 TextColumn ('text_column')
 [ExtractorJAR ('jar_file')]
 FeatureTemplate ('template_file')
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
 [MaxIterNum (max_iteration_times)]
 [Eta (eta_threshhold_value)]
 [MinOccurNum (threshhold_value)]
) AS alias;

NERTrainer Syntax Elements

ModelFileName
Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn
Specify the name of the input table column that contains the text to analyze.

ExtractorJAR
[Optional] Specify the name of the JAR file that contains the Java classes that extract features.
You must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support
existing JAR files—for installation instructions, see Teradata Vantage™ User Guide,
B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate
Specify the name of the file that specifies how to create features when training the model.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1578

MaxIterNum
[Optional] Specify the maximum number of iterations.

Default: 1000

Eta
[Optional] Specify the tolerance of the termination criterion. Defines the differences of the
values of the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the
function calculates the loss or cost function on the training samples. If the loss function value
change is very small between two sequential epochs, the function considers the training
process to have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1)

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum
[Optional] Specify the minimum number times that a feature must occur in the input text before
the function uses the feature to construct the model.

Default: 0

NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1579

Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)
• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:LOC>
Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

... ...

SQL Call

SELECT * FROM NERTrainer (
 ON ner_sports_train PARTITION BY 1
 USING
 TextColumn ('content')
 FeatureTemplate ('template_1.txt')
 OutputModelFile ('ner_model.bin')
) AS dt;

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1580

Output

 train_result

 Model generated.
 Training time(s): 3.129
 File size(KB): 374
 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NERExtractor
The NERExtractor function takes input documents and extracts specified entities, using one or more CRF
models (output by the function NERTrainer) and, if appropriate, rules (regular expressions) or a dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract
known entities.

NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (
 ON input_table PARTITION BY { ANY | key }
 [ON rules_table AS Rules DIMENSION]
 [ON dictionary_table AS Dict DIMENSION]
 USING
 TextColumn ('text_column')
 [InputModelFiles ('input_model_file[:jar_file]' [,...])]
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
 [ShowContext ('n')]

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1581

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

Related Information:

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFiles
[Optional] Specify the CRF models (binary files) to use, output by NERTrainer. If you specified
the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then
you must specify the same jar_file in this syntax element. You must install input_model_file
and jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext
[Optional] Specify the number of context words to output (a positive integer). The function
outputs the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

NERExtractor Input

Table Description

Input table Text to analyze.
Tip:
To optimize function performance, remove punctuation marks from text with TextParser
(ML Engine) function.

Rules [Optional] Rules to use when extracting entities from text.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1582

Table Description

Dict [Optional] Dictionary to use when extracting entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table.

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that represents an entity of this type. Expression must
conform to Java Regex standard, documented at http://docs.oracle.com/
javase/tutorial/essential/regex/quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.

NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_
column

Same as in input
table

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1583

Column Data Type Description

context VARCHAR [Column appears only with ShowContent syntax element.
] Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or
DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.
• Rules: rule_table, which is preinstalled on ML Engine.
• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2
id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583 GENEVA 1996-08-30

584 UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in
an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .

587 Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he
protested about a Karlsruhe goal

588 Karlsruhe won the August 20 match 3-1 thanks to two late goals .

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1584

id content

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592 MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take part
in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had allowed
organisers to hold a men s triple jump as well as the women s long jump on the one usable runway
at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in
the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the
Balkans -- two days after the grand prix final in Milan .

596 Edwards was quoted as saying : What type of character do we show by going to the IAAF Grand
Prix Final in Milan where there is a lot of money to make but refusing to make the trip to Sarajevo
as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599 NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division
side Nice

601 Baratelli

602 Nice have been unable to win any of their four league matches played this season and are lying
a lowly 18th in the table .

Rules: rule_table
type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (
 ON ner_sports_test2 PARTITION BY ANY
 ON rule_table AS Rules DIMENSION
 USING
 TextColumn ('content')
 InputModelFiles ('ner_model.bin')
 ShowContext (2)
 Accumulate ('id')
) AS dt ORDER BY id, sn;

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1585

Output

 id sn entity type_ner start_ner end_ner
context approach
 --- -- ------------------- -------- --------- -------
-- --------
 528 1 sports@espn.com email 2 2 ... email sports@espn.com
to contact RULE
 529 1 cricket@espn.com email 2 2 ... email cricket@espn.com
to contact RULE
 530 1 tennis@espn.com email 2 2 ... email tennis@espn.com
to contact RULE
 531 1 Igor Trandenkov PER 2 3 ... 1= Igor Trandenkov
(Russia) 5.86 CRF
 532 1 Maksim Tarasov PER 2 3 ... 3. Maksim Tarasov
(Russia) 5.86 CRF
 533 1 Tim Lobinger PER 2 3 ... 4. Tim Lobinger
(Germany) 5.80 CRF
 534 1 Igor Potapovich PER 2 3 ... 5. Igor Potapovich
(Kazakstan) 5.80 CRF
 535 1 Jean Galfione PER 2 3 ... 6. Jean Galfione
(France) 5.65 CRF
 536 1 Pyotr Bochkary PER 2 3 ... 7. Pyotr Bochkary
(Russia) 5.65 CRF
 537 1 Dmitri Markov PER 2 3 ... 8. Dmitri Markov
(Belarus) 5.65 CRF
 583 1 GENEVA LOC 1 1 GENEVA
1996-08-30 ... CRF
 584 1 Standard Liege PER 8 9 Belgian club Standard
Liege on Friday CRF
 587 1 Roberto Bisconti PER 1 2 Roberto Bisconti
will be CRF
 591 1 HARRISON PER 3 3 ATHLETICS -
HARRISON CRF
 592 1 MONTE CARLO PER 1 2 MONTE CARLO
1996-08-30 ... CRF
 593 1 Kenny Harrison PER 3 4 Olympic champion Kenny
Harrison and world CRF
 593 2 Jonathan Edwards PER 9 10 record holder Jonathan
Edwards will both CRF
 596 1 What ORG 7 7 saying : What type
of CRF
 598 1 BARATELLI TO PER 3 4 SOCCER - BARATELLI TO
COACH NICE CRF

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1586

 599 1 NICE PER 1 1
NICE CRF
 600 1 Dominique Baratelli PER 4 5 international goalkeeper
Dominique Baratelli is to CRF
 600 2 Nice PER 14 14 division side
Nice CRF
 601 1 Baratelli PER 1 1
Baratelli CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NEREvaluator
The NEREvaluator function evaluates a CRF model (output by the function NERTrainer).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (
 ON { table | view | (query) } PARTITION BY 1
 USING
 TextColumn ('text_column')
 ModelFile ('model_file[:jar_file]')
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
) AS alias;

NEREvaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

ModelFile
Specify the CRF model file to evaluate, created and automatically installed by NERTrainer.

If you specified the ExtractorJAR syntax element in the NERTrainer call that created
model_file, then you must specify the same jar_file in this syntax element. You must install the
jar_file on ML Engine before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1587

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.
Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.
Final row value: Average precision value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.
Final row value: Average recall value for all entity types.

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity type.
Final row value: Average F1 score for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function
in terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example

SQL Call

SELECT * FROM NEREvaluator (
 ON ner_sports_test2 PARTITION BY 1

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1588

 USING
 TextColumn ('content')
 ModelFile ('ner_model.bin')
) AS dt;

Output

 type_ner precision_ner recall f1_measure
 -------- ------------- ------ ----------
 LOC 1 0.4444 0.6154
 ORG 0 0 -1
 PER 0.7222 0.8125 0.7647
 -AVG- 0.7778 0.4884 0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NER Functions (Maximum Entropy Model
Implementation)

Function Description

NamedEntityFinderTrainer Takes training data and outputs a maximum entropy model (binary file).

NamedEntityFinder Evaluates input, identifies tokens based on specified model, and outputs
tokens with detailed information.
Uses model to extract entity types 'PERSON', 'LOCATION', and
'ORGANIZATION' and rules to extract entity types 'DATE', 'TIME', 'EMAIL'
and 'MONEY'. If you specify these entity names, the function invokes the
default model types and model file names. To extract all entities in one
NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related Information:

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer
The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.
The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see
https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1589

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (
 ON { table | view | (query) } PARTITION BY 1 [ORDER BY order_column]
 USING
 OutputModelFile (output_model_file)
 TextColumn ('text_column')
 EntityType ('entity_type')
 [IterNum (iterator)]
 [Cutoff (cutoff)]
) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for
each row.

NamedEntityFinderTrainer Syntax Elements

OutputModelFile
Specify the name of the data model file to create.

TextColumn
Specify the name of the input table column that contains the text to analyze.

EntityType
Specify the entity type to train (for example, PERSON). The input training documents must
contain the same tag.

IterNum
[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff
[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1590

NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML
Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1591

id content

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (
 ON nermem_sports_train PARTITION BY 1
 USING
 EntityType ('LOCATION')
 TextColumn ('content')
 OutputModelFile (location.sports)
) AS dt;

Output

 train_result

 model installed

The model table, location.sports, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NamedEntityFinder
The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and
outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.
Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinder Syntax

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1592

Version 1.6

SELECT * FROM NamedEntityFinder (
 ON { table | view | (query) } PARTITION BY ANY
 [ON (configure_table) AS ConfigurationTable DIMENSION]
 USING
 TextColumn ('text_column')
 [Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] |
'all' })]
 [ShowContext ('context_words')]
 [EntityColName ('entity_column')]
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

Models
[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify
'all'. Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified
model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL),
which appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by training.

'rule' Rule-based model, a plain text file with one regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes
entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the
ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1593

specify Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-
organization.bin').

Note:
For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax
element, then the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext
[Optional] Specify the number of context words to output. If context_words is n (which must be
a positive integer), the function outputs the n words that precede the entity, the entity, and the
n words that follow the entity.

Default: 0

EntityColName
[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate
[Optional] Specify the names of input columns to copy to the output table. No
accumulate_column can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create
the table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (
 model_name VARCHAR(50),
 model_type VARCHAR(50),
 model_file VARCHAR(50)
);

Default English-language models are provided with the SQL functions. Before using these models, you
must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-
person.bin');
INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-
location.bin');
INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1594

organization.bin');
INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');
INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');
INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');
INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');
INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');
INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table nameFind_configure
model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-location.bin

organization max entropy en-ner-organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table.

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or EMAIL).

model_type VARCHAR One of these model types:

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1595

Column Data Type Description

model_type Description

'max entropy' Maximum entropy language model created by training

'rule' Rule-based model, a plain text file with one regular
expression on each line

'dictionary' Dictionary-based model, a plain text file with one word
on each line

'reg exp' Regular expression that describes entity_type

model_file VARCHAR Name of model file that describes the entity type. This column appears if
model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This column appears if
model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in input
table

Column copied from input table.

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax
element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax
element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax
element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input
id source content

1001 misc contact Alan by email at sports@espn.com for all sport info

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1596

id source content

1002 misc contact Mark at cricket@espn.com for all cricket info

1003 misc contact Roger at tennis@espn.com for all tennis info

1004 wiki The contiguous United States consists of the 48 adjoining U.S. states plus
Washington, D.C., on the continent of North America

1005 wiki California's economy is centered onTechnology,Finance,real estate services,
Government, and professional, Scientific and Technical business Services; together
comprising 58% of the State Government economy

1006 wiki Houston is the largest city in Texas and the fourth-largest in the United States, while
San Antonio is the second largest and seventh largest in the state.

1007 wiki Thomas is a photographer whose natural landscapes of the West are also a statement
about the importance of the preservation of the wildness

SQL Call

SELECT * FROM NamedEntityFinder (
 ON assortedtext_input PARTITION BY ANY
 ON namefind_configure AS ConfigurationTable DIMENSION
 USING
 TextColumn ('content')
 Models ('all')
 Accumulate ('id', 'source')
) AS dt ORDER BY id;

Output

 id source entity entity_type
 ---- ------ ---------------- ------------
 1001 misc sports@espn.com email
 1002 misc cricket@espn.com email
 1002 misc Mark person
 1003 misc Roger person
 1003 misc tennis@espn.com email
 1004 wiki Washington location
 1004 wiki U.S. location
 1004 wiki North America location
 1004 wiki United States location
 1005 wiki State Government organization
 1005 wiki 58% percentage
 1006 wiki San Antonio location
 1006 wiki United States location

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1597

 1006 wiki Texas location
 1007 wiki Thomas person

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

Named Entity Finder Evaluator
The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a
row and a partition function, respectively. Each function takes a set of evaluating data and creates the
precision, recall, and F-measure values of a specified maximum entropy data model. Neither function
supports regular-expression-based or dictionary-based models.

Related Information:

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,
NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (
 ON NamedEntityFinderEvaluatorMap (
 ON { table | view | (query) }
 USING
 TextColumn ('text_column')
 InputModelFile ('input_model_file')
) AS alias_1 PARTITION BY 1
) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFile
Specify name of the model file to evaluate.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1598

NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news
• model_file: location.sports, output by NamedEntityFinderTrainer Example

Input Table: nermem_sports_test
id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1599

id content

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took six for 82 but <START:PER> Chris Adams
<END>

16 They were held up by a gritty 84 from <START:PER> Paul Johnson <END> but ex-England fast
bowler <START:PER> Martin McCague <END> took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> : <START:ORG> Leicestershire <END> beat <START:
ORG> Somerset <END> by an innings and 39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (
 ON NamedEntityFinderEvaluatorMap (
 ON nermem_sports_test
 USING
 InputModelFile ('location.sports')
 TextColumn ('content')
) PARTITION BY 1
) AS dt;

Output

 precision_val recall f_measure
 ----------------- ------------------ -----------------
 0.847457627118644 0.7936507936507936 0.819672131147541

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1600

ACCESSING THIS CUSTOM DOCUMENT BEAR THE ENTIRE RISK OF ANY RELIANCE ON THIS CUSTOM
DOCUMENT, INCLUDING AS TO QUALITY, ACCURACY, AND RESULTS.

NGrams

The NGrams function tokenizes (splits) an input stream of text and outputs n multigrams (called n -grams)

based on the specified delimiter and reset parameters. NGrams provides more flexibility than standard

tokenization when performing text analysis. Many two-word phrases carry important meaning (for

example, "machine learning") that unigrams (single-word tokens) do not capture. This, combined with

additional analytical techniques, can be useful for performing sentiment analysis, topic identification, and

document classification.

NGrams considers each input row to be one document, and returns a row for each unique n-gram in each

document. NGrams also returns, for each document, the counts of each n-gram and the total number of n-

grams.

For general information about tokenization, see http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer.

NGrams Syntax

Version 1.8

SELECT * FROM NGrams (

 ON { table | view | (query) }

 USING

 TextColumn ('text_column')

 [Delimiter ('delimiter_regular_expression')]

 Grams ({ gram_number |'value_range' }[,...])

 [OverLapping({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [ToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [Reset ('reset_regular_expression')]

 [Punctuation ('punctuation_regular_expression')]

 [TotalGramCount ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]

 [TotalCountColumn ('total_count_column')]

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]

 [NGramColumn ('ngram_column')]

 [NumGramsColumn ('numgrams_column')]

 [FrequencyColumn ('count_column')]

) AS alias;

Related information

Column Specification Arguments

Regular Expressions in Arguments

NGrams Arguments

TextColumn

ngrams

Page 2 of 8

Specify the name of the column that contains the input text. This column must have a SQL string

data type.

Delimiter

[Optional] Specify, with a regular expression, the character or string that separates words in the

input text.

Default: "\\s+" (all whitespace characters—space, tab, newline, carriage return and others)

Grams

Specify the length, in words, of each n-gram (that is, the value of n). A value_range has the syntax

integer1-integer2, where integer1 <= integer2. The values of n, integer1, and integer2 must be

positive.

OverLapping

[Optional] Specify whether the function allows overlapping n-grams.

Default: 'true' (Each word in each sentence starts an n-gram, if enough words follow it in the same

sentence to form a whole n-gram of the specified size. For information on sentences, see the Reset

argument description.)

ToLowerCase

[Optional] Specify whether the function converts all letters in the input text to lowercase.

Default: 'true'

Reset

[Optional] Specify, with a regular expression, the character or string that ends a sentence. At the

end of a sentence, the function discards any partial n-grams and searches for the next n-gram at the

beginning of the next sentence. An n-gram cannot span sentences.

 The function applies the Reset argument before the Punctuation argument; that is, it splits the input

into sentences before removing punctuation characters.

Default: '[.,?!]'

Punctuation

[Optional] Specify, with a regular expression, the punctuation characters for the function to remove

before evaluating the input text.

 The function applies the Reset argument before the Punctuation argument; that is, it splits the input

into sentences before removing punctuation characters.

Default: '[`~#^&*()-]'

TotalGramCount

[Optional] Specify whether the function returns the total number of n-grams in the document (that

is, in the row) for each length n specified in the Grams argument. If you specify 'true', the

TotalCountColumn argument determines the name of the output table column that contains these

totals.

 The total number of n-grams is not necessarily the number of unique n-grams.

Default: 'false'

TotalCountColumn

[Optional] Specify the name of the output table column that appears if the value of the

TotalGramCount argument is 'true'.

Default: 'totalcnt'

Accumulate

[Optional] Specify the names of the input table columns to copy to the output table for each n-gram.

These columns cannot have the same names as those specified by the arguments NGramColumn,

NumGramsColumn, and TotalCountColumn.

Default: All input columns for each n-gram

NGramColumn

ngrams

Page 3 of 8

[Optional] Specify the name of the output table column that is to contain the created n-grams.

Default: 'ngram'

NumGramsColumn

[Optional] Specify the name of the output table column that is to contain the length of n-gram (in

words).

Default: 'n'

FrequencyColumn

[Optional] Specify the name of the output table column that is to contain the count of each unique

n-gram (that is, the number of times that each unique n-gram appears in the document).

Default: 'frequency'

NGrams Input

Input Table Schema

Each row of the table has a document to tokenize. The table can have additional columns, but the function

ignores them.

Column Data Type Description

text_column VARCHAR Document to tokenize.

accumulate_column VARCHAR [Column appears once for each specified

accumulate_column.] Column to copy to output table.

NGrams Output

Output Table Schema

The table has a row for each unique n-gram in each input document.

Column Data Type Description

accumulate_column VARCHAR [Column appears once for each specified

accumulate_column.] Column copied from input

table.

ngram_column VARCHAR Created n-gram.

numgrams_column INTEGER Length of n-gram in words (value n).

count_column INTEGER Count of each unique n-gram in document.

total_count_column INTEGER [Column appears only with TotalCountColumn

('true').] Total number of n-grams in document for

each length n specified in Grams argument.

NGrams Examples

ngrams

Page 4 of 8

NGrams Example 1: Overlapping ('true'), TotalGramCount ('true')

Input

• Input Table: paragraphs_input, which has paragraphs about common analytics topics (regression,

decision Trees, and so on)

Input Table: paragraphs_input

paraid paratopic paratext

1 Decision Trees Decision tree learning uses a

decision tree as a predictive

model which maps observations

about an item to conclusions

about the items target value. It is

one of the predictive modelling

approaches used in statistics,

data mining and machine

learning. Tree models where the

target variable can take a finite

set of values are called

classification trees. In these tree

structures, leaves represent class

labels and branches represent

conjunctions of features that lead

to those class labels. Decision

trees where the target variable

can take continuous values

(typically real numbers) are

called regression trees.

2 Simple Regression In statistics, simple linear

regression is the least squares

estimator of a linear regression

model with a single explanatory

variable. In other words, simple

linear regression fits a straight

line through the set of n points in

such a way that makes the sum

of squared residuals of the model

(that is, vertical distances

between the points of the data

set and the fitted line) as small as

possible

...

ngrams

Page 5 of 8

SQL Call

SELECT * FROM NGrams (

 ON paragraphs_input

 USING

 TextColumn ('paratext')

 Delimiter (' ')

 Grams ('4-6')

 OverLapping ('true')

 ToLowerCase ('true')

 Reset ('[.,?!]')

 Punctuation ('[`~#^&*()-]')

 TotalGramCount ('true')

 Accumulate ('paraid', 'paratopic')

) AS dt ORDER BY paraid, paratopic, ngram;

Output

paraid paratopic ngram n frequency totalcnt

1 Decision Trees decision tree

learning uses

4 1 73

1 Decision Trees decision tree

learning uses a

5 1 66

1 Decision Trees decision tree

learning uses a

decision

6 1 60

1 Decision Trees tree learning

uses a

4 1 73

1 Decision Trees tree learning

uses a decision

5 1 66

1 Decision Trees tree learning

uses a decision

tree

6 1 60

1 Decision Trees learning uses a

decision

4 1 73

1 Decision Trees learning uses a

decision tree

5 1 66

1 Decision Trees learning uses a

decision tree as

6 60

...

ngrams

Page 6 of 8

NGrams Example 2: Overlapping ('false'), TotalGramCount ('false')

Input

• Input Table: paragraphs_input, as in NGrams Example 1: Overlapping ('true'), TotalGramCount

('true')

SQL Call

SELECT * FROM NGrams (

 ON paragraphs_input

 USING

 TextColumn ('paratext')

 Delimiter (' ')

 Grams ('4-6')

 OverLapping ('false')

 ToLowerCase ('true')

 TotalGramCount ('false')

 Accumulate ('paraid', 'paratopic')

) AS dt ORDER BY paraid, paratopic, ngram;

Output

paraid paratopic ngram n frequency

1 Decision Trees decision tree

learning uses

4 1

1 Decision Trees a decision tree as 4 1

1 Decision Trees a predictive model

which

4 1

1 Decision Trees maps observations

about an

4 1

1 Decision Trees item to conclusions

about

4 1

1 Decision Trees the items target

value

4 1

1 Decision Trees decision tree

learning uses a

5 1

1 Decision Trees decision tree as a

predictive

5 1

1 Decision Trees model which maps

observations about

5 1

1 Decision Trees an item to

conclusions about

5 1

ngrams

Page 7 of 8

paraid paratopic ngram n frequency

1 Decision Trees decision tree

learning uses a

decision

6 1

1 Decision Trees tree as a predictive

model which

6 1

1 Decision Trees maps observations

about an item to

6 1

1 Decision Trees conclusions about

the items target

value

6 1

...

ngrams

Page 8 of 8

• NGrams
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

• SentimentExtractor
• Background Information (Description,

Use Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input
Table Schema, Output Table Schema)

• Labs
• Review

Current Topic – SentimentExtractor Background
Information

Text Analysis Slide 2-40

• Sentiment extraction is the process of inferring user sentiment (positive, negative, or
neutral) from text (typically call center logs, forums, and social media)

• The sentiment extraction functions support English, Simplified Chinese, and
Traditional Chinese text

• There are three Sentiment Extraction functions. This document will cover only the
SentimentExtractor function, employing a dictionary model
• SentimentTrainer: Trains model. Takes training documents and outputs maximum

entropy classification model
• SentimentExtractor: Uses either classification model or dictionary model to

extract sentiment of each input document or sentence; that is, to output predictions
• SentimentEvaluator: Uses test data to evaluate precision and recall of predictions

SentimentExtractor Description (1 of 3)

Sentiment extraction is the process of inferring user sentiment (positive, negative, or neutral) from text
(typically call center logs, forums, and social media).

This document will cover the SentimentExtractor function.

Text Analysis Slide 2-41

• The SentimentExtractor function extracts the sentiment (positive, negative, or
neutral) of each input document or sentence, using either a classification model
output by the function SentimentTrainer or a dictionary model

• The dictionary model consists of WordNet, a lexical database of the English
language, and these negation words:
• no, not, neither, never, scarcely, hardly, nor, little, nothing, seldom, few

• The function handles negated sentiments as follows:
• -1 if the sentiment is negated (for example, "I am not happy")
• -1 if the sentiment and a negation word are separated by one word (for example, "I

am not very happy")
• +1 if the sentiment and a negation word are separated by two or more words (for

example, "I am not saying I am happy")

SentimentExtractor Description (2 of 3)

The SentimentExtractor function extracts the sentiment (positive, negative, or neutral) of each input
document or sentence, using either a classification model output by the function SentimentTrainer or a
dictionary model.

This document will cover the dictionary model.

Text Analysis Slide 2-42

• Sentiment Extraction is the process of
deducing user opinion (positive, negative,
neutral) from textual data

• Useful for analyzing people’s opinions as found
in forums, social media, and product reviews

• In this module, we will use a Dictionary
approach, which scans through a dictionary file
on the Machine Learning engine in an effort to
determine the sentiment of selected text

• Bottom line: Decipher feeling behind users’
words and phrases

SentimentExtractor Description (3 of 3)

• Sentiment Extraction is the process of deducing user opinion (positive, negative, neutral) from textual
data

• Useful for analyzing people’s opinions as found in forums, social media, and product reviews
• In this module, we will use a Dictionary approach, which scans through a dictionary file on the

Machine Learning engine in an effort to determine the sentiment of selected text
• Bottom line: Decipher feeling behind users’ words and phrases

Text Analysis Slide 2-43

The SentimentExtractor function is all about scanning through text-based data in an
attempt to discover the overall sentiment of the text.
This function could be used by any business in any industry.
Following are some examples:
• A health care insurance company wishes to scan through patient reviews of

hospitals, clinics, and doctors regarding the quality of their care
• A retailer wishes to monitor online social media sites to discover user sentiment

about the company, its products, etc.
• A telecommunications company wishes to scrutinize customer-support logs to

discover which "call types" have a predominantly negative sentiment; i.e., customer
dissatisfaction

SentimentExtractor Use Cases

The SentimentExtractor function could be useful for any business that wishes to deduce user
sentiment based upon data in text form.

Text Analysis Slide 2-44

• Input Tables: Data is read from a specified input table, views, or query
• SentimentExtractor: There is only one required argument that must be

specified when the function is invoked:
• TextColumn

• Console or Output table: Data is written to the console or to an output table

SentimentExtractor Workflow

Input Table SentimentExtractor Console or
Output Table

The SentimentExtractor function will read from a defined table, view, or query, and output the results
as defined by its arguments.

Text Analysis Slide 2-45

SELECT * FROM SentimentExtractor (
ON { table | view | (query) } [PARTITION BY ANY]
[ON { table | view | (query) } AS dict DIMENSION]
USING
TextColumn ('text_column')
[InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
[ModelFile ({ 'dictionary[:dict_file]' | 'classification:model_file' })]
[Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
[AnalysisType ({ 'document' | 'sentence' })]
[Priority ({ 'NONE' |
'NEGATIVE_RECALL' |
'NEGATIVE_PRECISION' |
'POSITIVE_RECALL' |
'POSITIVE_PRECISION'})]
[OutputType ({ 'ALL' | 'POSITIVE' | 'NEGATIVE' })]
) AS alias;

SentimentExtractor Syntax

Here we are displaying the syntax structure for SentimentExtractor. Note that there is only one
required argument.

TextColumn: Specify the name of the input column that contains text from which to extract sentiments

Note the following:
1. As with other Teradata Vantage functions, we are invoking the function through the call SELECT *

FROM function_name; i.e., in this case, SELECT * FROM NGrams.
2. Our input data can be in the form of a table, view, or query. It follows the ON keyword.

Text Analysis Slide 2-46

There in only one required argument for the SentimentExtractor function:
• TextColumn: Specify the name of the input column that contains text

from which to extract sentiments

SentimentExtractor Required Arguments

TextColumn is the only required input. It should contain the text from which we wish to deduce
sentiment.

Text Analysis Slide 2-47

The following arguments available to you for the SentimentExtraction function are optional.
• InputLanguage [Optional]: Specify the language of the input text.

• 'en' (Default) English
• 'zh_CN' Simplified Chinese
• 'zh_TW' Traditional Chinese

• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary
• If you omit this argument or specify dictionary without dict_file, then you must specify a

dictionary table with alias 'dict'. If you specify both dict and dict_file, then whenever their
words conflict, dict has higher priority. The dict_file must be a text file in which each line
contains only a sentiment word, a space, and the opinion score of the sentiment word

• If you specify classification model_file, then model_file must be the name of a model file
created and installed on the ML Engine by the function SentimentTrainer

SentimentExtractor Optional Arguments (1 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the

default) or each sentence. A value of document refers to each row of input data, whereas a value of
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

Text Analysis Slide 2-48

• Accumulate [Optional]: Specify the names of the input columns to copy
to the output table

• AnalysisType [Optional]: Specify the level of analysis, whether to
analyze each document (the default) or each sentence
• A value of document refers to each row of input data, whereas a value

of sentence refers to each sentence within each row of input data

SentimentExtractor Optional Arguments (2 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the

default) or each sentence. A value of document refers to each row of input data, whereas a value of
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

Text Analysis Slide 2-49

• Priority [Optional]: Specify the highest priority when returning results. Following are
the options available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with

lower-confidence sentiment classifications (maximizes number of negative results
returned)

• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-
confidence sentiment classifications

• 'POSITIVE_RECALL' Give highest priority to positive results, including those with
lower-confidence sentiment classifications (maximizes number of positive results
returned)

• 'POSITIVE_PRECISION' Give highest priority to positive

SentimentExtractor Optional Arguments (3 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the

default) or each sentence. A value of document refers to each row of input data, whereas a value of
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

Text Analysis Slide 2-50

• OutputType [Optional]: Specify the kind of results to return. Following are the
options available to you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

SentimentExtractor Optional Arguments (4 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the

default) or each sentence. A value of document refers to each row of input data, whereas a value of
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

Text Analysis Slide 2-51

SentimentExtractor Input Table Schema (required)
Column Data Type Description

text_column VARCHAR Text from which to extract sentiment

accumulate_column VARCHAR [Column appears once for each specified
accumulate_column.] Column to copy to output table

Here is the input table schema.

Text Analysis Slide 2-52

SentimentExtractor dict Table Schema (optional)

Column Data Type Description

sentiment_word VARCHAR First column, containing the Sentiment word

opinion_score INTEGER Second column, containing opinion score for sentiment word

This table is optional. The table can have additional columns, but the
function ignores them.

In our lab environment, we are reading dictionary contents from a file.

Text Analysis Slide 2-53

SentimentExtractor Output Table Schema
Column Data Type Description

accumulate_column Same as
input table

[Column appears once for each specified accumulate_column.]
Column copied from input table

out_content VARCHAR [Column appears only for AnalysisType ('SENTENCE').] Displays the
sentence that receives a sentiment score.

out_polarity VARCHAR Depends on value of out_content:
• If out_content NULL, then Nothing
• If out_content Empty string, then UNKNOWN
• If out_content any other value, then POS (positive), NEG

(negative), or NEU (neutral)

out_strength INTEGER Strength of output_polarity:
• 0: Neutral
• 1: Higher than 0
• 2: Higher than 1

out_sentiment_words VARCHAR [Column appears only when function uses dictionary model.]
Sentiment words in document or sentence

Here is the output table schema.

Text Analysis Slide 2-54

• NGrams
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

• SentimentExtractor
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

Current Topic – SentimentExtractor Labs

Text Analysis Slide 2-55

In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06a – Fundamentals of SentimentExtractor

SELECT *
FROM bb_sentiment0
ORDER BY x_text;

• Here, we are familiarizing ourselves with the
source input table against which we will run the
SentimentExtractor function

• The next few pages will illustrate how to run a
SentimentExtractor query against this input
table—using the TextColumn (required) and
Accumulate (optional) arguments

• Examples in this document will utilize the
Dictionary format for extracting sentiment

Input Data

Text Analysis Slide 2-56

In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06b – Fundamentals of SentimentExtractor

SELECT *
FROM SentimentExtractor (
ON bb_sentiment0
USING
TextColumn ('x_text')
Accumulate ('x_text')
) AS dt
ORDER BY x_text;

The SentimentExtractor function is structured like
other SQL Engine queries.

The query above is using the sole required argument and one optional argument:
• TextColumn (required): Here, we are specifying the name of the column that contains

the data on which we wish to discover sentiment. By default, each row of data will
receive its own sentiment score

• Accumulate (optional): Here, we are specifying that we wish to include the x_text
column in the output

SELECT * FROM function_name
ON my_table
USING
argument_a,
argument_b …

Text Analysis Slide 2-57

In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06c – Fundamentals of SentimentExtractor

• Our output contains by default the three columns listed below:
• out_polarity displays the sentiment. POS (positive), NEU (neutral), NEG (negative)
• out_strength displays the strength of out_polarity. Possible values are 0, 1, and 2

(with 2 being the strongest)
• out_sentiment_words displays each word from the input text that was found in the

dictionary and scores it accordingly (+1 for positive words and -1 for negative words)
• The x_text column was returned as a result of our optional Accumulate argument

Partial Answer Set

Text Analysis Slide 2-58

In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06d – Fundamentals of SentimentExtractor

• NEG: In each case, the negative
terms are greater in number than
the positive terms

• NEU: In each case, the term is
either neutral itself, or the terms
cancel one another out

• POS: In each case, the positive
terms are greater in number than
the negative terms. Also, note the
attempt to deduce sentiment
based upon negation words

Text Analysis Slide 2-59

OutputType of ALL will return all three possible out_polarity values. This is the default.

c
Lab 07a – OutputType All (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('ALL')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the
optional argument of OutputType ('ALL').
If we had left the argument out altogether,
the query would have behaved the same
exact way—as this is the default

• A value of 'ALL' causes all rows to be
included in the output, regardless of their
out_polarity

Input Data Output

Text Analysis Slide 2-60

OutputType of POSITIVE will return only out_polarity values of POS.

c
Lab 07b – OutputType POSITIVE (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('POSITIVE')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the
optional argument of OutputType
('POSITIVE')

• A value of 'POSITIVE' causes only rows
with an out_polarity of POS to be included
in the output

Text Analysis Slide 2-61

OutputType of NEGATIVE will return only out_polarity values of NEG.

c
Lab 07c – OutputType NEGATIVE (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('NEGATIVE')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the
optional argument of OutputType
('NEGATIVE')

• A value of 'NEGATIVE' causes only rows
with an out_polarity of NEG to be included
in the output

Text Analysis Slide 2-62

When we analyze at the document level, notice that all sentences within the row are evaluated as a
collective. The entire row receives a single sentiment score.

c
Lab 08a – AnalysisType Document

SELECT *
FROM SentimentExtractor (
ON bb_sentiment2
USING
TextColumn ('x_text')
AnalysisType ('document')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

Input Data Output (not showing out_sentiment_words column)

• Here, we have explicitly injected the optional
argument of OutputType ('document'). If we
had left the argument out altogether, the query
would have behaved the same exact way—as
this is the default

• A value of 'document' causes each row of data
to receive a single score, regardless of how
many sentences are within the row

Text Analysis Slide 2-63

When we analyze at the sentence level, notice that each sentence within each row receives its own
sentiment score, independent of any other sentences that may exist within the same row.

c

• Here, we have explicitly injected the optional
argument of OutputType (‘sentence')

• A value of 'sentence' causes each sentence
within each row of data to receive a single score

• Note the auto-creation of the out_content column

Lab 08b – AnalysisType Sentence

SELECT *
FROM SentimentExtractor (
ON bb_sentiment2
USING
TextColumn ('x_text')
AnalysisType ('sentence')
Accumulate ('x_text')
) AS dt
ORDER BY x_text,
out_polarity, out_content;

Input Data

Output (not showing out_sentiment_words column)

Text Analysis Slide 2-64

This lab uses a simple data-set to discuss the various Priority values:
• None
• Negative Recall
• Negative Precision
• Positive Recall
• Positive Precision

c
Lab 09a – Priority (Source Data)

SELECT * FROM bb_sentiment ORDER BY x_id;

• Our input data has eleven rows
• We start off with ten instances of the word good in x_id 0, and each subsequent x_id value

replaces one of the words good with the word bad
• By the time we reach x_id 10, all ten instances of good have been replaced with bad

Input Data Over the next many pages, we will leverage
different values in the optional Priority
argument to see how this impact the output
of SentimentExtractor. Values include:

• None
• Negative Recall
• Negative Precision
• Positive Recall
• Positive Precision

Text Analysis Slide 2-65

If not specified, the default Priority is None.

c

• A Priority of None gives all results the same priority
• In total, we have five POS, one NEU, and five NEG

• If "good" > "bad", then POS
• If "good" = "bad", then NEU
• If "good" < "bad", then NEG

Lab 09b – Priority (None)

SELECT *
FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('NONE')
) AS dt
ORDER BY x_id;

Text Analysis Slide 2-66

Negative_Recall maximizes the number of negative results.

c
Lab 09c – Priority (Negative_Recall)

SELECT *
FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('NEGATIVE_RECALL')
) AS dt
ORDER BY x_id;

• A Priority of Negative Recall gives highest priority to negative results, including those with
lower-confidence sentiment classifications (maximizes number of negative results returned)

• In total, we have four POS, one NEU, and six NEG
• Note that an equal number of "good" and "bad" evaluates to NEG
• Our value of six "good" and four "bad" evaluates to NEU
• When it is a toss-up, NEG wins. When "good" slightly outnumbers "bad", NEU wins

Text Analysis Slide 2-67

Negative_Precision attempts to only flag rows as negative if they are predominantly negative.

c

• A Priority of Negative_Precision gives highest priority to negative results with high-
confidence sentiment classifications

• In total, we have five POS, two NEU, and four NEG
• Note that our value of four "good" and six "bad" evaluates to NEU
• Only rows which are predominantly "bad" evaluate to NEG

Lab 09d – Priority (Negative_Precision)
(Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority('NEGATIVE_PRECISION')
) AS dt
ORDER BY x_id;

Text Analysis Slide 2-68

Positive_Recall maximizes the number of positive results.

c
Lab 09e – Priority (Positive_Recall)

SELECT * FROM
SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('POSITIVE_RECALL')
) AS dt
ORDER BY x_id;

• A Priority of Positive_Recall gives highest priority to positive results, including those with
lower-confidence sentiment classifications (maximizes number of positive results returned).

• In total, we have six POS, one NEU, and four NEG
• Note that an equal number of "good" and "bad" evaluates to POS
• Our value of four "good" and six "bad" evaluates to NEU
• When it is a toss-up, POS wins. When "bad" slightly outnumbers "good", NEU wins

Text Analysis Slide 2-69

Positive_Precision attempts to only flag rows as negative if they are predominantly positive.

c
Lab 09f – Priority (Positive_Precision) (Optional)

SELECT * FROM
SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority('POSITIVE_PRECISION')
) AS dt
ORDER BY x_id;

• A Priority of Positive_Precision gives highest priority to positive results with high-
confidence sentiment classifications

• In total, we have four POS, two NEU, and five NEG
• Note that our value of six "good" and four "bad" evaluates to NEU
• Only rows which are predominantly "good" evaluate to POS

Text Analysis Slide 2-70

• NGrams
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

• SentimentExtractor
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

Current Topic – SentimentExtractor Review

Text Analysis Slide 2-71

c
Hackathon: Product Reviews Sentiment

The following exercise is intended to provide you with further practice on using the
SentimentExtractor function. There is no single "right" or "wrong" answer. The intent
is for you to become comfortable writing queries that use SentimentExtractor
1. Run a SentimentExtractor query on the bb_sentiment_extract_input table,

which shows 10 reviews about various products. What is the general sentiment
expressed in each review?

2. Things to think about follow:
• What is a suitable Priority to specify?
• After reading through the product reviews yourself, do you think that

SentimentExtrator did a decent job of deducing the general sentiment of each
product review?

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your
own SENTIMENT_EXTRACTOR query(ies) so as to become more comfortable with the syntax.
Following are the contents of our source input data.

id product review

1 camera

we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr. it has
excelled in what we expected of it, and consequently represented excellent value for me. all my friends want my camera for
their vacations. i would recommend this camera to anybody. definitely worth the price. plus, when you buy some accessories, it
becomes even more powerful.

2 office suite

it is the best office suite i have used to date. it is launched before office 2010 and it is ages ahead of it already. the fact that i
could comfortable import xls, doc, ppt and modify them, and then export them back to the doc, xls, ppt is terrific. i needed the
compatibility. it is a very intuitive suite and the drag drop functionality is terrific.

3 camera

this is a nice camera, delivering good quality video images decent photos. light small, using easily obtainable, high quality minidv
i love it. minor irritations include touchscreen based menu only digital photos can only be transferred via usb, requiring ilink and
usb if you use ilink.

4 gps
it is a fine gps. outstanding performance, works great. you can even get incredible coordinate accuracy from streets and trips to
compare.

5 gps
nice graphs and map route info. i would not run outside again without this unique gadget. great job. big display, good backlight,
really watertight, training assistant. i use in trail running and it worked well through out the race.

6 gps
most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to
be none update of data to the system. i wish i could make all the rating stars be empty.

7 gps
this machine is all screwed up. on my way home from a friends house it told me there is no possible route. i found their website
support difficult to navigate. i am is so disappointed and just returned it and now looking for another one

8 camera

i hate my camera, and im stuck with it. this camera sucks so bad, even the dealers on ebay have difficulty selling it. horrible
indoors, does not capture fast action, screwy software, no suprise, and screwy audio/video codec that does not work with
hardly any app.

9 television

$3k is way too much money to drop onto a piece of crap. poor customer support. after about 1 and a half years and hardly
using the tv, a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits. i expressed my
dissatisfaction with the situation as this is a known issue.

10 camera

i returned my camera to the vendor as i will not tolerate a substandard product that is a known issue especially from vendor
who will not admit that this needs to be removed from the shelf due to failing parts updated. due to the constant need for
repair, i would never recommend this product.

Text Analysis Slide 2-72

c Hackathon: Product Reviews Sentiment
(Possible Answer)

SELECT *
FROM bb_sentiment_extract_input;

SELECT * FROM SentimentExtractor (
ON bb_sentiment_extract_input
USING
TextColumn ('review')
Accumulate ('id', 'product', 'review')
Priority ('None')
) AS dt
ORDER BY product, out_polarity, id;

Input Data

Possible Answer-Set

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your
own SENTIMENT_EXTRACTOR query(ies) so as to become more comfortable with the syntax.

Text Analysis Slide 2-73

Game Time! SentimentExtractor Million $ Question

Click here to start!

This game, containing review questions, reinforces the module objectives for SentimentExtractor.

Text Analysis Slide 2-74

In this module, you learned how to:

• Describe what the NGrams and SentimentExtractor functions do

• Describe typical use cases for NGrams and SentimentExtractor

• Write NGrams and SentimentExtractor queries

• Interpret the output of NGrams and SentimentExtractor queries

Summary

Text Analysis Slide 2-75

Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple
news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle"
in the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine
provides two sets of NER functions:

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional
Chinese

NER Functions (Maximum Entropy Model Implementation) English

NER Functions (CRF Model Implementation)
Function Description

NERTrainer Takes training data and outputs CRF model (binary file).

NERExtractor Takes input documents and extracts specified entities, using one or more CRF models
and, if appropriate, rules (regular expressions) or a dictionary.
Uses models to extract names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and dictionary
to extract known entities.

NEREvaluator Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related Information:

NER Functions (Maximum Entropy Model Implementation)

NERTrainer
The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified
in the function NERExtractor and NEREvaluator.

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERTrainer Syntax

Named Entity Recognition (NER) Functions
(ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1577

Version 1.8

SELECT * FROM NERTrainer (
 ON { table | view | (query) } PARTITION BY 1
 USING
 ModelFileName (model_file)
 TextColumn ('text_column')
 [ExtractorJAR ('jar_file')]
 FeatureTemplate ('template_file')
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
 [MaxIterNum (max_iteration_times)]
 [Eta (eta_threshhold_value)]
 [MinOccurNum (threshhold_value)]
) AS alias;

NERTrainer Syntax Elements

ModelFileName
Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn
Specify the name of the input table column that contains the text to analyze.

ExtractorJAR
[Optional] Specify the name of the JAR file that contains the Java classes that extract features.
You must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support
existing JAR files—for installation instructions, see Teradata Vantage™ User Guide,
B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate
Specify the name of the file that specifies how to create features when training the model.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1578

MaxIterNum
[Optional] Specify the maximum number of iterations.

Default: 1000

Eta
[Optional] Specify the tolerance of the termination criterion. Defines the differences of the
values of the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the
function calculates the loss or cost function on the training samples. If the loss function value
change is very small between two sequential epochs, the function considers the training
process to have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1)

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum
[Optional] Specify the minimum number times that a feature must occur in the input text before
the function uses the feature to construct the model.

Default: 0

NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1579

Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)
• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:LOC>
Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

... ...

SQL Call

SELECT * FROM NERTrainer (
 ON ner_sports_train PARTITION BY 1
 USING
 TextColumn ('content')
 FeatureTemplate ('template_1.txt')
 OutputModelFile ('ner_model.bin')
) AS dt;

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1580

Output

 train_result

 Model generated.
 Training time(s): 3.129
 File size(KB): 374
 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NERExtractor
The NERExtractor function takes input documents and extracts specified entities, using one or more CRF
models (output by the function NERTrainer) and, if appropriate, rules (regular expressions) or a dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract
known entities.

NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (
 ON input_table PARTITION BY { ANY | key }
 [ON rules_table AS Rules DIMENSION]
 [ON dictionary_table AS Dict DIMENSION]
 USING
 TextColumn ('text_column')
 [InputModelFiles ('input_model_file[:jar_file]' [,...])]
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
 [ShowContext ('n')]

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1581

 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

Related Information:

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFiles
[Optional] Specify the CRF models (binary files) to use, output by NERTrainer. If you specified
the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then
you must specify the same jar_file in this syntax element. You must install input_model_file
and jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext
[Optional] Specify the number of context words to output (a positive integer). The function
outputs the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

NERExtractor Input

Table Description

Input table Text to analyze.
Tip:
To optimize function performance, remove punctuation marks from text with TextParser
(ML Engine) function.

Rules [Optional] Rules to use when extracting entities from text.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1582

Table Description

Dict [Optional] Dictionary to use when extracting entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table.

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that represents an entity of this type. Expression must
conform to Java Regex standard, documented at http://docs.oracle.com/
javase/tutorial/essential/regex/quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.

NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_
column

Same as in input
table

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1583

http://docs.oracle.com/javase/tutorial/essential/regex/quant.html
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html

Column Data Type Description

context VARCHAR [Column appears only with ShowContent syntax element.
] Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or
DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.
• Rules: rule_table, which is preinstalled on ML Engine.
• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2
id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583 GENEVA 1996-08-30

584 UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in
an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .

587 Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he
protested about a Karlsruhe goal

588 Karlsruhe won the August 20 match 3-1 thanks to two late goals .

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1584

id content

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592 MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take part
in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had allowed
organisers to hold a men s triple jump as well as the women s long jump on the one usable runway
at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in
the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the
Balkans -- two days after the grand prix final in Milan .

596 Edwards was quoted as saying : What type of character do we show by going to the IAAF Grand
Prix Final in Milan where there is a lot of money to make but refusing to make the trip to Sarajevo
as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599 NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division
side Nice

601 Baratelli

602 Nice have been unable to win any of their four league matches played this season and are lying
a lowly 18th in the table .

Rules: rule_table
type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (
 ON ner_sports_test2 PARTITION BY ANY
 ON rule_table AS Rules DIMENSION
 USING
 TextColumn ('content')
 InputModelFiles ('ner_model.bin')
 ShowContext (2)
 Accumulate ('id')
) AS dt ORDER BY id, sn;

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1585

Output

 id sn entity type_ner start_ner end_ner
context approach
 --- -- ------------------- -------- --------- -------
-- --------
 528 1 sports@espn.com email 2 2 ... email sports@espn.com
to contact RULE
 529 1 cricket@espn.com email 2 2 ... email cricket@espn.com
to contact RULE
 530 1 tennis@espn.com email 2 2 ... email tennis@espn.com
to contact RULE
 531 1 Igor Trandenkov PER 2 3 ... 1= Igor Trandenkov
(Russia) 5.86 CRF
 532 1 Maksim Tarasov PER 2 3 ... 3. Maksim Tarasov
(Russia) 5.86 CRF
 533 1 Tim Lobinger PER 2 3 ... 4. Tim Lobinger
(Germany) 5.80 CRF
 534 1 Igor Potapovich PER 2 3 ... 5. Igor Potapovich
(Kazakstan) 5.80 CRF
 535 1 Jean Galfione PER 2 3 ... 6. Jean Galfione
(France) 5.65 CRF
 536 1 Pyotr Bochkary PER 2 3 ... 7. Pyotr Bochkary
(Russia) 5.65 CRF
 537 1 Dmitri Markov PER 2 3 ... 8. Dmitri Markov
(Belarus) 5.65 CRF
 583 1 GENEVA LOC 1 1 GENEVA
1996-08-30 ... CRF
 584 1 Standard Liege PER 8 9 Belgian club Standard
Liege on Friday CRF
 587 1 Roberto Bisconti PER 1 2 Roberto Bisconti
will be CRF
 591 1 HARRISON PER 3 3 ATHLETICS -
HARRISON CRF
 592 1 MONTE CARLO PER 1 2 MONTE CARLO
1996-08-30 ... CRF
 593 1 Kenny Harrison PER 3 4 Olympic champion Kenny
Harrison and world CRF
 593 2 Jonathan Edwards PER 9 10 record holder Jonathan
Edwards will both CRF
 596 1 What ORG 7 7 saying : What type
of CRF
 598 1 BARATELLI TO PER 3 4 SOCCER - BARATELLI TO
COACH NICE CRF

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1586

 599 1 NICE PER 1 1
NICE CRF
 600 1 Dominique Baratelli PER 4 5 international goalkeeper
Dominique Baratelli is to CRF
 600 2 Nice PER 14 14 division side
Nice CRF
 601 1 Baratelli PER 1 1
Baratelli CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NEREvaluator
The NEREvaluator function evaluates a CRF model (output by the function NERTrainer).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (
 ON { table | view | (query) } PARTITION BY 1
 USING
 TextColumn ('text_column')
 ModelFile ('model_file[:jar_file]')
 [InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' })]
) AS alias;

NEREvaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

ModelFile
Specify the CRF model file to evaluate, created and automatically installed by NERTrainer.

If you specified the ExtractorJAR syntax element in the NERTrainer call that created
model_file, then you must specify the same jar_file in this syntax element. You must install the
jar_file on ML Engine before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1587

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.
Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.
Final row value: Average precision value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.
Final row value: Average recall value for all entity types.

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity type.
Final row value: Average F1 score for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function
in terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example

SQL Call

SELECT * FROM NEREvaluator (
 ON ner_sports_test2 PARTITION BY 1

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1588

 USING
 TextColumn ('content')
 ModelFile ('ner_model.bin')
) AS dt;

Output

 type_ner precision_ner recall f1_measure
 -------- ------------- ------ ----------
 LOC 1 0.4444 0.6154
 ORG 0 0 -1
 PER 0.7222 0.8125 0.7647
 -AVG- 0.7778 0.4884 0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NER Functions (Maximum Entropy Model
Implementation)

Function Description

NamedEntityFinderTrainer Takes training data and outputs a maximum entropy model (binary file).

NamedEntityFinder Evaluates input, identifies tokens based on specified model, and outputs
tokens with detailed information.
Uses model to extract entity types 'PERSON', 'LOCATION', and
'ORGANIZATION' and rules to extract entity types 'DATE', 'TIME', 'EMAIL'
and 'MONEY'. If you specify these entity names, the function invokes the
default model types and model file names. To extract all entities in one
NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related Information:

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer
The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.
The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see
https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1589

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (
 ON { table | view | (query) } PARTITION BY 1 [ORDER BY order_column]
 USING
 OutputModelFile (output_model_file)
 TextColumn ('text_column')
 EntityType ('entity_type')
 [IterNum (iterator)]
 [Cutoff (cutoff)]
) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for
each row.

NamedEntityFinderTrainer Syntax Elements

OutputModelFile
Specify the name of the data model file to create.

TextColumn
Specify the name of the input table column that contains the text to analyze.

EntityType
Specify the entity type to train (for example, PERSON). The input training documents must
contain the same tag.

IterNum
[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff
[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1590

NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML
Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1591

id content

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (
 ON nermem_sports_train PARTITION BY 1
 USING
 EntityType ('LOCATION')
 TextColumn ('content')
 OutputModelFile (location.sports)
) AS dt;

Output

 train_result

 model installed

The model table, location.sports, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NamedEntityFinder
The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and
outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.
Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinder Syntax

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1592

Version 1.6

SELECT * FROM NamedEntityFinder (
 ON { table | view | (query) } PARTITION BY ANY
 [ON (configure_table) AS ConfigurationTable DIMENSION]
 USING
 TextColumn ('text_column')
 [Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] |
'all' })]
 [ShowContext ('context_words')]
 [EntityColName ('entity_column')]
 [Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...])]
) AS alias;

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

Models
[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify
'all'. Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified
model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL),
which appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by training.

'rule' Rule-based model, a plain text file with one regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes
entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the
ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1593

specify Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-
organization.bin').

Note:
For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax
element, then the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext
[Optional] Specify the number of context words to output. If context_words is n (which must be
a positive integer), the function outputs the n words that precede the entity, the entity, and the
n words that follow the entity.

Default: 0

EntityColName
[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate
[Optional] Specify the names of input columns to copy to the output table. No
accumulate_column can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create
the table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (
 model_name VARCHAR(50),
 model_type VARCHAR(50),
 model_file VARCHAR(50)
);

Default English-language models are provided with the SQL functions. Before using these models, you
must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-
person.bin');
INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-
location.bin');
INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1594

organization.bin');
INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');
INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');
INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');
INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');
INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');
INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table nameFind_configure
model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-location.bin

organization max entropy en-ner-organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table.

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or EMAIL).

model_type VARCHAR One of these model types:

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1595

Column Data Type Description

model_type Description

'max entropy' Maximum entropy language model created by training

'rule' Rule-based model, a plain text file with one regular
expression on each line

'dictionary' Dictionary-based model, a plain text file with one word
on each line

'reg exp' Regular expression that describes entity_type

model_file VARCHAR Name of model file that describes the entity type. This column appears if
model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This column appears if
model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in input
table

Column copied from input table.

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax
element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax
element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax
element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input
id source content

1001 misc contact Alan by email at sports@espn.com for all sport info

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1596

id source content

1002 misc contact Mark at cricket@espn.com for all cricket info

1003 misc contact Roger at tennis@espn.com for all tennis info

1004 wiki The contiguous United States consists of the 48 adjoining U.S. states plus
Washington, D.C., on the continent of North America

1005 wiki California's economy is centered onTechnology,Finance,real estate services,
Government, and professional, Scientific and Technical business Services; together
comprising 58% of the State Government economy

1006 wiki Houston is the largest city in Texas and the fourth-largest in the United States, while
San Antonio is the second largest and seventh largest in the state.

1007 wiki Thomas is a photographer whose natural landscapes of the West are also a statement
about the importance of the preservation of the wildness

SQL Call

SELECT * FROM NamedEntityFinder (
 ON assortedtext_input PARTITION BY ANY
 ON namefind_configure AS ConfigurationTable DIMENSION
 USING
 TextColumn ('content')
 Models ('all')
 Accumulate ('id', 'source')
) AS dt ORDER BY id;

Output

 id source entity entity_type
 ---- ------ ---------------- ------------
 1001 misc sports@espn.com email
 1002 misc cricket@espn.com email
 1002 misc Mark person
 1003 misc Roger person
 1003 misc tennis@espn.com email
 1004 wiki Washington location
 1004 wiki U.S. location
 1004 wiki North America location
 1004 wiki United States location
 1005 wiki State Government organization
 1005 wiki 58% percentage
 1006 wiki San Antonio location
 1006 wiki United States location

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1597

 1006 wiki Texas location
 1007 wiki Thomas person

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

Named Entity Finder Evaluator
The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a
row and a partition function, respectively. Each function takes a set of evaluating data and creates the
precision, recall, and F-measure values of a specified maximum entropy data model. Neither function
supports regular-expression-based or dictionary-based models.

Related Information:

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,
NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (
 ON NamedEntityFinderEvaluatorMap (
 ON { table | view | (query) }
 USING
 TextColumn ('text_column')
 InputModelFile ('input_model_file')
) AS alias_1 PARTITION BY 1
) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFile
Specify name of the model file to evaluate.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1598

NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news
• model_file: location.sports, output by NamedEntityFinderTrainer Example

Input Table: nermem_sports_test
id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1599

id content

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took six for 82 but <START:PER> Chris Adams
<END>

16 They were held up by a gritty 84 from <START:PER> Paul Johnson <END> but ex-England fast
bowler <START:PER> Martin McCague <END> took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> : <START:ORG> Leicestershire <END> beat <START:
ORG> Somerset <END> by an innings and 39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (
 ON NamedEntityFinderEvaluatorMap (
 ON nermem_sports_test
 USING
 InputModelFile ('location.sports')
 TextColumn ('content')
) PARTITION BY 1
) AS dt;

Output

 precision_val recall f_measure
 ----------------- ------------------ -----------------
 0.847457627118644 0.7936507936507936 0.819672131147541

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1600

1

Module 03 –
Pattern Detection with nPath
Teradata Vantage Analytics Workshop BASICS

©2019 Teradata

2

After completing this module, you will be able to:

• Describe what the nPath function does

• Describe typical use cases for nPath

• Write nPath queries

• Interpret the output of nPath queries

• Run an nPath visualization in Teradata AppCenter

Objectives

For more info go to docs.teradata.com click Teradata Vantage, download: Teradata Vantage Machine
Learning Engine Analytic Function Reference guide.

https://docs.teradata.com/

3

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Topics

4

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Background Information

6Description
What is nPath?
- Function designed for time-series sequence analysis of data
- Links an outcome with a preceding path
Benefits
- Pattern detection can be completed in a single pass over

the data
- Allows you to understand relationships across rows of data
- Transcends SQL’s ordered-data limitations that require

either complex, multi-pass SQL or custom UDFs for each
analysis

Example use cases:
- Web analytics (clickstream, Golden Path)
- Complex Marketing revenue paths
- Granular product & process analysis (A/B)
- Granular pattern detection (fraud, QA,..)

•Time-series analysis,
uncovering patterns in
sequential steps

nPath Website Path Analysis

home

exit

profile

groups

jobs

compa
ny

20
%

7%

11%

13%

32%

Complete Application:

• nPath identifies path patterns and exit points
• The Sessionize function is used prepare the

input data for nPath analysis.
• In the example above, we are viewing which

paths users take once they’ve landed on our
Home page. Note that 32% of Home page
visits end up in the users’ exiting the website
altogether.

Presenter
Presentation Notes
nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use nPath to analyze:Web site click data, to identify paths that lead to sales over a specified amountSensor data FROM industrial processes, to identify paths to poor product qualityHealthcare records of individual patients, to identify paths that indicate that patients are atrisk of developing conditions such as heart disease or diabetesFinancial data for individuals, to identify paths that provide information about credit or fraudrisksThe output FROM the nPath function can be input to other ML Engine functions or to a visualization tool such as Teradata AppCenter.

7

Some examples of how nPath can be used follow:

• A Retailer wishes to analyze Web site click data, to identify paths that lead to sales
over a specified amount

• A Manufacturer analyzes sensor data FROM industrial processes, to identify paths
to poor product quality

• A Healthcare provider analyzes healthcare records of individual patients, to identify
paths that indicate that patients are at risk of developing conditions such as heart
disease or diabetes

• A Financial institution reviews financial data for individuals, to identify paths that
provide information about credit or fraud risks

nPath Use Cases

Presenter
Presentation Notes
nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use nPath to analyze:Web site click data, to identify paths that lead to sales over a specified amountSensor data FROM industrial processes, to identify paths to poor product qualityHealthcare records of individual patients, to identify paths that indicate that patients are atrisk of developing conditions such as heart disease or diabetesFinancial data for individuals, to identify paths that provide information about credit or fraudrisksThe output FROM the nPath function can be input to other ML Engine functions or to a visualization tool such as Teradata AppCenter.

8nPath Workflow

• Input Tables(s): Data is read FROM specified input tables, views, or queries

• nPath: The following arguments are specified when the function is invoked

─ Mode (overlapping or nonoverlapping)
─ Pattern to match
─ Symbols to use
─ [Optional] Filters to apply
─ Results to output

• Output table: Data is written to an output table

Input Table(s) nPath Output Table

Presenter
Presentation Notes
nPath requires at least one input table, view, or query. Rows that meet the condition of your logic are then displayed in the output.

9nPath Syntax
SELECT * FROM nPath [@coprocess]
(ON { table | view | (query) }
PARTITION BY partition_column
ORDER BY order_column[ASC | DESC]
[ON { table | view | (query) }
[PARTITION BY partition_column | DIMENSION] ORDER BY column [ASC | DESC]]
USING
Mode ({ OVERLAPPING | NONOVERLAPPING })
Pattern ('pattern')
Symbols ({ col_expr = symbol_predicate AS symbol } [,...])
[Filter (filter_expression [,...])]
Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])
) AS dt;

Presenter
Presentation Notes
Following are important points to realize about the syntax for nPath.As with other Teradata Vantage functions, we are invoking the function through the call SELECT * FROM function_name; i.e., in this case, SELECT * FROM nPath.Our input data can be in the form of a table, view, or query. It follows the ON keyword.We must specify which columns to use for our PARTITION BY and ORDER BY arguments.Following the USING keyword, we are afforded the opportunity of specifying our required and optional arguments specific to the function.The required arguments for nPath follow:Mode: Specify the pattern-matching mode. Possible values include OVERLAPIPNG and NONOVERLAPPING..Pattern: Specify the pattern for which the function searches. Symbols: Specify the symbols that appear in the values of the Pattern and Result arguments..Result: Defines the output columns.The optional arguments for nPath follow:Filter [Optional]: Specify filters to impose on the matched rows. The function combines the filter expressions using the AND operator.

10

c
Lab 01 – nPath Simple Query

SELECT * FROM borre_z
ORDER BY ts;

SELECT * FROM nPath@coprocessor
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

Input Data nPath Query

nPath Results

• On the following pages, we will discuss
the required arguments for nPath

• For each required argument, we will
discuss the implications of our
specifications using the simple nPath
query to the right as the foundation

Note: In the query above, the @coprocessor
tag signifies that we are opting to run the
query on the Machine Learning Engine.
Without this tag, the query would run on the
Advanced SQL Engine. For this module’s labs,
we will run our queries on the Advanced SQL
Engine (i.e., without the @coprocessor tag)

Remove '@coprocessor
and run again using MLE

Presenter
Presentation Notes
The purpose of this lab is merely to get you acquainted with a sample nPath query. nPath can run on either the Advanced SQL Engine or the Machine Learning Engine.

11

Here, we specify our input data.

• The FROM keyword is followed by
nPath (or nPath@coprocessor).
This invokes the nPath function

• The ON keyword is followed by our
input data (borre_z)

• We PARTITION BY user_id in this
example and ORDER BY ts

nPath Input Data (1 of 3)

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Like other Teradata Vantage analytic functions, the function’s name follows the FROM keyword and the input data follows the ON keyword.

12nPath Input Data (2 of 3)
… ON (SELECT * FROM WEBCLICKS)

PARTITION BY user_id, sessionid
ORDER BY datestamp …

PARTITION BY groups rows with like values together.
ORDER BY then sorts each partition according to our specifications.

(Now, the clicks of each User_Id are sorted in the sequence in which they were made

Partition for User_Id 1 Session_Id 0 Partition for User_Id 1 Session_Id 1 Partition for User_Id 97Session_Id 0

Presenter
Presentation Notes
PARTITION BY groups rows with like values together .ORDER BY then sorts each partition according to our specifications.In the example on the following page, the clicks of each User_Id are sorted in the sequence in which they were made.

13nPath Input Data (3 of 3)

• ON expression
- The input Table, View, or Query

• PARTITION BY expression [,…]
- The attribute(s) by which the rows are

grouped
- Identifies entity of interest – such as

user_id, product_id, etc.
• ORDER BY expression [ASC|DESC] [,…]
- The expression by which the rows within

each partition are ordered
- Typically a date/time field, but can be any

sequence attribute

SELECT * FROM nPath
(ON (SELECT * FROM savings

WHERE amt > 0) as t1
PARTITION BY cust
ORDER BY ts
…………….

SELECT * FROM nPath
(ON savings
PARTITION BY cust
ORDER BYts
…………….

Selecting all rows from savings

Selecting a subset of rows from savings

Presenter
Presentation Notes
ON expression: The input Table, View, or QueryPARTITION BY expression [,…]: The attribute(s) by which the rows are grouped. Identifies entity of interest – such as user_id, product_id, etc.ORDER BY expression [ASC|DESC] [,…]: The expression by which the rows within each partition are ordered. Typically a date/time field, but can be any sequence attribute.

14

Here, we specify the pattern-matching mode.
There are two flavors of this:

• OVERLAPPING: Find every occurrence of
pattern in partition, regardless of whether it
is part of a previously found match. One row
can match multiple symbols in a given
matched pattern

• NONOVERLAPPING: Start next pattern
search at row that follows last pattern match

nPath Required Arguments: Mode

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

Presenter
Presentation Notes
Mode allows you to specify the pattern-matching mode. The two options follow:OVERLAPPING: Find every occurrence of pattern in partition, regardless of whether it is part of a previously found match. One row can match multiple symbols in a given matched pattern.NONOVERLAPPING: Start next pattern search at row that follows last pattern match.

15

Here, we specify the Pattern for which the function searches.

• We compose Pattern with symbols (which we define in the
Symbols argument), operators, and parentheses. Here,
we are searching for Symbol X followed by X (which
means event 'a' followed by event 'a')

• When patterns have multiple operators, the function
applies them in order of precedence, and applies operators
of equal precedence FROM left to right. To force the
function to evaluate a subpattern first, enclose it in
parentheses

nPath Required Arguments: Pattern

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate(event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Pattern allows you to specify the pattern for which the function searches. You compose pattern with the symbols (which you define in the Symbols argument), operators, and parentheses.When patterns have multiple operators, the function applies them in order of precedence, and applies operators of equal precedence FROM left to right. To force the function to evaluate a subpattern first, enclose it in parentheses.

16

Here, we specify the Symbols that appear in the
values of the Pattern and Result arguments

• The col_expr is an expression whose value is a
column name, symbol is any valid identifier, and
symbol_predicate is a SQL predicate (often a
column name)

• You can think of Symbols as the 'aliases' that you
will be defining for use in the Pattern and Result
portions of the query

nPath Required Arguments: Symbols

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Symbols allows you to define the symbols that appear in the values of the Pattern and Result arguments. The col_expr is an expression whose value is a column name, symbol is any valid identifier, and symbol_predicate is a SQL predicate (often a column name).For example, this Symbols argument is for analyzing website visits:Symbols (pagetype = 'homepage' AS H,pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,pagetype = 'checkout' AS CO)The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to identify in patterns. If col_expr represents a column that appears in multiple input tables, you must qualify the ambiguous column name with its table name. For example:Symbols (weblog.pagetype = 'homepage' AS H,weblog.pagetype = 'thankyou' AS T,ads.adname = 'xmaspromo' AS X,ads.adname = 'realtorpromo' AS R)

17

Here, we specify the output columns
• The col_expr is an expression whose value

is a column name; it specifies the values to
retrieve FROM the matched rows. The
function applies aggregate_function to
these values

• The function evaluates this argument once
for every matched pattern in the partition
(that is, it outputs one row for each pattern
match)

nPath Required Arguments: Result

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Result allows you to define the output columns. The col_expr is an expression whose value is a column name; it specifies the values to retrieve FROM the matched rows. The function applies aggregate_function to these values. The function evaluates this argument once for every matched pattern in the partition (that is, it outputs one row for each pattern match).

18

c Lab 02 – Changing the Order of Required
Arguments doesn’t make a Difference

• You can change the order of arguments that appear after USING as desired
• For example, you may find it more logical to define Symbols right away
• All of the following queries will return the same answer-set

SELECT * FROM nPath (
ON bb_borre_z PARTITION BY
user_id ORDER BY ts
USING
Symbols (event = 'a' as X)
Pattern ('X.X')
Mode (NONOVERLAPPING)
Result (Accumulate (event
OF X) AS x_pattern)) AS
dt;

SELECT * FROM nPath (
ON bb_borre_z PARTITION BY
user_id ORDER BY ts
USING
Pattern ('X.X')
Mode (NONOVERLAPPING)
Symbols (event = 'a' as X)
Result (Accumulate (event
OF X) AS x_pattern)) AS
dt;

SELECT * FROM nPath (
ON bb_borre_z PARTITION BY
user_id ORDER BY ts
USING
Pattern ('X.X')
Symbols (event = 'a' as X)
Mode (NONOVERLAPPING)
Result (Accumulate (event
OF X) AS x_pattern)) AS
dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Symbols (event = 'a' as X)
Pattern ('X.X')
Mode (NONOVERLAPPING)
Result (Accumulate (event OF
X) AS x_pattern)) AS dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Pattern ('X.X')
Mode (NONOVERLAPPING)
Symbols (event = 'a' as X)
Result (Accumulate (event OF
X) AS x_pattern)) AS dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Pattern ('X.X')
Symbols (event = 'a' as X)
Mode (NONOVERLAPPING)
Result (Accumulate (event OF
X) AS x_pattern)) AS dt;

Presenter
Presentation Notes
Here, we are showing that the order of arguments after the USING keyword is irrelevant to the answer-set.

19

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Symbols

20

c
Lab 03 – Symbols Example

• Recall that the Symbols argument allows us to define the aliases that we wish to
use in the Pattern and Results arguments

• The next few pages will walk through some very straightforward examples that
should illustrate how Symbols work

• For all examples, assume four-row table appearing below
• For all examples, we will be searching for a product of apple followed by banana,

using whatever Symbols we may have decided to define
• In our dataset, the only pattern match will be rows 1 (apple) and 2 (banana)

SELECT *
FROM borre_food
ORDER BY event_id;

Presenter
Presentation Notes
This lab covers various examples of defining Symbols.

21

c
Lab 03 – Symbols Example

• Here, we are defining Symbols of a
for apple and b for banana

• Our defined Symbols are used in
the Pattern and Result arguments

SELECT products_accumulate, count (*)
FROM nPath
(ON borre_food
PARTITION BY user_name
ORDER BY event_id
USING
Mode (NONOVERLAPPING)
Pattern ('a.b')
Symbols(product = 'apple' as a,

product = 'banana' as b)
Result (
ACCUMULATE (product OF ANY (a,b)
DELIMITER '*')
AS products_accumulate)
) AS dt
GROUP BY products_accumulate;

Input

Output

Presenter
Presentation Notes
This lab covers various examples of defining Symbols.

22

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Mode

23

c
Lab 04 – Mode Example (1 of 3)

• Recall that the Mode argument can have a value of NONOVERLAPPING or
OVERLAPPING

• The next few pages will walk through how the Mode value that you specify will
impact the answer-set

• For the example, assume a simple input table with two columns and four rows

SHOW TABLE matchup;

SELECT *
FROM matchup
ORDER BY c2, c1;

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.

24

c
Lab 04 – Mode Example (2 of 3)

In NONOVERLAPPING match mode, nPath begins the next pattern search at the row that
follows the last row that was part of the previous PATTERN match. In this example, the next
pattern match starts at row 3

SELECT * FROM nPath
(ON matchup
PARTITION BY c2
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.A')
Symbols (c2 = 'A' as A)
Result
(Accumulate (c2 OF A) AS x_pattern))
AS dt;

After you have a complete Pattern match (TRUE),
assuming there are more rows in the input table:
If NONOVERLAPPING, start next Pattern match on
next row after last matched row

PATTERN(A.A) = Search for A followed by A

Input Output

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.

25

c
Lab 04 – Mode Example (3 of 3)

In OVERLAPPING match mode, nPath finds every occurrence of the pattern, regardless of
whether it might have been part of a previously found match. This means that, in
OVERLAPPING mode, one row can match multiple symbols in a given matched PATTERN

After you have a complete Pattern match (TRUE),
assuming there are more rows in the input table:
If OVERLAPPING, go back to the second matched row
of the previous matched Pattern. Repeat as needed until
no more matches. If/when have no more matches, start
next Pattern match on row after last matched row

PATTERN(A.A) = Search for A followed by A

SELECT * FROM nPath
(ON matchup
PARTITION BY c2
ORDER BY c1
USING
Mode (OVERLAPPING)
Pattern ('A.A')
Symbols (c2 = 'A' as A)
Result
(Accumulate (c2 OF A) AS x_pattern)
) AS dt;

Input Output

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.

26

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Pattern and Symbols

27Pattern Operators (1 of 2)
• Use with pattern symbols to customize pattern-matching rules

'.' : followed by (Use to separate a series of pattern symbols)
'|' : alternative (The equivalent of an OR)
'?' : occurs at most once (0-1)
'*' : occurs zero or more times (0-n)
'+' : occurs at least once (1-n)
'^' : pattern must begin with value specified. Also, value specified must be the first row
within the partition.
'$' : pattern must end with

• Customizing pattern matching rules:
(X){a}: exactly A number of occurrences of X pattern('A.B{3}')
(X){a,}: at least A number of occurrences of X pattern('A.B{1,}')
(X){a,b}: A to B occurrences of X pattern('A.B{1,3}')

Presenter
Presentation Notes
The following pages show various operators that you can use when defining your nPath patterns.

28Pattern Operators (2 of 2)
Operator Description Precedence

A Matches one row that meets the definition of A 1 (highest)

A. Matches one row that meets the definition of A 1

A? Matches 0 or 1 rows that satisfy the definition of A 1

A* Matches 0 or more rows that satisfy the definition of A (greedy
operator)

1

A+ Matches 1 of more rows that satisfy the definition of A (greedy
operator)

1

A.B Matches two rows, where the first row meets the definition of A and the
second row meets the definition of B

2

A|B Matches one row that meets the definition of either A or B 3

The nPath function uses greedy pattern matching. That is, it finds the longest available match when matching
patterns specified by nongreedy operators

29

c
Lab 06 – Walking the Rows on Pattern Given Mode

B
B
C
A
D

T
T
T

Input

B
B
C
A
D

T
T
T

T
Match 1 of 1

Match 1 of 2

T B
B
C
A
D

T
T
T

Match 2 of 2

With nonoverlapping, after
the first match, we start
the next pattern on the
fifth row

With overlapping,
after the first match,
we start the next
pattern on the
second row

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B+.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (OVERLAPPING)
Pattern ('B+.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Presenter
Presentation Notes
This lab dissects how NONOVERLAPPING and OVERLAPPING values for Mode are logically processed.

30

c
Lab 07 – Followed By (.)

Here, we are searching for B followed by C
followed by A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
A dot or period [.] signifies followed by.

31

c
Lab 08 – OR (|)

Here, we are searching for any of the following
• B, OR
• C, OR
• A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B|C|A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
A pipe or vertical bar [|] signifies OR.

32

c
Lab 09 – Followed By Together With OR

Here, we are searching for either of the following:
• B followed by C, OR
• A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.C|A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators.

33

c
Lab 10 – Parentheses (1 of 2)

• Here, we are searching for a B, followed by either a C or an A
• Note that absent parentheses, FOLLOWED BY [.] takes

precedence over OR [|]
• Be aware of orders of operation and how the presence or

absence of parentheses may impact your answer-sets

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2
PARTITION BY c2
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.(C|A)')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Input

Output

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators. Use parentheses when needed/desired to impose the desired order-of-precedence to your Pattern argument.

34

c
Lab 10 – Parentheses (2 of 2)

Input
SELECT * FROM nPath
(ON npathBetween
PARTITION BY c2
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.B|C')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Output

Input Output

No Parentheses

Parentheses
SELECT * FROM nPath
(ON npathBetween
PARTITION BY c2
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.(B|C)')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators. Use parentheses when needed/desired to impose the desired order-of-precedence to your Pattern argument.

35

c
Lab 11 – Exploring the ^ Predicate (1 of 3)

SELECT *
FROM jobs
ORDER BY emp_id, bgn_dt;

• Recall that the ^ predicate forces the Pattern to begin with whatever you specify.
Furthermore, it forces the value specified to be in the first row of the partition

• This lab will focus on the input data displayed below
• We will show an example of each of the following for our Pattern:

- Pattern ('sw.next_job')
- Pattern ('^sw.next_job')

Presenter
Presentation Notes
The caret symbol [^] forces the pattern to begin with whatever you specify. Furthermore, it forces the value specified to be in the first row of the partition.In this lab, we will look at examples of including and excluding the caret symbol FROM our Pattern argument.

36

c
Lab 11 – Without ^ Predicate (2 of 3)

SELECT emp_id, Matches, count(*)
FROM nPath@coprocessor
(ON jobs
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike '%soft%'
as sw, TRUE as next_job)
Result (
First (emp_id of sw) as emp_id,
Accumulate(job_desc of
any(sw,next_job)) as Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

• Here, we are not specifying the ^ predicate in our
Pattern argument

• Given this, we’re searching for any job-path pattern that
goes FROM ‘%soft%’ to anything else, whatever it is

• Both emp_id values have met our conditions

Output

Input

Presenter
Presentation Notes
Here, we have excluded the caret symbol. Note that both employees meet the condition of our Pattern.

37

c

SELECT emp_id, Matches, count(*)
FROM nPath@coprocessor
(ON jobs
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('^sw.next_job')
Symbols (job_desc ilike '%soft%'
as sw, TRUE as next_job)
Result (
First (emp_id of sw) as emp_id,
Accumulate(job_desc of
any(sw,next_job)) as Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

Lab 11 – With ^ Predicate (3 of 3)
• Here, we are specifying the ^ predicate in our Pattern argument
• Given this, we are searching for any job-path pattern that begins

the partition with '%soft%', and then goes to anything else,
whatever it may be

• Only emp_id 1 has the first row of its partition beginning with
'%soft%', thus the job path of emp_id 1 is returned, but not the
job path of emp_id 2 (which begins with 'Janitor')

Output

Input

Presenter
Presentation Notes
Here, we have included the caret symbol. Note that only emp_id 1 is returned. Emp_id 2 did not meet the conditions of the Pattern because its partition did not begin with ‘%soft%’.

38Symbol Expressions
Predicates
True symbol can match any row

(often for exploratory queries)
% _ % (any # of char) _ (positional) :

char comparisons
like not like case sensitive text comparison
ilike not ilike case insensitive text comparisons
LAG/LEAD to compare current row to preceding row(s)
=, <, >, <=, >=, <> numeric comparisons

Query: For users whose first title in the partition did
not start out like ‘%Soft%', what was their next title?
Also, count the number of times that that path occurred

SELECT emp_id, Matches, count (*)
FROM nPath
(ON jobs
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('^sw.next_job')
Symbols (job_desc NOT LIKE '%Soft%' AS sw,

TRUE AS next_job)
Result (First (emp_id of sw) AS emp_id,
Accumulate(job_desc of any(sw,next_job))
AS Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

Output

Input

Presenter
Presentation Notes
The following page displays various symbol expressions.

39

c Lab 12 – like versus ilike on ML Engine
(Optional)

SELECT emp_id, Matches, count (*) FROM nPath@coprocessor
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt USING Mode
(NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc like 'soft%' as sw, TRUE as next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

like

ilike

Input

SELECT emp_id, Matches, count (*) FROM nPath@coprocessor
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt USING Mode
(NONOVERLAPPING)
Pattern ('^sw.next_job')
Symbols (job_desc ilike 'soft%' as sw, TRUE as next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

Output for 'like'

Output for 'ilike'

• On the ML Engine, the like symbol is case-sensitive,
whereas the ilike symbol is case-insensitive

• Note ‘Software Engineer’ begins with a capital 'S'
• like 'soft%' will return nothing, whereas ilike 'soft%'

will return rows

Presenter
Presentation Notes
Note that on the ML Engine, like is case-sensitive, whereas ilike is not.

40

c
Lab 13 – Using the + Predicate

• Recall the plus symbol (+) signifies occurs at least once (1-n)

• In the examples below, for each emp_id after a match on sw, the
Pattern ('sw.next_job') will return only the very next job, whereas
the Pattern ('sw.next_job+') will return all subsequent jobs

Without +
SELECT emp_id, Matches, count (*) FROM
nPath@coprocessor (ON jobs PARTITION BY emp_id
ORDER BY bgn_dt USING Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike 'soft%' as sw, TRUE as
next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

With +
SELECT emp_id, Matches, count (*) FROM
nPath@coprocessor (ON jobs PARTITION BY emp_id
ORDER BY bgn_dt USING Mode (NONOVERLAPPING)
Pattern ('sw.next_job+')
Symbols (job_desc ilike 'soft%' as sw, TRUE as
next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

Input

Output

Presenter
Presentation Notes
The plus symbol [+] can be used to find values in a pattern that occur once or many times successively.

41

• The True predicate is useful to discover which patterns exist in your data

• Normally, with other predicate values, you are seeking out specific patterns
that you explicitly define and know that you are interested in

• True is beneficial when you don’t know what you’re looking for and merely
want to discover which patterns may (or may not) exist in your data

True Predicate

Presenter
Presentation Notes
True is useful to use in exploratory queries, especially in cases in which you wish to discover what patterns exist in the data.

42

c
Lab 14 – True Predicate (1 of 2)

SELECT * FROM bank_web_clicks
WHERE customer_id IN (11603)
ORDER BY customer_id, datestamp;

• Here, we are familiarizing ourselves with
the bank_web_clicks table

• On the following page, we will use the
TRUE predicate to discover which web
paths are the most-commonly travelled

Presenter
Presentation Notes
Here, we are familiarizing ourselves with the underlying input table against which we will run an nPath query that leverages the True predicate.

43

c
Lab 14 – True Predicate (2 of 2)

SELECT path, count(*) AS occurs
FROM nPath
(ON bank_web_clicks
PARTITION BY customer_id, session_id
ORDER BY datestamp
USING
Mode (NONOVERLAPPING)
Pattern ('PAGE+')
Symbols (TRUE AS PAGE)
Result (
Accumulate(page OF ANY (PAGE)) as path)
) AS dt
GROUP BY path
HAVING occurs >= 500
ORDER BY occurs DESC;

Input

Output

'true as <alias> means 'the next row'

Presenter
Presentation Notes
Here, we have used the True predicate to display patterns that exist within our input table.

44

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Results

45Result (1 of 2)
• RESULT is the output for each matched PATTERN in the sequence of rows

• nPath generates a row of output that can contain SQL and/or ML aggregates computed
over the rows within the matched PATTERN

SYNTAX

SELECT emp_id, Matches, count (*)
FROM nPath@coprocessor
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike '%soft%' AS sw, TRUE AS next_job)
Result (First (emp_id OF sw) AS emp_id,

Accumulate(job_desc OF ANY(sw,next_job)) AS Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])

• Here, we are using First and
Accumulate in our Result argument

• First returns the col_expr value of the
first matched row

• Accumulate returns, for each
matched row, the concatenated
values in col_expr, separated by a
delimiter. The default delimiter is a
comma followed by a blank space (,)

Presenter
Presentation Notes
The Result argument allows you to define the output columns. Following is its syntax:Result ({ aggregate_function (expression OF [ANY] symbol [,...]) AS alias_1 }[,...])The col_expr is an expression whose value is a column name; it specifies the values to retrieve FROM the matched rows. The function applies aggregate_function to these values. The function evaluates this argument once for every matched pattern in the partition (that is, it outputs one row for each pattern match).

46Result (2 of 2)
Following are some common Aggregates that you can specify in the Result argument:
• COUNT(* of SYMBOL)
• FIRST(<expr> of SYMBOL)
• LAST(<expr> of SYMBOL)
• SUM(<expr> of SYMBOL)
• AVG(<expr> of SYMBOL)
• MAX(<expr> of SYMBOL)
• MIN(<expr> of SYMBOL)
• ACCUMULATE(<expression> of SYMBOL)
• ANY: e.g., SUM(<expression> of ANY(A,B,C))
• FIRST_NOTNULL (column of symbol): Returns first non-null row that maps to symbol
• LAST_NOTNULL (column of symbol): Returns last non-null row that maps to symbol
• MAX_CHOOSE (qty column, column name): Returns descriptive column of highest qty col
• MIN_CHOOSE (qty column, column name): Returns descriptive column of lowest qty col
• DUPCOUNT: Counts # of times value has appeared preceding this row
• DUPCOUNTCUM: # of Duplicate values have appeared contiguously preceding

Presenter
Presentation Notes
The following page displays various aggregate functions that you can specify in your Result argument.

47

c
Lab 15 – Result Arguments (1 of 4)

SELECT * FROM web_purchases
ORDER BY user_id, date_time;

• Over the next many pages, we will walk through various Result arguments using the
web_purchases table, shown below

• Note:
- There are three user_id values
- user_id 1 had two sessions. The other two user_id values had only one session_id each
- user_id 1 bought a guitar, user_id 2 bought strings as well as a guitar, and user_id 3

bought a capo

Presenter
Presentation Notes
This lab will attempt to walk through a slow build-up of using different aggregate functions in our Result argument.Here, we are viewing the contents of the input table.

48

c
Lab 15 – Result Arguments (2 of 4)

SELECT * FROM nPath
(ON web_purchases
PARTITION BY user_id, session_id
ORDER BY date_time USING
Mode (NONOVERLAPPING) Pattern ('V+.C+')
Symbols (page = 'view_prod' as V, page = 'checkout' as C)
Result (Accumulate(product of any(V, C)) as Matches)
) AS dt;

Output

• In the example, we are searching
within each partition for a Pattern of
one or more instances of
view_prod, followed by one or
more instances of checkout

• Our Accumulate argument returns
any instances of product that meet
the conditions of our Pattern within
each partitionInput

Presenter
Presentation Notes
Here, we have opted to return the product values of each qualifying matched pattern.

49

c
Lab 15 – Result Arguments (3 of 4)

SELECT * FROM nPath (ON web_purchases
PARTITION BY user_id, session_id ORDER BY date_time
USING Mode (NONOVERLAPPING) Pattern ('V+.C+')
Symbols (page = 'view_prod' as V, page='checkout' as C)
Result (
First (user_id of V) as user_id,
First (session_id of V) as session_id,
Accumulate (product of any(V, C)) as Matches)
) AS dt ORDER BY user_id, session_id;

Input Output

• Our First arguments return the very first
instance of user_id that viewed the specified
product within the partition

• Our Accumulate argument returns any
instances of product that meet the conditions
of our Pattern within the partition

Presenter
Presentation Notes
Here, we have added onto our Result argument the concept of returning the first instance of user_id and session_id that are affiliated with each matched pattern.

50

c
Lab 15 – Result Arguments (4 of 4)

SELECT * FROM nPath
(ON web_purchases
PARTITION BY user_id, session_id
ORDER BY date_time
USING
Mode (NONOVERLAPPING) Pattern ('V+.C+')
Symbols
(page = 'view_prod' AS V, page='checkout' AS C)
Result (
First (user_id of V) AS user_id,
First (session_id of V) AS session_id,
Accumulate (product of any(V, C)) AS Matches,
Count (distinct product of any(C)) AS cd_Matches,
Sum (cast(prod_price as integer) of any (C)) AS

total_price)
) AS dt ORDER BY user_id, session_id;

Input

• Our Sum argument sums the prod_price of
qualifying checkout products

• Our Count argument counts the distinct products
that were present in a checkout

• Our First arguments return the very first instance
of user_id that viewed the specified product

• Our Accumulate argument returns any instances
of product that meet the conditions of our Pattern

Output

Presenter
Presentation Notes
And finally, we have added onto our Result argument the concept of summing prod_price values that are affiliated with each matched pattern.

51

• Background Information
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Teradata AppCenter

• Using R Studio with Teradata Vantage
• Teradata Vantage architecture
• Install and load dependent packages
• Connect to Teradata Vantage from R Studio
• What is a tibble?

• Transformation Functions
• Scale and scale map, Text parser

• Association Analysis
• Collaborative filtering

• Path and Pattern Analysis
• nPath

• Statistical Functions
• Decision forests, K-means

Current Topic

R Studio and tdplyr Slide 6-84

• The nPath function scans a set of rows, looking for patterns that you specify
• For each set of input rows that matches the pattern, nPath produces a single output

row
• The function provides a flexible pattern-matching capability that lets you specify

complex patterns in the input data and define the values that are output for each
matched input set

• nPath is useful when your goal is to identify the paths that lead to an outcome
• The output from the nPath function can be input into other Machine Learning Engine

functions or into a visualization tool such as Teradata AppCenter

nPath Description (1 of 2)

The td_nPath function scans a set of rows, looking for patterns that you specify. For each set of input
rows that matches the pattern, td_nPath produces a single output row. The function provides a flexible
pattern-matching capability that lets you specify complex patterns in the input data and define the
values that are output for each matched input set.

R Studio and tdplyr Slide 6-85

nPath Description (2 of 2)
What is nPath?
- Function designed for time-series sequence analysis of data
- Links an outcome with a preceding path
Benefits
- Pattern detection can be completed in a single pass over

the data
- Allows you to understand relationships across rows of data
- Transcends SQL’s ordered-data limitations that require

either complex, multi-pass SQL or custom UDFs for each
analysis

Example use cases:
- Web analytics (clickstream, Golden Path)
- Complex Marketing revenue paths
- Granular product & process analysis (A/B)
- Granular pattern detection (fraud, QA,..)

•Time-series analysis,
uncovering patterns in
sequential steps

nPath Website Path Analysis

homehome

exitexit

profileprofile

groupsgroups

jobsjobs

compa
ny

compa
ny

20
%

7%

11%

13%

32%

Complete Application:

• nPath identifies path patterns and exit points
• The Sessionize function is used prepare the

input data for nPath analysis.
• In the example above, we are viewing which

paths users take once they’ve landed on our
Home page. Note that 32% of Home page
visits end up in the users’ exiting the website
altogether.

R Studio and tdplyr Slide 6-86

Some examples of how nPath can be used follow:

• A retailer wishes to analyze Web site click data, to identify paths that lead to sales
over a specified amount

• A manufacturer analyzes sensor data from industrial processes, to identify paths to
poor product quality

• A healthcare provider analyzes healthcare records of individual patients, to identify
paths that indicate that patients are at risk of developing conditions such as heart
disease or diabetes

• A financial institution reviews financial data for individuals, to identify paths that
provide information about credit or fraud risks

nPath Use Cases

nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can
use nPath to analyze:
• Web site click data, to identify paths that lead to sales over a specified amount
• Sensor data from industrial processes, to identify paths to poor product quality
• Healthcare records of individual patients, to identify paths that indicate that patients are at
• risk of developing conditions such as heart disease or diabetes
• Financial data for individuals, to identify paths that provide information about credit or fraud
• risks

The output from the nPath function can be input to other ML Engine functions or to a visualization tool
such as Teradata AppCenter.

R Studio and tdplyr Slide 6-87

nPath Workflow

• Input Tibble: Data is read from specified input tables

• nPath: The following arguments are specified when the function is invoked

─ Mode (overlapping or nonoverlapping)
─ Pattern to match
─ Symbols to use
─ [Optional] Filters to apply
─ Results to output

• Output object: Data is written to an output object

Input Tibble td_nPath Output Object

nPath requires at least one input table, view, or query. Rows that meet the condition of your logic are
then displayed in the output.

R Studio and tdplyr Slide 6-88

c
Lab 10 – Bb_borre_z Remote Tibble

bb_borre_z <-tbl(con,
dplyr::sql (“SELECT * FROM bb_borre_z”))

Create a remote tibble named
bb_borre_z

1. Use the tbl function
2. Reference our con Vantage

context variable
3. Use the dplyr::sql function

to query the Vantage table Input Tibble

R Studio and tdplyr Slide 6-89

• The td_nPath_sqle function scans
a set of rows, looking for patterns
that you specify.

• For each set of input rows that
matches the pattern, nPath
produces a single output row.

• The function provides a flexible
pattern-matching capability that
lets you specify complex patterns
in the input data and define the
values that are output for each
matched input set.

nPath – Syntax

td_npath_sqle (
data1 = NULL,
mode = NULL,
pattern = NULL,
symbols = NULL,
result = NULL,
filter = NULL,
data2 = NULL,
data3 = NULL,
data1.partition.column = NULL,
data2.partition.column = NULL,
data3.partition.column = NULL,
data1.order.column = NULL,
data2.order.column = NULL,
data3.order.column = NULL)

Following are important points to realize about the syntax for nPath.

The required arguments for nPath follow:
• Mode: Specify the pattern-matching mode. Possible values include OVERLAPIPNG and

NONOVERLAPPING..
• Pattern: Specify the pattern for which the function searches.
• Symbols: Specify the symbols that appear in the values of the Pattern and Result arguments..
• Result: Defines the output columns.

The optional arguments for nPath follow:
• Filter [Optional]: Specify filters to impose on the matched rows. The function combines the filter

expressions using the AND operator.

R Studio and tdplyr Slide 6-90

Here, we specify the pattern-matching mode. There are two flavors of
this:

• OVERLAPPING: Find every occurrence of pattern in partition,
regardless of whether it is part of a previously found match. One row
can match multiple symbols in a given matched pattern

• NONOVERLAPPING: Start next pattern search at row that follows last
pattern match

nPath Required Arguments: Mode

Mode allows you to specify the pattern-matching mode. The two options follow:

• OVERLAPPING: Find every occurrence of pattern in partition, regardless of whether it is part of a
previously found match. One row can match multiple symbols in a given matched pattern.

• NONOVERLAPPING: Start next pattern search at row that follows last pattern match.

R Studio and tdplyr Slide 6-91

Here, we specify the Pattern for which the function searches.

• We compose Pattern with symbols (which we define in the Symbols
argument), operators, and parentheses. Here, we are searching for
Symbol X followed by X (which means event ‘a’ followed by event ‘a’)

• When patterns have multiple operators, the function applies them in
order of precedence, and applies operators of equal precedence from
left to right. To force the function to evaluate a subpattern first, enclose it
in parentheses

nPath Required Arguments: Pattern

Pattern allows you to specify the pattern for which the function searches. You compose pattern with the
symbols (which you define in the Symbols argument), operators, and parentheses.

When patterns have multiple operators, the function applies them in order of precedence, and applies
operators of equal precedence from left to right. To force the function to evaluate a subpattern first,
enclose it in parentheses.

R Studio and tdplyr Slide 6-92

Pattern Operators (1 of 2)
• Use with pattern symbols to customize pattern-matching rules

'.' : followed by (Use to separate a series of pattern symbols)
'|' : alternative (The equivalent of an OR)
'?' : occurs at most once (0-1)
'*' : occurs zero or more times (0-n)
'+' : occurs at least once (1-n)
'^' : pattern must begin with value specified. Also, value specified must be the first row
within the partition.
'$' : pattern must end with

• Customizing pattern matching rules:
(X){a}: exactly A number of occurrences of X pattern('A.B{3}')
(X){a,}: at least A number of occurrences of X pattern('A.B{1,}')
(X){a,b}: A to B occurrences of X pattern('A.B{1,3}')

The following pages show various operators that you can use when defining your nPath patterns.

R Studio and tdplyr Slide 6-93

Pattern Operators (2 of 2)
Operator Description Precedence

A Matches one row that meets the definition of A 1 (highest)

A. Matches one row that meets the definition of A 1

A? Matches 0 or 1 rows that satisfy the definition of A 1

A* Matches 0 or more rows that satisfy the definition of A (greedy
operator)

1

A+ Matches 1 of more rows that satisfy the definition of A (greedy
operator)

1

A.B Matches two rows, where the first row meets the definition of A and the
second row meets the definition of B

2

A|B Matches one row that meets the definition of either A or B 3

The nPath function uses greedy pattern matching. That is, it finds the longest available match when matching
patterns specified by nongreedy operators

R Studio and tdplyr Slide 6-94

Here, we specify the Symbols that appear in the values of the Pattern and Result
parameters
• The col_expr is an expression whose value is a column name, symbol is any valid

identifier, and symbol_predicate is a SQL predicate (often a column name)
• You can think of Symbols as the “aliases” that you will be defining for use in the

Pattern and Result portions of the query
• The symbol is case-insensitive; however, a symbol of one or two uppercase

letters is easy to identify in patterns. If col_expr represents a column that appears
in multiple input tables, then you must qualify the ambiguous column name with its
table name.

nPath Required Argument – Symbols

pattern = “X.X”,
symbols = c("event = 'a' as X"),

Symbols allows you to define the symbols that appear in the values of the Pattern and Result
arguments. The col_expr is an expression whose value is a column name, symbol is any valid identifier,
and symbol_predicate is a predicate (often a column name).

For example, this Symbols argument is for analyzing website visits:
Symbols (
pagetype = 'homepage' AS H,
pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,
pagetype = 'checkout' AS CO
)

The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to identify in
patterns.

If col_expr represents a column that appears in multiple input tables, you must qualify the ambiguous
column name with its table name. For example:

Symbols (
weblog.pagetype = 'homepage' AS H,
weblog.pagetype = 'thankyou' AS T,
ads.adname = 'xmaspromo' AS X,
ads.adname = 'realtorpromo' AS R
)

R Studio and tdplyr Slide 6-95

Here, we specify the output columns
• The col_expr is an expression whose value is a column name; it

specifies the values to retrieve from the matched rows. The function
applies aggregate_function to these values

• The function evaluates this argument once for every matched pattern in
the partition (that is, it outputs one row for each pattern match)

nPath Required Arguments: Result

pattern = “X.X”,
symbols = c("event = 'a' as X"),
result = c("ACCUMULATE (event of X) AS x_pattern")

Result allows you to define the output columns.

The col_expr is an expression whose value is a column name; it specifies the values to retrieve from
the matched rows. The function applies aggregate_function to these values. The function evaluates this
argument once for every matched pattern in the partition (that is, it outputs one row for each pattern
match).

R Studio and tdplyr Slide 6-96

c
Lab 11 – Simple nPath Example

npath_out <-td_npath_sqle(
data1 = bb_borre_z,
data1.partition.column = c("user_id"),
data1.order.column = "ts",
mode = "nonoverlapping",
pattern = "X.X",
symbols = c("event = 'a' as X"),
result = c("ACCUMULATE (event of X) AS x_pattern"))

Create an object named bb_borre_z

1. Use the tbl_npath_sqle function
2. Reference our bb_borre_z remote tibble
3. Select user_id as the partition column
4. Order by the ts column
5. Input the remaining required arguments

• On the following pages, we will discuss the required arguments for nPath
• For each required argument, we will discuss the implications of our specifications using the simple

nPath query to the right as the foundation

R Studio and tdplyr Slide 6-97

c
Lab 12 – nPath Between Remote Tibble

npath_between <-tbl(con,
dplyr::sql (“SELECT * FROM bb_npathBetween2”))

Create a remote tibble named
npath_between

1. Use the tbl function
2. Reference our con Vantage

context variable
3. Use the dplyr::sql function

to query the Vantage table

R Studio and tdplyr Slide 6-98

c
Lab 13a – nPath ‘Or’ Pattern

npath_or_out <-td_npath_sqle(
data1 = npath_between,
data1.partition.column = c(“c1”),
data1.order-column = “c1”,
mode = "nonoverlapping”,
pattern = "B|C|A",
symbols = c("c3 = 'A' as A", "c3 = 'B' as B",

"c3 = 'C' as C)"
results = c ("ACCUMULATE(c3 of ANY(B,C,A))

AS matches"))

Following our regrex and delimitating our pattern with | symbols, we are telling our nPath code that we
want B or C or A as the output.

R Studio and tdplyr Slide 6-99

c
Lab 13b – Output

npath_or_out

View the output by typing the following command into the console:

Input Output

Again we can use dplyr to arrange the token by the most-frequently used tokens.

R Studio and tdplyr Slide 6-100

To more easily create visualization in Teradata AppCenter we can copy
our results from R Studio into a Vantage table

Move Results from R Studio to a Vantage Table

copy_to(con,npath_or_out$result,name = "npath_or_out")

Results from R Studio copied
to Vantage Data Store

R Studio and tdplyr Slide 6-101

Teradata AppCenter Example
• Teradata AppCenter is an Web-based application that allows us to build visualization

applications to be able to view data in various types of chart displays
• It is especially useful for viewing the results of nPath queries
• In the example below, we are viewing the results of an nPath query in a Sankey chart to

discover the most common paths that lead towards Bill Manager Enrollment

R Studio and tdplyr Slide 6-102

Introduction to nPath
The nPath function scans a set of rows, looking for patterns that you specify. For each set of input rows
that matches the pattern, nPath produces a single output row. The function provides a flexible pattern-
matching capability that lets you specify complex patterns in the input data and define the values that are
output for each matched input set.

nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use
nPath to analyze:

• Web site click data, to identify paths that lead to sales over a specified amount
• Sensor data from industrial processes, to identify paths to poor product quality
• Healthcare records of individual patients, to identify paths that indicate that patients are at risk of

developing conditions such as heart disease or diabetes
• Financial data for individuals, to identify paths that provide information about credit or fraud risks

The output from the nPath function can be input to other ML Engine functions or to a visualization tool

such as Teradata® AppCenter.

nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 266

Sankey Diagram of ML Engine nPath Output

An nPath call specifies:

• Mode (overlapping or nonoverlapping)
• Pattern to match
• Symbols to use
• [Optional] Filters to apply
• Results to output

nPath Syntax
Version 1.1

Note:
This function requires "@coprocessor".

SELECT * FROM nPath@coprocessor (
 ON { table | view | (query) } PARTITION BY partition_column ORDER BY order_column [ASC
| DESC][...]
 [ON { table | view | (query) }
 [PARTITION BY partition_column | DIMENSION] ORDER BY order_column [ASC | DESC]
][...]
 USING
 Mode ({ OVERLAPPING | NONOVERLAPPING })
 Pattern ('pattern')
 Symbols ({ col_expr = symbol_predicate AS symbol } [,...])
 [Filter (filter_expression [,...])]
 Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])
) AS alias_2;

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 267

The nPath function is not tied to any schema and must not be qualified with a schema name.

Related Information:

Comments in Queries

nPath Syntax Elements
Mode

Specify the pattern-matching mode:

Option Description

OVERLAPPING Find every occurrence of pattern in partition, regardless of whether it is part
of a previously found match. One row can match multiple symbols in a given
matched pattern.

NONOVERLAPPING Start next pattern search at row that follows last pattern match.

Pattern
Specify the pattern for which the function searches. You compose pattern with the symbols (which
you define in the Symbols syntax element), operators, and parentheses.

When patterns have multiple operators, the function applies them in order of precedence, and
applies operators of equal precedence from left to right. To force the function to evaluate a
subpattern first, enclose it in parentheses. For more information, see nPath Patterns.

Symbols
Specify the symbols that appear in the values of the Pattern and Result syntax elements. The
col_expr is an expression whose value is a column name, symbol is any valid identifier, and
symbol_predicate is a SQL predicate (often a column name).

For example, this Symbols syntax element is for analyzing website visits:

Symbols (
 pagetype = 'homepage' AS H,
 pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,
 pagetype = 'checkout' AS CO
)

The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to
identify in patterns.

If col_expr represents a column that appears in multiple input tables, you must qualify the
ambiguous column name with its table name. For example:

Symbols (
 weblog.pagetype = 'homepage' AS H,
 weblog.pagetype = 'thankyou' AS T,
 ads.adname = 'xmaspromo' AS X,

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 268

 ads.adname = 'realtorpromo' AS R
)

For more information about symbols that appear in the Pattern syntax element value, see nPath
Symbols. For more information about symbols that appear in the Result syntax element value,
see nPath Results.

Filter
[Optional] Specify filters to impose on the matched rows. The function combines the filter
expressions using the AND operator.

This is the filter_expression syntax:

symbol_expression comparison_operator symbol_expression

The two symbol expressions must be type-compatible. This is the symbol_expression syntax:

{ FIRST | LAST }(column_with_expression OF [ANY](symbol[,...]))

The column_with_expression cannot contain the operator AND or OR, and all its columns must
come from the same input. If the function has multiple inputs, column_with_expression and
symbol must come from the same input.

The comparison_operator is either <, >, <=, >=, =, or !=.

Whether this syntax element improves or degrades nPath performance depends on several
factors. For details, see nPath Filters.

Result
Specify the output columns. The col_expr is an expression whose value is a column name; it
specifies the values to retrieve from the matched rows. The function applies aggregate_function
to these values. For details, see nPath Results.

The function evaluates this syntax element once for every matched pattern in the partition (that
is, it outputs one row for each pattern match).

nPath Input
The function requires at least one partitioned input table, and can have additional input tables that are
either partitioned or DIMENSION tables.

Note:
If the input to nPath is nondeterministic, the results are nondeterministic. For more information, see
Nondeterministic Results and UniqueID Syntax Element.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 269

Input Table Schema

Column Data Type Description

partition_column INTEGER or VARCHAR Column by which every partitioned input table is
partitioned.

order_column INTEGER or VARCHAR Column by which every input table is ordered.

input_column INTEGER or VARCHAR Data to search for patterns.

nPath Output
Output Table Schema

Column Data Type Description

partition_column Same as in input table Column by which partitioned input tables are
partitioned.

order_column Same as in input table Column by which input tables are ordered.

result_column Same as result of aggregate_
function

Determined by Result syntax element. For
details, see nPath Results.

nPath Symbols
A symbol identifies a row in the Pattern and Result syntax elements. A symbol can be any valid identifier
(that is, a sequence of characters and digits that begins with a character) but is typically one or two
uppercase letters. Symbols are case-insensitive; that is, 'SU' is identical to 'su', and the system reports an
error if you use both.

For example, suppose that you have this input table:

record city temp rh cloudcover windspeed winddirection rained_next_day

1 Tuscson 81 30 0.0 5 NW 1

2 Tempe 76 40 0.2 15 NE 0

3 Tuscson 70 70 0.4 10 N 0

4 Tusayan 75 50 0.4 5 NW 0

This table has examples of symbol definitions and the rows of the table that they match in
NONOVERLAPPING mode:

Symbol Definition Rows Matched

temp >= 80 AS H 1

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 270

Symbol Definition Rows Matched

winddirection = 'NW' AS NW 1, 4

winddirection = 'NW' OR windspeed >
12 AS W

1, 2, 4

cloudcover != 0.0 AND rh > 35 AS C 2, 3, 4
(An alternative to != is <>.)

'true' AS A 1, 2, 3, 4
This symbol definition matches all rows, for any input table.

city like 'tu%' AS TU None
The like operator is case-sensitive. The % operator matches
any number of characters.

city not like 'tu%' AS TU None

city ilike 'tu%' AS TU 1, 3, 4
The ilike operator is case-insensitive.

city not ilike 'tu%' AS N 2

city ilike 'tu%n' as T 1, 3, 4
The % operator matches any number of characters.

city ilike 'tu___n' as T 1, 3
The underscore (_) operator matches any single character.
The pattern 'tu___n' has three underscores, so it matches
'Tucson' but not 'Tusayan'.

Rows with NULL values do not match any symbol. That is, the function ignores rows with missing values.

LAG and LEAD Expressions in Symbol Predicates
You can create symbol predicates that compare a row to a previous or subsequent row, using a LAG or
LEAD operator.

LAG Expression Syntax

{ current_expr operator LAG (previous_expr, lag_rows [, default]) |
 LAG (previous_expr, lag_rows [, default]) operator current_expr }

current_expr
Name of a column from the current row, or an expression operating on a column from the current
row.

operator
Either >, >=, <, <=, =, or !=.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 271

previous_expr
Name of a column from a previous row, or an expression operating on a column from a previous
row.

lag_rows
Number of rows to count backward from the current row to reach the previous row. For
example, if lag_rows is 1, the previous row is the immediately preceding row.

default
Value to use for previous_expr when there is no previous row (that is, when the current row is
the first row or there is no row that is lag_rows before the current row).

LAG and LEAD Expression Rules

• A symbol definition can have multiple LAG and LEAD expressions.
• A symbol definition that has a LAG or LEAD expression cannot have an OR operator.
• If a symbol definition has a LAG or LEAD expression and the input is not a table, you must create

an alias of the input query, as in LAG and LEAD Expressions Example: Input Query with Alias.

LAG and LEAD Expressions Example: Input Query with Alias

Input

bank_web_clicks
customer_id session_id page datestamp

529 0 ACCOUNT SUMMARY 2004-03-17 16:35:00

529 0 FAQ 2004-03-17 16:38:00

529 0 ACCOUNT HISTORY 2004-03-17 16:42:00

529 0 FUNDS TRANSFER 2004-03-17 16:45:00

529 0 ONLINE STATEMENT ENROLLMENT 2004-03-17 16:49:00

529 0 PROFILE UPDATE 2004-03-17 16:50:00

529 0 ACCOUNT SUMMARY 2004-03-17 16:51:00

529 0 CUSTOMER SUPPORT 2004-03-17 16:53:00

529 0 VIEW DEPOSIT DETAILS 2004-03-17 16:57:00

529 1 ACCOUNT SUMMARY 2004-03-18 01:16:00

529 1 ACCOUNT SUMMARY 2004-03-18 01:18:00

529 1 FAQ 2004-03-18 01:20:00

...

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 272

SQL Call

SELECT * FROM nPath@coprocessor (
 ON (SELECT customer_id, session_id, datestamp, page FROM bank_web_clicks) AS
alias1
 PARTITION BY customer_id, session_id
 ORDER BY datestamp
 USING
 Mode (NONOVERLAPPING)
 Pattern ('(DUP|A)*')
 Symbols (
 'true' AS A,
 page = LAG (page,1) AS DUP
)
 Result (
 FIRST (customer_id OF any (A)) AS customer_id,
 FIRST (session_id OF A) AS session_id,
 FIRST (datestamp OF A) AS first_date,
 LAST (datestamp OF ANY(A,DUP)) AS last_date,
 ACCUMULATE (page OF A) AS page_path,
 ACCUMULATE (page of DUP) AS dup_path)
) AS dt GROUP BY 1;

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 273

Output

customer_id session_id first_date last_date page_path dup_path

529 0 2004-03-17 16:35:00 2004-03-17 16:57:00 [ACCOUNT SUMMARY, FAQ,
ACCOUNT HISTORY, FUNDS
TRANSFER, ONLINE STATEMENT
ENROLLMENT, PROFILE UPDATE,
ACCOUNT SUMMARY, CUSTOMER
SUPPORT, VIEW DEPOSIT DETAILS]

[]

529 1 2004-03-18 01:16:00 2004-03-18 01:28:00 [ACCOUNT SUMMARY, FAQ,
ACCOUNT SUMMARY, FUNDS
TRANSFER, ACCOUNT HISTORY,
VIEW DEPOSIT DETAILS, ACCOUNT
SUMMARY, ACCOUNT HISTORY]

[ACCOUNT
SUMMARY]

529 2 2004-03-18 09:22:00 2004-03-18 09:36:00 [ACCOUNT SUMMARY, ACCOUNT
HISTORY, FUNDS TRANSFER,
ACCOUNT SUMMARY, FAQ]

[ACCOUNT
SUMMARY,
ACCOUNT
SUMMARY, FAQ]

529 3 2004-03-18 22:41:00 2004-03-18 22:55:00 [ACCOUNT SUMMARY, ACCOUNT
HISTORY, ACCOUNT SUMMARY,
ACCOUNT HISTORY, FAQ, ACCOUNT
SUMMARY]

[ACCOUNT
SUMMARY]

529 4 2004-03-19 08:33:00 2004-03-19 08:41:00 [ACCOUNT SUMMARY, FAQ, VIEW
DEPOSIT DETAILS, FAQ]

[]

529 5 2004-03-19 10:06:00 2004-03-19 10:14:00 [ACCOUNT SUMMARY, FUNDS
TRANSFER, VIEW DEPOSIT DETAILS,
ACCOUNT HISTORY]

[VIEW DEPOSIT
DETAILS]

...

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function Reference, Release 8.10 274

LAG and LEAD Expressions Example: First and Most Expensive
Purchases

Whenever a user visits the home page and then visits checkout pages and buys increasingly expensive
products, the nPath query returns the first purchase and the most expensive purchase.

Input

The input table is a collection of clickstream data for different products with price information. Columns
userid and sessionid identify the users.

aggregate_clicks
userid sessionid productname pagetype clicktime referrer productprice

1039 1 sneakers home 2009-07-29 20:
17:59

Company1 100

1039 2 books home 2009-04-21 13:
17:59

Company2 300

1039 3 television home 2009-05-23 13:
17:59

Company3 500

1039 4 envelopes home 2009-07-16 11:
17:59

Company4 10

1039 4 envelopes home1 2009-07-16 11:
18:16

Company4 10

1039 4 envelopes page1 2009-07-16 11:
18:18

Company4 10

1039 5 bookcases home 2009-08-19 22:
17:59

Company5 150

1039 5 bookcases home1 2009-08-19 22:
18:02

Company5 150

1039 5 bookcases page1 2009-08-19 22:
18:05

Company5 150

1039 5 bookcases page2 2009-08-22 04:
20:05

Company5 150

1039 5 bookcases checkout 2009-08-24 14:
30:05

Company5 150

1039 5 bookcases page2 2009-08-27 23:
03:05

Company5 150

1040 1 tables home 2009-07-29 20:
17:59

Company5 250

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 275

userid sessionid productname pagetype clicktime referrer productprice

1040 2 Appliances home 2009-04-21 13:
17:59

Company6 1500

1040 3 laptops home 2009-05-23 13:
17:59

Company7 800

1040 4 chairs home 2009-07-16 11:
17:59

Company4 400

1040 4 chairs home1 2009-07-16 11:
18:16

Company4 400

1040 4 chairs page1 2009-07-16 11:
18:18

Company4 400

1040 5 cellphones home 2009-08-19 22:
17:59

Company8 600

1040 5 cellphones home1 2009-08-19 22:
18:02

Company8 600

1040 5 cellphones page1 2009-08-19 22:
18:05

Company8 600

1040 5 cellphones page2 2009-08-22 04:
20:05

Company8 600

1040 5 cellphones checkout 2009-08-24 14:
30:05

Company8 600

1040 5 cellphones page2 2009-08-27 23:
03:05

Company8 600

...

SQL Call

SELECT * FROM nPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid
 ORDER BY clicktime ASC, productname, pagetype, userid
 USING
 Mode (NONOVERLAPPING)
 Pattern ('H+.D*.X*.P1.P2+')
 Symbols (
 'true' AS X,
 pagetype = 'home' AS H,
 pagetype <> 'home' AND pagetype <> 'checkout' AS D,
 pagetype = 'checkout' AS P1,
 pagetype = 'checkout' AND
 productprice > 100 AND

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 276

 productprice > LAG (productprice, 1, 100::REAL) AS P2
)
 Result (
 FIRST (productname OF P1) AS first_product,
 MAX_CHOOSE (productprice, productname OF P2) AS max_product,
 FIRST (sessionid OF P2) AS sessionid
)
) AS dt;

Output

first_product max_product sessionid

bookcases cellphones 5

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

nPath Patterns
The value of the Pattern syntax element specifies the sequence of rows for which the function searches.
You compose the pattern definition, pattern, with symbols (which you define in the Symbols syntax
element), operators, and parentheses. In the pattern definition, symbols represent rows. You can combine
symbols with pattern operators to define simple or complex patterns of rows for which to search.

Basic Pattern Operators

The following table lists and describes the basic pattern operators, in decreasing order of precedence. In
the table, A and B are symbols that have been defined in the Symbols syntax element.

Operator Description Precedence

A Matches one row that meets the definition of A . 1 (highest)

A. Matches one row that meets the definition of A . 1

A? Matches 0 or 1 rows that satisfy the definition of A . 1

A* Matches 0 or more rows that satisfy the definition of A (greedy operator). 1

A+ Matches 1 of more rows that satisfy the definition of A (greedy operator). 1

A.B Matches two rows, where the first row meets the definition of A and the second
row meets the definition of B .

2

A|B Matches one row that meets the definition of either A or B . 3

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 277

The nPath function uses greedy pattern matching. That is, it finds the longest available match when
matching patterns specified by nongreedy operators. For more information, see nPath Greedy Pattern
Matching.

Pattern Operator Precedence

Example Equivalent

A.B+ A.(B+)

A|B* A|(B*)

A.B|C (A.B)|C

Example:

A.(B|C)+.D?.X*.A

The preceding pattern definition matches any set of rows whose first row meets the definition of symbol
A, followed by a non-empty sequence of rows, each of which meets the definition of either symbol B or C,
optionally followed by one row that meets the definition of symbol D, followed by any number of rows that
meet the definition of symbol X, and ending with a row that meets the definition of symbol A.

You can use parentheses to define precedence rules. Parentheses are recommended for clarity, even
where not strictly required.

Start Anchor and End Anchor Pattern Operators

To indicate that a sequence of rows must start or end with a row that matches a certain symbol, use the
start anchor (^) or end anchor ($) operator.

Operator Description

^A Appears only at beginning of pattern. Indicates that set of rows must start with row that meets
definition of A .

A$ Appears only at end of pattern. Indicates that set of rows must end with row that meets definition
of A .

Subpattern Operators

Subpattern operators let you specify how often a subpattern must appear in a match. You can specify a
minimum number, exact number, or range. In the following table, X represents any pattern definition
composed of symbols and any of the previously described pattern operators.

Operator Description

(X){a} Matches exactly a occurrences of pattern X .

(X){a,} Matches at least a occurrences of pattern X .

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 278

Operator Description

(X){a,b} Matches at least a and no more than b occurrences of pattern X .

nPath Greedy Pattern Matching
The nPath function uses greedy pattern matching, finding the longest available match despite any
nongreedy operators in the pattern.

For example, consider the input table link2:

link2
userid title1 startdate enddate

21 Chief Exec Officer 1994-10-01 2005-02-28

21 Software Engineer 1996-10-01 2001-06-30

21 Software Engineer 1998-10-01 2001-06-30

21 Chief Exec Officer 2005-03-01 2007-03-31

21 Chief Exec Officer 2007-06-01 null

This query returns the following table:

SELECT job_transition_path, count(*) AS count1 FROM nPath@coprocessor (
 ON link2 PARTITION BY userid ORDER BY startdate
 USING
 Mode (NONOVERLAPPING)
 Pattern ('CEO.ENGR.OTHER*')
 Symbols (title1 ilike 'software eng%' AS ENGR,
 true AS OTHER,
 title1 ilike 'Chief Exec Officer' AS CEO)
 Result (accumulate(title1 OF ANY(ENGR,OTHER,CEO))
 AS job_transition_path)
) AS dt GROUP BY 1;

job_transition_path count

[Chief Exec Officer, Software Engineer, Software Engineer, Chief Exec Officer, Chief Exec Officer] 1

In the pattern, CEO matches the first row, ENGR matches the second row, and OTHER* matches the
remaining rows:

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 279

This query returns the following table:

SELECT job_transition_path, count(*) AS count1 FROM nPath@coprocessor (
 ON link2 PARTITION BY userid ORDER BY startdate
 USING
 Mode (NONOVERLAPPING)
 Pattern ('CEO.ENGR.OTHER*.CEO')
 Symbols (title1 ilike 'software eng%' AS ENGR,
 true AS OTHER,
 title1 ilike 'Chief Exec Officer' AS CEO)
 Result (accumulate(title1 of ANY(ENGR,OTHER,CEO))
 AS job_transition_path)
) AS dt GROUP BY 1;

job_transition_path count

[Chief Exec Officer, Software Engineer, Software Engineer, Chief Exec Officer, Chief Exec Officer] 1

In the pattern, CEO matches the first row, ENGR matches the second row, OTHER* matches the next
two rows, and CEO matches the last row:

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Filters
The Filter syntax element specifies filters to impose on the matched rows. Filtering out most matches can
improve performance, but memory fragmentation can degrade it. Memory fragmentation can occur in these
cases:

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 280

• The mode is NONOVERLAPPING and the pattern includes the end anchor operator ($) but not the
start anchor operator (^).

• The mode is OVERLAPPING and the pattern does not include the start anchor operator.
• The first symbol in the pattern can match an infinite number of input rows.
• The data partition is huge.
• The Java Virtual Machine (JVM) is too small.

If nPath runs much slower with the Filter syntax element, increase the size of the JVM. If the problem
persists, alter the pattern.

nPath Filters Example
Using clickstream data from an online store, this example finds the sessions where the user visited the
checkout page within 10 minutes of visiting the home page. Because there is no way to know in advance
how many rows might appear between the home page and the checkout page, the example cannot use
a LAG or LEAD expression. Therefore, it uses the Filter syntax element.

Input

clickstream
userid sessionid clicktime pagetype

1 1 10-10-2012 10:15 home

1 1 10-10-2012 10:16 view

1 1 10-10-2012 10:17 view

1 1 10-10-2012 10:20 checkout

1 1 10-10-2012 10:30 checkout

1 1 10-10-2012 10:35 view

1 1 10-10-2012 10:45 view

2 2 10-10-2012 13:15 home

2 2 10-10-2012 13:16 view

2 2 10-10-2012 13:43 checkout

2 2 10-10-2012 13:35 view

2 2 10-10-2012 13:45 view

SQL Call

SELECT * FROM nPath@coprocessor (
 ON clickstream PARTITION BY userid ORDER BY clicktime
 USING

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 281

 Symbols (pagetype='home' AS home,
 pagetype!='home' AND pagetype!='checkout' AS view,
 pagetype='checkout' AS checkout)
 Pattern ('home.view*.checkout')
 Result (FIRST(userid of ANY(home, checkout, view)) AS userid,
 FIRST (sessionid of ANY(home, checkout, view)) AS sessionid,
 COUNT (* of any(home, checkout, view)) AS cnt,
 FIRST (clicktime of ANY(home)) AS firsthome,
 LAST (clicktime of ANY(checkout)) AS lastcheckout)
 Filter (FIRST (clicktime + '10 minutes' ::interval OF ANY (home)) >
 FIRST (clicktime of any(checkout)))
 Mode (NONOVERLAPPING)
) AS dt;

Output

userid sessionid cnt firsthome lastcheckout

1 1 4 2012-10-10 10:15:00 2012-10-10 10:20:00

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Results
The Result syntax element defines the output columns, specifying the values to retrieve from the matched
rows and the aggregate function to apply to these values.

For each pattern, the nPath function can apply one or more aggregate functions to the matched rows and
output the aggregated results.

Supported aggregate functions:

• SQL aggregate functions AVG, COUNT, MAX, MIN, and SUM
• ML Engine nPath sequence aggregate functions described in the following table

In the following table, col_expr is an expression whose value is a column name, symbol is defined by the
Symbols syntax element, and symbol_list has this syntax:

{ symbol | ANY (symbol[,...]) }

Function Description

COUNT (
 { * | [DISTINCT] col_
expr }
 OF symbol_list)

Returns either the number of total number of matched rows (*) or the
number (or distinct number) of col_expr values in the matched rows.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 282

Function Description

FIRST (
 col_expr OF symbol_list)

Returns the col_expr value of the first matched row.

LAST (
 col_expr OF symbol_list)

Returns the col_expr value of the last matched row.

NTH (
 col_expr, n OF symbol_
list)

Returns the col_expr value of the nth matched row, where n is a
nonzero value of the data type SMALLINT, INTEGER, or BIGINT.
The sign of n determines whether the nth matched row is nth from the
first or last matched row. For example, if n is 1, the nth matched row is
the first matched row, and if n is -1, the nth matched row is the last
matched row.
If n is greater than the number of matched rows, the nth function returns
NULL.

FIRST_NOTNULL (
 col_expr OF symbol_list)

Returns the first non-null col_expr value in the matched rows.

LAST_NOTNULL (
 col_expr OF symbol_list)

Returns the last non-null col_expr value in the matched rows.

MAX_CHOOSE (
 quantifying_col_expr,
 descriptive_col_expr
 OF symbol_list)

Returns the descriptive_col_expr value of the matched row with the
highest-sorted quantifying_col_expr value. For example, MAX_CHOOSE
(product_price, product_name OF B) returns the product_name
of the most expensive product in the rows that map to B.
The descriptive_col_expr can have any data type. The qualifying_col_
expr must have a sortable datatype (SMALLINT, INTEGER, BIGINT,
DOUBLE PRECISION, DATE, TIME, TIMESTAMP, VARCHAR, or
CHARACTER).

MIN_CHOOSE (
 quantifying_col_expr,
 descriptive_col_expr
 OF symbol_list)

Returns the descriptive_col_expr value of the matched row with the
lowest-sorted qualifying_col_expr value. For example, MIN_CHOOSE
(product_price, product_name OF B) returns the product_name
of the least expensive product in the rows that map to B.
The descriptive_col_expr can have any data type. The qualifying_col_
expr must have a sortable datatype (SMALLINT, INTEGER, BIGINT,
DOUBLE PRECISION, DATE, TIME, TIMESTAMP, VARCHAR, or
CHARACTER).

DUPCOUNT (
 col_expr OF symbol_list)

Returns the duplicate count for col_expr in the matched rows. That is,
for each matched row, the function returns the number of occurrences
of the current value of col_expr in the immediately preceding matched
row.
When col_expr is also the ORDER BY col_expr, this function returns
the equivalent of ROW_NUMBER()-RANK().

DUPCOUNTCUM (
 col_expr OF symbol_list)

Returns the cumulative duplicate count for col_expr in the matched
rows. That is, for each matched row, the function returns the number
of occurrences of the current value of col_expr in all preceding matched
rows.
When col_expr is also the ORDER BY col_expr, this function returns
the equivalent of ROW_NUMBER()-DENSE_RANK().

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 283

Function Description

ACCUMULATE (
 [DISTINCT |
CDISTINCT]
 col_expr OF symbol_list
 [DELIMITER
'delimiter'])

Returns, for each matched row, the concatenated values in col_expr,
separated by delimiter. The default delimiter is ', ' (a comma followed
by a space).
DISTINCT limits the concatenated values to distinct values.
CDISTINCT limits the concatenated values to consecutive distinct
values.

You can compute an aggregate over more than one symbol. For example, SUM (val OF ANY (A,B))
computes the sum of the values of the attribute val across all rows in the matched segment that map to
A or B.

nPath Results Examples

nPath Results Example: FIRST, LAST_NOTNULL, MAX_CHOOSE,
MIN_CHOOSE

Input

trans1
userid gender ts productname productamt

1 M 2012-01-01 00:00:00 shoes 100

1 M 2012-02-01 00:00:00 books 300

1 M 2012-03-01 00:00:00 television 500

1 M 2012-04-01 00:00:00 envelopes 10

2 2012-01-01 00:00:00 bookcases 150

2 2012-02-01 00:00:00 tables 250

2 F 2012-03-01 00:00:00 appliances 1500

3 F 2012-01-01 00:00:00 chairs 400

3 F 2012-02-01 00:00:00 cellphones 600

3 F 2012-03-01 00:00:00 dvds 50

SQL Call

SELECT * FROM nPath@coprocessor (
 ON trans1 PARTITION BY userid ORDER BY ts
 USING
 Mode (nonoverlapping)

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 284

 Pattern ('A+')
 Symbols (TRUE AS A)
 Result (FIRST(userid OF A) AS Userid,
 LAST_NOTNULL (gender OF A) AS Gender,
 MAX_CHOOSE (productamt, productname OF A) AS Max_prod,
 MIN_CHOOSE (productamt, productname OF A) AS Min_prod)
) AS dt;

Output

userid gender max_prod min_prod

1 M television envelopes

2 F appliances bookcases

3 F cellphones dvds

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

nPath Results Example: FIRST, ACCUMULATE

Input

clicks
userid sessionid productname pagetype clicktime referrer productprice

1039 1 null home 06:59:13 Company1 100

1039 1 null home 07:00:10 Company3 300

1039 1 television checkout 07:00:12 Company3 500

1039 1 television checkout 07:00:18 Company3 10

1039 1 envelopes checkout 07:01:00 Company4 10

1039 1 null checkout 07:01:10 Company4 10

SQL Call

SELECT * FROM nPath@coprocessor (
 ON clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode ('nonoverlapping')
 Symbols (pagetype='home' AS H, pagetype='checkout' AS C,
 pagetype!='home' AND pagetype!='checkout' AS A)

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 285

 Pattern ('^H+.A*.C+$')
 Result (
 FIRST (sessionid OF ANY (H, A, C)) AS sessionid,
 FIRST (clicktime OF H) AS firsthome,
 FIRST (clicktime OF C) AS firstcheckout,
 ACCUMULATE (productname OF ANY (H,A,C) DELIMITER '*')
 AS products_accumulate,
 ACCUMULATE (CDISTINCT productname OF ANY (H,A,C) DELIMITER '$$')
 AS cde_dup_products,
 ACCUMULATE (DISTINCT productname OF ANY (H,A,C))
 AS de_dup_products
)
) AS dt;

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 286

Output
sessionid firsthome firstcheckout products_accumulate cde_dup_products de_dup_products

1 06:59:13 07:00:12 [null*null*television*television*envelopes*null] [null$$television$$envelopes$$null] [null, television, envelopes]

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function Reference, Release 8.10 287

nPath Results Example: FIRST, ACCUMULATE, COUNT, NTH

Input

The input table is clicks, as in nPath Results Example: FIRST, ACCUMULATE.

SQL Call

SELECT * FROM nPath@coprocessor (
 ON clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode ('nonoverlapping')
 Symbols (pagetype='home' AS H, pagetype='checkout' AS C,
 pagetype!='home' AND pagetype!='checkout' AS A)
 Pattern ('^H+.A*.C+$')
 Result (
 FIRST (sessionid OF ANY (H, A, C)) AS sessionid,
 FIRST (clicktime OF H) AS firsthome,
 FIRST (clicktime OF C) AS firstcheckout,
 ACCUMULATE (productname OF ANY (H,A,C))
 AS products_accumulate,
 COUNT (DISTINCT productname OF ANY(H,A,C))
 AS count_distinct_products,
 ACCUMULATE (CDISTINCT productname OF ANY (H,A,C))
 AS consecutive_distinct_products,
 ACCUMULATE (DISTINCT productname OF ANY (H,A,C))
 AS distinct_products,
 NTH (productname, -1 OF ANY(H,A,C)) AS nth
)
) AS dt;

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 288

Output

sessionid firsthome firstcheckout products_accumulate count_distinct_
products

consecutive_distinct_
products distinct_products nth

1 06:59:13 07:00:12 [null, null, television, television,
envelopes, null]

3 [null, television, envelopes, null] [null, television,
envelopes]

null

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function Reference, Release 8.10 289

nPath Examples

nPath Example: Pages Visited in Each Session
This example accumulates the pages visited in each session.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode(nonoverlapping)
 Pattern('A*')
 Symbols(true AS A)
 Result(first(sessionid of A) AS sessionid,
 accumulate(pagetype of A) AS path)
) AS dt;

Output

 sessionid
path

--
--
 4 [home, home, home, home, home, home, home1, home1, home1, page1, page1,
page1]
 2 [home, home, home, home, home, home, home, home, home, home1, page1,
checkout, checkout, home, home]
 3 [home, home, home, home, home, home, home, home, home1, page1, home,
home1, page1, home]
 1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1,
checkout, home, home, home, home, home, home, home, home, home]
 5 [home, home, home, home, home1, home1, home1, page1, page1, page1,
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2]

nPath Example: Sessions Start at Home and Visit Page1

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 290

This example finds the sessions that start at the home page and visit Page1.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode(nonoverlapping)
 Pattern('^H.A*.P1.A*')
 Symbols(pagetype='home' AS H, pagetype='page1' AS P1, TRUE AS A)
 Result(FIRST(sessionid OF A) AS sessionid,
 accumulate(pagetype OF ANY(H,P1,A)) AS path)
) AS dt;

Output

 sessionid
path

--
--
 4 [home, home, home, home, home, home, home1, home1, home1, page1, page1,
page1]
 2 [home, home, home, home, home, home, home, home, home, home1, page1,
checkout, checkout, home, home]
 5 [home, home, home, home, home1, home1, home1, page1, page1, page1,
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2]
 1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1,
checkout, home, home, home, home, home, home, home, home, home]
 3 [home, home, home, home, home, home, home, home, home1, page1, home,
home1, page1, home]

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Checkout Paths for Purchases Over $200
This example finds the paths to the checkout page for purchases over $200.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 291

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode(nonoverlapping)
 Pattern('A*.C+.A*')
 Symbols(productprice > 200 AND pagetype='checkout' AS C, true AS A)
 Result(first(sessionid of A) AS sessionid,
 accumulate(pagetype OF ANY(A,C)) AS path,
 AVG(productprice OF ANY(A,C)) AS sum)
) AS dt;

Output

 sessionid
path
 sum

--
-- -----------------
 1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1,
checkout, home, home, home, home, home, home, home, home, home] 602.8571428571429
 5 [home, home, home, home, home1, home1, home1, page1, page1, page1,
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2]
363.1578947368421

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Mode (OVERLAPPING)
Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 292

 Mode (overlapping)
 Pattern ('A.A')
 Symbols (TRUE AS A)
 Result (FIRST(sessionid OF A) AS sessionid,
 accumulate(pagetype OF A) AS path)
) AS dt ORDER BY sessionid;

Output

 sessionid path
 --------- --------------------
 1 [home, home]
 1 [home, home]
 1 [home, home]
 1 [home, home]
 1 [checkout, home]
 1 [page1, checkout]
 1 [home1, page1]
 1 [home, home1]
 1 [home, home]
 1 [home, home]
 1 [page1, home]
 1 [home, home1]
 1 [page1, home]
 1 [home1, page1]
 1 [home, home1]
 1 [home1, page1]
 1 [home, home]
 1 [home, home]
 1 [home, home]
 1 [home, home]
 2 [checkout, checkout]
 2 [home1, page1]
 2 [home, home1]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [home, home]
 2 [page1, checkout]
 2 [checkout, home]

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 293

 2 [home, home]
 3 [home, home1]
 3 [home1, page1]
 3 [home, home1]
 3 [home, home]
 3 [home, home]
 3 [home, home]
 3 [home, home]
 3 [home, home]
 3 [home, home]
 3 [home, home]
 3 [page1, home]
 3 [home1, page1]
 3 [page1, home]
 4 [home1, page1]
 4 [home1, home1]
 4 [home, home1]
 4 [home, home]
 4 [home, home]
 4 [home, home]
 4 [home, home]
 4 [home, home]
 4 [home1, home1]
 4 [page1, page1]
 4 [page1, page1]
 5 [checkout, page2]
 5 [checkout, checkout]
 5 [page2, checkout]
 5 [page2, page2]
 5 [page1, page2]
 5 [page1, page1]
 5 [page1, page1]
 5 [home1, page1]
 5 [home1, home1]
 5 [home1, home1]
 5 [home, home1]
 5 [home, home]
 5 [home, home]
 5 [home, home]
 5 [page2, page2]
 5 [checkout, checkout]
 5 [page2, page2]
 5 [page2, page2]

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 294

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: First Product with Multiple Referrers
This example finds the first product with multiple referrers in any session.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode(nonoverlapping)
 Pattern('REFERRER{2,}')
 Symbols(referrer IS NOT NULL AS REFERRER)
 Result (FIRST(sessionid OF REFERRER) AS sessionid,
 FIRST(productname OF REFERRER) AS product)
) AS dt;

Output

 sessionid product
 --------- ----------
 5 appliances
 4 tables
 2 tables
 3 bookcases
 1 envelopes

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Sessions that Checked 3-6 Products
This example finds the data for sessions that checked three to six products.

For sessions where the user checked between three and six products (exclusive), return the names of
the most and least expensive products, the maximum price of the most expensive product, and the
minimum price of the least expensive product.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 295

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING
 Mode(nonoverlapping)
 Pattern('H+.D*.C{3,6}.D')
 Symbols(pagetype = 'home' AS H, pagetype='checkout' AS C,
 pagetype<>'home' AND pagetype<>'checkout' AS D)
 Result(first(sessionid of C) AS sessionid,
 max_choose(productprice, productname of C) AS most_expensive_product,
 max(productprice of C) AS max_price,
 min_choose(productprice, productname of C) AS least_expensive_product,
 min(productprice of C) AS min_price)
) AS dt;

Output

 sessionid most_expensive_product max_price least_expensive_product min_price
 --------- ---------------------- --------- ----------------------- ---------
 5 cellphones 600.0 bookcases 150.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Sessions that Checked at Least 3 Products
This example finds the data for sessions that checked at least three products.

Modify the SQL call in nPath Example: Sessions that Checked 3-6 Products to find sessions where the
user checked at least three products by changing the Pattern syntax element.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
 ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
 USING

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 296

 Mode(nonoverlapping)
 Pattern('H+.D*.C{3,}.D')
 Symbols(pagetype = 'home' AS H, pagetype='checkout' AS C,
 pagetype<>'home' AND pagetype<>'checkout' AS D)
 Result(first(sessionid of C) AS sessionid,
 max_choose(productprice, productname of C) AS most_expensive_product,
 max(productprice of C) AS max_price,
 min_choose(productprice, productname of C) AS least_expensive_product,
 min(productprice of C) AS min_price)
) AS dt;

Output

 sessionid most_expensive_product max_price least_expensive_product min_price
 --------- ---------------------- --------- ----------------------- ---------
 5 cellphones 600.0 bookcases 150.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Multiple Partitioned Input Tables and Dimension
Input Table
An e-commerce store wants to count the advertising impressions that lead to a user clicking an online
advertisement. The example counts the online advertisements that the user viewed and the television
advertisements that the user might have viewed.

Input

impressions
userid ts imp

1 2012-01-01 ad1

1 2012-01-02 ad1

1 2012-01-03 ad1

1 2012-01-04 ad1

1 2012-01-05 ad1

1 2012-01-06 ad1

1 2012-01-07 ad1

2 2012-01-08 ad2

2 2012-01-09 ad2

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 297

userid ts imp

2 2012-01-10 ad2

2 2012-01-11 ad2

...

clicks2
userid ts click

1 2012-01-01 ad1

2 2012-01-08 ad2

3 2012-01-16 ad3

4 2012-01-23 ad4

5 2012-02-01 ad5

6 2012-02-08 ad6

7 2012-02-14 ad7

8 2012-02-24 ad8

9 2012-03-02 ad9

10 2012-03-10 ad10

11 2012-03-18 ad11

12 2012-03-25 ad12

13 2012-03-30 ad13

14 2012-04-02 ad14

15 2012-04-06 ad15

tv_spots
ts tv_imp

2012-01-01 ad1

2012-01-02 ad2

2012-01-03 ad3

2012-01-04 ad4

2012-01-05 ad5

2012-01-06 ad6

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 298

ts tv_imp

2012-01-07 ad7

2012-01-08 ad8

2012-01-09 ad9

2012-01-10 ad10

2012-01-11 ad11

2012-01-12 ad12

2012-01-13 ad13

2012-01-14 ad14

2012-01-15 ad15

SQL Call

The tables impressions and clicks have a user_id column, but the table tv_spots is only a record of
television advertisements shown, which any user might have seen. Therefore, tv_spots must be a
dimension table.

SELECT * FROM NPath@coprocessor (
 ON impressions PARTITION BY userid ORDER BY ts
 ON clicks2 PARTITION BY userid ORDER BY ts
 ON tv_spots DIMENSION ORDER BY ts
 USING
 Mode('nonoverlapping')
 Symbols(true AS imp, TRUE AS click,TRUE AS tv_imp)
 Pattern('(imp|tv_imp)*.click')
 Result (COUNT(* OF imp) AS imp_cnt,
 COUNT(* OF tv_imp) AS tv_imp_cnt)
) AS dt;

Output

imp_cnt tv_imp_cnt
 ------- ----------
 23 0
 19 0
 24 0
 22 0
 23 0
 22 0
 19 0

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 299

 23 0
 18 0
 22 0
 20 0
 25 0
 21 0
 22 0
 22 0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

19: nPath® (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 300

Sessionize Background Information
• Sessionize

• Background Information (Description, Use Cases,
Workflow, Syntax, Required Arguments, Optional
Arguments, Input Table Schema, Output Table
Schema)

• Labs
• Review

• Attribution
• Background Information (Description and Use Cases)
• Single-Input Models (Workflow, Syntax, Required

Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs)

• Multiple-Input Models (Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs) - Optional

• Review

Time Series Analytic Functions Slide 2-4

• The Sessionize function maps each click in a session to a unique
session identifier

• A "session" is defined as a sequence of clicks by one user that are
separated by at most n seconds

• The function is useful both for sessionization and for detecting web
crawler (bot) activity

• It is typically used to understand user browsing behavior on a web site

Sessionize Description

The Sessionize function maps each click in a session to a unique session identifier.
A “session” is defined as a sequence of clicks by one user that are separated by at most n seconds.
The function is useful both for sessionization and for detecting web crawler (bot) activity.
It is typically used to understand user browsing behavior on a web site.

Time Series Analytic Functions Slide 2-5

• A Retailer wishes to know which pages on its website are visited in the
most sessions

• A Banking institution wishes to know if there have been any attempted
bot infiltrations into customer accounts

• A Social-media website wishes to sell advertising space and wants to
know the number of sessions each user has per day, and the average
length in time of those sessions

Sessionize Use Case Examples

Sessionize can be used whenever you wish to group time-based events together.

Time Series Analytic Functions Slide 2-6

Sessionize Workflow

timestamp userid …
10:00:00 10 …

00:58:24 76

10:00:24 10

02:30:33 76

10:01:23 10

10:02:40 10

timestamp userid … sessionid
10:00:00 10 … 0

10:00:24 10 0

10:03:00 10 1

10:05:30 10 2

00:59:24 76 0

02:30:33 76 1

The Sessionize function
outputs a sessionid

column. Note that
sessionid always begins

at 0 with each new
partitionInput Output

• The Sessionize function reads data from an input table, view, or
query, and then outputs sessionid (per specified arguments)

• For example, if a userid has 2 consecutive clicks within 1 minute
of each other, consider that the same "session"

• If > 1 minute, then increment sessionid counter by 1

Userid 10 has three
'sessions': 0, 1, and 2

Userid 76 has two
'sessions': 0 and 1

Sessionize requires at least one input table, view, or query. Rows that meet the condition of your logic
are then output, together with a new column, SESSIONID.

Time Series Analytic Functions Slide 2-7

Sessionize Syntax

SELECT * FROM Sessionize[@coprocessor]
(ON { table | view | (query) }
PARTITION BY expression [,...]
ORDER BY order_column
USING
TimeColumn ('timestamp_column')
TimeOut ('session_timeout')
[ClickLag ('min_human_click_lag')]
[EmitNull ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
) as alias;

Note: Sessionize can be run in the Adv SQL Engine or the ML Engine

Following are important points to realize about the syntax for Sessionize.

1. As with other Teradata Vantage functions, we are invoking the function through the call SELECT *
FROM function_name; i.e., in this case, SELECT * FROM Sessionize.

2. Our input data can be in the form of a table, view, or query. It follows the ON keyword.
3. We must specify which columns to use for our PARTITION BY and ORDER BY arguments.
4. Following the USING keyword, we are afforded the opportunity of specifying our required and

optional arguments specific to the function.

The required arguments for Sessionize follow:
• TimeColumn: Specify the name of the input column that contains the click times. Note: The

timestamp_column must also be an order_column.
• TimeOut: Specify the number of seconds at which the session times out. If session_timeout

seconds elapse after a click, the next click starts a new session. The data type of session_timeout
is DOUBLE PRECISION.

The optional arguments for Sessionize follow:
• ClickLag [Optional]: Specify the minimum number of seconds between clicks for the session user to

be considered human. If clicks are more frequent, indicating that the user is a bot, the function
ignores the session. The min_human_click_lag must be less than session_timout. The data type
of min_human_click_lag is DOUBLE PRECISION. Default behavior: The function ignores no
session, regardless of click frequency.

• EmitNull [Optional]: Specify whether to output rows that have NULL values in their SESIONID and
CLICKLAG columns, even if their timestamp_column has a NULL value. Default: ‘false’.

Time Series Analytic Functions Slide 2-8

• TimeColumn: Specify the name of the input column that contains the
click times. Note: The timestamp_column must also be an
order_column

• TimeOut: Specify the number of seconds at which the session times
out. If session_timeout seconds elapse after a click, the next click
starts a new session. The data type of session_timeout is DOUBLE
PRECISION

Sessionize Required Arguments

Other than your input table/view/query, SESSIONIZE has only two required arguments:

• TimeColumn
• TimeOut

Time Series Analytic Functions Slide 2-9

• ClickLag [Optional]: Specify the minimum number of seconds between
clicks for the session user to be considered human. If clicks are more
frequent, indicating that the user is a bot, the function ignores the
session. The min_human_click_lag must be less than session_timout.
The data type of min_human_click_lag is DOUBLE PRECISION.
Default behavior: The function ignores no session, regardless of click
frequency

• EmitNull [Optional]: Specify whether to output rows that have NULL
values in their session id and rapid fire columns, even if their
timestamp_column has a NULL value. Default: 'false'

Sessionize Optional Arguments

The following are optional arguments for SESSIONIZE:

• ClickLag
• EmitNull

Time Series Analytic Functions Slide 2-10

Current Topic – Sessionize Labs
• Sessionize

• Background Information (Description, Use Cases,
Workflow, Syntax, Required Arguments, Optional
Arguments, Input Table Schema, Output Table Schema)

• Labs
• Review

• Attribution
• Background Information (Description and Use Cases)
• Single-Input Models (Workflow, Syntax, Required

Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs)

• Multiple-Input Models (Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs) - Optional

• Review

Time Series Analytic Functions Slide 2-11

Before We Begin: Open TD Studio File in Project Explorer
Navigate to 'Project Explorer' tab, then drill down to SQL > GLE > Vantage >
01) TVAW-Basics and double-click on: Mod-02-Sessionize-Attribution.sql file

We'll be running labs from Teradata Studio. Double-click on the 'Mod-02-Sessionize-Attribution.sql' file
to get started.

Time Series Analytic Functions Slide 2-12

c
Lab 01a: Sessionize Intro - Input Data

Goal: Sessionize below data to count how many visits each userid had to a website

Input
table

SELECT * FROM sessionme;

Here, we are viewing the contents of the sessionme table.

Time Series Analytic Functions Slide 2-13

c
Lab 01b: Sessionize – Teradata Vantage using
Adv SQL Engine (1 of 2)

SELECT * FROM Sessionize
(ON sessionme
PARTITION BY userid
ORDER BY clicktime
USING
TimeColumn ('clicktime')
TimeOut (60)
ClickLag (0.2)
EmitNull ('false')
) order by userid, clicktime;

Query: Sessionize User's clicks that are within 1 minute of each other

Input tableSessionize query

Here, we are sessionizing our data. Note the values within our arguments after the USING clause.

Time Series Analytic Functions Slide 2-14

c
Lab 01b: Sessionize – Teradata Vantage using
Adv SQL Engine (2 of 2) - Output

SELECT * FROM Sessionize
(ON sessionme
PARTITION BY userid
ORDER BY clicktime
USING
TimeColumn ('clicktime')
TimeOut (60)
ClickLag (0.2)
EmitNull ('false')
) ORDER BY userid,clicktime;

Output

Note the following:
• userid 333 had two visits, denoted by sessionid values 0 and 1
• userid 578 had one visit, denoted by sessionid value 0

Query: Sessionize User's clicks that are within 1 minute of each other

We have partitioned by user_id and ordered by clicktime.

Any user_id clicks that occur within 60 seconds of one another will be in the same SESSIONID.

The value for SESSIONID restarts at 0 for each change in user_id.

Time Series Analytic Functions Slide 2-15

Here, we are viewing the contents of our input table.

c

• Here, we familiarize ourselves with the bank_web_clicks table
• The next many slides will walk through the data and various examples of using

the Sessionize syntax against this table

Lab 02a - Understanding the Data (1 of 2)

SELECT * FROM bank_web_clicks
WHERE customer_id IN (8263, 30324, 620)
ORDER BY customer_id ASC, datestamp ASC;

ANSI SQL

Time Series Analytic Functions Slide 2-16

Note that we have customer IDs, which page they visited, and when they visited it.

c
Lab 02a - Understanding the Data (2 of 2)

`

• For each customer, we know which webpage they visited and when they visited it
• Note that the datestamp column is of data type TIMESTAMP

Time Series Analytic Functions Slide 2-17

• The ON clause contains the input table.
• The PARTITION BY argument specifies that for each distinct instance of customer_id, the

sessionize function will re-start at a value of 0.
• The ORDER BY argument specifies that for each customer, data will be sessionized according to

the datestamp value (ascending by default).
• The USING clause defines the TimeColumn (the input column that contains our timestamp data)

and the user-defined TimeOut value (must be defined in seconds). As long as a user’s clicks occur
within the same 600 second window, they will be considered as part of the same “session”.

c Lab 02b - Required Arguments and Output
(1 of 2)

SELECT * FROM Sessionize
(ON bank_web_clicks
PARTITION BY customer_id
ORDER BY datestamp
USING
TimeColumn ('datestamp')
TimeOut (600)
) order by customer_id,

datestamp;

• The ON clause contains the input table

• The PARTITION BY argument specifies for each
distinct instance of customer_id, the sessionize
function will re-start at a value of 0

• The ORDER BY argument specifies that for each
customer, data will be sessionized according to
the datestamp value (ascending by default)

• The USING clause defines the TimeColumn (the
input column that contains our timestamp data)
and the user-defined TimeOut value (must be
defined in seconds). As long as a user’s clicks
occur within the same 600 second window, they
will be considered as part of the same “session”

Time Series Analytic Functions Slide 2-18

Here, we are viewing our sessionized output. Note the creation of the SESSIONID column.

c Lab 02b - Required Arguments and Output
(2 of 2)

• Here, we are viewing the
output of our query from the
previous page

• Note the creation of the
SESSIONID column

• As long as the clicks of a
single customer_id occurred
within 600 seconds of one
another, they will share the
same SESSIONID value

d

d

d

Time Series Analytic Functions Slide 2-19

The ON clause can be written to run the function against a sub-set of the input data source.

c Lab 03a - Specifying a Query in the ON Clause
(1 of 2)

SELECT * FROM Sessionize
(ON (SELECT * FROM bank_web_clicks

WHERE customer_id
IN (8263, 30324, 620))

PARTITION BY customer_id
ORDER BY datestamp
USING
TimeColumn ('datestamp')
TimeOut (120)
) ORDER BY customer_id, datestamp;

• Note that you can also specify a
query in the ON clause to select
desired input data, as opposed to
just putting the name of a table or
view that contains the input data
(as we did in the previous lab)

• When specifying a query, you
must enclose it within parentheses

• If desired, you could write your
query to SELECT only certain
columns

Time Series Analytic Functions Slide 2-20

Here, we are viewing the output of our SESSIONIZE query,

c Lab 03a - Specifying a Query in the ON Clause
(2 of 2)

For each customer_id, as long as clicks occur within 120 seconds of one
another, they will be part of the same SESSIONID

Time Series Analytic Functions Slide 2-21

Possible “bot” activity can be detected by using the optional ClickLag argument.

c
Lab 04a - Detecting Bots (1 of 2)

SELECT * FROM Sessionize
(ON (SELECT * FROM bank_web_clicks

WHERE customer_id IN (7172))
PARTITION BY customer_id
ORDER BY datestamp
USING
TimeColumn ('datestamp')
TimeOut (60)
ClickLag (0.1)
) ORDER BY customer_id, datestamp;

• We can use the optional argument
ClickLag to detect possible bot activity

• Just like Timeout, ClickLag is
expressed in seconds

• Any clicks that occur within 0.1
seconds of one another will be flagged
accordingly in the output

Query: Customer 7172 can't login to
their on-line bank account.

Write query that will SESSIONIZE the
bank_web_clicks table for

customer_id = 7172 with a TIMEOUT
= 60 seconds and robot ClickLag =

0.10
Does anything look fishy?

Time Series Analytic Functions Slide 2-22

Our ClickLag argument has returned a positive indicator in this example.

c
Lab 04a - Detecting Bots (2 of 2)

• The CLICKLAG
column receives a
value of 't' if a click
occurred within 0.1
seconds of the
previous click

• For SESSIONID
49, it appears that a
bot was attempting
to log into the
customer's bank
account before
being locked out

customer_id page datestamp SESSIONID CLICKLAG
7172 ACCOUNT SUMMARY 2004-03-22 04:46:12.000000 0 f
7172 FUNDS TRANSFER 2004-03-22 04:48:40.000000 1 f
7172 FAQ 2004-03-22 04:50:11.000000 2 f
7172 FUNDS TRANSFER 2004-03-22 04:53:43.000000 3 f
7172 VIEW DEPOSIT DETAILS 2004-03-22 04:57:39.000000 4 f
7172 PROFILE UPDATE 2004-03-22 05:01:33.000000 5 f
… … … … …
7172 FUNDS TRANSFER 2004-03-23 20:33:34.000000 45 f
7172 VIEW DEPOSIT DETAILS 2004-03-23 20:34:46.000000 46 f
7172 VIEW DEPOSIT DETAILS 2004-03-23 20:36:59.000000 47 f
7172 FAQ 2004-03-23 20:38:07.000000 48 f
7172 LOGIN 2014-03-25 04:00:00.000000 49 f
7172 LOGIN 2014-03-25 04:00:00.100000 49 t
7172 LOGIN 2014-03-25 04:00:00.200000 49 t
7172 LOCKOUT 2014-03-25 04:00:00.300000 49 t

Time Series Analytic Functions Slide 2-23

The next many pages will run through a multi-step example of sessionizing data to understand general
customer behavior on a fictitious website.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (1 of 7)

CREATE SET TABLE chips_sessionized AS
(SELECT * FROM Sessionize
(ON (SELECT remote_host, request_time,

requested_page
FROM chips_clean)

PARTITION BY remote_host
ORDER BY request_time asc
USING
TimeColumn ('request_time')
TimeOut (3600)
)
)
WITH DATA;

• It will often be beneficial to land
your Sessionize results into a
physical table for further analysis
and/or to serve as an input into
other Teradata VANTAGE
functions, such as nPath

• Here, we are "sessionizing" a
subset of columns from the
chips_clean table

• Each "session" is defined as clicks
made within the same window of
3,600 seconds (one hour)

Time Series Analytic Functions Slide 2-24

Here, we have sessionized our input data.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (2 of 7)

Source Data Sessionized Data

SELECT * FROM chips_sessionized;

Time Series Analytic Functions Slide 2-25

Here, we are attempting to discover which our most frequently-visited pages are per the number of
sessions that they were a part of.

Note: The contents of the chips_sessionized table may be slightly different in you lab environment
compared to what is shown in the slides.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (3 of 7)

Here, we are using our sessionization results to discover which are the most
popular pages on our website; i.e., those visited in the greatest number of sessions

SELECT requested_page,
COUNT (DISTINCT remote_host || '_ '
|| sessionid) AS distinct_sessions
FROM chips_sessionized
GROUP BY requested_page
HAVING distinct_sessions >= 700
ORDER BY distinct_sessions DESC;

ANSI SQL

Time Series Analytic Functions Slide 2-26

Here, we have employed logic to determine various metrics about customer navigation of our website:

• How many sessions?
• How many distinct pages visited per session?
• How long in duration is each session?
• What % of sessions contain an actual order?
• Etc.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (4 of 7)

remote_host SESSIONID checkouts payments pages distinct_pages min_request_time max_request_time session_duration
101.222.160.166 0 0 0 2 2 2014-12-31 06:56:51 2014-12-31 06:57:01 0 00:00:10.000000
162.44.245.105 0 3 1 7 5 2015-02-18 19:46:39 2015-02-18 19:55:31 0 00:08:52.000000
157.55.39.62 59 0 0 21 15 2015-02-11 13:37:01 2015-02-11 17:16:27 0 03:39:26.000000
157.55.39.178 9 0 0 1 1 2015-01-03 05:02:09 2015-01-03 05:02:09 0 00:00:00.000000
66.249.69.102 19 0 0 1 1 2015-01-09 17:33:06 2015-01-09 17:33:06 0 00:00:00.000000

Session Data

• Here, we have created a table comprised of one row per remote_host, SESSIONID
• We have populated columns to specify general metrics about each session
• We will use this data to answer questions such as the following:

─ How many pages visited per session?
─ How many distinct pages visited per session?
─ How long in duration is each session?
─ What % of sessions contain an actual order?

You will be running a series of
CREATE TABLE statements

within Teradata Studio

Time Series Analytic Functions Slide 2-27

Here, we are viewing aggregated results.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (5 of 7)

Output

Here, we have summarized all session data to display average metrics
in aggregate

Note: Your Output may differ than results here

Time Series Analytic Functions Slide 2-28

Here, we have discovered that precious few sessions include an actual purchase. Furthermore, there
seems to be a problem with regard to “abandoned carts”.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (6 of 7)

• Here, we have written a query to identify the number of sessions that
included purchases or not

• Note that only a tiny fraction of sessions included a payment
• Note that there is a fundamental problem with "abandoned carts"

Time Series Analytic Functions Slide 2-29

We have concluded the following:
• Few customers make purchases.
• Abandoned carts are a problem.
• People who make purchases tend to be more engaged with the website (visit more pages

and revisit pages already visited).
• Precious few customers who actually make a purchase do so more than once.

c Lab 05 - Landing Sessionize Results and
Summarizing Findings (7 of 7)

• Here, we have written a query to display general metrics parsed out by
whether the session included checkout and/or payment (or not)

• Note the following:
• Few customers make purchases
• Abandoned carts are a problem
• People who make purchases tend to be more engaged with the website (visit

more pages and revisit pages already visited)
• Precious few customers who actually make a purchase do so more than once
sessions_with_
payment

sessions_with
_checkout

remote
_hosts sessions

avg_sessions_
per_host avg_pages

avg_distinct
_pages avg_session_duration

n n 7739 19953 2.58 3.53 3.14 0 00:14:28.832907
n y 222 233 1.05 8.68 5.74 0 00:09:49.793991
y y 88 92 1.05 11.71 7.46 0 00:11:59.434783

Time Series Analytic Functions Slide 2-30

Current Topic – Sessionize Review
• Sessionize

• Background Information (Description, Use Cases,
Workflow, Syntax, Required Arguments, Optional
Arguments, Input Table Schema, Output Table Schema)

• Labs
• Review

• Attribution
• Background Information (Description and Use Cases)
• Single-Input Models (Workflow, Syntax, Required

Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs)

• Multiple-Input Models (Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table, Schema,
Output Table Schema, Labs) - Optional

• Review

Time Series Analytic Functions Slide 2-31

c
Hackathon: Chips Weblog Sessionize (Optional)

The following exercise is intended to provide you with further practice on using the Sessionize
function. There is no "right" or "wrong" answer. The intent is for you to become comfortable
writing queries that use Sessionize

1. Run a Sessionize query on the chips_clean table, which shows user activity on a retail
website. Things to think about follow:

• What is the nature of the underlying data? Data types? Number of rows? What is it
showing? Etc.

• How should the data be partitioned?
• What is a reasonable amount of time between clicks for activity to be considered as being in

the same session?
• Was there any potential/likely "bot" activity?

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your
own SESSIONIZE query(ies) so as to become more comfortable with the syntax.

Time Series Analytic Functions Slide 2-32

c Hackathon: Chips Weblog Sessionize
(Possible Answer)

-- Eyeball and sessionize to volatile table

show table chips_clean;

select * from chips_clean
sample randomized allocation 200;

create volatile table x_sessionize as
(SELECT * FROM Sessionize (
ON (select remote_host, request_time,
requested_page from chips_clean)
PARTITION BY remote_host
ORDER BY request_time asc
USING
TimeColumn ('request_time')
TimeOut (3600)
EmitNull('false')
ClickLag (0.2))) with data
on commit preserve rows;

Sessionized Data (subset)

-- How many distinct sessions?
select count (distinct remote_host ||'_'||
SESSIONID) as sessions from x_sessionize;

-- Possible bots?
select * from x_sessionize where clicklag = 't';

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your
own SESSIONIZE query(ies) so as to become more comfortable with the syntax.

Time Series Analytic Functions Slide 2-33

In this module, you learned how to:

• Describe what the Sessionize function does
• Describe typical use cases for Sessionize
• Write Sessionize queries
• Interpret the output of Sessionize queries

Sessionize Summary

Time Series Analytic Functions Slide 2-34

1

4D Analytics

- Architecture & Practice Enablement

1

2 © 2018 Teradata

Characteristics of Time Series Data

• The data that arrives is almost always recorded as a new entry

• Possibility of data being duplicated as there may not be any

changes

• Data is ephemeral (Discontinuous)

• The data typically arrives in time order

• Should be able to handle high reads & writes

• Time is a primary axis (time-intervals can be either regular or

irregular)

• Deletes & Updates are Rare

No Edits, No deletes, always inserts

2

3

• Available in 16.20

• $TD_GROUP_BY_TIME

• Use on ANY time component data

• Works with some existing aggregation functions

• Average, Count, Describe, Kurtosis, Maximum, Minimum, Percentile, Rank, Skew, Sum, Std.
population deviation, Std. sample deviation, Population variance, Sample variance

• Works with all new aggregation functions

• Bottom, Top, First, Last, Delta_T, Median, Mode, Mean absolute deviation

• $TD_TIMECODE_RANGE

• Defines time range

• FILL ()

• Imputes missing values

• NULLS, <Constant>, PREV/PREVIOUS, NEXT

Time Aware - Functions

© 2017 Teradata

$TD_TIMECODE_RANGE - Its data type is period(timestamp(6) with time zone).

3

4

Time Aware Aggregation Functions – GROUP BY TIME

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute

deviation

These new aggregate functions are only invokable with the
GROUP BY TIME clause

If not in the list above, then function is not time aware and
cannot be used with the GROUP BY TIME clause

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic /
Windowed Aggregate function … not an aggregate function. The ordered analytic
function can only be invoked using the ordered analytic syntax. (See Function and
Operators SQL manual)

© 2016 Teradata

5

GROUP BY TIME Rules & Restrictions
• GROUP BY TIME and GROUP BY cannot be used together in the same query (this restriction includes GROUP BY

ROLLUP, GROUP BY CUBE, and so on).

• If GROUP BY TIME is used on a non-PTI table, the USING TIMECODE clause must be included; otherwise, an

error is reported.

• A supported Time Series function must be used in conjunction with a GROUP BY TIME clause; otherwise, an error

is reported.

• The timebucket (which serve as the first level of grouping, if specified) are computed based on time zero. For more

information about how time zero is calculated.

• Grouping is determined first by timebucket, and then by all other fields specified in the GROUP BY TIME clause (if

any). A timebucket duration is required with the GROUP BY TIME clause. Failure to include it results in an error.

Each GROUP BY TIME operation must have a time interval specified in the GROUP BY TIME clause. For

example, in the clause GROUP BY TIME(MINUTES(15)) the time interval is 15 minutes.

OR we can have UNBOUNDED by giving GROUP BY TIME(*).

• The HAVING clause is supported for filtering results of aggregates with the GROUP BY TIME clause.

• The QUALIFY and WITH...BY clauses are NOT supported when the GROUP BY TIME clause is present.

• The USING TIMECODE and FILL clauses are optional and may only be used with a GROUP BY TIME clause.

© 2017 Teradata

6

• Want to understand average daily

temperature (DRYBULB_TEMPF) for

the dates of 2017-01-01 and 2017-

01-31

• The time column in the table is called

Day_Time

Exercise: Run a GROUP BY TIME analytic (1_1)

Example:

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME,

AVG(TEMPERATURE)

FROM BUOYS

WHERE TIMECODE BETWEEN TIMESTAMP '2017-08-11 01:00:00'

AND TIMESTAMP '2017-08-11 03:00:00'

GROUP BY TIME(MINUTES(30))

USING TIMECODE(TD_TIMECODE)

ORDER BY $TD_GROUP_BY_TIME;

SELECT

<Time Interval Clauses>

, AVG(<Which Column>)

FROM TIMESERIES.WEATHER

WHERE

DAY_TIME BETWEEN TIMESTAMP '2017-01-01 00:00:00'

AND TIMESTAMP '2017-02-01 00:00:00'

GROUP BY TIME (<group definition>)

USING TIMECODE(<on which timestamp>)

ORDER BY 1;

© 2017 Teradata

7 © 2018 Teradata

Time Aware Analytics

7

8 © 2018 Teradata

Primary Time Index

• Supports time sensitive decisions

• Either Primary Index or Primary Time Index

• Fast access through:

• Hash distribute by time bucket

• AMP-local processing

• Sequenced data

8

9

Primary Time Index (PTI)
High Performance Parallelism with Efficient Storage and Access

High performance parallel distribution

Customizable duration of Time Bucket provides control of distribution

Fast Primary AMP access

Customizable distribution provides AMP-local processing minimizes data movement
and speeds query processing

Fully automated; set once

Data is stored in Time Order (not Hash time order)

© 2014 Teradata

0

10

• <timecode_dt>

• { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

• What is the level of precision on the TIMESTAMP

• <timezero_date>

• A DATE value specificying the “time zero” associated with table.

• Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

• <timebucket_duration>

• A time duration specified by CAL_YEARS, CAL_MONTHS,CAL_DAYS,WEEKS, DAYS,

HOURS, MINUTES, SECONDS, MILLISECONDS, MICROSECONDS.

• <columns_clause,>

• COLUMNS (<column_list>)

• <sequenced_flag>

• {SEQUENCED <optional_maximum> | NONSEQUENCED }

Primary Time Index Tables Definition
Primary Time Index (timecode_dt, timezero_date, bucket duration, columns, Sequenced_Flag)

Please see orange book for more details.

timecode_dt works in combination with

timebucket_duration and timezero_date.

11

Primary Time Index Tables (PTI)

Storage

distribution

choice

Time interval only

PRIMARY TIME INDEX

(TIMESTAMP(0),

DATE '2016-02-22', HOURS(2))

Time + column list

PRIMARY TIME INDEX

(TIMESTAMP(2),

DATE '1996-04-19', HOURS(2),

COLUMNS(COUNTRYID,CARID))

Column list only

PRIMARY TIME INDEX

(TIMESTAMP(6),

DATE '2013-01-01',

COLUMNS(SENSORID))

In-table

logical ordering

• NON-SEQUENCED PTI table
– Rows are stored in time-ascending order based on the value of the TD_TIMECODE field.

– Table will be Non-sequenced by default, if SEQUENCED/NONSEQUENCED is not specified.

• SEQUENCED PTI table
– Rows are stored in ascending order, first based on the value of the TD_TIMECODE field and then the

TD_SEQNO field.

– An optional maximum value can be specified for the TD_SEQ number value. The default maximum value
is 20000.

– Valid range of values for TD_SEQNO is 1 to 2147483647.

These are the time series table designer options. Most of it will be easy since they
should already understand the data layout and the kinds of queries most commonly
needed. Most companies will start with Time + column list and Time code only
These choices have a dramatic effect on query performance. By distributing data
across nodes and AMPs, we ensure parallelism. Furthermore, keys are hashed which
provides the top level index without the cost of maintaining B-trees. Then, within the
data blocks, there is in-table ordering which sorts the data into the timestamp order.
Teradata handles sorting on column lists already so there is no need to organize the
data this way when stored on disk.

© 2014 Teradata

12 © 2018 Teradata

Time Series – Fill Clause

12

13 © 2018 Teradata

Teradata Time Functions

When a GROUP BY TIME query is executed,

TD_GETTIMEBUCKET
System function retrieves the TD_TIMEBUCKET column value from a PTI table Because a timebucket is a hash key used to determine how well

the rows of a PTI table are being distributed across AMPs, avoiding skew.

TD_TIME_BUCKET_NUMBER
The TD_TIME_BUCKET_NUMBER system function calculates the time bucket number. You can use this function with the HASHROW,

HASHBUCKET, or HASHAMP functions to see how time series rows are distributed across the system.

TD_TIMESERIES_RANGE
The TD_TIMESERIES_RANGE macro finds the valid ranges of the TD_TIMECODE and TD_SEQNO columns in a PTI table.

13

1

Time Series

This section will cover time series.

1

2

Time Series data is data that is continuously produced and

collected over a period of time

Time Series features in Vantage allows the user to capture

and store Time Series data:

• Time Series data can be stored in tables with a Primary

Time Index defined on them

• A PTI table is ‘time-series’ aware and provides different

ways to store and order the time series data

• Optimized for time range queries

• The feature also supports time-aware aggregate

operations using the GROUP BY TIME clause

• Useful for forecasting, detecting patterns and trends, risk

reduction, etc.

Time Series

Time Series data is data that is continuously produced and collected over a period of
time. This kind of data is typically generated by machines such as sensors and other
applications and devices that make up the Internet Of Things (IOT). Each data point in
the Time Series data set is associated with a timestamp and an observed value at that
time. Time Series data can be stored and analyzed to provide capabilities such as
forecasting, detecting patterns and trends, anomaly detection, risk reduction etc.

The Teradata Time Series feature introduced in Teradata release 16.20 allows the user
to capture and store Time Series data and perform useful aggregate operations and
analytics on the data. Time Series data can be stored in tables with a new construct
Primary Time Index defined on them. A Primary Time Index table is ‘time-series’ aware
and provides different ways to store and order the time series data. The feature also
supports time-aware aggregate operations that can be performed on the data set. This
is done using the GROUP BY TIME clause and a set of ‘time-aware’ aggregate
functions. All this can be combined with the existing Teradata database capabilities
such as a full range of SQL support, rich collection of native and complex data types
including JSON, AVRO, CSV, XML and wide range of load and extract utilities resulting in
a powerful, feature-rich Time Series database offering.

2

3Time Series Categories

Class I: The 7/24 infinite time series

• Hydrology: USGS uses river monitoring devices to collect time series data on all major rivers and streams

• Oceanography: There is a world-wide buoy system collecting data on a 7/24 basis

• Building Monitoring systems, Manufacturing Line Monitoring Systems

Class II: Time Series with a “logical overlay”

• Automobile “Trip” – Start-Engine; drive from location A to location B; shut-down engine

• Plane “Flight” – Start-Engine; Take-off; Fly from location A to location B; Land; Shut-down engine

• Cargo Ship “Voyage” – Start Engine; Raise Anchor; Navigate from A to B; Drop Anchor; Shut down engine

Class III: Fixed-size (few thousand entries) Scientific Trace Time Series

• Oil Exploration: Seismic Traces used to determine geographical sub-layers

• Medicine: Traces associated with an Ultrasound Scan or CAT Scan

• Scientific: Traces associated with the Electron Microscope to investigate crystal or cell structures

There are three categories of Time-series data.
Class I

Class I is 7/24 infinite time-series. In this class, data continuously collected, 7
days a week, 24 hour a day, 365 days a year…nonstop. For example, the United
States Geological Survey (USGS) has Buoys in major rivers and streams
collecting on a 7/24 basis and for each Buoy station, you would have a time
series you keep adding data to the end. This would keep going on and on
collecting until infinity.

Class II
With Class II data, it’s a logical overlay… think about automobile… For a given
trip, you start the engine and drive from point A to a destination B and then
turn off the car. Overlay this trip data on the data that is collected for a given
car for say #113 or air plane # 933… The importance of these trip overlays is for
analysis where you may want to compare one trip to another trip for this same
car #113 or compare one air plane type to another plane that does the same
trip say Chicago to San Diego.

Class III
Class III is fixed size…Seismic Traces used to determine geographical sub-layers
where the receiving electronics are setup for this discrete series. For example,
data may be collected every millisecond for 6 seconds or 6,000 entries. That is
the complete series… then this fixed data represents a fixed size of time series
data to analyze. Other fields may have time-series data just long enough to
collect an ultra-scan, Cat scan or Microscope reading to be analyzed later. No
additional data is added to the end.

3

4

• High performance parallel distribution

• Customizable duration of Time Bucket

provides control of distribution

• Fast Primary AMP access

• Customizable distribution provides

AMP-local processing minimizes data

movement and speeds query

processing

• Fully automated; set once

AMP 1 AMP 2 AMP 3 AMP 4 AMP 5 AMP 6

2 hours

Time Bucket (customizable)

…

8AM 10AM 12PM 2PM 4PM 6PM

Three Storage Distribution Choices

Time Interval

only

Time Interval

and Column List
Column List only

What are the sensor readings

between 4:30pm and 5:30pm?
High Performance Parallelism with Efficient Storage and Access

Primary Time Index (PTI)

A PTI table can be defined with 3 different data distribution strategies and 2 different
ordering methods. We will discuss the distribution strategies in the next slide.

For ordering strategy, a PTI table can be defined as SEQUENCED or NONSEQUENCED in
the PRIMARY TIME INDEX clause.

A PTI table is NONSEQUENCED by default i.e. if the NONSEQUENCED keyword is
omitted from the PRIMARY TIME INDEX clause, the table will be considered to be non-
sequenced.
A sequenced PTI table will have the auto-generated TD_SEQNO column. The rows in
the table are first ordered by TD_TIMECODE and then by the TD_SEQNO value. When
more than one row has the same TD_TIMECODE value, those rows are ordered by the
TD_SEQNO value within the same TD_TIMECODE. The user is expected to provide
integer values for the TD_SEQNO column.

Having a sequence number field is useful if the incoming data has more than one
observation/reading at the same timestamp value. For example, consider a PTI table
that records the sales at a store on a daily basis. The sales are recorded per day – so
for a date of 2017-04-23, there could be 10 sales data. As the time bucket duration is
based on DAYS and not timestamp, the time at which a sale is done is not recorded.
Adding the sequence number can provide an ordering on the sales for each day.

4

5

Storage

distribution

choice

Time interval only
(hh:mm:ss)

Time + column list
(ID, hh:mm:ss)

Column list only
(ID, cost)

In-table

logical ordering

Time

code

only

Time code +

sequence number

Primary Time Index Distribution Strategy

These are the time series table designer options. Most of it will be easy since they
should already understand the data layout and the kinds of queries most commonly
needed. Most companies will start with Time + column list and Time code only.
These choices have a dramatic effect on query performance. By distributing data
across nodes and AMPs, we ensure parallelism. Furthermore, keys are hashed which
provides the top level index without the cost of maintaining B-trees. Then, within the
data blocks, there is in-table ordering which sorts the data into the timestamp order.
Teradata handles sorting on column lists already so there is no need to organize the
data this way when stored on disk.

The rows of a PTI table are distributed based on the TD_TIMEBUCKET column value
and/or one or more column values. Choosing a good distribution strategy depends on
the nature of the time series data and the kind of queries that are expected to be
used.

Time interval only - This kind of distribution is suitable for continuous time series data
coming from a single source.
Time + column list - This kind of distribution is suitable where there is continuous time
series data coming from multiple sources.
Column list only - This kind of distribution is suitable where the time series data is
short and with or without a logical overlay. For example a finite time series.

5

6Primary Time Index Tables

Primary Time Index Configuration Parameters:

CREATE [SET|MULTISET] [GLOBAL TEMPORARY | VOLATILE] TABLE

series_table_name> [, <table options>]

([<generated_column_section>,] <column definitions>)

PRIMARY TIME INDEX <optional_index_name>

(<timecode_dt> [, <timezero_date>] [,<timebucket_duration>] [,<columns_clause,>] [, <sequenced_flag>])

[<as clause>] [<index definitions>] [<commit options>] ;

<timecode_dt>: { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

<timezero_date>: A DATE value specificying the “time zero” associated with table

Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

<timebucket_duration>: A time duration specified by CAL_YEARS,

CAL_MONTHS,CAL_DAYS,WEEKS, DAYS, HOURS, MINUTES,

SECONDS, MILLISECONDS, MICROSECONDS.

<columns_clause,>: COLUMNS (<column_list>)

<sequenced_flag>: {SEQUENCED <optional_maximum> | NONSEQUENCED }

The configuration parameters associated with the PRIMARY TIME INDEX clause are as follows:

<Timecode_dt>: { DATE | TIMESTAMP(n) [WITH TIME ZONE] }
This specifies the date-time data type that is used to collect the time series data. The
TD_TIMECODE column that is generated will have the same data type that is specified here
and is used to hold the time value associated with the time series data.

<TimeZero_Date> : DATE
This specifies the earliest date at which the time series data collection starts. If not specified,
the default Time Zero date will be set to EPOCH time, January 1st, 1970 @ 00:00:00 hours.
Ideally, the Time Zero value should be set to a date just prior to when data collection starts in a
table. For example, if a PTI table is created and starts collecting data as of 2017-03-01, then the
Time Zero can be set to ‘2017-01-01’.

<TimeBucket_Duration> : time_unit(n) where time_unit = { CAL_YEARS | CAL_MONTHS |
CAL_DAYS | WEEKS | DAYS | HOURS | MINUTES | SECONDS | MILLISECONDS |
MICROSECONDS }
A time interval specification that breaks up the time series data into discrete groups called
timebuckets. The time units can also be specified using short-hand notation. The short-hand
forms are given in Table 1: Short hand forms for time unit durations.

<Columns_Clause> : COLUMNS(columns_list)
List of column names that specify the columns to be used to distribute the rows among the
AMPs.

<Sequenced_Flag> : SEQUENCED (max_val)| NONSEQUENCED
Used to specify an ordering sequence on the time series rows. If the sequenced_flag is absent
or if NONSEQUENCED is specified, the rows are ordered by the TD_TIMECODE column only. If
SEQUENCED flag is specified, the TD_SEQNO column is added to the table. The user needs to

6

supply the TD_SEQNO column values when inserting rows into the table.

6

7Primary Time Index Tables (cont.)

TD_TIMEBUCKET

• TD_TIMEBUCKET BIGINT NOT NULL GENERATED SYSTEM TIMECOLUMN

• Column is generated when the <timebucket_duration> clause is specified within the PRIMARY TIME INDEX clause

• Values are populated and managed by Teradata

• Hidden column: Cannot be updated, selected or referenced in a query

TD_TIMECODE

• TD_TIMECODE <timecode_dt> NOT NULL GENERATED TIMECOLUMN

• Data type should be TIME, TIMESTAMP or DATE – same as the <timecode_dt> clause within in the PRIMARY TIME

INDEX clause

• Value must always be provided by the user

TD_SEQNO

• TD_SEQNO INT NOT NULL GENERATED TIMECOLUMN

• Generated when the SEQUENCED clause is specified in the PRIMARY TIME INDEX clause

• Used to order the rows in a PTI table along with the TD_TIMECODE field

• The valid range of TD_SEQNO is between 1 to 2147483647 inclusively

• Default maximum is 20000

Auto-generated columns

The TD_TIMEBUCKET column is present when a <timebucket_duration> is specified
during table creation. It is a non-null column whose value is populated by Teradata
with the value calculated for the time bucket for the row. The column cannot be
updated, referenced or selected directly in a query.

The TD_TIMECODE column is always present in a PTI table. This column will contain
the time code value at which the measurement/observation occurs. It is a non-null
field that is always assigned a value by the user.

The TD_SEQNO field is present when the PTI table is defined as SEQUENCED. The
TD_SEQNO value is used to order the rows of the table along with the TD_TIMECODE
field. It is a non-null, integer field and the value must be supplied by the user. The valid
range of a TD_SEQNO field is 1 to a maximum of 2147483647. If no maximum value is
specified in the SEQUENCED(max_val) specification, then the default maximum is
20000. Note that if the SEQUENCED or NONSEQUENCED flag is not explicitly specified,
the table will be non-sequenced by default.
The auto-generated time columns are automatically added to a PTI table definition by
Teradata. If the user decides to explicitly specify the auto-generated columns in the
CREATE TABLE statement, then all the columns applicable for the table must be
specified. For example, if the CREATE TABLE statement issued by the user contains the
TD_TIMEBUCKET column only and not the other auto-generated time columns –
TD_TIMECODE

7

8Time Aware Aggregation Functions

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute

deviation

These new aggregate functions are only

invokable with the GROUP BY TIME clause

If not in the list above, then function is not

time aware and cannot be used with the

GROUP BY TIME clause

Note: Group By Time can be used on any table with a time column even if the table des not have a PTI

Here the different time series functions available as part of 16.20 release.

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic /
Windowed Aggregate function … not an aggregate function. The ordered analytic
function can only be invoked using the ordered analytic syntax. (See Function and
Operators SQL manual)

A set of aggregate functions is provided to support time series data (optionally stored
in Primary Time Index (PTI) tables). Additionally, some traditional functions support
time series as well. To operate on time series data, both time series-specific functions
and traditional functions are invoked in a GROUP BY TIME clause.

You can use the following aggregate functions on time series data in PTI tables by using
the GROUP BY TIME clause and in non-PTI tables by using the GROUP BY TIME clause
with the USING TIMECODE option:

• AVERAGE (AVG)
• COUNT
• KURTOSIS
• MAXIMUM (MAX)
• MINIMUM (MIN)
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)

8

9Time Aware Aggregate Example

TIMECODE-RANGE GROUP_BY_# BEACON TRAFFIC

‘2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 22 50

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 22 95

‘2017-08-11 09:00:00’, '2017-08-11 09:30:00’ 3 22 114

‘2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 22 37

‚2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 23 80

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 23 65

'2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 23 40

“For each beacon sensor location, show me the total foot traffic

in a ½ hour increment, over 2 hours”

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00' AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME(MINUTES(30) AND BEACON_ID) USING TIMECODE(Date_Time)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

When our user wants to understand traffic over time, it gets a bit more complicated to
write the query. Typically, there is a lot of time arithmetic involved and it’s
cumbersome to change once coded.

By using the GROUP BY TIME function, this is all resolved. Users can now easily ask
their questions and then quickly iterate if a different group is necessary.

Did you see what really happened here? The data scientist just went from days of work
down to minutes. Organizing the data set manually and applying any kind of analytic
function is not simply expressing the SQL and attaching functions. All that data
preparation we hear so many complaints about just vanished because the database
solved most everything during ingest and optimized the access.

This query would be difficult if not for the time series features. Specifically, it would
end up as multiple nested SQL statements. As the user wants to iterate and change
the granularity or then join to other tables with different time granularity, it
becomes much more complex. Having GROUP BY TIME resolves these complexity
and allows users to do what they need to do: Analytics!

9

10

10Time Series – FILL Clause

FILL SCHEME AGGREGATE RESULT

NULLS Null

<Constant> A constant value

PREV/PREVIOUS Same as the previous time bucket’s result

NEXT Same as the next time bucket’s result

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00’

AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME(MINUTES(30) AND BEACON_ID)

USING TIMECODE(DATE_TIME)

FILL (NULLS)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

Use the FILL clause to replace missing values with a constant value for time buckets
with missing values.

11Many SQL Table Designs Include Time

Partitioned

Primary Index (PPI)

Temporal

Tables

Primary

Time Index (PTI)

Business • Multi-dimensional

analytics

• Hierarchical analytics

• Date, character, or

numeric levels

• Time periods (ranges)

• Historical relevance

• Audit – what was the

situation when…

• High volume time stamped

data

• Time aware analytics

• Sorted data

• Unique algorithms

Technology • Multi-level (up to 64)

• Does not effect row

distribution to the AMPs

• Data is not ordered

• Slowly changing

dimensions

• Insert, update, delete

• Normalize and overlap

functions

• Distribution to AMPs by

time buckets

• Updates/deletes rare

• Insert late arrival data

• Multivariate payload

common

All table types can use “GROUP BY TIME”

PPI organizes data within the AMP. It does not determine which AMP the data goes to.
This yields highly effective all AMP operations.

It also has multi level partitions, which uses different keys within the partition
to segment further. This helps with BI tools. PPI and MLPPI helps get rid of
OLAP cubes.

Temporal is a time based table.
This is about effective management of a time period. When is a row effective
within a time period. And when did the RDBMS know about this row.
When did I know this happened? When did I know what? Very useful in audits.
Nothing here affects row redistribution.
We are recording when changes happen to a row.
Normalize and overlap are functions for this.

PTI
Now its about the buckets. If I make the primary index time, all the events
would be on different AMPs. This would cause massive redistributions. So the
buckets collect events on an AMP and collocating records that are grouped in
the bucket
You actually can do updates and deletes. But should not be doing many of
them. Rarely should you be updating the sensor reading.
It doesn’t really append, it just creates another partition on another AMP
If data arrives late, data is still stored in the right bucket.
The common SQL functions –bottom, top, median, variance, etc. – are available
on all tables.

11

12Analytics in Action

“How Can We Serve our High-Value Customers Better?”

Customer locations (Geospatial)
• Current customers’ addresses and

distance to our store(s) and competitors

• Beacon data

Customer interests and product

availability (Time-based)
• Customers recently and frequently

searched/browsed products

• Current product sell rate and inventory at

our store(s)

Valid promotion periods and

seasonality (Temporal)
• Store hours

• Current promotion begin/end dates

• Holidays and special events

Business data
• High-value customers

• Sales/order history

“Identify high-value customers
whose purchase interests match our

current product promotions and
currently live near one of our stores.

Send an e-mail with a special
discount coupon.”

https://web.microsoftstream.com/video/3f8dd0d6-694b-4230-9edb-e3ad8cdc166c?list=studio

Let’s look at this 4D Analytics in action using a theoretical example of a retailer with
existing promotions that wants to attract high-value customers into the store.

As a strategy, the company wants to identify high-value customers whose purchase
interests match current product promotions and are physically near the store, then
send an e-mail with a special discount coupon. To do this, the company can integrate:

1) Current customer location. For example, it may identify potential customers who
are currently within a 1-mile radius from the store. This is ‘where’ analysis.

2) Particular product interests of the customers based on their recent and frequent
web searches or browsing data, as well as the real-time or near-real time sell-rate
and inventory level of products. This usually is time-based analysis.

3) There are particular begin and end dates associated with promotions, and even
store hours. Also, some product sales may be highly affected by holidays,
seasonality, or special events going on in the area. This usually is temporal.

4) All of those can be combined with the business data, such as a pre-existing list of
high-value customers and their sales and order history.

As you can see, integration of the business and operational analytics with the
analytics capabilities for ‘where’ and ‘when’ can provide powerful insights that can
create actions and improve business outcomes.

12

1

Time Series

This section will cover time series.

1

2

Time Series data is data that is continuously produced and

collected over a period of time

Time Series features in Vantage allows the user to capture

and store Time Series data:

• Time Series data can be stored in tables with a Primary

Time Index defined on them

• A PTI table is ‘time-series’ aware and provides different

ways to store and order the time series data

• Optimized for time range queries

• The feature also supports time-aware aggregate

operations using the GROUP BY TIME clause

• Useful for forecasting, detecting patterns and trends, risk

reduction, etc.

Time Series

Time Series data is data that is continuously produced and collected over a period of
time. This kind of data is typically generated by machines such as sensors and other
applications and devices that make up the Internet Of Things (IOT). Each data point in
the Time Series data set is associated with a timestamp and an observed value at that
time. Time Series data can be stored and analyzed to provide capabilities such as
forecasting, detecting patterns and trends, anomaly detection, risk reduction etc.

The Teradata Time Series feature introduced in Teradata release 16.20 allows the user
to capture and store Time Series data and perform useful aggregate operations and
analytics on the data. Time Series data can be stored in tables with a new construct
Primary Time Index defined on them. A Primary Time Index table is ‘time-series’ aware
and provides different ways to store and order the time series data. The feature also
supports time-aware aggregate operations that can be performed on the data set. This
is done using the GROUP BY TIME clause and a set of ‘time-aware’ aggregate
functions. All this can be combined with the existing Teradata database capabilities
such as a full range of SQL support, rich collection of native and complex data types
including JSON, AVRO, CSV, XML and wide range of load and extract utilities resulting in
a powerful, feature-rich Time Series database offering.

2

3Time Series Categories

Class I: The 7/24 infinite time series

• Hydrology: USGS uses river monitoring devices to collect time series data on all major rivers and streams

• Oceanography: There is a world-wide buoy system collecting data on a 7/24 basis

• Building Monitoring systems, Manufacturing Line Monitoring Systems

Class II: Time Series with a “logical overlay”

• Automobile “Trip” – Start-Engine; drive from location A to location B; shut-down engine

• Plane “Flight” – Start-Engine; Take-off; Fly from location A to location B; Land; Shut-down engine

• Cargo Ship “Voyage” – Start Engine; Raise Anchor; Navigate from A to B; Drop Anchor; Shut down engine

Class III: Fixed-size (few thousand entries) Scientific Trace Time Series

• Oil Exploration: Seismic Traces used to determine geographical sub-layers

• Medicine: Traces associated with an Ultrasound Scan or CAT Scan

• Scientific: Traces associated with the Electron Microscope to investigate crystal or cell structures

There are three categories of Time-series data.
Class I

Class I is 7/24 infinite time-series. In this class, data continuously collected, 7
days a week, 24 hour a day, 365 days a year…nonstop. For example, the United
States Geological Survey (USGS) has Buoys in major rivers and streams
collecting on a 7/24 basis and for each Buoy station, you would have a time
series you keep adding data to the end. This would keep going on and on
collecting until infinity.

Class II
With Class II data, it’s a logical overlay… think about automobile… For a given
trip, you start the engine and drive from point A to a destination B and then
turn off the car. Overlay this trip data on the data that is collected for a given
car for say #113 or air plane # 933… The importance of these trip overlays is for
analysis where you may want to compare one trip to another trip for this same
car #113 or compare one air plane type to another plane that does the same
trip say Chicago to San Diego.

Class III
Class III is fixed size…Seismic Traces used to determine geographical sub-layers
where the receiving electronics are setup for this discrete series. For example,
data may be collected every millisecond for 6 seconds or 6,000 entries. That is
the complete series… then this fixed data represents a fixed size of time series
data to analyze. Other fields may have time-series data just long enough to
collect an ultra-scan, Cat scan or Microscope reading to be analyzed later. No
additional data is added to the end.

3

4

• High performance parallel distribution

• Customizable duration of Time Bucket

provides control of distribution

• Fast Primary AMP access

• Customizable distribution provides

AMP-local processing minimizes data

movement and speeds query

processing

• Fully automated; set once

AMP 1 AMP 2 AMP 3 AMP 4 AMP 5 AMP 6

2 hours

Time Bucket (customizable)

…

8AM 10AM 12PM 2PM 4PM 6PM

Three Storage Distribution Choices

Time Interval

only

Time Interval

and Column List
Column List only

What are the sensor readings

between 4:30pm and 5:30pm?
High Performance Parallelism with Efficient Storage and Access

Primary Time Index (PTI)

A PTI table can be defined with 3 different data distribution strategies and 2 different
ordering methods. We will discuss the distribution strategies in the next slide.

For ordering strategy, a PTI table can be defined as SEQUENCED or NONSEQUENCED in
the PRIMARY TIME INDEX clause.

A PTI table is NONSEQUENCED by default i.e. if the NONSEQUENCED keyword is
omitted from the PRIMARY TIME INDEX clause, the table will be considered to be non-
sequenced.
A sequenced PTI table will have the auto-generated TD_SEQNO column. The rows in
the table are first ordered by TD_TIMECODE and then by the TD_SEQNO value. When
more than one row has the same TD_TIMECODE value, those rows are ordered by the
TD_SEQNO value within the same TD_TIMECODE. The user is expected to provide
integer values for the TD_SEQNO column.

Having a sequence number field is useful if the incoming data has more than one
observation/reading at the same timestamp value. For example, consider a PTI table
that records the sales at a store on a daily basis. The sales are recorded per day – so
for a date of 2017-04-23, there could be 10 sales data. As the time bucket duration is
based on DAYS and not timestamp, the time at which a sale is done is not recorded.
Adding the sequence number can provide an ordering on the sales for each day.

4

5

Storage

distribution

choice

Time interval only
(hh:mm:ss)

Time + column list
(ID, hh:mm:ss)

Column list only
(ID, cost)

In-table

logical ordering

Time

code

only

Time code +

sequence number

Primary Time Index Distribution Strategy

These are the time series table designer options. Most of it will be easy since they
should already understand the data layout and the kinds of queries most commonly
needed. Most companies will start with Time + column list and Time code only.
These choices have a dramatic effect on query performance. By distributing data
across nodes and AMPs, we ensure parallelism. Furthermore, keys are hashed which
provides the top level index without the cost of maintaining B-trees. Then, within the
data blocks, there is in-table ordering which sorts the data into the timestamp order.
Teradata handles sorting on column lists already so there is no need to organize the
data this way when stored on disk.

The rows of a PTI table are distributed based on the TD_TIMEBUCKET column value
and/or one or more column values. Choosing a good distribution strategy depends on
the nature of the time series data and the kind of queries that are expected to be
used.

Time interval only - This kind of distribution is suitable for continuous time series data
coming from a single source.
Time + column list - This kind of distribution is suitable where there is continuous time
series data coming from multiple sources.
Column list only - This kind of distribution is suitable where the time series data is
short and with or without a logical overlay. For example a finite time series.

5

6Primary Time Index Tables

Primary Time Index Configuration Parameters:

CREATE [SET|MULTISET] [GLOBAL TEMPORARY | VOLATILE] TABLE

series_table_name> [, <table options>]

([<generated_column_section>,] <column definitions>)

PRIMARY TIME INDEX <optional_index_name>

(<timecode_dt> [, <timezero_date>] [,<timebucket_duration>] [,<columns_clause,>] [, <sequenced_flag>])

[<as clause>] [<index definitions>] [<commit options>] ;

<timecode_dt>: { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

<timezero_date>: A DATE value specificying the “time zero” associated with table

Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

<timebucket_duration>: A time duration specified by CAL_YEARS,

CAL_MONTHS,CAL_DAYS,WEEKS, DAYS, HOURS, MINUTES,

SECONDS, MILLISECONDS, MICROSECONDS.

<columns_clause,>: COLUMNS (<column_list>)

<sequenced_flag>: {SEQUENCED <optional_maximum> | NONSEQUENCED }

The configuration parameters associated with the PRIMARY TIME INDEX clause are as follows:

<Timecode_dt>: { DATE | TIMESTAMP(n) [WITH TIME ZONE] }
This specifies the date-time data type that is used to collect the time series data. The
TD_TIMECODE column that is generated will have the same data type that is specified here
and is used to hold the time value associated with the time series data.

<TimeZero_Date> : DATE
This specifies the earliest date at which the time series data collection starts. If not specified,
the default Time Zero date will be set to EPOCH time, January 1st, 1970 @ 00:00:00 hours.
Ideally, the Time Zero value should be set to a date just prior to when data collection starts in a
table. For example, if a PTI table is created and starts collecting data as of 2017-03-01, then the
Time Zero can be set to ‘2017-01-01’.

<TimeBucket_Duration> : time_unit(n) where time_unit = { CAL_YEARS | CAL_MONTHS |
CAL_DAYS | WEEKS | DAYS | HOURS | MINUTES | SECONDS | MILLISECONDS |
MICROSECONDS }
A time interval specification that breaks up the time series data into discrete groups called
timebuckets. The time units can also be specified using short-hand notation. The short-hand
forms are given in Table 1: Short hand forms for time unit durations.

<Columns_Clause> : COLUMNS(columns_list)
List of column names that specify the columns to be used to distribute the rows among the
AMPs.

<Sequenced_Flag> : SEQUENCED (max_val)| NONSEQUENCED
Used to specify an ordering sequence on the time series rows. If the sequenced_flag is absent
or if NONSEQUENCED is specified, the rows are ordered by the TD_TIMECODE column only. If
SEQUENCED flag is specified, the TD_SEQNO column is added to the table. The user needs to

6

supply the TD_SEQNO column values when inserting rows into the table.

6

7Primary Time Index Tables (cont.)

TD_TIMEBUCKET

• TD_TIMEBUCKET BIGINT NOT NULL GENERATED SYSTEM TIMECOLUMN

• Column is generated when the <timebucket_duration> clause is specified within the PRIMARY TIME INDEX clause

• Values are populated and managed by Teradata

• Hidden column: Cannot be updated, selected or referenced in a query

TD_TIMECODE

• TD_TIMECODE <timecode_dt> NOT NULL GENERATED TIMECOLUMN

• Data type should be TIME, TIMESTAMP or DATE – same as the <timecode_dt> clause within in the PRIMARY TIME

INDEX clause

• Value must always be provided by the user

TD_SEQNO

• TD_SEQNO INT NOT NULL GENERATED TIMECOLUMN

• Generated when the SEQUENCED clause is specified in the PRIMARY TIME INDEX clause

• Used to order the rows in a PTI table along with the TD_TIMECODE field

• The valid range of TD_SEQNO is between 1 to 2147483647 inclusively

• Default maximum is 20000

Auto-generated columns

The TD_TIMEBUCKET column is present when a <timebucket_duration> is specified
during table creation. It is a non-null column whose value is populated by Teradata
with the value calculated for the time bucket for the row. The column cannot be
updated, referenced or selected directly in a query.

The TD_TIMECODE column is always present in a PTI table. This column will contain
the time code value at which the measurement/observation occurs. It is a non-null
field that is always assigned a value by the user.

The TD_SEQNO field is present when the PTI table is defined as SEQUENCED. The
TD_SEQNO value is used to order the rows of the table along with the TD_TIMECODE
field. It is a non-null, integer field and the value must be supplied by the user. The valid
range of a TD_SEQNO field is 1 to a maximum of 2147483647. If no maximum value is
specified in the SEQUENCED(max_val) specification, then the default maximum is
20000. Note that if the SEQUENCED or NONSEQUENCED flag is not explicitly specified,
the table will be non-sequenced by default.
The auto-generated time columns are automatically added to a PTI table definition by
Teradata. If the user decides to explicitly specify the auto-generated columns in the
CREATE TABLE statement, then all the columns applicable for the table must be
specified. For example, if the CREATE TABLE statement issued by the user contains the
TD_TIMEBUCKET column only and not the other auto-generated time columns –
TD_TIMECODE

7

8Time Aware Aggregation Functions

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute

deviation

These new aggregate functions are only

invokable with the GROUP BY TIME clause

If not in the list above, then function is not

time aware and cannot be used with the

GROUP BY TIME clause

Note: Group By Time can be used on any table with a time column even if the table des not have a PTI

Here the different time series functions available as part of 16.20 release.

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic /
Windowed Aggregate function … not an aggregate function. The ordered analytic
function can only be invoked using the ordered analytic syntax. (See Function and
Operators SQL manual)

A set of aggregate functions is provided to support time series data (optionally stored
in Primary Time Index (PTI) tables). Additionally, some traditional functions support
time series as well. To operate on time series data, both time series-specific functions
and traditional functions are invoked in a GROUP BY TIME clause.

You can use the following aggregate functions on time series data in PTI tables by using
the GROUP BY TIME clause and in non-PTI tables by using the GROUP BY TIME clause
with the USING TIMECODE option:

• AVERAGE (AVG)
• COUNT
• KURTOSIS
• MAXIMUM (MAX)
• MINIMUM (MIN)
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)

8

9Time Aware Aggregate Example

TIMECODE-RANGE GROUP_BY_# BEACON TRAFFIC

‘2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 22 50

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 22 95

‘2017-08-11 09:00:00’, '2017-08-11 09:30:00’ 3 22 114

‘2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 22 37

‚2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 23 80

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 23 65

'2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 23 40

“For each beacon sensor location, show me the total foot traffic

in a ½ hour increment, over 2 hours”

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00' AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME(MINUTES(30) AND BEACON_ID) USING TIMECODE(Date_Time)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

When our user wants to understand traffic over time, it gets a bit more complicated to
write the query. Typically, there is a lot of time arithmetic involved and it’s
cumbersome to change once coded.

By using the GROUP BY TIME function, this is all resolved. Users can now easily ask
their questions and then quickly iterate if a different group is necessary.

Did you see what really happened here? The data scientist just went from days of work
down to minutes. Organizing the data set manually and applying any kind of analytic
function is not simply expressing the SQL and attaching functions. All that data
preparation we hear so many complaints about just vanished because the database
solved most everything during ingest and optimized the access.

This query would be difficult if not for the time series features. Specifically, it would
end up as multiple nested SQL statements. As the user wants to iterate and change
the granularity or then join to other tables with different time granularity, it
becomes much more complex. Having GROUP BY TIME resolves these complexity
and allows users to do what they need to do: Analytics!

9

10

10Time Series – FILL Clause

FILL SCHEME AGGREGATE RESULT

NULLS Null

<Constant> A constant value

PREV/PREVIOUS Same as the previous time bucket’s result

NEXT Same as the next time bucket’s result

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00’

AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME(MINUTES(30) AND BEACON_ID)

USING TIMECODE(DATE_TIME)

FILL (NULLS)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

Use the FILL clause to replace missing values with a constant value for time buckets
with missing values.

11Many SQL Table Designs Include Time

Partitioned

Primary Index (PPI)

Temporal

Tables

Primary

Time Index (PTI)

Business • Multi-dimensional

analytics

• Hierarchical analytics

• Date, character, or

numeric levels

• Time periods (ranges)

• Historical relevance

• Audit – what was the

situation when…

• High volume time stamped

data

• Time aware analytics

• Sorted data

• Unique algorithms

Technology • Multi-level (up to 64)

• Does not effect row

distribution to the AMPs

• Data is not ordered

• Slowly changing

dimensions

• Insert, update, delete

• Normalize and overlap

functions

• Distribution to AMPs by

time buckets

• Updates/deletes rare

• Insert late arrival data

• Multivariate payload

common

All table types can use “GROUP BY TIME”

PPI organizes data within the AMP. It does not determine which AMP the data goes to.
This yields highly effective all AMP operations.

It also has multi level partitions, which uses different keys within the partition
to segment further. This helps with BI tools. PPI and MLPPI helps get rid of
OLAP cubes.

Temporal is a time based table.
This is about effective management of a time period. When is a row effective
within a time period. And when did the RDBMS know about this row.
When did I know this happened? When did I know what? Very useful in audits.
Nothing here affects row redistribution.
We are recording when changes happen to a row.
Normalize and overlap are functions for this.

PTI
Now its about the buckets. If I make the primary index time, all the events
would be on different AMPs. This would cause massive redistributions. So the
buckets collect events on an AMP and collocating records that are grouped in
the bucket
You actually can do updates and deletes. But should not be doing many of
them. Rarely should you be updating the sensor reading.
It doesn’t really append, it just creates another partition on another AMP
If data arrives late, data is still stored in the right bucket.
The common SQL functions –bottom, top, median, variance, etc. – are available
on all tables.

11

12Analytics in Action

“How Can We Serve our High-Value Customers Better?”

Customer locations (Geospatial)
• Current customers’ addresses and

distance to our store(s) and competitors

• Beacon data

Customer interests and product

availability (Time-based)
• Customers recently and frequently

searched/browsed products

• Current product sell rate and inventory at

our store(s)

Valid promotion periods and

seasonality (Temporal)
• Store hours

• Current promotion begin/end dates

• Holidays and special events

Business data
• High-value customers

• Sales/order history

“Identify high-value customers
whose purchase interests match our

current product promotions and
currently live near one of our stores.

Send an e-mail with a special
discount coupon.”

https://web.microsoftstream.com/video/3f8dd0d6-694b-4230-9edb-e3ad8cdc166c?list=studio

Let’s look at this 4D Analytics in action using a theoretical example of a retailer with
existing promotions that wants to attract high-value customers into the store.

As a strategy, the company wants to identify high-value customers whose purchase
interests match current product promotions and are physically near the store, then
send an e-mail with a special discount coupon. To do this, the company can integrate:

1) Current customer location. For example, it may identify potential customers who
are currently within a 1-mile radius from the store. This is ‘where’ analysis.

2) Particular product interests of the customers based on their recent and frequent
web searches or browsing data, as well as the real-time or near-real time sell-rate
and inventory level of products. This usually is time-based analysis.

3) There are particular begin and end dates associated with promotions, and even
store hours. Also, some product sales may be highly affected by holidays,
seasonality, or special events going on in the area. This usually is temporal.

4) All of those can be combined with the business data, such as a pre-existing list of
high-value customers and their sales and order history.

As you can see, integration of the business and operational analytics with the
analytics capabilities for ‘where’ and ‘when’ can provide powerful insights that can
create actions and improve business outcomes.

12

Overview
The following sections describe SQL aggregate functions.

For information on:

• Window aggregate functions and their Teradata-specific equivalents, see Window Aggregate
Functions.

• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ SQL
Operators and User-Defined Functions, B035-1210.

• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and
User-Defined Functions, B035-1210.

About Aggregate Functions
Aggregate functions are typically used in arithmetic expressions. Aggregate functions operate on a group
of rows and return a single numeric value in the result table for each group.

In the following statement, the SUM aggregate function operates on the group of rows defined by the
Sales_Table table:

 SELECT SUM(Total_Sales)
 FROM Sales_Table;
 Sum(Total_Sales)

5192.40

You can use GROUP BY clauses to produce more complex, finer grained results in multiple result values.
In the following statement, the SUM aggregate function operates on groups of rows defined by the
Product_ID column in the Sales_Table table:

 SELECT Product_ID, SUM(Total_Sales)
 FROM Sales_Table
 GROUP BY Product_ID;
 Product_ID Sum(Total_Sales)
 ---------- ----------------

101 2100.00
107 1000.40
102 2092.00

Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 18

Aggregates in the Select List
Aggregate functions are normally used in the expression list of a SELECT statement and in the summary
list of a WITH clause.

Aggregates and GROUP BY
If you use an aggregate function in the select list of an SQL statement, then either all other columns
occurring in the select list must also be referenced by means of aggregate functions or their column name
must appear in a GROUP BY clause. For example, the following statement uses an aggregate function
and a column in the select list and references the column name in the GROUP BY clause:

 SELECT COUNT(*), Product_ID
 FROM Sales_Table
 GROUP BY Product_ID;

The reason for this is that aggregates return only one value, while a non-GROUP BY column reference
can return any number of values.

Aggregates and Date
It is valid to apply AVG, MIN, MAX, or COUNT to a date. It is not valid to specify SUM(date).

Aggregates and Literal Expressions in the Select List
Literal expressions in the select list may optionally appear in the GROUP BY clause. For example, the
following statement uses an aggregate function and a literal expression in the select list, and does not use
a GROUP BY clause:

 SELECT COUNT(*),
 SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14)) FROM 1 FOR 8)
 FROM Sales_Table;

The results of such statements when the table has no rows depends on the type of literal expression.

IF the literal
expression … THEN the result of the literal expression in the query result is …

does not contain a
column reference
is a non-deterministic
function, such as
RANDOM

the value of the literal expression.
Functions such as RANDOM are computed in the immediate retrieve step of the
request instead of in the aggregation step.
Here is an example:
SELECT COUNT(*),
SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14))
FROM 1 FOR 8)
FROM Sales_Table;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 19

IF the literal
expression … THEN the result of the literal expression in the query result is …

Count(*) Substring(Current Time(0) From 1 For 8)
-------- ---------------------------------------
 0 09:01:43

contains a column
reference
is a UDF

NULL.
Here is an example:
SELECT COUNT(*), UDF_CALC(1,2)
FROM Sales_Table;
 Count(*) UDF_CALC(1,2)
----------- -------------
 0 ?

Nesting Aggregates
Aggregate operations cannot be nested. The following aggregate is not valid and returns an error:

 AVG(MAXIMUM (Salary))

Although direct nesting of aggregates is not supported, nested aggregates can be evaluated using a
derived table that contains the aggregates to be nested. For more information, see Teradata Vantage™
Time Series Tables and Operations, B035-1208.

Also, aggregates can be nested in aggregate window functions. The following statement is valid and
includes an aggregate SUM function nested in a RANK window function:

 SELECT region
 ,product
 ,SUM(amount)
 ,RANK() OVER (PARTITION BY region ORDER by SUM (amount))
 FROM table;

Results of Aggregation on Zero Rows
Aggregation on zero rows behaves as indicated by the following table.

This form of aggregate function …
Returns this result when there are
zero rows …

COUNT(expression) WHERE … 0

all other forms of aggregate_operator (expression) WHERE … Null

aggregate_operator (expression) … GROUP BY …
aggregate_operator (expression) … HAVING …

No Record Found

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 20

Aggregates and Nulls
Aggregates (with the exception of COUNT(*)) ignore nulls in all computations.

Note:
A UDT column value is null only when you explicitly place a NULL in a column, not when a UDT
instance has an attribute that is set to null.

Ignoring nulls can result in apparent nontransitive anomalies. For example, if there are nulls in either
column A or column B (or both), then the following expression is virtually always true.

 SUM(A) + SUM(B) <> SUM(A+B)

The only exception to this is the case in which the values for columns A and B are both null in the same
rows, because in those cases the entire row is disregarded in the aggregation. This is a trivial case that
does not violate the general rule.

More formally stated, if and only if field A and field B are both null for every occurrence of a null in either
field is the above inequality false.

For examples that illustrate this behavior, see "Example: Employees Returned as Nulls" and "Example:
Counting Employees Not Yet Assigned to a Department" in Result Type and Attributes. Note that the
aggregates are behaving exactly as they should, the results are not mathematically anomalous.

There are several ways to work around this apparent nontransitivity issue if it presents a problem. Either
solution provides the same consistent results.

• Always define your numeric columns as NOT NULL DEFAULT 0.
• Use the ZEROIFNULL function within the aggregate function to convert any nulls to zeros for the

computation, for example SUM(ZEROIFNULL(x) + ZEROIFNULL(y)), which produces the same result
as SUM(ZEROIFNULL(x)) + SUM(ZEROIFNULL(y)).

Aggregate Operations on Floating Point Data
Operations involving floating point numbers are not always associative due to approximation and rounding
errors: ((A + B) + C) is not always equal to (A + (B + C)).

Although not readily apparent, the non-associativity of floating point arithmetic can also affect aggregate
operations: you can get different results each time you use an aggregate function on a given set of floating
point data. When Teradata Database performs an aggregation, it accumulates individual terms from each
AMP involved in the computation and evaluates the terms in order of arrival to produce the final result.
Because the order of evaluation can produce slightly different results, and because the order in which
individual AMPs finish their part of the work is unpredictable, the results of an aggregate function on the
same data on the same system can vary.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 21

Aggregates and LOBs
Aggregates do not operate on CLOB or BLOB data types.

Aggregates and Period Data Types
Aggregates (with the exception of COUNT) do not operate on Period data types.

Aggregates and SELECT AND CONSUME Statements
Aggregates cannot appear in SELECT AND CONSUME statements.

Aggregates and Recursive Queries
Aggregate functions cannot appear in a recursive statement of a recursive query. However, a non-recursive
seed statement in a recursive query can specify an aggregate function.

Aggregates in WHERE and HAVING Clauses
Aggregates can appear in the following types of clauses:

• The WHERE clause of an ABORT statement to specify an abort condition.

But an aggregate function cannot appear in the WHERE clause of a SELECT statement.

• A HAVING clause to specify a group condition.

DISTINCT Option
The DISTINCT option specifies that duplicate values are not to be used when an expression is processed.

The following SELECT returns the number of unique job titles in a table.

 SELECT COUNT(DISTINCT JobTitle) FROM Employee;

A query can have multiple aggregate functions that use DISTINCT with the same expression, as shown
by the following example.

 SELECT SUM(DISTINCT x), AVG(DISTINCT x) FROM XTable;

A query can also have multiple aggregate functions that use DISTINCT with different expressions, for
example:

 SELECT SUM(DISTINCT x), SUM(DISTINCT y) FROM XYTable;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 22

Aggregates and Row Level Security Tables
When a request that includes an aggregate function, such as SUM, COUNT, MAX, MIN or AVG, references
a table protected by row level security, the aggregation is based on only the rows that are accessible to
the requesting user. In order to apply all rows of the table to the aggregation, the user must have one of
the following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Time Series Aggregate Functions Overview
A set of aggregate functions is provided to support time series data (optionally stored in Primary Time
Index (PTI) tables). Additionally, some traditional functions support time series as well. To operate on time
series data, both time series-specific functions and traditional functions are invoked in a GROUP BY TIME
clause.

Traditional Aggregate Functions that Support Time Series

You can use the following aggregate functions on time series data in PTI tables by using the GROUP BY
TIME clause and in non-PTI tables by using the GROUP BY TIME clause with the USING TIMECODE
option. For more information on these functions, see Teradata Vantage™ Time Series Tables and
Operations, B035-1208.

• AVERAGE
• COUNT
• KURTOSIS
• MAXIMUM
• MINIMUM
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)

Related Topics
For more information on potential problems associated with floating point values in computations, see
Teradata Vantage™ Data Types and Literals, B035-1143.

For more details on:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 23

• Window aggregate functions and their Teradata-specific equivalents, see Window Aggregate
Functions.

• Aggregate user-defined functions (UDFs), see Teradata Vantage™ NewSQL Engine Security
Administration, B035-1100.

• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and
User-Defined Functions, B035-1210.

• Row level security, see Teradata Vantage™ NewSQL Engine Security Administration, B035-1100.
• Time series-specific aggregate functions, see Teradata Vantage™ Time Series Tables and

Operations, B035-1208.

AVG
Purpose

Returns the arithmetic average of all values in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null of value_expression, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

value_expression

A literal or column expression for which an average is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 24

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

AVERAGE and AVE are Teradata extensions to the ANSI standard.

Return Value
This function returns the REAL data type.

Computation of INTEGER or DECIMAL Values
An AVG of a DECIMAL or INTEGER value may overflow if the individual values are very large or if there
is a large number of values.

If this occurs, change the AVG call to include a CAST function that converts the DECIMAL or INTEGER
values to REAL as shown in the following example:

 AVG(CAST(value AS REAL))

Casting the values as REAL before averaging causes a slight loss in precision.

The type of the result is REAL in either case, so the only effect of the CAST is to accept a slight loss of
precision where a result might not otherwise be available at all.

If x is an integer, AVG does not display a fractional value. A fractional value may be obtained by casting
the value as DECIMAL, for example the following CAST to DECIMAL.

 CAST(AVG(value) AS DECIMAL(9,2))

Restrictions
AVG is valid only for numeric data.

Nulls are not included in the result computation.

Example: Using the AVG Function
Example: Querying the Sales Table for Average Sales by Region

This example queries the sales table for average sales by region and returns the following results.

 SELECT Region, AVG(sales)
 FROM sales_tbl
 GROUP BY Region
 ORDER BY Region;

 Region Average (sales)

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 25

 ------ ---------------
 North 21840.17
 East 55061.32
 Midwest 15535.73

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

AVG Window Function
For the AVG window function that computes a group, cumulative, or moving average, see Window
Aggregate Functions.

Related Topics
For more information, see:

• For more information on potential problems associated with floating point values in computations, see
Teradata Vantage™ Data Types and Literals, B035-1143.

• For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

• Teradata Vantage™ NewSQL Engine Security Administration, B035-1100
• For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language

Syntax and Examples, B035-1144.
• To disable the AVG extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control

Record to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and

Literals, B035-1143.
• For more information on nulls, see Teradata Vantage™ SQL Fundamentals, B035-1141 and

Aggregates and Nulls.
• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ SQL

Operators and User-Defined Functions, B035-1210.
• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and

User-Defined Functions, B035-1210.

CORR
Purpose

Returns the Sample Pearson product moment correlation coefficient of its arguments for all non-null data
point pairs.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 26

Syntax Elements

value_expression_2/value_expression_1

A numeric expression to be correlated with a second numeric expression.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The Sample Pearson product moment correlation coefficient is a measure of the linear association
between variables. The boundary on the computed coefficient ranges from -1.00 to +1.00.

Note that high correlation does not imply a causal relationship between the variables.

The following table indicates the meaning of four extreme values for the coefficient of correlation between
two variables.

IF the correlation
coefficient has this
value … THEN the association between the variables …

-1.00 is perfectly linear, but inverse.
As the value for y varies, the value for x varies identically in the opposite
direction.

0 does not exist and they are said to be uncorrelated.

+1.00 is perfectly linear.
As the value for y varies, the value for x varies identically in the same direction.

NULL cannot be measured because there are no non-null data point pairs in the data
used for the computation.

Computation
The equation for computing CORR is defined as follows:

This variable … Represents …

x value_expression_2

y value_expression_1

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 27

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for CORR(y, x) are as follows.

Data Type Format Title

REAL the default format for DECIMAL(7,6) CORR(y,x)

For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including CORR, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Combination With Other Functions
CORR can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or ORDER
BY clause. For information on ordered analytical functions, see Ordered Analytical Functions.

CORR cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause, or
ORDER BY clause.

Example: Querying Data from the HomeSales Table

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area
---------- ------- ---------
 160000 126 358711030

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 28

 180000 103 358711030
 200000 82 358711030
 220000 75 358711030
 240000 82 358711030
 260000 40 358711030
 280000 20 358711030

Consider the following query.

 SELECT CAST (CORR(NbrSold,SalesPrice) AS DECIMAL (6,4))
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice Between 160000 AND 280000;

 CORR(NbrSold,SalesPrice)

 -.9543

The result -.9543 suggests an inverse relationship between the variables. That is, for the area and sales
price range specified in the query, the value for NbrSold increases as sales price decreases and
decreases as sales price increases.

CORR Window Function
For the CORR window function that performs a group, cumulative, or moving computation, see Window
Aggregate Functions.

Related Topics
For more information, see:

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

• For details, see Teradata Vantage™ - Database Utilities, B035-1102.

COUNT
Purpose

Returns a column value that is the total number of qualified rows in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 29

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

The expression cannot contain any ordered analytical or aggregate functions.

value_expression

A literal or column expression for which the number of values is to be counted.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

*

Counts all rows in the group of rows on which COUNT operates.

Usage Notes
This syntax … Counts the total number of rows …

COUNT(value_expression) in the group for which value_expression is not null.

COUNT (DISTINCT value_expression) in the group for which value_expression is unique and not null.

COUNT(*) in the group of rows on which COUNT operates.

COUNT is valid for any data type.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 30

Result Type and Attributes
The following table lists the data type and format for the result of COUNT.

Mode Data Type and Format

ANSI MaxDecimal is general field 13 in the DBS Control utility.
If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0) and the format is -(15)9.
• 18, then the result type is DECIMAL(18,0) and the format is -(18)9.
• 38, then the result type is DECIMAL(38,0) and the format is -(38)9.

Teradata INTEGER and the format is the default format for INTEGER.

COUNT The default value for the DBSControl General Field(80), COUNT_mode, is 0. The default is
compatibility mode, which disables all extensions that impact external applications.

BIGINT and NUMBER modes impact COUNT performance:

• Type promotion may entail computing expressions using a different type if the mode is changed. This
occurs when the result of the COUNT (*) based expression is materialized as a BIGINT/NUMBER
type, and later used as a subexpression for computing another expression. The performance
overhead is the same as that incurred when casting COUNT (*) as BIGINT/NUMBER.

• Since the data type of COUNT (*) changes if the mode is changed, queries that made assumptions
on format, title, and data type must be aware of the change.

If the result of COUNT overflows and reports an error, you can cast the result to another data type, as
illustrated by the following example.

 SELECT CAST(COUNT(*) AS BIGINT)
 FROM BIGTABLE;

A similar example is provided for COUNT and rank window functions:

SELECT CAST(COUNT(*) over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE;
SELECT CAST(rank over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE;

Note:
The CAST is required only for default or compatibility mode. If value of 1 or 2 is specified for NUMBER
or BIGINT mode of computing COUNT, then the CAST is not required.

The following table lists the default title for the result of COUNT.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 31

Operation Title

COUNT(x) Count(x)

COUNT(*) Count(*)

COUNT Specification in Aggregate Join Index

You can specify COUNT, COUNT cast to FLOAT OR DECIMAL(38,0), BIGINT, or NUMBER for a COUNT
aggregate function in a join index. The following illustrates a SHOW JOIN INDEX that accommodates data
type casts to BIGINT:

CREATE JOIN INDEX TEST.j1 ,NO FALLBACK ,CHECKSUM = DEFAULT AS
SELECT COUNT (*)(BIGINT, NAMED a),TEST.t1.a1
FROM TEST.t1
GROUP BY TEST.t1.a1
PRIMARY INDEX (a1);

Examples: Using the COUNT Function
Example: Reporting the Number of Employees in Each Department

COUNT(*) reports the number of employees in each department because the GROUP BY clause groups
results by department number.

 SELECT DeptNo, COUNT(*) FROM Employee
 GROUP BY DeptNo
 ORDER BY DeptNo;

Without the GROUP BY clause, only the total number of employees represented in the Employee table is
reported:

 SELECT COUNT(*) FROM Employee;

Note that without the GROUP BY clause, the select list cannot include the DeptNo column because it
returns any number of values and COUNT(*) returns only one value.

Example: Employees Returned as Nulls

If any employees have been inserted but not yet assigned to a department, the return includes them as
nulls in the DeptNo column.

 SELECT DeptNo, COUNT(*) FROM Employee
 GROUP BY DeptNo
 ORDER BY DeptNo;

Assuming that two new employees are unassigned, the results table is:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 32

 DeptNo Count(*)
 ------ --------
 ? 2
 100 4
 300 3
 500 7
 600 4
 700 3

Example: Counting Employees Not Yet Assigned to a Department

If you ran the report in Example: Reporting the Number of Employees in Each Department using SELECT...
COUNT … without grouping the results by department number, the results table would have only registered
non-null occurrences of DeptNo and would not have included the two employees not yet assigned to a
department(nulls). The counts differ (23 in Example: Reporting the Number of Employees in Each
Department as opposed to 21 using the statement documented in this example).

Recall that in addition to the 21 employees in the Employee table who are assigned to a department, there
are two new employees who are not yet assigned to a department (the row for each new employee has
a null department number).

 SELECT COUNT(deptno) FROM employee ;

The result of this SELECT is that COUNT returns a total of the non-null occurrences of department number.

Because aggregate functions ignore nulls, the two new employees are not reflected in the figure.

 Count(DeptNo)

 21

Example: Using COUNT to Find the Number of Employees by Gender

This example uses COUNT to provide the number of male employees in the Employee table of the
database.

 SELECT COUNT(sex)
 FROM Employee
 WHERE sex = 'M' ;

The result is as follows.

 Count(Sex)

 12

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 33

Example: Providing a Total of the Rows with Non-Null Department Numbers

In this example COUNT provides, for each department, a total of the rows that have non-null department
numbers.

 SELECT deptno, COUNT(deptno)
 FROM employee
 GROUP BY deptno
 ORDER BY deptno ;

Notice once again that the two new employees are not included in the count.

 DeptNo Count(DeptNo)
 ------ -------------
 100 4
 300 3
 500 7
 600 4
 700 3

Example: Returning the Number of Employees by Department

To get the number of employees by department, use COUNT(*) with GROUP BY and ORDER BY clauses.

 SELECT deptno, COUNT(*)
 FROM employee
 GROUP BY deptno
 ORDER BY deptno ;

In this case, the nulls are included, indicated by QUESTION MARK.

 DeptNo Count(*)
 ------ --------
 ? 2
 100 4
 300 3
 500 7
 600 4
 700 3

Example: Determining the Number of Departments in the Employee Table

To determine the number of departments in the Employee table, use COUNT (DISTINCT) as illustrated in
the following SELECT COUNT.

 SELECT COUNT (DISTINCT DeptNo)
 FROM Employee ;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 34

The system responds with the following report.

 Count(Distinct(DeptNo))

 5

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Related Topics
For more information, see:

• For COUNT functions that return the group, cumulative, or moving count, see Window Aggregate
Functions.

• With the exception of COUNT(*), the computation does not include nulls. For more information, see
Teradata Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

• For information on data type default formats, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For information on the COUNT_mode field, see Teradata Vantage™ - Database Utilities, B035-1102.

COVAR_POP
Purpose

Returns the population covariance of its arguments for all non-null data point pairs.

Syntax

Syntax Elements

value_expression_1/value_expression_2

A numeric expression to be paired with a second numeric expression to determine their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 35

Definition
Covariance measures whether or not two random variables vary in the same way. It is the average of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Combination With Other Functions
COVAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

COVAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are no non-null data point pairs in the data used for the computation, then COVAR_POP
returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for COVAR_POP are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 36

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_POP, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

COVAR_POP Window Function
For the COVAR_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

COVAR_SAMP
Purpose

Returns the sample covariance of its arguments for all non-null data point pairs.

Syntax

Syntax Elements

value_expression_2/value_expression_1

A numeric expression to be paired with a second numeric expression to determine their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
Covariance measures whether or not two random variables vary in the same way. It is the sum of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 37

Combination with Other Functions
COVAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

COVAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are no non-null data point pairs in the data used for the computation, then COVAR_SAMP
returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for COVAR_SAMP(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_SAMP, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 38

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

COVAR_SAMP Window Function
For the COVAR_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Using the SELECT statement to Return the Sample
Covariance of Weight and Height
This example is based on the following regrtbl data. Nulls are indicated by the QUESTION MARK
character.

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

The following SELECT statement returns the sample covariance of weight and height where neither weight
nor height is null.

 SELECT COVAR_SAMP(weight,height)
 FROM regrtbl;

 Covar_Samp(weight,height)

 150

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 39

GROUPING
Purpose

Returns a value that indicates whether a specified column in the result row was excluded from the grouping
set of a GROUP BY clause.

Syntax

Syntax Elements

expression

A column in the result row that might have been excluded from a grouped query containing CUBE,
ROLLUP, or GROUPING SET.

The argument must be an item of a GROUP BY clause.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
A null in the result row of a grouped query containing CUBE, ROLLUP, or GROUPING SET can mean one
of the following:

• The actual data for the column is null.
• The extended grouping specification aggregated over the column and excluded it from the particular

grouping. A null in this case really represents all values for this column.

Use GROUPING to distinguish between rows with nulls in actual data from rows with nulls generated from
grouping sets.

Result Type and Attributes
The data type, format, and title for GROUPING(x) are as follows.

Data Type Format Title

INTEGER Default format of the INTEGER data type Grouping(x)

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 40

Result Value

IF the value of the specified column in the result row is …
THEN GROUPING
returns …

a NULL generated when the extended grouping specification aggregated over
the column and excluded it from the particular grouping

1

anything else 0

Example: Viewing Sales Summaries by County and by City
Suppose you have the following data in the sales_view table.

PID Cost Sale Margin State County City

1 38350 50150 11800 CA Los Angeles Long Beach

1 63375 82875 19500 CA San Diego San Diego

1 46800 61200 14400 CA Los Angeles Avalon

2 40625 53125 12500 CA Los Angeles Long Beach

To look at sales summaries by county and by city, use the following SELECT statement:

 SELECT county, city, sum(margin)
 FROM sale_view
 GROUP BY GROUPING SETS ((county),(city));

The query reports the following data:

 County City Sum(margin)
 ----------- ---------- -----------
 Los Angeles ? 38700
 San Diego ? 19500
 ? Long Beach 24300
 ? San Diego 19500
 ? Avalon 14400

Notice that in this example, a null represents all values for a column because the column was excluded
from the grouping set represented.

To distinguish between rows with nulls in actual data from rows with nulls generated from grouping sets,
use the GROUPING function:

 SELECT county, city, sum(margin),
 GROUPING(county) AS County_Grouping,

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 41

 GROUPING(city) AS City_Grouping
 FROM sale_view
 GROUP BY GROUPING SETS ((county),(city));

The results are:

 County City Sum(margin) County_Grouping City_Grouping
 ----------- ---------- ----------- --------------- -------------
 Los Angeles ? 38700 0 1
 San Diego ? 19500 0 1
 ? Long Beach 24300 1 0
 ? San Diego 19500 1 0
 ? Avalon 14400 1 0

You can also use GROUPING to replace the nulls that appear in a result row because the extended
grouping specification aggregated over a column and excluded it from the particular grouping. For
example:

 SELECT CASE
 WHEN GROUPING(county) = 1
 THEN '-All Counties-'
 ELSE county
 END AS County,
 CASE
 WHEN GROUPING(city) = 1
 THEN '-All Cities-'
 ELSE city
 END AS City,
 SUM(margin)
 FROM sale_view
 GROUP BY GROUPING SETS (county,city);

The query reports the following data:

 County City Sum(margin)
 -------------- ------------ -----------
 Los Angeles -All Cities- 38700
 San Diego -All Cities- 19500
 -All Counties- Long Beach 24300
 -All Counties- San Diego 19500
 -All Counties- Avalon 14400

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 42

Related Topics
For more information on GROUP BY, GROUPING SETS, ROLLUP, and CUBE, see Teradata Vantage™
SQL Data Manipulation Language, B035-1146.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

KURTOSIS
Purpose

Returns the kurtosis of the distribution of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

value_expression

A literal or column expression for which the kurtosis of the distribution of its values is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 43

Definition
Kurtosis is the fourth moment of the distribution of the standardized (z) values. It is a measure of the outlier
(rare, extreme observation) character of the distribution as compared with the normal, Gaussian
distribution.

The normal distribution has a kurtosis of 0.

Positive kurtosis indicates that the distribution is more outlier-prone than the normal distribution, while
negative kurtosis indicates that the distribution is less outlier-prone than the normal distribution.

Return Value
This function returns the REAL data type.

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including KURTOSIS, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

Computation
The equation for computing KURTOSIS is defined as follows:

where:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 44

This variable … Represents …

x value_expression

Conditions That Produce a NULL Return Value
The following conditions produce a null return value:

• Fewer than four non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

MAX
Purpose

Returns a column value that is the maximum value for value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null specified by value_expression, including duplicates, are included in the
maximum value computation for the group. This is the default.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the maximum
value computation for the group.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 45

value_expression

A literal or column expression for which the maximum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MAXIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MAX(x).

Attribute Value

Data Type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Format If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Maximum(x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MAX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 46

DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

Usage Notes
MAX is valid for character data as well as numeric data. When used with a character expression, MAX
returns the highest sort order.

Nulls are not included in the result computation. For more information, see Teradata Vantage™ SQL
Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression is a column expression, the column must refer to at least one column in the table from
which data is selected.

The value_expression must not specify a column reference to a view column that is derived from a function.

MAX Window Function
For the MAX window function that computes a group, cumulative, or moving maximum value, see Window
Aggregate Functions.

Examples: Using the MAX Function
Example: CHARACTER Data

The following SELECT returns the immediately following result.

 SELECT MAX(Name)
 FROM Employee;

 Maximum(Name)

 Zorn J

Example: Column Expressions

You want to know which item in your warehouse stock has the maximum cost of sales.

 SELECT MAX(CostOfSales) AS m, ProdID
 FROM Inventory
 GROUP BY ProdID
 ORDER BY m DESC;

 Maximum(CostOfSales) ProdID
 -------------------- ------

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 47

 1295 3815
 975 4400
 950 4120

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

MIN
Purpose

Returns a column value that is the minimum value for value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null specified by value_expression, including duplicates, are included in the
minimum value computation for the group. This is the default.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the minimum
value computation for the group.

value_expression

A literal or column expression for which the minimum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 48

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MINIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MIN(x).

Attribute Value

Data type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Minimum(x)

Format If operand x is not a UDT, the result format is the format of operand x.
If operand x is a UDT, the result format is the format of the data type to which the UDT is
implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MIN, is a Teradata extension
to the ANSI SQL standard. To disable this extension, set the DisableUDTImplCastForSysFuncOp field of
the DBS Control Record to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 49

Usage Notes
MINIMUM is valid for character data as well as numeric data. MINIMUM returns the lowest sort order of a
character expression.

The computation does not include nulls. For more information, see “Manipulating Nulls” in Teradata
Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression specifies a column expression, the expression must refer to at least one column in
the table from which data is selected.

If value_expression specifies a column reference, the column must not be a view column that is derived
from a function.

MIN Window Function
For the MIN window function that computes a group, cumulative, or moving minimum value, see Window
Aggregate Functions.

Examples: Using the MINIMUM Function
Example: MINIMUM Used With CHARACTER Data

The following SELECT returns the immediately following result.

 SELECT MINIMUM(Name)
 FROM Employee;

 Minimum(Name)

 Aarons A

Example: JIT Inventory

Your manufacturing shop has recently changed vendors and you know that you have no quantity of parts
from that vendor that exceeds 20 items for the ProdID. You need to know how many of your other inventory
items are low enough that you need to schedule a new shipment, where “low enough” is defined as fewer
than 30 items in the QUANTITY column for the part.

 SELECT ProdID, MINIMUM(QUANTITY)
 FROM Inventory
 WHERE QUANTITY BETWEEN 20 AND 30
 GROUP BY ProdID
 ORDER BY ProdID;

The report is as follows:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 50

 ProdID Minimum(Quantity)
 ----------- -----------------
 1124 24
 1355 21
 3215 25
 4391 22

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

PIVOT
Purpose

PIVOT is a relational operator for transforming rows into columns. The function is useful for reporting
purposes, as it allows you to aggregate and rotate data to create easy-to-read tables. You can perform
PIVOT aggregation on PIVOT column results by using the WITH clause.

Specify the PIVOT operator in the FROM clause of the SELECT statement. There are no restrictions on
other clauses that can be specified with the SELECT query that include PIVOT operators.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 51

Syntax Elements

aggr_fn

An aggregate function that supports a single argument.

pvt_aggr_alias

An alias name specified for the Aggregate function.

expr_alias_name

An alias name specified for the values/expressions specified in the IN list.

cname

A column name.

derived_table_name

The table name specified for the resultant pivoted table.

expr

An expression or a column value.

WITH

Using the WITH clause, you can specify all Pivot columns using an asterisk (*) or a subset of columns
on which the aggregation function needs to perform.

aggr_fn
An aggregate function.

column_list
A list of one or more columns. If the list contains more than one column, separate them with
commas.

*
Option to include all the Pivot columns without specifying columns explicitly.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 52

alias
Name of the aggregate result column.

Usage Notes

Note:
For the PIVOT operation, column names within the Aggregate functions are referred to as measure
columns, and column names in the FOR clause are referred to as pivot columns.

As indicated in the syntax, specify at least one Aggregate function with the PIVOT operator.

Columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed with the PIVOT operator.

Column names are not allowed within the IN-list. Only values or expressions (arithmetic expressions such
as MOD or ABS, or string Manipulation expressions such as LENGTH, REVERSE) are allowed.

Measure columns and pivot columns of the PIVOT operator are not allowed in the assign list of the SELECT
statement.

If n number of Aggregate functions are specified where n is greater than 1, then the alias name must be
specified for at least (n-1) aggregate functions.

The cname specified in the derived_table_name takes precedence over the alias names derived from the
IN-list.

If the alias names are not specified for the column values listed in the IN clause, the database processing
encloses the column values into double quotes and converts these string literals to alias names using the
default format. The alias names are used as column names of the pivoted table.

If the length of the alias name derived from a column value exceeds the alias name limit of 128 characters
(if EON feature is enabled) or 30 characters (if EON is not enabled), the alias name is truncated.

If the IN-list contains case-specific values such as ‘abc’ & ‘ABC’, the values are treated the same and an
error occurs.

PIVOT supports the UNPIVOT or TD_UNPIVOT functions as a query source for the PIVOT operator.

The PIVOT/UNPIVOT operator uses a single dimensional way of converting rows to columns, or columns
to rows. You can swap both rows and columns within a single query (for example, using UNPIVOT as
source to PIVOT). This provides flexibility when using the two-dimensional method of interchanging data
in a table.

Using the DT column list for UNPIVOT as a query source to PIVOT is optional.

If the WITH clause is specified in the PIVOT query:

• Specifiying at least one aggregate function with the WITH operator is mandatory.
• SUM, AVG, MIN, and MAX aggregate functions are supported.
• The cname specified in the derived_table_name takes precedence over the alias names derived for

the aggregated result columns.
• DISTINCT keyword is not supported with aggregate column.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 53

• Column list is not allowed if an asterisk (*) is specified.
• Aggregating a column list or * may produce meaningless results if the values aggregated are not

related. For example, if some pivot columns are for SUM and some are for an AVG, WITH SUM(*) is
not a meaningful value.

• Column names mentioned in the aggregate function should be PIVOT columns or subset of PIVOT
columns.

To avoid the overhead of issuing a separate query to generate values for input to the PIVOT IN-list clause
as hard coded constants, you can issue the query as a subquery in the PIVOT IN-list. If a PIVOT query
has a subquery in the IN-list:

• Alias names are not allowed in the IN-list.
• Alias names in the PIVOT derived table are not allowed.
• The SELECT list of the subquery must contain only one column reference.
• The subquery must return at least one row.
• The results returned by the subquery cannot exceed 32KB, and the row count must be less than or

equal to 16.
• SET operations are not allowed on a PIVOT query that has a subquery in the IN-list.
• Columns generated by an IN-list subquery cannot be explicitly used in the SELECT.
• You cannot use a subquery in a PIVOT IN-list with DDL statements or multistatement requests.
• A PIVOT query cannot include both a WITH clause and a subquery in the IN-list.

For examples of wide tables, see Pivot Examples.

Examples

Example: Alias Names Contained in the IN List

This example uses the star1 table, with the following definition and contents:

CREATE TABLE star1(country VARCHAR(20),state VARCHAR(10), yr INTEGER,qtr
VARCHAR(3),sales INTEGER,cogs INTEGER);

SELECT * FROM star1;
country state yr qtr sales cogs
------- ----- ----------- --- ----------- -----------
USA CA 2001 Q1 30 15
Canada ON 2001 Q2 10 0
Canada BC 2001 Q3 10 0
USA NY 2001 Q1 45 25
USA CA 2001 Q2 50 20

In this example, the IN list contains alias names. The alias names are concatenated with the alias names
specified by the aggregate functions to build the column names of the output pivoted table.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 54

https://docs.teradata.com/search/books?filters=featnum~%2522B035-1209-162K%2522

SELECT *
FROM star1 PIVOT (
 SUM(sales) as ss1, SUM(cogs) as sc FOR
qtr
 IN (‘Q1’ AS
Quarter1,

 ‘Q2’ AS Quarter2,
 ‘Q3’ AS Quarter3)
)Tmp;

The output is re-written as an equivalent SELECT query using CASE statements:

SELECT * FROM (SELECT country ,state ,yr ,
SUM(CASE WHEN qtr = 'Q1' THEN sales ELSE NULL END)AS Quarter1_ss1,
SUM(CASE WHEN qtr = 'Q1' THEN (cogs) ELSE NULL END)AS Quarter1_sc,
SUM(CASE WHEN qtr = 'Q2' THEN (sales) ELSE NULL END)AS Quarter2_ss1,
SUM(CASE WHEN qtr = 'Q2' THEN (cogs) ELSE NULL END)AS Quarter2_sc,
SUM(CASE WHEN qtr = 'Q3' THEN (sales) ELSE NULL END)AS Quarter3_ss1,
SUM(CASE WHEN qtr = 'Q3' THEN (cogs) ELSE NULL END)AS Quarter3_sc
FROM star1 GROUP BY country ,state ,yr) Tmp ;

Output pivoted table:

country state yr Quarter1_ss1 Quarter1_sc Quarter2_ss1 Quarter2_sc Quarter3_ssl
Quarter3_sc
------- ---- ---- ------------ ----------- ------------ ----------- ------------

USA CA 2001 30 15 50 20 ? ?
USA NY 2001 45 25 ? ? ? ?
Canada ON 2001 ? ? 10 0 ? ?
Canada BC 2001 ? ? ? ?
10 0

Example: Naming Columns with the <column_value_list> Values

In this example, the SELECT statement does not specify the names to use for columns explicitly. The
names of the columns are built internally by adding the aggregated column name to the
<column_value_list> values.

SELECT *
FROM star1 PIVOT (SUM(sales) AS ss1, SUM(cogs) AS sc FOR (yr, qtr)
 IN ((2001, ‘Q1’),
 (2001, ‘Q2’),

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 55

 (2001, ‘Q3’))
)Tmp;

This is re-written as an equivalent SELECT query that uses CASE statements:

SELECT * FROM (SELECT country ,state ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q1' THEN sales ELSE NULL END) AS
"2001_'Q1'_ss1" ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q1' THEN cogs ELSE NULL END) AS
"2001_'Q1'_sc",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q2' THEN sales ELSE NULL END) AS
"2001_'Q2'_ss1" ,
SUM(CASE WHEN yr = 2001 AND qtr = 'Q2' THEN cogs ELSE NULL END) AS
"2001_'Q2'_sc",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q3' THEN sales ELSE NULL END) AS
"2001_'Q3'_ss1",
SUM(CASE WHEN yr = 2001 AND qtr = 'Q3' THEN cogs ELSE NULL END) AS "2001_'Q3'_sc"
FROM star1 GROUP BY country ,state) Tmp ;

Output pivoted table:

country state 2001_'Q1'_ss1 2001'_'Q1'_sc 2001_'Q2'_ss1 2001_'Q2'_sc
2001_'Q3'_ssl 2001_'Q3'_sc
------- ---- ------------- ------------- ------------- ------------
------------- ------------
USA CA 30 15 50 20 ? ?
USA NY 45 25 ? ? ? ?
Canada ON ? ? 10 0 ? ?
Canada BC ? ? ? ?
10 0

Example: Pivot Operation on View

The following example of a view as a PIVOT source.

Assume a view, v1, is defined on the table s1:

CREATE TABLE s1(yr INTEGER, mon VARCHAR(4), sales INTEGER);

sel * from s1;

sel * from s1;

 *** Query completed. 8 rows found. 3 columns returned.
 *** Total elapsed time was 1 second.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 56

 yr mon sales
----------- ---- -----------
 2001 jan 100
 2003 jan 300
 2002 jan 150
 2001 feb 110
 2003 feb 310
 2002 feb 200
 2001 mar 120
 2002 mar 250

CREATE VIEW V1 AS select yr,sales from s1;

 *** View has been created.
 *** Total elapsed time was 1 second.

sel * from v1;

select * from v1;

 *** Query completed. 8 rows found. 2 columns returned.
 *** Total elapsed time was 1 second.

 yr sales
----------- -----------
 2002 150
 2003 300
 2002 200
 2003 310
 2002 250
 2001 100
 2001 110
 2001 120

The following query generates sales report with respect to each year on view V1:

SELECT *
FROM v1 PIVOT (SUM(sales) FOR yr IN (2001,2002,2003)) tmp;

 *** Query completed. One row found. 3 columns returned.
 *** Total elapsed time was 1 second.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 57

 2001 2002 2003
----------- ----------- -----------
 330 600 610

Example: Table Source Using the WITH Clause

The following is an example of a table using the WITH clause as a source to the pivot query.

SELECT *
FROM (with temp
as (select * from s1) select * from temp)dt PIVOT (SUM(sales) FOR mon IN
('Jan','Feb', 'Mar'))tmp;

 *** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
 yr Jan Feb Mar
 ----- ------ ------ -------
 2001 100 110 120
 2002 150 200 250
 2003 300 310 ?

Example: SELECT Query with the WHERE Condition

The following is an example of using a SELECT query with the WHERE condition:

SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (‘Jan’ as Jan, ‘Feb’ as Feb, ‘Mar’ as
Mar))tmp where Jan=100;

 *** Query completed. 1 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
 Yr Jan Feb Mar
 ------ -------- -------- --------
 2001 100 110 120

Example: CREATE TABLE AS Statement Contains Special Characters

In this example, the CREATE TABLE AS statement contains special characters in the pivot query IN list.

CREATE TABLE t1 AS
(SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (U&"#FAD7" UESCAPE '#')) tmp) WITH DATA;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 58

*** Failure 4306 Invalid PIVOT query: Unsupported In-List Values/Expressions.
 Statement# 1, Info =0
 *** Total elapsed time was 1 second.

Example: The PIVOT Query Response in Different Response Modes

Assume a table t1 is defined as:

CREATE TABLE t1(yr INTEGER,mon VARCHAR(3),sales INTEGER);

Assume that following insert statements
INSERT t1 VALUES(2003,'Jan',300);
INSERT t1 VALUES(2001,'Jan',100);
INSERT t1 VALUES(2003,'Feb',310);
INSERT t1 VALUES(2001,'Feb',110);
INSERT t1 VALUES(2002,'Jan',150);
INSERT t1 VALUES(2001,'Mar',120);
INSERT t1 VALUES(2002,'Feb',200);
INSERT t1 VALUES(2002,'Mar',250);
INSERT t1 VALUES(2003,'Mar',1000);

Assuming that the PIVOT query is submitted for execution, the output returns as different responses
modes.

For a PIVOT query:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN ('Jan','Feb','Mar')) tmp;

For a PIVOT query re-written as a SELECT statement using CASE expressions:

SELECT yr,SUM(case when mon='Jan' then sales end) AS "Jan",
SUM(case when mon='Feb' then sales end) AS "Feb",
SUM(case when mon='Mar' then sales end) AS "Mar"
FROM t1 GROUP BY yr;

.field mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 59

.multipartrecord mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
---------- ---------- ---------- ----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

.record mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

.indicator mode

 *** Query completed. 3 rows found.

 yr Jan Feb Mar
----------- ----------- ----------- -----------
 2001 100 110 120
 2003 300 310 1000
 2002 150 200 250

Example: Pivot Query Truncates the Alias Name

For the first part of this example, the EnableEON dbscontrol flag is set to false, so the column name limit
defaults to 30 characters.

Assume the table t1 is defined as:

CREATE TABLE t1(yr INTEGER, mon VARCHAR(41), sales INTEGER);

Also assume that the table t1 contains the following row:

SELECT * FROM t1;
yr mon sales

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 60

---- ---------------------------------- -----
2001 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 200

The row contains 35 characters for the column ‘mon’.

The following pivot query results truncate the ‘mon’ column value from 35 characters to 30 characters:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN
('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'))tmp;

YR aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
---- -------------------------------
2001 200

Now, assume that the EnableEON dbscontrol flag is set to true, so the column name limit defaults to 128
characters.

Also assume that table t2 is defined as follows:

CREATE TABLE t2(yr INTEGER, mon VARCHAR(131), sales INTEGER);

Assume that the table t2 contains the following row:

SELECT mon FROM t2;
mon
--

aa
aa

The row contains 130 characters for the column ‘mon’.

The following pivot query truncates the ‘mon’ column value from 130 characters to 128 characters:

SELECT * FROM t2 PIVOT(SUM(sales) FOR mon IN
('aa
aa')) tmp;

YR

2001
aa
aa
--
--
200

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 61

Example: Using TD_UNPIVOT or UNPIVOT as a Source to PIVOT

PIVOT supports UNPIVOT query or the TD_UNPIVOT function as a source for the PIVOT operator.

PIVOT/ UNPIVOT uses a single dimensional method to interchange data, such as converting rows to
columns, or columns to rows, based on some aggregation on a column data.

Swap rows and columns within a single query by giving UNPIVOT query as a source to PIVOT. This
provides flexibility for a two-dimensional way of interchanging data in a table based on some aggregation
on a column.

Note:

To change data with a two-dimensional method, aggregate data on a column, and then interchange
the rows and columns twice. In this case, swap rows and columns based on some aggregation on
a column data. The table rotates twice by some aggregation, but might not return the actual table
rows. It could introduce new rows where data is missing, or eliminate rows if data is aggregated in
the process.

Two-dimensional uses PIVOT as source to the UNPIVOT query, or UNPIVOT as a source to a
PIVOT query. Using PIVOT as source to an UNPIVOT query is complex when writing the SQL,
whereas using UNPIVOT as a source to PIVOT query is easier.

First, create a table with the following data:

CREATE TABLE t1 (place CHAR(5), sales1 INTEGER, sales2 INTEGER,
 sales3 INTEGER, sales4 INTEGER, sales5 INTEGER)
PRIMARY INDEX (place);

place sales1 sales2 sales3 sales4 sales5
----- --------- -------- -------- -------- --------
Hyd 110 100 1000 1100 500
Che 120 200 2000 1200 600
Kol 150 500 5000 1500 900
Mee 140 400 4000 1400 800
Pun 130 300 3000 1300 700

To get the SUM of sales for each place, swap the sales and place using the following query:

SELECT * from (SELECT * from t1
 UNPIVOT(saleval
 for sales in (sales1, sales2, sales3,
 sales4, sales5))dt1)dt2
 PIVOT(SUM(saleval)
 for place in ('hyd','Che','pun',
 'mee','kol'))dt3;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 62

The results for using UNPIVOT as the source:

sales Hyd Che Pun Mee Kol
----- -------- -------- -------- -------- --------
sales1 110 120 130 140 150
sales2 100 200 300 400 500
sales3 1000 2000 3000 4000 5000
sales4 1100 1200 1300 1400 1500
sales5 500 600 700 800 900

Example: Aggregation on Two Columns from PIVOT Results

This example shows how to sum sales in the months of Jan and Feb for each year. This is an aggregation
on two columns from the PIVOT result.

Table s1 is defined as:

CREATE TABLE s1 (yr INTEGER, mon VARCHAR(20), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr mon sales
----- --- -----
2001 Jan 100
2003 Jan 300
2002 Jan 150
2001 Feb 110
2003 Feb 310
2002 Feb 200
2001 Mar 120
2002 Mar 250

The PIVOT query is:

SELECT * FROM s1 PIVOT(SUM(SALES) FOR MON IN ('JAN', 'FEB', 'MAR')
 WITH SUM("'JAN'", "'FEB'") AS AGGR1) DT
order by 1;

AGGR1 is the name of the aggregated result column.

Output:

 yr 'JAN' 'FEB' 'MAR' AGGR1
-------- ----------- ----------- ----------- -----------
 2001 100 110 120 210
 2002 150 200 250 350
 2003 300 310 ? 610

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 63

Example: Subquery in PIVOT IN-List

This is an example of having a subquery in PIVOT IN-list.

Table s1 is defined as:

CREATE TABLE s1(yr INTEGER, mon VARCHAR (5), sales INTEGER);
CREATE TABLE s2(yr INTEGER, mon VARCHAR (5), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr mon sales
----- --- -----
2001 Jan 100
2003 Jan 300
2002 Jan 150
2001 Feb 110
2003 Feb 310
2002 Feb 200
2001 Mar 120
2002 Mar 250

SELECT * FROM s2;
 yr mon sales
----- ----- -------
2001 Jan 100
2002 Mar 250
2003 Feb 310

The table as a source to a PIVOT query having a subquery in PIVOT IN-list:

SELECT * FROM s1 PIVOT (SUM (sales) FOR mon in (SELECT mon FROM s2)) dt;

The output pivoted table:

*** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.

 yr 'Feb' 'Jan' 'Mar'
----------- ----------- ----------- -----------
 2001 110 100 120
 2003 310 300 ?
 2002 200 150 250

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 64

Related Topics
For more information, see UNPIVOT.

REGR_AVGX
Purpose

Returns the mean of the independent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 65

Combination With Other Functions
REGR_AVGX can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_AVGX cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_AVGX(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 66

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

REGR_AVGX Window Function
For the REGR_AVGX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Mean Height for regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean height for regrtbl where neither weight nor height is
null.

 SELECT REGR_AVGX(weight,height)
 FROM regrtbl;

 Regr_Avgx(weight,height)

 68

REGR_AVGY
Purpose

Returns the mean of the dependent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 67

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_AVGY can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_AVGY cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGY returns NULL.

Division by zero results in NULL rather than an error.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 68

Result Type and Attributes
The data type, format, and title for REGR_AVGY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_AVGY Window Function
For the REGR_AVGY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Mean Weight from regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 69

 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the mean weight from regrtbl where neither height nor weight
is null.

 SELECT REGR_AVGY(weight,height)
 FROM regrtbl;

 Regr_Avgy(weight,height)

 140

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143:

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_COUNT
Purpose

Returns the count of all non-null data pairs of the dependent and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 70

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_COUNT can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_COUNT cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Result Type and Attributes
The following table lists the data type for the result of REGR_COUNT(y,x).

Mode Data Type

ANSI If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0).
• 18, then the result type is DECIMAL(18,0).
• 38, then the result type is DECIMAL(38,0).

Teradata INTEGER

The result type of REGR_COUNT is consistent with the result type of COUNT for ANSI transaction mode
and Teradata transaction mode.

When in Teradata mode, if the result of REGR_COUNT overflows and reports an error, you can cast the
result to another data type, as illustrated by the following example.

 SELECT CAST(REGR_COUNT(weight,height) AS BIGINT)
 FROM regrtbl;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 71

Here are default formats and titles for the result of REGR_COUNT.

• If operand y is numeric or character, the format is:

◦ For ANSI mode, if MaxDecimal in DBSControl is:

0 or 15, the format is -(15)9

18, the format is -(18)9

38, the format is -(38)9

◦ For Teradata mode, the format is the default format for INTEGER

• If operand y is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_COUNT, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_COUNT Window Function
For the REGR_COUNT window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Number of Rows in regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight

1 60 84

2 62 95

3 64 140

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 72

c1 height weight

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

The following SELECT statement returns the number of rows in regrtbl where neither height nor weight
is null.

 SELECT REG_COUNT(weight,height)
 FROM regrtbl;

Here is the result:

 Regr_Count(weight,height)

 9

Related Topics
• For information on data type default formats, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For information on the REGR_COUNT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

REGR_INTERCEPT
Purpose

Returns the intercept of the univariate linear regression line through all non-null data pairs of the dependent
and independent variable arguments.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 73

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The intercept is the point at which the regression line through the non-null data pairs in the sample
intersects the ordinate, or y-axis, of the graph.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a
relationship.

Independent and Dependent Variables
An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 74

In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

The value of the linear regression intercept tells you the predicted value for sales when there is no
promotion for the item selected for analysis.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_INTERCEPT can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_INTERCEPT cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_INTERCEPT(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_INTERCEPT(y,x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 75

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_INTERCEPT, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_INTERCEPT Window Function
For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

Example: Returning the Intercept of the Regression Line for NbrSold
and SalesPrice

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the intercept of the regression line for NbrSold and SalesPrice in the range
of 160000 to 280000 in the 358711030 area.

 SELECT CAST (REGR_INTERCEPT(NbrSold,SalesPrice) AS DECIMAL (5,1))
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 76

 REGR_INTERCEPT(NbrSold,SalesPrice)

 249.9

Related Topics
For more information, see:

• For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals, B035-1143.

• For details on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and Literals,
B035-1143.

• For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

REGR_R2
Purpose

Returns the coefficient of determination for all non-null data pairs of the dependent and independent variable
arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 77

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_R2 can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_R2 cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_R2 returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_R2(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 78

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_R2, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_R2 Window Function
For the REGR_R2 window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Coefficient of Determination for Height and
Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the coefficient of determination for height and weight where
neither height nor weight is null.

 SELECT CAST(REGR_R2(weight,height) AS DECIMAL(4,2))
 FROM regrtbl;

 REGR_R2(weight,height)

 .58

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 79

Related Topics
For more information, see:

• For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_R2 window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_SLOPE
Purpose

Returns the slope of the univariate linear regression line through all non-null data pairs of the dependent
and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 80

Definition
The slope of the best fit linear regression is a measure of the rate of change of the regression of one
independent variable on the dependent variable.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a
relationship.

Independent and Dependent Variables
An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.

In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SLOPE can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_SLOPE cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SLOPE returns NULL.

Division by zero results in NULL rather than an error.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 81

Result Type and Attributes
The data type, format, and title for REGR_SLOPE(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_SLOPE(y,x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SLOPE, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SLOPE Window Function
For the REGR_SLOPE window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Slope of the Regression Line for NbrSold and
SalesPrice

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 82

SalesPrice NbrSold Area

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the slope of the regression line for NbrSold and SalesPrice in the range of
160000 to 280000 in the 358711030 area.

 SELECT CAST (REGR_SLOPE(NbrSold,SalesPrice) AS FLOAT)
 FROM HomeSales
 WHERE area = 358711030
 AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

 REGR_SLOPE(NbrSold,SalesPrice)

 -7.92857142857143E-004

Related Topics
• For information on the default format of data types and the formatting characters in the format, see

“Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_SLOPE window function that performs a group, cumulative, or moving computation,
see Window Aggregate Functions.

REGR_SXX
Purpose

Returns the sum of the squares of the independent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 83

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SXX can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXX cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SXX(y, x) are as follows.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 84

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SXX Window Function
For the REGR_SXX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Squares for Height

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 85

10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for height where neither height nor weight
is null.

 SELECT REGR_SXX(weight,height)
 FROM regrtbl;

 Regr_Sxx(weight,height)

 240

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_SXX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_SXY
Purpose

Returns the sum of the products of the independent_variable_expression and the
dependent_variable_expression for all non-null data pairs of the dependent and independent variable
arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 86

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SXY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXY cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXY returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SXY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 87

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

REGR_SXY Window Function
For the REGR_SXY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Products of Height and Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 88

The following SELECT statement returns the sum of products of height and weight where neither height
nor weight is null.

 SELECT REGR_SXY(weight,height)
 FROM regrtbl;

 Regr_Sxy(weight,height)

 1200

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143:

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_SYY
Purpose

Returns the sum of the squares of the dependent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 89

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SYY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SYY cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SYY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 90

• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SYY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SYY Window Function
For the REGR_SYY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Squares for Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight
-- ------ ------
 1 60 84
 2 62 95
 3 64 140
 4 66 155
 5 68 119
 6 70 175
 7 72 145
 8 74 197
 9 76 150
10 76 ?
11 ? 150
12 ? ?

The following SELECT statement returns the sum of squares for weight where neither height nor weight
is null.

 SELECT REGR_SYY(weight,height)
 FROM regrtbl;

 Regr_Syy(weight,height)

 10426

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 91

SKEW
Purpose

Returns the skewness of the distribution of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Null and duplicate values specified by value_expression are eliminated from the computation for the
group.

value_expression

A literal or column expression for which the skewness of the distribution of its values is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

Definition
Skewness is the third moment of a distribution. It is a measure of the asymmetry of the distribution about
its mean compared with the normal, Gaussian, distribution.

The normal distribution has a skewness of 0.

Positive skewness indicates a distribution having an asymmetric tail extending toward more positive
values, while negative skewness indicates an asymmetric tail extending toward more negative values.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 92

Return Value
This function returns the REAL data type.

Computation
The equation for computing SKEW is defined as follows:

where:

This variable … Represents …

x value_expression

Conditions That Produce a Null Result
SKEW is valid only for numeric data.

Nulls are not included in the result computation.

The following conditions product a null result:

• Fewer than three non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143.

STDDEV_POP
Purpose

Returns the population standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 93

Syntax

Syntax Elements

ALL

Include all values that are not null specified by value_expression, including duplicates, in the computation.
This is the default.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose population standard deviation is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The standard deviation is the second moment of a population. For a population, it is a measure of
dispersion from the mean of that population.

Do not use STDDEV_POP unless the data points you are processing are the complete population.

Combination With Other Functions
STDDEV_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

STDDEV_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 94

How GROUP BY Affects Report Breaks
STDDEV_POP operates differently depending on whether there is a GROUP BY clause in the SELECT
statement.

IF the query … THEN STDDEV_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents only a sample of the entire population for the variable, then use the STDDEV_SAMP
function. For information, see STDDEV_SAMP.

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should always use the more conservative STDDEV_SAMP calculation unless you are
absolutely certain that your data constitutes the entire population for the variable.

Computation
STANDARD DEVIATION OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

When there are no non-null data points in the population, then STDDEV_POP returns NULL.

Division by zero results in NULL rather than an error.

Return Values
This function returns the REAL data type.

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

STDDEV_POP Window Function
For the STDDEV_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Related Topics
For more information, see:

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 95

• Teradata Vantage™ Data Types and Literals, B035-1143
• Window Aggregate Functions

STDDEV_SAMP
Purpose

Returns the sample standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose sample standard deviation is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 96

Definition
The standard deviation is the second moment of a distribution. For a sample, it is a measure of dispersion
from the mean of that sample. The computation is more conservative for the population standard deviation
to minimize the effect of outliers on the computed value.

Computation
Division by zero results in NULL rather than an error.

When there are fewer than two non-null data points in the sample used for the computation, then
STDDEV_SAMP returns NULL.

Return Values
This function returns the REAL data type.

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Combination With Other Functions
STDDEV_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause,
or ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

STDDEV_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

How GROUP BY Affects Report Breaks
The GROUP BY clause affects the STDDEV_SAMP operation.

IF the query … THEN STDDEV_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents the entire population for the variable, then use the STDDEV_POP function. For
information, see STDDEV_POP.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 97

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

STDDEV_SAMP Window Function
For the STDDEV_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Related Topics
For more information, see:

• Teradata Vantage™ Data Types and Literals, B035-1143
• Window Aggregate Functions

SUM
Purpose

Returns a column value that is the arithmetic sum of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicate and values that are not null specified by value_expression from the computation.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 98

value_expression

A literal or column expression for which the sum is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Return Values
The following table lists the default attributes for the result of SUM(x).

Data Type of
Operand Data Type of Result Format Title

BYTEINT or
SMALLINT

INTEGER Default format of the
INTEGER data type

Sum(x)

character FLOAT Default format for
FLOAT

UDT Same as the operand Format for the data
type to which the UDT
is implicitly cast

DECIMAL(n,m) DECIMAL(p,m), where p is determined by the
rules in the following rules:
If MaxDecimal in DBSControl is 0 or 15 and
• n ≤ 15, then p = 15.
• 15 < n ≤ 18, p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 18 and
• n ≤ 18, then p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 38 and n = any
value, the p = 38.

Default format for the
data type of the
operand

Sum(x)

Other than UDT,
SMALLINT,
BYTEINT,
DECIMAL, or
character

Same as the operand Default format for the
data type of the
operand

Usage Notes
SUM is valid only for numeric data.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 99

Nulls are not included in the result computation. For details, see “Manipulating Nulls” in Teradata
Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

The SUM function can result in a numeric overflow or the loss of data because of the default output format.
If this occurs, a data type declaration may be used to override the default.

For example, if QUANTITY comprises many rows of INTEGER values, it may be necessary to specify a
data type declaration like the following for the SUM function:

SUM(QUANTITY(FLOAT))

Possible Result Overflow with SELECT Sum
Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Examples

Example: Accounts Receivable

You need to know how much cash you need to pay all vendors who billed you 30 or more days ago.

 SELECT SUM(Invoice)
 FROM AcctsRec
 WHERE (CURRENT_DATE - InvDate) >= 30;

Example: Face Value of Inventory

You need to know the total face value for all items in your inventory.

 SELECT SUM(QUANTITY * Price)
 FROM Inventory;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 100

 Sum((QUANTITY * Price))

 38,525,151.91

Related Topics
For more information, see:

• For an explanation of the formatting characters in the format, and information on data type default
formats, see Teradata Vantage™ Data Types and Literals, B035-1143.

• For the SUM function that returns the cumulative, group, or moving sum, see Window Aggregate
Functions.

UNPIVOT
Purpose

UNPIVOT is the reverse of the PIVOT operation. It provides a mechanism for transforming columns into
rows.

The UNPIVOT functionality was introduced previously via the TD_UNPIVOT table operator. This feature
introduces grammar to support the UNPIVOT operator in the FROM clause of the SELECT statement.

Note:
UNPIVOT invokes the TD_UNPIVOT table operator internally. You can still use TD_UNPIVOT
independent of UNPIVOT.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 101

Syntax Elements

cname

A column name.

Note:
For the UNPIVOT operation, column names within the Aggregate functions are referred to as
measure columns, and column names in the FOR clause are referred to as pivot columns.

literal

Any supported Teradata numeric, character or string literal.

derived_table_name

The table name specified for the resultant unpivoted table.

Usage Notes

Note:
Column names specified just before the FOR clause are referred to as measure_columns in the
context of UNPIVOT operation. Column names specified after the FOR clause are referred to as
unpivot_columns.

Similar to the PIVOT operator, columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed
with the UNPIVOT operator.

The UNPIVOT column name and measure column names cannot be the same as the column names
defined in the derived_table_name.

When multiple measure_columns are involved in UNPIVOT operation, the columns are compatible only if
they belong to any of the following three groups:

• CHAR and VARCHAR
• BYTE and VARBYTE
• BYTEINT SMALLINT INTEGER BIGINT REAL DECIMAL NUMBER

Column names specified in the IN list cannot be specified in the assign list of the SELECT statement.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 102

Examples
The examples in this section use the following denormalized pivoted table, star1p, which is defined as:

CREATE TABLE star1p(country VARCHAR(20),state VARCHAR(20),Q101Sales
INTEGER,Q201Sales INTEGER,Q301Sales INTEGER,Q101Cogs INTEGER,Q201Cogs
INTEGER,Q301Cogs INTEGER);

SELECT * FROM star1p;

country state Q101Sales Q201Sales Q301Sales Q101Cogs Q201Cogs Q301Cogs
------- ----- --------- --------- --------- -------- -------- --------
Canada ON ? 10 ? ? 0 ?
Canada BC ? ? 10 ? ? 0
USA NY 45 ? ? 25 ? ?
USA CA 30 50 ? 15 20 ?

Example: Unpivoted Sales and Cogs Columns

In this example, the sales and cogs columns are unpivoted.

SELECT *
FROM star1p UNPIVOT ((sales,cogs) FOR yr_qtr
 IN ((Q101Sales, Q101Cogs) AS ‘Q101’,
 (Q201Sales, Q201Cogs) AS ‘Q201’,
 (Q301Sales, Q301Cogs) AS ‘Q301’)) Tmp;

The output for the unpivoted table:

country state yr_qtr sales cogs
------- ----- ------ ----------- -----------
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
USA CA Q201 50 20

Note that a pivot combined with a matching unpivot may introduce rows with NULL values. It is possible
to unpivot just the ‘yr’ column.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 103

Example: Using UNPIVOT for a Unique Year Value

This example shows only one unique value of year, so the unpivot is straightforward.

SELECT *
FROM star1p UNPIVOT (Q1sales, Q2sales, Q3sales, Q1cogs, Q2cogs, Q3cogs) FOR
yr IN ((Q101Sales, Q201Sales, Q301Sales, Q101Cogs, Q201Cogs, Q301Cogs) AS
‘2001’) Tmp;

country state yr Q1sales Q2sales Q3sales Q1cogs Q2cogs Q3cogs
------- ----- ---- -------- ------- ------- ------ ------ ------
Canada ON 2001 ? 10 ? ? 0 ?
Canada BC 2001 ? ? 10 ? ? 0
USA NY 2001 45 ? ? 25 ? ?
USA CA 2001 30 50 ? 15 20

Example: Normalizing the UNPIVOT Operation

This example showcases using UNPIVOT to capture elaborate data of a base table (star1p, in this case).
The data is spread over many columns into a compact table with an optimal number of columns and no
data loss.

SELECT *
FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q201Sales, Q301Sales,Q101Cogs, Q201Cogs, Q301Cogs)) Tmp;
country state yr_qtr_measure measure_value
------- ----- -------------- -------------
Canada BC Q301Cogs 0
Canada BC Q301Sales 10
Canada ON Q201Cogs 0
Canada ON Q201Sales 10
USA CA Q101Cogs 15
USA CA Q101Sales 30
USA CA Q201Cogs 20
USA CA Q201Sales 50
USA NY Q101Cogs 25
USA NY Q101Sales 45

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 104

Example: Using UNPIVOT with the INCLUDE NULLS Clause

In this example, there are some rows with nulls in the sales and cogs columns. The rows are included in
the output when using the INCLUDE NULLS clause.

SELECT *
FROM star1p UNPIVOT INCLUDE NULLS ((sales,cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales,
Q301Cogs) AS 'Q301')) Tmp;

country state yr_qtr sales cogs
------- ----- ------ ----------- -----------
Canada BC Q101 ? ?
Canada ON Q101 ? ?
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
Canada BC Q201 ? ?
USA NY Q201 ? ?
USA CA Q201 50 20
Canada BC Q301 ? ?
USA NY Q301 ? ?
USA CA Q301 ? ?

Example: Using UNPIVOT with the EXCLUDE NULLS Clause

In this example, there are no rows with nulls in either the sales or cogs columns, and the rows are excluded
in the output when using EXCLUDE NULLS clause. This is the default option.

SELECT *
FROM star1p UNPIVOT EXCLUDE NULLS (sales, cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales,
Q301Cogs) AS 'Q301') Tmp;

country state yr_qtr sales cogs
------- ------ -------- ------------ -------
Canada ON Q201 10 0
Canada ON Q301 10 0
USA NY Q101 45 25
USA CA Q101 30 15
USA CA Q201 50 20

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 105

Example: Using an IN List with Multiple Column Lists and Unspecified
Aliases

In this example, the aliases that the IN list uses were not specified. Instead, the values of the yr_qtr
column were built by adding the column names with an underscore symbol.

SELECT *
FROM star1p UNPIVOT ((sales, cogs) FOR yr_qtr IN
((Q101Sales, Q101Cogs),(Q201Sales, Q201Cogs), (Q301Sales, Q301Cogs)) Tmp;

country state yr_qtr sales cogs
------- -------- ----------------------- -------- --------
Canada ON Q201Sales_Q201Cogs 10 0
Canada ON Q301Sales_Q301Cogs 10 0
USA NY Q101Sales_Q101Cogs 45 25
USA CA Q101Sales_Q101Cogs 30 15
USA CA Q201Sales_Q201Cogs 50 20

Example: Using an IN List that Contains Multiple Columns with a
Compatible Data Type

In this example, the Q101Sales column contains an INTEGER data type, and Q201Sales is a BYTEINT
data type. Both the INTEGER and BYTEINT data types are compatible with each other.

SELECT * FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q201Sales)) Tmp;

country state yr_qtr_measure measure_value
------- ----- -------------- -------------
Canada ON Q201Sales 10
USA CA Q101Sales 30
USA CA Q201Sales 50
USA NY Q101Sales 45

Example: Using an IN List that Contains Multiple Columns with an
Incompatible Data Type

In this example, the star1p table is altered to contain a new column Q401Sales with a VARCHAR(20)
data type. The Q101Sales column is an INTEGER data type, and the Q401Sales is VARCHAR.

The INTEGER and VARCHAR data types are not compatible.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 106

SELECT *
FROM star1p UNPIVOT (measure_value FOR yr_qtr_measure IN
(Q101Sales, Q401Sales)) Tmp;

Error 9134 Failure in TD_Unpivot contract function. Error determining column type
of value columns.

Related Topics
For more information, see:

• PIVOT
• "TD_UNPIVOT" in Teradata Vantage™ SQL Operators and User-Defined Functions, B035-1210

VAR_POP
Purpose

Returns the population variance for the data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose population variance is to be computed.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 107

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The variance of a population is a measure of dispersion from the mean of that population.

Do not use VAR_POP unless the data points you are processing are the complete population.

Computation
When the population has no non-null data points, VAR_POP returns NULL.

Division by zero results in NULL rather than an error.

Return Value
This function returns the REAL data type.

Usage Notes
The following restrictions apply to operands:

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

Combination With Other Functions
VAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

GROUP BY Affects Report Breaks
The GROUP BY clause affects the VAR_POP operation.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 108

IF the query … THEN VAR_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents the only a sample of the entire population for the variable, then use the VAR_SAMP
function. For information, see “VAR_SAMP”.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number, but
you should always use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

Related Topics
For more information, see:

• Teradata Vantage™ SQL Data Definition Language Syntax and Examples, B035-1144
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and

Literals, B035-1143.
• For more information on ordered analytical functions, see Overview.
• For the VAR_POP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.

VAR_SAMP
Purpose

Returns the sample variance for the data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 109

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose sample variance is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The variance of a sample is a measure of dispersion from the mean of that sample. It is the square of the
sample standard deviation.

The computation is more conservative than that for the population standard deviation to minimize the effect
of outliers on the computed value.

Computation
When the sample used for the computation has fewer than two non-null data points,
VAR_SAMP returns NULL.

Division by zero results in NULL rather than an error.

Combination With Other Functions
VAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 110

GROUP BY Affects Report Breaks
VAR_SAMP operates differently depending on whether or not there is a GROUP BY clause in the SELECT
statement.

IF the query … THEN VAR_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Variance of a Population
If your data represents the entire population for the variable, then use the VAR_POP function.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number, but
you should always use the more conservative VAR_SAMP calculation unless you are absolutely certain
that your data constitutes the entire population for the variable.

Return Value
This function returns the REAL data type.

Usage Notes
For operands:

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

VARIANCE OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

Division by zero results in NULL rather than an error.

Related Topics
For more information, see:

• For more information on ordered analytical functions, see Overview.
• For the VAR_SAMP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 111

• If your data represents the entire population for the variable, then use the VAR_POP function. For
information, see VAR_POP.

• For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

• For details about the DisableUDTImplCastForSysFuncOp field, see Teradata Vantage™ - Database
Utilities, B035-1102.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 112

Overview
The following sections describe:

• Ordered analytical functions
• Window Aggregate Functions

Ordered Analytical Functions
Ordered analytical functions provide support for many common operations in analytical processing and data
mining that require an ordered set of results rows or depend on values in a previous row. Ordered analytical
functions enable and expedite the processing of queries containing On Line Analytical Processing (OLAP)
style decision support requests.

For example, computing a seven-day running sum requires:

• First, that rows be ordered by date.
• Then, that the value for the running sum be computed by:

◦ Adding the current row value to the value of the sum from the previous row, and
◦ Subtracting the value from the row eight days ago.

Benefits
Ordered analytical functions extend the Teradata Database query execution engine with the concept of
an ordered set and with the ability to use the values from multiple rows in computing a new value.

The result of an ordered analytical function is handled the same as any other SQL expression. It can be
a result column or part of a more complex arithmetic expression within its SELECT.

Each of the ordered analytical functions permit you to specify the sort ordering column or columns on
which to sort the rows retrieved by the SELECT statement. The sort order and any other input parameters
to the functions are specified the same as arguments to other SQL functions and can be any normal SQL
expression.

Ordered Analytical Calculations at the SQL Level
Performing ordered analytical computations at the SQL level rather than through a higher-level OLAP
calculation engine provides four distinct advantages.

• Reduced programming effort.
• Elimination of the need for external sort routines.

Ordered Analytical/Window Aggregate
Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 397

cd250046
Cross-Out

• Elimination of the need to export large data sets to external tools because ordered analytical functions
enable you to target the specific data for analysis within the warehouse itself by specifying conditions
in the query.

• Marked enhancement of analysis performance over the slow, single-threaded operations that external
tools perform on large data sets.

Teradata Warehouse Miner
You need not directly code SQL queries to take advantage of ordered analytical functions. Both Teradata
Database and many third-party query management and analytical tools have full access to the Teradata
SQL ordered analytical functions. Teradata Warehouse Miner, for example, a tool that performs data mining
preprocessing inside the database engine, relies on these features to perform functions in the database
itself rather than requiring data extraction.

Teradata Warehouse Miner includes approximately 40 predefined data mining functions in SQL based on
the Teradata SQL-specific functions. For example, the Teradata Warehouse Miner FREQ function uses
the Teradata SQL-specific functions CSUM, RANK, and QUALIFY to determine frequencies.

Example
The following example shows how the SQL query to calculate a frequency of gender to marital status
would appear using Teradata Warehouse Miner.

SELECT gender, marital_status, xcnt,xpct
 ,CSUM(xcnt, xcnt DESC, gender, marital_status) AS xcum_cnt
 ,CSUM(xpct, xcnt DESC, gender, marital_status) AS xcum_pct
 ,RANK(xcnt DESC, gender ASC, marital_status ASC) AS xrank
FROM
 (SELECT gender, marital_status, COUNT(*) AS xcnt
 ,100.000 * xcnt / xall (FORMAT 'ZZ9.99') AS xpct
 FROM customer_table A,
 (SELECT COUNT(*) AS xall
 FROM customer_table) B
GROUP BY gender, marital_status, xall
HAVING xpct >= 1) T1
QUALIFY xrank <= 8
ORDER BY xcnt DESC, gender, marital_status

The result for this query looks like the following table.

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

F Married 3910093 36.71 3910093 36.71 1

M Married 2419511 22.71 6329604 59.42 2

F Divorced 1612130 15.13 7941734 74.55 3

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 398

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

M Divorced 1412624 3.26 9354358 87.81 4

F Single 491224 4.61 9845582 92.42 5

F Widowed 319881 3.01 10165463 95.43 6

M Single 319794 3.00 10485257 98.43 7

M Widowed 197131 1.57 10652388 100.00 8

Characteristics of Ordered Analytical Functions

The Function Value
The function value for a column in a row considers that row (and a subset of all other rows in the group)
and produces a new value.

The generic function describing this operation is as follows:

 new_column_value = FUNCTION(column_value,rows_defined_by_window)

Use of QUALIFY Clause
Rows can be eliminated by applying conditions on the new column value. The QUALIFY clause is
analogous to the HAVING clause of aggregate functions. The QUALIFY clause eliminates rows based on
the function value, returning a new value for each of the participating rows. For example:

 SELECT StoreID, SUM(profit) OVER (PARTITION BY StoreID)
 FROM facts
 QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

An SQL query that contains both ordered analytical functions and aggregate functions can have both a
QUALIFY clause and a HAVING clause, as in the following example:

 SELECT StoreID, SUM(sale),
 SUM(profit) OVER (PARTITION BY StoreID)
 FROM facts
 GROUP BY StoreID, sale, profit
 HAVING SUM(sale) > 15
 QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

DISTINCT Clause Restriction
The DISTINCT clause is not permitted in window aggregate functions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 399

Permitted Query Objects
Ordered analytical functions are permitted in the following database query objects:

• Views
• Macros
• Derived tables
• INSERT ... SELECT

Where Ordered Analytical Functions are Not Permitted
Ordered analytical functions are not permitted in:

• Subqueries
• WHERE clauses
• SELECT AND CONSUME statements

Use of Standard SQL Features
You can use standard SQL features within the same query to make your statements more sophisticated.

For example, you can use ordered analytical functions in the following ways.

Use an analytical function in this operation … To …

INSERT … SELECT populate a new column.

derived table create a new table to participate in a complex query.

Ordered analytical functions having different sort expressions are evaluated one after another, reusing the
same spool file. Different functions having the same sort expression are evaluated simultaneously.

Unsupported Data Types
Ordered analytical functions do not operate on the following data types:

• CLOB or BLOB data types
• UDT data types

Note that CLOB, BLOB, or UDT data types are usable inside an expression if the result is a supported
data type. For example:

 SELECT
 RANK() OVER
 (PARTITION BY(CASE WHEN b IS NULL THEN 1 ELSE 0 END) ORDER BY id)
 FROM btab;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 400

However, the following example results in an error because the function cannot sort by BLOB:

 SELECT
 RANK() OVER
 (PARTITION BY b ORDER BY id)
 FROM btab;

Ordered Analytical Functions and Period Data Types
Expressions that evaluate to Period data types can be specified for any expression within the following
ordered analytical functions: QUANTILE, RANK (Teradata-specific function), and RANK (ANSI SQL
Window function).

Ordered Analytical Functions and Recursive Queries
Ordered analytical functions cannot appear in a recursive statement of a recursive query. However, a non-
recursive seed statement in a recursive query can specify an ordered analytical function.

Ordered Analytical Functions and Hash or Join Indexes
When a single table query specifies an ordered analytical function on columns that are also defined for a
single table compressed hash or join index, the Optimizer does not select the hash or join index to process
the query.

Ordered Analytical Functions and Row Level Security Tables
When a request that includes an ordered analytical function, such as MAVG, CSUM, or RANK, references
a table protected by row level security, the operation is based on only the rows that are accessible to the
requesting user. In order to apply all rows of the table to the function, the user must have one of the
following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Computation Sort Order and Result Order
The sort order that you specify in the window specification defines the sort order of the rows over which
the function is applied; it does not define the ordering of the results.

For example, to compute the average sales for the months following the current month, order the rows by
month:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM sales_tbl;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 401

 StoreID SMonth ProdID Sales Remaining Avg(Sales)
 ------- ------ ------ --------- --------------------
 1001 6 C 30000.00 ?
 1001 5 C 30000.00 30000.00
 1001 4 C 25000.00 30000.00
 1001 3 C 40000.00 28333.33
 1001 2 C 25000.00 31250.00
 1001 1 C 35000.00 30000.00

The default sort order is ASC for the computation. However, the results are returned in the reverse order.

To order the results, use an ORDER BY phrase in the SELECT statement. For example:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM sales_tbl
 ORDER BY SMonth;

 StoreID SMonth ProdID Sales Remaining Avg(Sales)
 ------- ------ ------ --------- --------------------
 1001 1 C 35000.00 30000.00
 1001 2 C 25000.00 31250.00
 1001 3 C 40000.00 28333.33
 1001 4 C 25000.00 30000.00
 1001 5 C 30000.00 30000.00
 1001 6 C 30000.00 ?

Data in Partitioning Column of Window Specification and
Resource Impact
The columns specified in the PARTITION BY clause of a window specification determine the partitions
over which the ordered analytical function executes. For example, the following query specifies the StoreID
column in the PARTITION BY clause to compute the group sales sum for each store:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID)
 FROM sales_tbl;

At execution time, Teradata Database moves all of the rows that fall into a partition to the same AMP. If a
very large number of rows fall into the same partition, the AMP can run out of spool space. For example,

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 402

if the sales_tbl table in the preceding query has millions or billions of rows, and the StoreID column contains
only a few distinct values, an enormous number of rows are going to fall into the same partition, potentially
resulting in out-of-spool errors.

To avoid this problem, examine the data in the columns of the PARTITION BY clause. If necessary, rewrite
the query to include additional columns in the PARTITION BY clause to create smaller partitions that
Teradata Database can distribute more evenly among the AMPs. For example, the preceding query can
be rewritten to compute the group sales sum for each store for each month:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID, SMonth)
 FROM sales_tbl;

Using Ordered Analytical Functions
Example: Using RANK and AVG

Consider the result of the following SELECT statement using the following ordered analytical functions,
RANK and AVG.

 SELECT item, smonth, sales,
 RANK() OVER (PARTITION BY item ORDER BY sales DESC),
 AVG(sales) OVER (PARTITION BY item
 ORDER BY smonth
 ROWS 3 PRECEDING)
 FROM sales_tbl
 ORDER BY item, smonth;

The results table might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-01 110 13 110

A 1996-02 130 10 120

A 1996-03 170 6 137

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

A 1996-09 160 7 195

A 1996-10 140 9 168

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 403

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-11 150 8 158

A 1996-12 120 11 142

A 1997-01 120 11 132

B 1996-02 30 5 30

...

Example: Using QUALIFY With RANK

Adding a QUALIFY clause to a query eliminates rows from an unqualified table.

For example, if you wanted to see whether the high sales months were unusual, you could add a QUALIFY
clause to the previous query.

 SELECT item, smonth, sales,
 RANK() OVER (PARTITION BY item ORDER BY sales DESC),
 AVG(sales) OVER (PARTITION BY item ORDER BY smonth ROWS 3 PRECEDING)
 FROM sales_tbl
 ORDER BY item, smonth
 QUALIFY RANK() OVER(PARTITION BY item ORDER BY sales DESC) <=5;

This additional qualifier produces a results table that might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

B 1996-02 30 1 30

...

The result indicates that sales had probably been fairly low prior to the start of the current sales season.

Example: Using QUALIFY With RANK

Consider the following sales table named sales_tbl.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 404

Store ProdID Sales

1003 C 20000.00

1003 D 50000.00

1003 A 30000.00

1002 C 35000.00

1002 D 25000.00

1002 A 40000.00

1001 C 60000.00

1001 D 35000.00

1001 A 100000.00

1001 B 10000.00

Now perform the following simple SELECT statement against this table, qualifying answer rows by rank.

SELECT store, prodID, sales,
RANK() OVER (PARTITION BY store ORDER BY sales DESC)
FROM sales_tbl
QUALIFY RANK() OVER (PARTITION BY store ORDER BY sales DESC) <=3;

The result appears in the following typical output table.

Store ProdID Sales Rank(Sales)

1001 A 100000.00 1

1001 C 60000.00 2

1001 D 35000.00 3

1002 A 40000.00 1

1002 C 35000.00 2

1002 D 25000.00 3

1003 D 50000.00 1

1003 A 30000.00 2

1003 C 20000.00 3

Note that every row in the table is returned with the computed value for RANK except those that do not
meet the QUALIFY clause (sales rank is less than third within the store).

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 405

Related Topics
For more information, see:

• For more information about row level security, see Teradata Vantage™ NewSQL Engine Security
Administration, B035-1100.

• For details on the QUALIFY clause, see Teradata Vantage™ SQL Data Manipulation Language,
B035-1146.

The Window Feature
The ANSI SQL:2011 window feature provides a way to dynamically define a subset of data, or window, in
an ordered relational database table. A window is specified by the OVER() phrase, which can include the
following clauses inside the parentheses:

• PARTITION BY
• ORDER BY
• RESET WHEN
• ROWS

PARTITION BY Phrase
PARTITION BY takes a column reference list and groups the rows based on the specified column reference
list over which the ordered analytical function executes. Such a grouping is static. To define a group or
partition based on a condition, use the RESET WHEN phrase. For more information, see RESET WHEN
Phrase.

If there is no PARTITION BY phrase or RESET WHEN phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

Consider the following table named sales_tbl.

StoreID SMonth ProdID Sales

1001 1 C 35000.00

1001 2 C 25000.00

1001 3 C 40000.00

1001 4 C 25000.00

1001 5 C 30000.00

1001 6 C 30000.00

1002 1 C 40000.00

1002 2 C 35000.00

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 406

StoreID SMonth ProdID Sales

1002 3 C 110000.00

1002 4 C 60000.00

1002 5 C 35000.00

1002 6 C 100000.00

The following SELECT statement, which does not include PARTITION BY, computes the average sales
for all the stores in the table:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER ()
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Group Avg(Sales)
 ------- ------ ------ --------- ----------------
 1001 1 C 35000.00 47083.33
 1001 2 C 25000.00 47083.33
 1001 3 C 40000.00 47083.33
 1001 4 C 25000.00 47083.33
 1001 5 C 30000.00 47083.33
 1001 6 C 30000.00 47083.33
 1002 1 C 40000.00 47083.33
 1002 2 C 35000.00 47083.33
 1002 3 C 110000.00 47083.33
 1002 4 C 60000.00 47083.33
 1002 5 C 35000.00 47083.33
 1002 6 C 100000.00 47083.33

To compute the average sales for each store, partition the data in sales_tbl by StoreID:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Group Avg(Sales)
 ------- ------ ------ --------- ----------------
 1001 3 C 40000.00 30833.33
 1001 5 C 30000.00 30833.33
 1001 6 C 30000.00 30833.33
 1001 4 C 25000.00 30833.33
 1001 2 C 25000.00 30833.33

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 407

 1001 1 C 35000.00 30833.33
 1002 3 C 110000.00 63333.33
 1002 5 C 35000.00 63333.33
 1002 6 C 100000.00 63333.33
 1002 4 C 60000.00 63333.33
 1002 2 C 35000.00 63333.33
 1002 1 C 40000.00 63333.33

ORDER BY Phrase
ORDER BY specifies how the rows are ordered in a partition, which determines the sort order of the rows
over which the function is applied.

To add the monthly sales for a store in the sales_tbl table to the sales for previous months, compute the
cumulative sales sum and order the rows in each partition by SMonth:

 SELECT StoreID, SMonth, ProdID, Sales,
 SUM(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Cumulative Sum(Sales)
 ------- ------ ------ --------- ---------------------
 1001 1 C 35000.00 35000.00
 1001 2 C 25000.00 60000.00
 1001 3 C 40000.00 100000.00
 1001 4 C 25000.00 125000.00
 1001 5 C 30000.00 155000.00
 1001 6 C 30000.00 185000.00
 1002 1 C 40000.00 40000.00
 1002 2 C 35000.00 75000.00
 1002 3 C 110000.00 185000.00
 1002 4 C 60000.00 245000.00
 1002 5 C 35000.00 280000.00
 1002 6 C 100000.00 380000.00

RESET WHEN Phrase
RESET WHEN is a Teradata extension to the ANSI SQL standard.

Depending on the evaluation of the specified condition, RESET WHEN determines the group or partition,
over which the ordered analytical function operates. If the condition evaluates to TRUE, a new dynamic
partition is created inside the specified window partition. To define a partition based on a column reference
list, use the PARTITION BY phrase. For more information, see PARTITION BY Phrase.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 408

If there is no RESET WHEN phrase or PARTITION BY phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

You can have different RESET WHEN clauses in the same SELECT list.

Note:
A window specification that specifies a RESET WHEN clause must also specify an ORDER BY
clause.

RESET WHEN Condition Rules

The condition in the RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause
with the additional constraint that nested ordered analytical functions cannot specify conditional
partitioning.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

The following rules apply for RESET WHEN conditions.

A RESET WHEN condition can contain the following:

• Ordered analytical functions that do not include the RESET WHEN clause
• Scalar subqueries
• Aggregate operators
• DEFAULT functions

However, DEFAULT without an explicit column specification is valid only if it is specified as a
standalone condition in the predicate. For more information, see Rules For Using a DEFAULT
Function As Part of a RESET WHEN Condition.

A RESET WHEN condition cannot contain the following:

• Ordered analytical functions that include the RESET WHEN clause
• The SELECT statement
• LOB columns
• UDT expressions, including UDFs that return a UDT value

However, a RESET WHEN condition can include an expression that contains UDTs as long as that
expression returns a result that has a predefined data type.

Rules For Using a DEFAULT Function As Part of a RESET WHEN
Condition

The following rules apply to the use of the DEFAULT function as part of a RESET WHEN condition:

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 409

• You can specify a DEFAULT function with a column name argument within a predicate. The system
evaluates the DEFAULT function to the default value of the column specified as its argument. After
the system evaluates the DEFAULT function, it treats it like a literal in the predicate.

• You can specify a DEFAULT function without a column name argument within a predicate only if
there is one column specification and one DEFAULT function as the terms on each side of the
comparison operator within the expression.

• Following existing comparison rules, a condition with a DEFAULT function used with comparison
operators other than IS [NOT] NULL is unknown if the DEFAULT function evaluates to null.

A condition other than IS [NOT]NULL with a DEFAULT function compared with a null evaluates to
unknown.

IF a DEFAULT function is used with... THEN the comparison is...

IS NULL TRUE if the default is null,
else it is FALSE.

IS NOT NULL FALSE if the default is null,
else it is TRUE.

Examples

Example

This example finds cumulative sales for all periods of increasing sales for each region.

 SUM(sales) OVER (
 PARTITION BY region
 ORDER BY day_of_calendar
 RESET WHEN sales < /* preceding row */ SUM(sales) OVER (
 PARTITION BY region
 ORDER BY day_of_calendar
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
 ROWS UNBOUNDED PRECEDING
)

Example

This example finds sequences of increasing balances. This implies that we reset whenever the current
balance is less than or equal to the preceding balance.

 SELECT account_key, month, balance,
 ROW_NUMBER() over

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 410

 (PARTITION BY account_key
 ORDER BY month
 RESET WHEN balance /* current row balance */ <=
 SUM(balance) over (PARTITION BY account_key ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) /* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase
 FROM accounts;

The possible results of the preceding SELECT appear in the table below:

account_key month balance balance_increase
----------- ----- ------- ----------------
 1 1 60 0
 1 2 99 1
 1 3 94 0
 1 4 90 0
 1 5 80 0
 1 6 88 1
 1 7 90 2
 1 8 92 3
 1 9 10 0
 1 10 60 1
 1 11 80 2
 1 12 10 0

Example

The following example illustrates a window function with a nested aggregate. The query is processed
as follows:

1. We use the SUM(balance) aggregate function to calculate the sum of all the balances for a given
account in a given quarter.

2. We check to see if a balance in a given quarter (for a given account) is greater than the balance of
the previous quarter.

3. If the balance increased, we track a cumulative count value. As long as the RESET WHEN condition
evaluates to false, the balance is increasing over successive quarters, and we continue to increase
the count.

4. We use the ROW_NUMBER() ordered analytical function to calculate the count value. When we
reach a quarter whose balance is less than or equal to that of the previous quarter, the RESET
WHEN condition evaluates to true, and we start a new partition and ROW_NUMBER() restarts the
count from 1. We specify ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING to access the
previous value.

5. Finally, we subtract 1 to ensure that the count values start with 0.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 411

The balance_increase column shows the number of successive quarters where the balance was
increasing. In this example, we only have one quarter (1->2) where the balance has increased.

 SELECT account_key, quarter, sum(balance),
 ROW_NUMBER() over
 (PARTITION BY account_key
 ORDER BY quarter
 RESET WHEN sum(balance) /* current row balance */ <=
 SUM(sum(balance)) over (PARTITION BY account_key ORDER BY quarter
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)/* prev row */
) - 1 /* to get the count started at 0 */ as balance_increase
 FROM accounts
 GROUP BY account_key, quarter;

The possible results of the preceding SELECT appear in the table below:

account_key quarter balance balance_increase
----------- ------- ------- ----------------
 1 1 253 0
 1 2 258 1
 1 3 192 0
 1 4 150 0

Example

In the following example, the condition in the RESET WHEN clause contains SELECT as a nested
subquery. This is not allowed and results in an error.

 SELECT SUM(a1) OVER
 (ORDER BY 1
 RESET WHEN 1 in (SELECT 1))
 FROM t1;
 $
 *** Failure 3706 Syntax error: SELECT clause not supported in
 RESET...WHEN clause.

ROWS Phrase
ROWS defines the rows over which the aggregate function is computed for each row in the partition.

If ROWS is specified, the computation of the aggregate function for each row in the partition includes only
the subset of rows in the ROWS phrase.

If there is no ROWS phrase, then the computation includes all the rows in the partition.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 412

To compute the three-month moving average sales for each store in the sales_tbl table, partition by
StoreID, order by SMonth, and perform the computation over the current row and the two preceding rows:

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID
 ORDER BY SMonth
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)
 FROM sales_tbl;

 StoreID SMonth ProdID Sales Moving Avg(Sales)
 ------- ------ ------ --------- -----------------
 1001 1 C 35000.00 35000.00
 1001 2 C 25000.00 30000.00
 1001 3 C 40000.00 33333.33
 1001 4 C 25000.00 30000.00
 1001 5 C 30000.00 31666.67
 1001 6 C 30000.00 28333.33
 1002 1 C 40000.00 40000.00
 1002 2 C 35000.00 37500.00
 1002 3 C 110000.00 61666.67
 1002 4 C 60000.00 68333.33
 1002 5 C 35000.00 68333.33
 1002 6 C 100000.00 65000.00

Multiple Window Specifications
In an SQL statement using more than one window function, each window function can have a unique
window specification.

For example,

 SELECT StoreID, SMonth, ProdID, Sales,
 AVG(Sales) OVER (PARTITION BY StoreID
 ORDER BY SMonth
 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW),
 RANK() OVER (PARTITION BY StoreID ORDER BY Sales DESC)
 FROM sales_tbl;

Related Topics
For more information, see:

• See DEFAULT for more information about the DEFAULT function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 413

• The window specification can also be applied to a user-defined aggregate function. For details, see
SQL UDF.

• To see the syntax for the OVER() phrase and the associated clauses, see Window Aggregate
Functions.

Window Aggregate Functions
An aggregate function on which a window specification is applied is called a window aggregate function.
Without a window specification, aggregate functions return one value for all qualified rows examined.
Window aggregate functions return a new value for each of the qualifying rows participating in the query.

Thus, the following SELECT statement, which includes the aggregate AVG, returns one value only: the
average of sales.

 SELECT AVG(sale)
 FROM monthly_sales;

 Average(sale)

 1368

The AVG window function retains each qualifying row.

The following SELECT statement might return the results that follow.

 SELECT territory, smonth, sales,
 AVG(sales) OVER (PARTITION BY territory
 ORDER BY smonth ROWS 2 PRECEDING)
 FROM sales_history;

 territory smonth sales Moving Avg(sales)
 --------- ------- ----- -----------------
 East 199810 10 10
 East 199811 4 7
 East 199812 10 8
 East 199901 7 7
 East 199902 10 9
 West 199810 8 8
 West 199811 12 10
 West 199812 7 9
 West 199901 11 10
 West 199902 6 8

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 414

The Window Specification
Purpose

Cumulative, group, moving, or remaining computation of an aggregate function.

Syntax

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 415

Syntax Elements

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 416

OVER

How values are grouped, ordered, and considered when computing the cumulative, group, or moving
function.

Values are grouped according to the PARTITION BY and RESET WHEN clauses, sorted according to
the ORDER BY clause, and considered according to the aggregation group within the partition.

PARTITION BY

In its column_reference, or comma-separated list of column references, the group, or groups, over which
the function operates.

PARTITION BY is optional. If there are no PARTITION BY or RESET WHEN clauses, then the entire
result set, delivered by the FROM clause, constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

In its value_expression the order in which the values in a group, or partition, are sorted.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group or partition, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 417

RESET WHEN is optional. If there are no RESET WHEN or PARTITION BY clauses, then the entire result
set, delivered by the FROM clause, constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified also.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

ROWS

the starting point for the aggregation group within the partition. The aggregation group end is the current
row.

The aggregation group of a row R is a set of rows, defined relative to R in the ordering of the rows within
the partition.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The default when there is no ROWS clause for FIRST_VALUE/LAST_VALUE is different. For more
information, see FIRST_VALUE / LAST_VALUE.

ROWS BETWEEN

The aggregation group start and end, which defines a set of rows relative to the current row in the ordering
of the rows within the partition.

The row specified by the group start must precede the row specified by the group end.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

UNBOUNDED PRECEDING

The entire partition preceding the current row.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 418

UNBOUNDED FOLLOWING

The entire partition following the current row.

CURRENT ROW

The start or end of the aggregation group as the current row.

value PRECEDING

The number of rows preceding the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value PRECEDING appears as the
group start or group end.

value FOLLOWING

The number of rows following the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value FOLLOWING appears as
the group start or group end.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

In the presence of an ORDER BY clause and the absence of a ROWS or ROWS BETWEEN clause, ANSI
SQL:2011 window aggregate functions use ROWS UNBOUNDED PRECEDING as the default
aggregation group, whereas Teradata SQL window aggregate functions use ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Type of Computation
To compute this
type of function
…

Use this aggregation group …

Cumulative • ROWS UNBOUNDED PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND value PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
• ROWS BETWEEN UNBOUNDED PRECEDING AND value FOLLOWING

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 419

To compute this
type of function
…

Use this aggregation group …

Group ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Moving • ROWS value PRECEDING
• ROWS CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value PRECEDING
• ROWS BETWEEN value PRECEDING AND CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value FOLLOWING
• ROWS BETWEEN CURRENT ROW AND CURRENT ROW
• ROWS BETWEEN CURRENT ROW AND value FOLLOWING
• ROWS BETWEEN value FOLLOWING AND value FOLLOWING

Remaining • ROWS BETWEEN value PRECEDING AND UNBOUNDED FOLLOWING
• ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
• ROWS BETWEEN value FOLLOWING AND UNBOUNDED FOLLOWING

Arguments to Window Aggregate Functions
Window aggregate functions can take literals, literal expressions, column names (sales, for example), or
column expressions (sales + profit) as arguments.

Window aggregates can also take regular aggregates as input parameters to the PARTITION BY and
ORDER BY clauses. The RESET WHEN clause can take an aggregate as part of the RESET WHEN
condition clause.

COUNT can take “*” as an input argument, as in the following SQL query:

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month;

Result Type and Format
The result data type and format for window aggregate functions are as follows.

Function Result Type Format

AVG(x)
where x is a character type

FLOAT Default format for
FLOAT

AVG(x) FLOAT Same format as
operand x

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 420

Function Result Type Format

where x is a numeric, DATE, or
INTERVAL type

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX(y,x)
REGR_AVGY(y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x,)
STDDEV_SAMP(x,)
VAR_POP(x,)
VAR_SAMP(x)
where x is a character type

FLOAT Default format for
FLOAT

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX (y,x)
REGR_AVGY(y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x)
STDDEV_SAMP(x)
VAR_POP(x)
VAR_SAMP(x)
where x is one of the following types:
• Numeric
• DATE
• Interval

Same data type as operand x. Default format for the
data type of operand x

REGR_AVGX(y,x)
REGR_AVGY(y, x)
where x is a UDT

Default format for the
data type to which the
UDT is implicitly cast.

COUNT(x) If MaxDecimal in DBSControl is…

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 421

Function Result Type Format

COUNT(*)
REGR_COUNT(x ,y)
where the transaction mode is ANSI

• 0 or 15, then the result type is DECIMAL(15,0) and the
format is -(15)9.

• 18, then the result type is DECIMAL(18,0) and the format is
-(18)9.

• 38, then the result type is DECIMAL(38,0) and the format is
-(38)9.

ANSI transaction mode uses DECIMAL because tables
frequently have a cardinality exceeding the range of
INTEGER.

COUNT(x)
COUNT(*)
REGR_COUNT(x,y)
where the transaction mode is Teradata

INTEGER
Teradata transaction mode uses
INTEGER to avoid regression
problems.

Note:
You can cast the final result of a
COUNT window aggregate
function; however, the cast is not
used as part of the window function
computation as it is for the COUNT
aggregate function and, therefore,
cannot be used to avoid numeric
overflow errors that might occur
during the computation.

Default format for
INTEGER

MAX(x), MIN(x) Same data type as operand x. Same format as
operand x

SUM(x)
where x is a character type

Same as operand x. Default format for
FLOAT

SUM(x)
where x is a DECIMAL(n,m) type

DECIMAL(p,m), where p is
determined according to the
following rules:
If MaxDecimal in DBSControl is 0 or
15 and
• n ≤ 15, then p = 15.
• 15 < n ≤ 18, p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 18
and
• n ≤ 18, then p = 18.
• n > 18, then p = 38.
If MaxDecimal in DBSControl is 38
and n = any value, the p = 38.

Default format for
DECIMAL

SUM(x)
where x is any numeric type other than
DECIMAL

Same as operand x. Default format for the
data type of the
operand

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 422

Result Title
The default title that appears in the heading for displayed or printed results depends on the type of
computation performed.

IF the type of computation is … THEN the result title is …

cumulative Cumulative Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS UNBOUNDED PRECEDING)
 FROM sales_history;

The title that appears in the result heading is:
Cumulative Avg(sales)

group Group Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING)
 FROM sales_history;

The title that appears in the result heading is:
Group Avg(sales)

moving Moving Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS 2 PRECEDING)
 FROM sales_history;

The title that appears in the result heading is:
Moving Avg(sales)

remaining Remaining Function_name (argument_list)
For example, consider the following computation:

 SELECT AVG(sales) OVER (PARTITION BY region
 ORDER BY smonth ROWS BETWEEN CURRENT ROW
 AND UNBOUNDED FOLLOWING)
 FROM sales_history;

The title that appears in the result heading is:
Remaining Avg(sales)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 423

Problems with Missing Data
Make sure that data you analyze has no missing data points. Computing a moving function over data with
missing points produces unexpected and incorrect results because the computation considers n physical
rows of data rather than n logical data points.

Nesting Aggregates in Window Functions
Although you can nest aggregates in window functions, including the select list, HAVING, QUALIFY, and
ORDER BY clauses, the HAVING clause can only contain aggregate function references because HAVING
cannot contain nested syntax like RANK() OVER (ORDER BY SUM(x)).

Aggregate functions cannot be specified with Teradata-specific functions.

Example

The following query nests the SUM aggregate function within the RANK ordered analytical function in the
select list:

 SELECT state, city, SUM(sale),
 RANK() OVER (PARTITION BY state ORDER BY SUM(sale))
 FROM T1
 WHERE T1.cityID = T2.cityID
 GROUP BY state, city
 HAVING MAX(sale) > 10;

Alternative: Using Derived Tables

Although only window functions allow aggregates specified together in the same SELECT list, window
functions and Teradata-specific functions can be combined with aggregates using derived tables or views.
Using derived tables or views also clarifies the semantics of the computation.

Example

The following example shows the sales rank of a particular product in a store and its percent contribution
to the store sales for the top three products in each store.

 SELECT RT.storeid, RT.prodid, RT.sales,
 RT.rank_sales, RT.sales * 100.0/ST.sum_store_sales
 FROM (SELECT storeid, prodid, sales, RANK(sales) AS rank_sales
 FROM sales_tbl
 GROUP BY storeID
 QUALIFY RANK(sales) <=3) AS RT,
 (SELECT storeID, SUM(sales) AS sum_store_sales
 FROM sales_tbl

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 424

 GROUP BY storeID) AS ST
 WHERE RT.storeID = ST.storeID
 ORDER BY RT.storeID, RT.sales;

The results table might look something like the following.

storeID prodID sales rank_sales sales*100.0/sum_store_sales

1001 D 35000.00 3 17.949

1001 C 60000.00 2 30.769

1001 A 100000.00 1 51.282

1002 D 25000.00 3 25.000

1002 C 35000.00 2 35.000

1002 A 40000.00 1 40.000

1003 C 20000.00 3 20.000

1003 A 30000.00 2 30.000

1003 D 50000.00 1 50.000

...

Teradata-Specific Alternatives to Ordered Analytical Functions
Teradata SQL supports two syntax alternatives for ordered analytical functions:

• Teradata-specific
• ANSI SQL:2011 compliant

Window aggregate, rank, distribution, and row number functions are ANSI SQL:2011 compliant. Teradata-
specific functions are not.

Teradata-Specific Functions and ANSI SQL:2011 Window Functions

The following table identifies equivalent ANSI SQL:2011 window functions for Teradata-specific functions.

Note:
The use of the Teradata-specific functions listed in the following table is strongly discouraged. These
functions are retained only for backward compatibility with existing applications. Be sure to use the
ANSI-compliant window functions for any new applications you develop.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 425

Teradata-Specific Functions Equivalent ANSI SQL:2011 Window Functions

CSUM SUM

MAVG AVG

MDIFF(x, w, y) composable from SUM

MLINREG composable from SUM and COUNT

QUANTILE composable from RANK and COUNT

RANK RANK

MSUM SUM

Comparing Window Aggregate Functions and Teradata-Specific Functions

Avoid using Teradata-specific functions such as MAVG, CSUM, and MSUM for applications intended to
be ANSI-compliant and portable.

ANSI
Function

Teradata
Function Relationship

AVG MAVG The form of the AVG window function that specifies an aggregation group of
ROWS value PRECEDING is the ANSI equivalent of the MAVG Teradata-
specific function.
Note that the ROWS value PRECEDING phrase specifies the number of rows
preceding the current row that are used, together with the current row, to
compute the moving average. The total number of rows in the aggregation
group is value + 1. For the MAVG function, the total number of rows in the
aggregation group is the value of width.
For AVG window function, an aggregation group of ROWS 5 PRECEDING,
for example, means that the 5 rows preceding the current row, plus the current
row, are used to compute the moving average. Thus the moving average for
the 6th row of a partition would have considered row 6, plus rows 5, 4, 3, 2,
and 1 (that is, 6 rows in all).
For the MAVG function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving average. The moving
average for the 6th row would have considered row 6, plus rows 4, 5, 3, and
2 (that is, 5 rows in all).

SUM CSUM
MSUM

Be sure to use the ANSI-compliant SUM window function for any new
applications you develop. Avoid using CSUM and MSUM for applications
intended to be ANSI-compliant and portable.
The following defines the relationship between the SUM window function and
the CSUM and MSUM Teradata-specific functions, respectively:
• The SUM window function that uses the ORDER BY clause and specifies

ROWS UNBOUNDED PRECEDING is the ANSI equivalent of CSUM.
• The SUM window function that uses the ORDER BY clause and specifies

ROWS value PRECEDING is the ANSI equivalent of MSUM.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 426

ANSI
Function

Teradata
Function Relationship

Note that the ROWS value PRECEDING phrase specifies the number of
rows preceding the current row that are used, together with the current row,
 to compute the moving average. The total number of rows in the
aggregation group is value + 1. For the MSUM function, the total number of
rows in the aggregation group is the value of width.
Thus for the SUM window function that computes a moving sum, an
aggregation group of ROWS 5 PRECEDING means that the 5 rows
preceding the current row, plus the current row, are used to compute the
moving sum. The moving sum for the 6th row of a partition, for example,
would have considered row 6, plus rows 5, 4, 3, 2, and 1 (that is, 6 rows in
all).
For the MSUM function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving sum. The moving sum for
the 6th row, for example, would have considered row 6, plus rows 5, 4, 3,
and 2 (that is, 5 rows in all).
Moreover, for data having fewer than width rows, MSUM computes the sum
using all the preceding rows. MSUM returns the current sum rather than
nulls when the number of rows in the sample is fewer than width.

Example: Group Count

The following SQL query might yield the results that follow it, where the group count for sales is returned
for each of the four partitions defined by city and kind. Notice that rows that have no sales are not
counted.

 SELECT city, kind, sales, profit,
 COUNT(sales) OVER (PARTITION BY city, kind
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month;

 city kind sales profit Group Count(sales)
 ------- -------- ----- ------ ------------------
 LA Canvas 45 320 4
 LA Canvas 125 190 4
 LA Canvas 125 400 4
 LA Canvas 20 120 4
 LA Leather 20 40 1
 LA Leather ? ? 1
 Seattle Canvas 15 30 3
 Seattle Canvas 20 30 3
 Seattle Canvas 20 100 3
 Seattle Leather 35 50 1
 Seattle Leather ? ? 1

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 427

Example: Remaining Count

To count all the rows, including rows that have no sales, use COUNT(*). Here is an example that counts
the number of rows remaining in the partition after the current row:

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM activity_month;

 city kind sales profit Remaining Count(*)
 ------- -------- ----- ------ ------------------
 LA Canvas 20 120 ?
 LA Canvas 125 190 1
 LA Canvas 45 320 2
 LA Canvas 125 400 3
 LA Leather ? ? ?
 LA Leather 20 40 1
 Seattle Canvas 15 30 ?
 Seattle Canvas 20 30 1
 Seattle Canvas 20 100 2
 Seattle Leather ? ? ?
 Seattle Leather 35 50 1

Note that the sort order that you specify in the window specification defines the sort order of the rows
over which the function is applied; it does not define the ordering of the results.

In the example, the DESC sort order is specified for the computation, but the results are returned in the
reverse order.

To order the results, use the ORDER BY phrase in the SELECT statement:

 SELECT city, kind, sales, profit,
 COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
 ROWS BETWEEN 1 FOLLOWING AND
 UNBOUNDED FOLLOWING)
 FROM activity_month
 ORDER BY city, kind, profit DESC;

 city kind sales profit Remaining Count(*)
 ------- -------- ----- ------ ------------------
 LA Canvas 125 400 3
 LA Canvas 45 320 2
 LA Canvas 125 190 1
 LA Canvas 20 120 ?

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 428

 LA Leather 20 40 1
 LA Leather ? ? ?
 Seattle Canvas 20 100 2
 Seattle Canvas 20 30 1
 Seattle Canvas 15 30 ?
 Seattle Leather 35 50 1
 Seattle Leather ? ? ?

Example: Cumulative Maximum

The following SQL query might yield the results that follow it, where the cumulative maximum value for
sales is returned for each partition defined by city and kind.

 SELECT city, kind, sales, week,
 MAX(sales) OVER (PARTITION BY city, kind
 ORDER BY week ROWS UNBOUNDED PRECEDING)
 FROM activity_month;

 city kind sales week Cumulative Max(sales)
 ------- -------- ----- ---- ---------------------
 LA Canvas 263 16 263
 LA Canvas 294 17 294
 LA Canvas 321 18 321
 LA Canvas 274 20 321
 LA Leather 144 16 144
 LA Leather 826 17 826
 LA Leather 489 20 826
 LA Leather 555 21 826
 Seattle Canvas 100 16 100
 Seattle Canvas 182 17 182
 Seattle Canvas 94 18 182
 Seattle Leather 933 16 933
 Seattle Leather 840 17 933
 Seattle Leather 899 18 933
 Seattle Leather 915 19 933
 Seattle Leather 462 20 933

Example: Cumulative Minimum

The following SQL query might yield the results that follow it, where the cumulative minimum value for
sales is returned for each partition defined by city and kind.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 429

 SELECT city, kind, sales, week,
 MIN(sales) OVER (PARTITION BY city, kind
 ORDER BY week
 ROWS UNBOUNDED PRECEDING)
 FROM activity_month;

 city kind sales week Cumulative Min(sales)
 ------- -------- ----- ---- ---------------------
 LA Canvas 263 16 263
 LA Canvas 294 17 263
 LA Canvas 321 18 263
 LA Canvas 274 20 263
 LA Leather 144 16 144
 LA Leather 826 17 144
 LA Leather 489 20 144
 LA Leather 555 21 144
 Seattle Canvas 100 16 100
 Seattle Canvas 182 17 100
 Seattle Canvas 94 18 94
 Seattle Leather 933 16 933
 Seattle Leather 840 17 840
 Seattle Leather 899 18 840
 Seattle Leather 915 19 840
 Seattle Leather 462 20 462

Example: Cumulative Sum

The following query returns the cumulative balance per account ordered by transaction date:

 SELECT acct_number, trans_date, trans_amount,
 SUM(trans_amount) OVER (PARTITION BY acct_number
 ORDER BY trans_date
 ROWS UNBOUNDED PRECEDING) as balance
 FROM ledger
 ORDER BY acct_number, trans_date;

Here are the possible results of the preceding SELECT.

acct_number trans_date trans_amount balance

73829 1998-11-01 113.45 113.45

73829 1988-11-05 -52.01 61.44

73929 1998-11-13 36.25 97.69

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 430

acct_number trans_date trans_amount balance

82930 1998-11-01 10.56 10.56

82930 1998-11-21 32.55 43.11

82930 1998-11-29 -5.02 38.09

Example: Group Sum

The query below finds the total sum of meat sales for each city.

 SELECT city, kind, sales,
 SUM(sales) OVER (PARTITION BY city ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) FROM monthly;

The possible results of the preceding SELECT appear in the following table.

city kind sales Group Sum (sales)

Omaha pure pork 45 220

Omaha pure pork 125 220

Omaha pure pork 25 220

Omaha variety pack 25 220

Chicago variety pack 55 175

Chicago variety pack 45 175

Chicago pure pork 50 175

Chicago variety pack 25 175

Example: Group Sum

The following query returns the total sum of meat sales for all cities. Note there is no PARTITION BY
clause in the SUM function, so all cities are included in the group sum.

 SELECT city, kind, sales,
 SUM(sales) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING)
 FROM monthly;

The possible results of the preceding SELECT appear in the table below.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 431

city kind sales Group Sum (sales)

Omaha pure pork 45 395

Omaha pure pork 125 395

Omaha pure pork 25 395

Omaha variety pack 25 395

Chicago variety pack 55 395

Chicago variety pack 45 395

Chicago pure pork 50 395

Chicago variety pack 25 395

Example: Moving Sum

The following query returns the moving sum of meat sales by city. Notice that the query returns the
moving sum of sales by city (the partition) for the current row (of the partition) and three preceding rows
where possible.

The order in which each meat variety is returned is the default ascending order according to profit.

Where no sales figures are available, no moving sum of sales is possible. In this case, there is a null in
the sum(sales) column.

 SELECT city, kind, sales, profit,
 SUM(sales) OVER (PARTITION BY city, kind
 ORDER BY profit ROWS 3 PRECEDING)
 FROM monthly;

city kind sales profit Moving sum (sales)

Omaha pure pork 25 40 25

Omaha pure pork 25 120 50

Omaha pure pork 45 140 95

Omaha pure pork 125 190 220

Omaha pure pork 45 320 240

Omaha pure pork 1255 400 340

Omaha variety pack ? ? ?

Omaha variety pack 25 40 25

Omaha variety pack 25 120 50

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 432

city kind sales profit Moving sum (sales)

Chicago pure pork ? ? ?

Chicago pure pork 15 10 15

Chicago pure pork 54 12 69

Chicago pure pork 14 20 83

Chicago pure pork 54 24 137

Chicago pure pork 14 34 136

Chicago pure pork 95 80 177

Chicago pure pork 95 140 258

Chicago pure pork 15 220 219

Chicago variety pack 23 39 23

Chicago variety pack 25 40 48

Chicago variety pack 125 70 173

Chicago variety pack 125 100 298

Chicago variety pack 23 100 298

Chicago variety pack 25 120 298

Example: Remaining Sum

The following query returns the remaining sum of meat sales for all cities. Note there is no PARTITION
BY clause in the SUM function, so all cities are included in the remaining sum.

 SELECT city, kind, sales,
 SUM(sales) OVER (ORDER BY city, kind
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM monthly;

The possible results of the preceding SELECT appear in the table below.

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Omaha variety pack 25 ?
Omaha pure pork 125 25
Omaha pure pork 25 150
Omaha pure pork 45 175
Chicago variety pack 55 220

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 433

Chicago variety pack 25 275
Chicago variety pack 45 300
Chicago pure pork 50 345

Note that the sort order for the computation is alphabetical by city, and then by kind. The results, however,
appear in the reverse order.

The sort order that you specify in the window specification defines the sort order of the rows over which
the function is applied; it does not define the ordering of the results. To order the results, use an ORDER
BY phrase in the SELECT statement.

For example:

 SELECT city, kind, sales,
 SUM(sales) OVER (ORDER BY city, kind
 ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
 FROM monthly
 ORDER BY city, kind;

The possible results of the preceding SELECT appear in the table below:

city kind sales Remaining Sum(sales)
------- ------------- ------- --------------------
Chicago pure pork 50 345
Chicago variety pack 55 265
Chicago variety pack 25 320
Chicago variety pack 45 220
Omaha pure pork 25 70
Omaha pure pork 125 95
Omaha pure pork 45 25
Omaha variety pack 25 ?

IF you want to compute the … THEN use this function …

cumulative sum • SUM window function
• CSUM

cumulative, group, or moving count COUNT window function

group sum SUM window function

moving average • AVG window function
• MAVG

moving difference between the current row-column value and
the preceding n th row-column value

MDIFF

moving linear regression MLINREG

moving sum • SUM window function

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 434

IF you want to compute the … THEN use this function …

• MSUM

quantile scores for the values in a column QUANTILE

ordered rank of all rows in a group • RANK window function
• RANK

relative rank of a row in a group PERCENT_RANK window function

sequential row number of the row within its window partition
according to the window ordering of the window

ROW_NUMBER

cumulative, group, or moving maximum value MAX window function

cumulative, group, or moving minimum value MIN window function

GROUP BY Clause

GROUP BY and Window Functions

For window functions, the GROUP BY clause must include all the columns specified in the:

• Select list of the SELECT clause
• Window functions in the select list of a SELECT clause
• Window functions in the search condition of a QUALIFY clause
• The condition in the RESET WHEN clause

For example, the following SELECT statement specifies the column City in the select list and the column
StoreID in the COUNT window function in the select list and QUALIFY clause. Both columns must also
appear in the GROUP BY clause:

 SELECT City, StoreID, COUNT(StoreID) OVER ()
 FROM sales_tbl
 GROUP BY City, StoreID
 QUALIFY COUNT(StoreID) >=3;

For window functions, GROUP BY collapses all rows with the same value for the group-by columns into
a single row.

For example, the following statement uses the GROUP BY clause to collapse all rows with the same
value for City and StoreID into a single row:

 SELECT City, StoreID, COUNT(StoreID) OVER ()
 FROM sales_tbl
 GROUP BY City, StoreID;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 435

The results look like this:

 City StoreID Group Count(StoreID)
 ----- ------- --------------------
 Pecos 1001 3
 Pecos 1002 3
 Ozona 1003 3

Without the GROUP BY, the results look like this:

 City StoreID Group Count(StoreID)
 ----- ------- --------------------
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1001 9
 Pecos 1002 9
 Pecos 1002 9
 Pecos 1002 9
 Ozona 1003 9
 Ozona 1003 9

GROUP BY and Teradata-Specific Functions

For Teradata-specific functions, GROUP BY determines the partitions over which the function executes.
The clause does not collapse all rows with the same value for the group-by columns into a single row.
Thus, the GROUP BY clause in these cases need only specify the partitioning column for the function.

For example, the following statement computes the running sales for each store by using the GROUP
BY clause to partition the data in sales_tbl by StoreID:

 SELECT StoreID, Sales, CSUM(Sales, StoreID)
 FROM sales_tbl
 GROUP BY StoreID;

The results look like this:

 StoreID Sales CSum(Sales,StoreID)
 ------- -------- -------------------
 1001 1100.00 1100.00
 1001 400.00 1500.00
 1001 1000.00 2500.00
 1001 2000.00 4500.00
 1002 500.00 500.00
 1002 1500.00 2000.00

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 436

 1002 2500.00 4500.00
 1003 1000.00 1000.00
 1003 3000.00 4000.00

Combining Window Functions, Teradata-Specific Functions, and
GROUP BY

The following table provides the semantics of the allowable combinations of window functions, Teradata-
specific functions, aggregate functions, and the GROUP BY clause.

Combination Semantics

Window
Function

Teradata-
Specific
Function

Aggregate
Function

GROUP
BY
Clause

X A value is computed for each row.

X A value is computed for each row. The entire
table constitutes a single group, or partition,
over which the Teradata-specific function
executes.

X One aggregate value is computed for the entire
table.

X X GROUP BY collapses all rows with the same
value for the group-by columns into a single
row, and a value is computed for each resulting
row.

X X GROUP BY determines the partitions over
which the Teradata-specific function executes.
 The clause does not collapse all rows with the
same value for the group-by columns into a
single row.

X X An aggregation is performed for each group.

X X Teradata-specific functions do not have
partitions. The whole table is one partition.

X X X GROUP BY determines partitions for Teradata-
specific functions. GROUP BY does not
collapse all rows with the same value for the
group-by columns into a single row, and does
not affect window function computation.

X X X GROUP BY collapses all rows with the same
value for the group-by columns into a single
row. For window functions, a value is computed
for each resulting row; for aggregate functions,
 an aggregation is performed for each group.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 437

Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format '$ZZZ,ZZ9.99'

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format '$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Related Topics
For more information, see:

• For descriptions of aggregate functions and arguments, see Aggregate Functions.
• For more information, see “RESET WHEN Condition Rules” and “QUALIFY Clause” in Teradata

Vantage™ SQL Data Manipulation Language, B035-1146.
• For information on the default format of data types and an explanation of the formatting characters in

the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals.

CSUM
Purpose

Returns the cumulative (or running) sum of a value expression for each row in a partition, assuming the
rows in the partition are sorted by the sort_expression list.

Type

Teradata-specific function.

Syntax

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 438

Syntax Elements

value_expression

A numeric literal or column expression for which a running sum is to be computed.

By default, CSUM uses the default data type of value_expression. Larger numeric values are supported
by casting it to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using SUM Instead of CSUM
The use of CSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant SUM window function that specifies ROWS UNBOUNDED
PRECEDING as its aggregation group. CSUM is retained only for backward compatibility with existing
applications.

Meaning of Cumulative Sums
CSUM accumulates a sum over an ordered set of rows, providing the current value of the SUM on each
row.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 439

Possible Result Overflow with SELECT Sum
Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Result Type and Attributes
The data type, format, and title for CSUM are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

Examples

Example

Report the daily running sales total for product code 10 for each month of 1998.

 SELECT cmonth, CSUM(sumPrice, cdate)
 FROM
 (SELECT a2.month_of_year,
 a2.calendar_date,a1.itemID, SUM(a1.price)
 FROM Sales a1, SYS_CALENDAR.Calendar a2
 WHERE a1.calendar_date=a2.calendar_date
 AND a2.calendar_date=1998
 AND a1.itemID=10
 GROUP BY a2.month_of_year, a1.calendar_date,
 a1.itemID) AS T1(cmonth, cdate, sumPrice)
 GROUP BY cmonth;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 440

Grouping by month allows the total to accumulate until the end of each month, when it is then set to zero
for the next month. This permits the calculation of cumulative totals for each item in the same query.

Example

Provide a running total for sales of each item in store 5 in January and generate output that is ready to
export into a graphing program.

 SELECT Item, SalesDate, CSUM(Revenue,Item,SalesDate) AS CumulativeSales
 FROM
 (SELECT Item, SalesDate, SUM(Sales) AS Revenue
 FROM DailySales
 WHERE StoreId=5 AND SalesDate BETWEEN
 '1/1/1999' AND '1/31/1999'
 GROUP BY Item, SalesDate) AS ItemSales
 ORDER BY SalesDate;

The result might like something like the following table.

Item SalesDate CumulativeSales

InstaWoof dog food 01/01/1999 972.99

InstaWoof dog food 01/02/1999 2361.99

InstaWoof dog food 01/03/1999 5110.97

InstaWoof dog food 01/04/1999 7793.91

CUME_DIST
Purpose

Calculates the cumulative distribution of a value in a group of values.

Type

ANSI SQL:2011 window function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 441

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 442

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

RESET WHEN is optional. If there are no RESET WHEN or PARTITION BY clauses, then the entire result
set constitutes a single partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 443

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using CUME_DIST
CUME_DIST is similar to PERCENT_RANK. Unlike PERCENT_RANK, which considers the RANK value
in the presence of ties, CUME_DIST uses the highest tied rank, that is, the position of the last tied value
when there are peers. CUME_DIST is the ratio of that position in the partition (RANK-HIGH/NUM ROWS).

Results
The range of values returned by CUME_DIST is >0 to <=1.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 CUME_DIST()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the cumulative distribution by service years for teachers listed in schooltbl.

lname serviceyrs CUME_DIST

Adams 10 0.333333

Peters 10 0.333333

Murray 10 0.333333

Rogers 15 0.444333

Franklin 16 0.555333

Smith 20 0.888889

Ford 20 0.888889

Derby 20 0.888889

Baker 20 1.000000

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 444

DENSE_RANK (ANSI)
Purpose

Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 445

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes a single
partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 446

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using DENSE_RANK
The ranks are consecutive integers beginning with 1. Rows with equal values receive the same rank. Rank
values are not skipped in the event of ties.

Result Type
The result data type is INTEGER.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 DENSE_RANK()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the ordered ranking by service years for teachers listed in schooltbl.

lname serviceyrs DENSE_RANK

Adams 10 1

Peters 10 1

Murray 10 1

Rogers 15 2

Franklin 16 3

Smith 20 4

Ford 20 4

Derby 20 4

Baker 25 5

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 447

FIRST_VALUE / LAST_VALUE
Purpose

Returns the first value or last value in an ordered set of values.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

value_expression

A column expression.

FIRST_VALUE and LAST_VALUE use the default data type of value_expression.

Larger numeric values are supported by casting them to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

IGNORE NULLS

Keyword that specifies not to return NULL.

• IGNORE NULLS (with FIRST_VALUE) = returns the first non-null value in the set, or NULL if all
values are NULL.

• If IGNORE NULLS (with LAST_VALUE) = returns the last non-null value in the set, or NULL if all
values are NULL.

RESPECT NULLS

Optional keyword that specifies whether to return NULL.

• RESPECT NULLS (with FIRST_VALUE) = returns the first value, whether or not it is null.
• RESPECT NULLS (with LAST_VALUE) = returns the last value, whether or not it is null.

If all values are null, NULL is returned.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 448

window

A group, cumulative, or moving computation.

For Window Aggregate Function syntax, see Window Aggregate Functions.

In presence of ties in the sort key of the Window Aggregate Function syntax, FIRST_VALUE and
LAST_VALUE are non-deterministic. They return value_expression from any one of the rows with tied
order by value.

Note:
If the ROWS phrase is omitted and there is an ORDER BY phrase, the default ROWS is
UNBOUNDED PRECEDING AND CURRENT ROW.

If the ROWS phrase is omitted and there is no ORDER BY phrase, the default ROWS is
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
FIRST_VALUE and LAST_VALUE are especially valuable because they are often used as the baselines
in calculations. For instance, with a partition holding sales data ordered by day, you may want to know
how much the sales for each day were compared to the first sales day (FIRST_VALUE) for the period, or
you may want to know, for a set of rows in increasing sales order, what the percentage size of each sale
in the region was compared to the largest sale (LAST_VALUE) in the region.

IGNORE NULLS is particularly useful in populating an inventory table properly.

Selecting neither IGNORE NULLS or RESPECT NULLS is equivalent to selecting RESPECT NULLS.

Example
The following example returns by start date the salary, moving average (ma), and first and last salary in
the moving average group.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 449

Note:

The functions are going to return the first/last value in the window. In the example, the first and last
rows fall within the window. If the window were between 3 preceding and 2 preceding rows, you would
see NULL for first value in the 1st two rows.

SELECT start_date, salary,
 AVG(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) ma,
 FIRST_VALUE(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) first,
 LAST_VALUE(salary) OVER(ORDER BY start_date
 ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) last
FROM employee
ORDER BY start_date;

start_date salary ma first last

21-MAR-76 6661.78 6603.280 6661.78 6544.78

12-DEC-78 6544.78 5183.780 6661.78 2344.78

24-OCT-82 2344.78 4471.530 6661.78 2344.78

15-JAN-84 2334.78 4441.780 6661.78 4322.78

30-JUL-87 4322.980 4688.980 6544.78 7897.78

31-DEC-90 7897.78 3626.936 2344.78 1234.56

25-JUL-96 1234.56 3404.536 2334.78 1232.78

17-SEP-96 1232.78 3671.975 4322.78 1232.78

LAG/LEAD
Purpose

Ordered analytic functions calculate an aggregate or non-aggregate value on a window of rows within a
group of rows. The window of rows is defined by the Window Framing clause, also called the ROWS clause.
Window sizes are based on the size specified in the ROWS clause. The group of rows is defined by the
PARTITION BY clause of the Window function.

The LAG function accesses data from the row preceding the current row at a specified offset value in a
window group, while the LEAD function returns data from the row following the current row. If the offset
value is outside the scope of the window, the user-specified default value is returned.

The LAG and LEAD functions are used for OLAP and decision support queries.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 450

Syntax for LAG/LEAD ANSI Style

Syntax for LAG/LEAD Teradata Style

Syntax Elements

value_expression

The expression cannot contain any ordered analytical functions.

value_expression is mandatory and can be any expression that returns a scalar value. It cannot be a
table function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 451

offset_value

A literal unsigned integer value between 0 and 4096. If not specified, the default value is 1.

offset_value specifies the physical row position relative to the current row in a given window of rows. The
row position is the row following the current row for the LEAD function, and the preceding row for the
LAG function.

An offset_value of 0 specifies the current row.

default_value_expression

Any expression that returns a scalar value.

If not specified, the value is assumed to be NULL.

When running in ANSI mode, the default_value_expression data type must match value_expression. An
error occurs if the data types do not match.

In Teradata mode, the database attempts to match the default_value_expression data type to
value_expression by doing a cast to value_expression data type to execute the query. If there are casting
rule violations, Teradata Database displays an error message.

RESPECT NULLS

If the preceding or following row determined by offset_value is within the scope of the window group, and
if the value_expression evaluation returns a NULL, LAG or LEAD returns NULL. This setting indicates
that the NULL value is not ignored.

If the preceding or following row is outside the scope of the window group, LAG or LEAD returns
default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

IGNORE NULLS

If value_expression returns a NULL value where the preceding or following row, as determined by the
specified offset_value, is within the scope of the window group, LAG or LEAD ignores the NULL value.

LAG or LEAD then continues searching for the non-NULL value_expression in the preceding or following
row, which may be far from the current row but within the scope of the window group. The search
terminates at the window boundaries:

• For LAG, the search terminates at the first row of the window group.
• For LEAD, the search terminates at the last row of the window group.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 452

At the end of the search, LAG or LEAD returns default_value_expression if no non-NULL
value_expression is found.

If the preceding or following row is outside the scope of the window group, LAG or LEAD returns
default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

OVER

Specifies how values are grouped, ordered, and considered while computing the LAG or LEAD function.

Values are grouped by the optional PARTITION BY clause and the optional RESET WHEN clause. Values
are sorted according to the ORDER BY clause in a given partition of rows.

PARTITION BY

The group or groups over which the function operates.

This is a comma-separated value expression list.

ORDER BY

The order in which the values in a group or partition are sorted.

This is a comma-separated value expression list.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 453

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes a single
partition.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type
The data type of the LEAD or LAG function's returned values is the same as the specified value of
value_expression. If default_value_expression and value_expression have different data types, Teradata
recommends explicitly casting default_value_expression to the data type of value_expression.

In ANSI mode, an error occurs if default_value_expression and value_expression data types do not match.

In the Teradata Transaction (BTET) mode, if the data types do not match, the database attempts to cast
the default_value_expression to the value_expression data type based on the internal casting rules. If this
results in casting rule violations, an error message displays.

Usage Notes
Because the LEAD and LAG functions do not support the ROWS clause in the syntax, the window size is
the same as the size of the group of rows defined by the PARTITION BY clause. If the PARTITION BY
clause is absent, the entire table becomes a single group, and the size of the group of rows is the same
as the total number of rows in the table.

The RESET WHEN clause, which is applicable to all window functions in Teradata Database, is extended
to the LEAD and LAG functions.

The RESET WHEN clause is a Teradata Extension to ANSI. The LEAD and LAG functions support
performance-driven rewrites, and support both Teradata syntax and ANSI syntax to simplify data migration
from other databases.

In ANSI Transaction mode, the value_expression data type must match the default value expression data
type, or else an error occurs.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 454

Examples

Example: LAG with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG(sal, 1, 0) IGNORE NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 950
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 2450
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 1250
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG(sal IGNORE NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 455

 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 950
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 2450
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 1250
 8 MATTHEW SALESMAN 1600 1500

Example: LAG with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG(sal, 1, 0) RESPECT NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG(sal RESPECT NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 456

ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Example: LAG with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LAG (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 457

 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Teradata style syntax:

SELECT empno, empname, job, sal,
 LAG (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_PREV
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 0
 13 GRACE ANALYST 3000 ?
 1 JOHN CLERK 800 0
 2 ERIC CLERK 950 800
 3 KURT CLERK ? 950
 6 JULIE CLERK 1300 ?
 9 NICHOLAS MANAGER 2450 0
 10 NOVAK MANAGER ? 2450
 11 ROGER MANAGER 2850 ?
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 0
 5 LYNN SALESMAN ? 1250
 7 TERESA SALESMAN 1500 ?
 8 MATTHEW SALESMAN 1600 1500

Example: LEAD with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal, 1, 0) RESPECT NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 458

 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal RESPECT NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Example: LEAD with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal, 1, 0) IGNORE NULLS
 OVER (PARTITION BY job ORDER BY empno) AS sal_next

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 459

FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 1300
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 2850
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 1500
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD(sal IGNORE NULLS, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 1300
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 2850
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 1500
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 460

Example: LEAD with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
 LEAD (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next

FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?
 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

Teradata style syntax:

SELECT empno, empname, job, sal,
 LEAD (sal, 1, 0)
 OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM emp
ORDER BY job, empno;

 EMPNO EMPNAME JOB SAL SAL_NEXT
---------- ---------- --------- ---------- ----------
 12 PAUL ANALYST ? 3000
 13 GRACE ANALYST 3000 0
 1 JOHN CLERK 800 950
 2 ERIC CLERK 950 ?

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 461

 3 KURT CLERK ? 1300
 6 JULIE CLERK 1300 0
 9 NICHOLAS MANAGER 2450 ?
 10 NOVAK MANAGER ? 2850
 11 ROGER MANAGER 2850 0
 14 RICH PRESIDENT 5000 0
 4 KENT SALESMAN 1250 ?
 5 LYNN SALESMAN ? 1500
 7 TERESA SALESMAN 1500 1600
 8 MATTHEW SALESMAN 1600 0

MAVG
Purpose

Computes the moving average of a value expression for each row in a partition using the specified value
expression for the current row and the preceding width-1 rows.

Type

Teradata-specific function.

Syntax

Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 462

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

For example, MAVG(Sale, 6, Region ASC, Store DESC), where Sale is the value_expression, 6 is the
width, and Region ASC, Store DESC is the sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using AVG Instead of MAVG
The use of MAVG is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant AVG window function that specifies ROWS value PRECEDING as its
aggregation group. MAVG is retained only for backward compatibility with existing applications.

Result Type and Attributes
The data type, format, and title for MAVG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 463

Problems With Missing Data
Ensure that data you analyze using MAVG has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing the Moving Average When Number of Rows < width
For the (possibly grouped) resulting relation, the moving average considering width rows is computed
where the rows are sorted by the sort_expression list.

When there are fewer than width rows, the average is computed using the current row and all preceding
rows.

Examples

Example

Compute the 7-day moving average of sales for product code 10 for each day in the month of October,
1996.

 SELECT cdate, itemID, MAVG(sumPrice, 7, date)
 FROM (SELECT a1.calendar_date, a1.itemID,
 SUM(a1.price)
 FROM Sales a1
 WHERE a1.itemID=10 AND a1.calendar_date
 BETWEEN 96-10-01 AND 96-10-31
 GROUP BY a1.calendar_date, a1.itemID) AS T1(cdate,
 itemID, sumPrice);

Example

The following example calculates the 50-day moving average of the closing price of the stock for
Zemlinsky Bros. Corporation. The ticker name for the company is ZBC.

 SELECT MarketDay, ClosingPrice,
 MAVG(ClosingPrice,50, MarketDay) AS ZBCAverage
 FROM MarketDailyClosing
 WHERE Ticker = 'ZBC'
 ORDER BY MarketDay;

The results for the query might look something like the following table.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 464

MarketDay ClosingPrice ZBCAverage

12/27/1999 89 1/16 85 1/2

12/28/1999 91 1/8 86 1/16

12/29/1999 92 3/4 86 1/2

12/30/1999 94 1/2 87

MDIFF
Purpose

Returns the moving difference between the specified value expression for the current row and the preceding
width rows for each row in the partition.

Type

Teradata-specific function.

Syntax

Syntax Elements

value_expression

A numeric column or literal expression for which a moving difference is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 465

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Meaning of Moving Difference
A common business metric is to compare activity for some variable in a current time period to the activity
for the same variable in another time period a fixed distance in the past. For example, you might want to
compare current sales volume against sales volume for preceding quarters. This is a moving difference
calculation where value_expression would be the quarterly sales volume, width is 4, and sort_expression
might be the quarter_of_calendar column from the SYS_CALENDAR.Calendar system view.

Using SUM Instead of MDIFF
The use of MDIFF is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is retained only for backward compatibility with existing applications. MDIFF(x, w, y) is equivalent to:

 x - SUM(x) OVER (ORDER BY y
 ROWS BETWEEN w PRECEDING AND w PRECEDING)

Result Type and Attributes
The data type, format, and title for MDIFF are as follows:

• If operand x is character, the data type is the same as x and the format is the default format for FLOAT.
• If operand x is numeric, the data type is the same as x and the format is the same format as x.
• If operand is date, the data type is INTEGER and the format is the default format for INTEGER.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 466

Problems With Missing Data
Ensure that rows you analyze using MDIFF have no missing data points. Computing a moving difference
over data with missing points produces unexpected and incorrect results because the computation
considers n physical rows of data rather than n logical data points.

Computing the Moving Difference When No Preceding Row
Exists
When the number of preceding rows to use in a moving difference computation is fewer than the specified
width, the result is null.

Examples

Example

Display the difference between each quarter and the same quarter sales for last year for product code
10.

 SELECT year_of_calendar, quarter_of_calendar,
 MDIFF(sumPrice, 4, year_of_calendar, quarter_of_calendar)
 FROM (SELECT a2.year_of_calendar,
 a2.quarter_of_calendar, SUM(a2.Price) AS sumPrice
 FROM Sales a1, SYS_CALENDAR.Calendar a2
 WHERE a1.itemID=10 and a1.calendar_date=a2.calendar_date
 GROUP BY a2.year_of_calendar, a2.quarter_of_calendar) AS T1
 ORDER BY year_of_calendar, quarter_of_year;

Example

The following example computes the changing market volume week over week for the stock of company
Horatio Parker Imports. The ticker name for the company is HPI.

 SELECT MarketWeek, WeekVolume,
 MDIFF(WeekVolume,1,MarketWeek) AS HPIVolumeDiff
 FROM
 (SELECT MarketWeek, SUM(Volume) AS WeekVolume
 FROM MarketDailyClosing
 WHERE Ticker = 'HPI'
 GROUP BY MarketWeek)
 ORDER BY MarketWeek;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 467

The result might look like the following table. Note that the first row is null for column HPIVolume Diff,
indicating no previous row from which to compute a difference.

MarketWeek WeekVolume HPIVolumeDiff

11/29/1999 9817671 ?

12/06/1999 9945671 128000

12/13/1999 10099459 153788

12/20/1999 10490732 391273

12/27/1999 11045331 554599

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on the SUM window function, see Window Aggregate Functions.

MEDIAN
Purpose

For numeric values, returns the middle value or an interpolated value that would be the middle value after
the values are sorted. Nulls are ignored in the calculation.

Type

MEDIAN is an aggregate function.

Syntax

Syntax Elements

value_expression

A single expression that must be a numeric or interval data type.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 468

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result
The function returns the same data type as the data type of the argument.

Example
MEDIAN, an inverse distribution function that assumes a continuous distribution model, is a specific case
of PERCENTILE_CONT where the percentile value is 0.5.

MEDIAN (value_expression)

is same as:

PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY value_expression)

Related Topics
For more information, see:

• See PERCENTILE_CONT / PERCENTILE_DISC.

MLINREG
Purpose

Returns a predicted value for an expression based on a least squares moving linear regression of the
previous width -1 (based on sort_expression) column values.

Type

Teradata-specific function.

Syntax

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 469

Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_expression

A column expression that defines the in dependent variable for calculating the linear regression.

For example, MLINREG(Sales, 6, Fiscal_Year_Month ASC), where Sales is the value_expression, 6 is
the width, and Fiscal_Year_Month ASC is the sort_expression.

The data type of the column reference must be numeric or a data type that Teradata Database can
successfully convert implicitly to numeric.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using ANSI-Compliant Window Functions Instead of MLINREG
Using ANSI-compliant window functions instead of MLINREG is strongly encouraged. MLINREG is a
Teradata extension to the ANSI SQL:2011 standard, and is retained only for backward compatibility with
existing applications.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 470

Result Type and Attributes
The data type, format, and title for MLINREG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.

Default Independent Variable
MLINREG assumes that the independent variable is described by sort_expression.

Computing MLINREG When Preceding Rows < width - 1
When there are fewer than width -1 preceding rows, MLINREG computes the regression using all the
preceding rows.

MLINREG Report Structure
All rows in the results table except the first two, which are always null, display the predicted value.

Example
Consider the itemID, smonth, and sales columns from sales_table:

 SELECT itemID, smonth, sales
 FROM fiscal_year_sales_table
 ORDER BY itemID, smonth;
 itemID smonth sales
 ------ -------- -----
 A 1 100
 A 2 110
 A 3 120
 A 4 130
 A 5 140
 A 6 150
 A 7 170
 A 8 190
 A 9 210
 A 10 230
 A 11 250
 A 12 ?
 B 1 20

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 471

 B 2 30
 ...

Assume that the NULL in the sales column is because in this example the month of December (month 12)
is a future date and the value is unknown.

The following statement uses MLINREG to display the expected sales using past trends for each month
for each product using the sales data for the previous six months.

 SELECT itemID, smonth, sales, MLINREG(sales,7,smonth)
 FROM fiscal_year_sales_table;
 GROUP BY itemID;
 itemID smonth sales MLinReg(sales,7,smonth)
 ------ -------- ----- -----------------------
 A 1 100 ?
 A 2 110 ?
 A 3 120 120
 A 4 130 130
 A 5 140 140
 A 6 150 150
 A 7 170 160
 A 8 190 177
 A 9 210 198
 A 10 230 222
 A 11 250 247
 A 12 ? 270
 B 1 20 ?
 B 2 30 ?
 ...

Related Topics
For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

MSUM
Purpose

Computes the moving sum specified by a value expression for the current row and the preceding n-1 rows.
This function is very similar to the MAVG function.

Type

Teradata-specific function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 472

Syntax

Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 473

Using SUM Instead of MSUM
The use of MSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant SUM window function. MSUM is retained only for backward
compatibility with existing applications.

Result Type and Attributes
The data type, format, and title for MSUM are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

Problems With Missing Data
Ensure that data you analyze using MSUM has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing MSUM When Number of Rows < width
For data having fewer than width rows, MSUM computes the sum using all the preceding rows. MSUM
returns the current sum rather than nulls when the number of rows in the sample is fewer than width.

Possible Result Overflow with SELECT Sum
When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 474

PERCENT_RANK
Purpose

Returns the relative rank of rows for a value_expression.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 475

ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This is ANSI SQL:2011 compliant.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 476

The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Computation
The assigned rank of a row is defined as 1 (one) plus the number of rows that precede the row and are
not peers of it.

PERCENT_RANK is expressed as an approximate numeric ratio between 0.0 and 1.0.

PERCENT_RANK has this value … FOR the result row assigned this rank …

0.0 1.

1.0 highest in the result.

Result Type and Attributes
For PERCENT_RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and title
are as follows:

Data Type Format Title

REAL the default format for DECIMAL(7,6). Percent_Rank(y direction)

Examples

Example: Relative Rank

Determine the relative rank, called the percent_rank, of Christmas sales.

The following query:

 SELECT sales_amt,
 PERCENT_RANK() OVER (ORDER BY sales_amt)
 FROM xsales;

might return the following results. Note that the relative rank is returned in ascending order, the default
when no sort order is specified and that the currency is not reported explicitly.

sales_amt Percent_Rank

100.00 0.000000

120.00 0.125000

130.00 0.250000

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 477

sales_amt Percent_Rank

140.00 0.375000

143.00 0.500000

147.00 0.625000

150.00 0.750000

155.00 0.875000

160.00 1.000000

Example: Rank and Relative Rank

Determine the rank and the relative rank of Christmas sales.

 SELECT sales_amt,
 RANK() OVER (ORDER BY sales_amt),
 PERCENT_RANK () OVER (ORDER BY sales_amt)
 FROM xsales;

sales_amt Rank Percent_Rank

100.00 1 0.000000

120.00 2 0.125000

130.00 3 0.250000

140.00 4 0.375000

143.00 5 0.500000

147.00 6 0.625000

150.00 7 0.750000

155.00 8 0.875000

160.00 9 1.000000

Example: PERCENT_RANK and CUM_DIST

The following SQL statement illustrates the difference between PERCENT_RANK and cumulative
distribution.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 478

SELECT sales_amt,
 PERCENT_RANK() OVER (ORDER BY sales_amt),
 CUME_DIST() OVER (ORDER BY sales_amt)
 FROM xsales;

sales_amt PERCENT_Rank CUME_DIST

100. .000000 0.125000

120. .142857 0.250000

130 .285714 .375000

140. .428571 .500000

147. .571429 .625000

150. .714286 .750000

155. .857143 .875000

160. 1.000000 1.000000

PERCENTILE_CONT / PERCENTILE_DISC
Purpose

Returns an interpolated value that falls within its value_expression with respect to its sort specification.

Type

PERCENTILE_CONT and PERCENTILE_DISC are aggregate functions.

Syntax

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 479

Syntax Elements

value_expression_1

A numeric value between 0 and 1 inclusive.

WITHIN GROUP

The order in which the values in a group or partition are sorted.

ORDER BY

The order in which the values in a group or partition are sorted.

value_expression_2

A single expression that must be a numeric value.

ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 480

Result
The function returns the same data type as the data type of the argument.

Nulls are ignored in the calculation.

Usage Notes
Both functions are inverse distribution functions that assume a continuous distribution.

• PERCENTILE_CONT returns a computed result after doing linear interpolation.
• PERCENTILE_DISC simply returns a value from the set of values.

Example
Using this table:

Area Address Price

Downtown 72 Easy Street 509000

Downtown 29 Right Way 402000

Downtown 45 Diamond Lane 203000

Downtown 76 Blind Alley 201000

Downtown 15 Tern Pike 199000

Downtown 444 Kanga Road 102000

Uptown 15 Peak Street 456000

Uptown 27 Primrose Path 349000

Uptown 44 Shady Lane 341000

Uptown 34 Design Road 244000

Uptown 2331 Highway 64 244000

Uptown 77 Sunset Strip 102000

the following SQL statement returns a computed result after doing linear interpolation, as shown in the
table immediately below.

SELECT area,
 AVG(price),
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY price),
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY price)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 481

FROM market
GROUP BY area;

Area Average Price PERC_DISC PERC_CONT

Downtown 269333 201000 202000

Uptown 289333 244000 292500

QUANTILE
Purpose

Computes the quantile scores for the values in a group.

Type

Teradata-specific function.

Syntax

Syntax Elements

quantile_literal

A positive integer literal used to define the number of quantile partitions to be used.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 482

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Definition
A quantile is a generic interval of user-defined width. For example, percentiles divide data among 100
evenly spaced intervals, deciles among 10 evenly spaced intervals, quartiles among 4, and so on. A
quantile score indicates the fraction of rows having a sort_expression value lower than the current value.
For example, a percentile score of 98 means that 98 percent of the rows in the list have a sort_expression
value lower than the current value.

Using ANSI Window Functions Instead of QUANTILE
The use of QUANTILE is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard
and is retained only for backward compatibility with existing applications.

To compute QUANTILE(q, s) using ANSI window functions, use the following:

 (RANK() OVER (ORDER BY s) - 1) * q / COUNT(*) OVER()

QUANTILE Report
For each row in the group, QUANTILE returns an integer value that represents the quantile of the
sort_expression value for that row relative to the sort_expression value for all the rows in the group.

Quantile Value Range
Quantile values range from 0 through (Q-1), where Q is the number of quantile partitions specified by
quantile_literal.

Result Type and Attributes
The data type, format, and title for QUANTILE(Q, list) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Quantile(Q, list)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 483

Examples

Example

Display each item and its total sales in the ninth (top) decile according to the total sales.

 SELECT itemID, sumPrice
 FROM (SELECT a1.itemID, SUM(price)
 FROM Sales a1
 GROUP BY a1.itemID) AS T1(itemID, sumPrice)
 QUALIFY QUANTILE(10,sumPrice)=9;

Example

The following example groups all items into deciles by profitability.

 SELECT Item, Profit, QUANTILE(10, Profit) AS Decile
 FROM
 (SELECT Item, Sum(Sales) — (Count(Sales) * ItemCost) AS Profit
 FROM DailySales, Items
 WHERE DailySales.Item = Items.Item
 GROUP BY Item) AS Item;

The result might look like the following table.

Item Profit Decile

High Tops 97112 9

Low Tops 74699 7

Running 69712 6

Casual 28912 3

Xtrain 100129 9

Example

Because QUANTILE uses equal-width histograms to partition the specified data, it does not partition the
data equally using equal-height histograms. In other words, do not expect equal row counts per specified
quantile. Expect empty quantile histograms when, for example, duplicate values for sort_expression are
found in the data.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 484

For example, consider the following simple SELECT statement.

 SELECT itemNo, quantity, QUANTILE(10,quantity) FROM inventory;

The report might look like this.

itemNo quantity Quantile(10, quantity)

13 1 0

9 1 0

7 1 0

2 1 0

5 1 0

3 1 0

1 1 0

6 1 0

4 1 0

10 1 0

8 1 0

11 1 0

12 9 9

Because the quantile sort is on quantity, and there are only two quantity scores in the inventory table,
there are no scores in the report for deciles 1 through 8.

Related Topics
For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

RANK (ANSI)
Purpose

Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

To use this function with time series data, see Teradata Vantage™ Time Series Tables and Operations,
B035-1208.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 485

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 486

ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

TIES LOW

Specifies that all ties get the lowest rank.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 487

Returns an Integer data type.

TIES HIGH

Specifies that all ties get the highest rank.

Returns an Integer data type.

TIES AVG

Specifies that all ties get the average rank.

Returns a Decimal dat type.

TIES DENSE

Specifies that all ties are ranked as DENSE_RANK ranks them.

Returns an Integer data type.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

Meaning of Rank
RANK returns an ordered ranking of rows based on the value_expression in the ORDER BY clause. All
rows having the same value_expression value are assigned the same rank.

If n rows have the same value_expression values, then they are assigned the same rank, call it rank r.
The next distinct value receives rank r +n. And so on.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. RANK
returns an integer that represents the rank of each row in the result.

Result Type and Attributes
For RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and title are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(y direction)

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 488

Examples

Example: Ranking Salespeople Based on Sales

This example ranks salespersons by sales region based on their sales.

 SELECT sales_person, sales_region, sales_amount,
 RANK() OVER (PARTITION BY sales_region ORDER BY sales_amount DESC)
 FROM sales_table;

sales_person sales_region sales_amount Rank(sales_amount)

Garabaldi East 100 1

Baker East 99 2

Fine East 89 3

Adams East 75 4

Edwards West 100 1

Connors West 99 2

Davis West 99 2

The rank column in the preceding table lists salespersons in declining sales order according to the column
specified in the PARTITION BY clause (sales_region) and that the rank of their sales (sales_amount) is
reset when the sales_region changes.

Example: Finding Differences Between RANK(ANSI) and DENSE_
RANK(ANSI)

The following SQL statement illustrates the difference between RANK(ANSI) and DENSE_RANK(ANSI),
returning the RANK and DENSE_RANK for sales_person by sales_region and sales_amount.

SELECT sales_person, sales_region, sales_amount,
 RANK() OVER
 (PARTITION BY sales_region ORDER BY sales_amount DESC) as "Rank",
 DENSE_RANK() OVER
 (PARTITION BY sales_region ORDER BY sales_amount DESC) as "DenseRank"
 FROM sales_table;

sales_person sales_region sales_amount Rank DenseRank

Garabaldi East 100 1 1

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 489

sales_person sales_region sales_amount Rank DenseRank

Baker East 100 1 1

Fine East 89 3 2

Adams East 75 4 3

Edwards West 100 1 1

Connors West 99 2 2

Davis West 99 2 2

Russell West 50 4 3

Related Topics
For more information, see:

• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

• For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

RANK (Teradata)
Purpose

Returns the rank (1 … n) of all the rows in the group by the value of sort_expression list, with the same
sort_expression values receiving the same rank.

Type

Teradata-specific function.

Syntax

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 490

Syntax Elements

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using ANSI RANK Instead of Teradata RANK
The use of Teradata RANK is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011
standard, and is equivalent to the ANSI-compliant RANK window function. Teradata RANK is retained only
for backward compatibility with existing applications.

Meaning of Rank
A rank r implies the existence of exactly r -1 rows with sort_expression value preceding it. All rows
having the same sort_expression value are assigned the same rank.

For example, if n rows have the same sort_expression values, then they are assigned the same rank, call
it rank r. The next distinct value receives rank r +n.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. The only
argument for RANK is the sort column or columns, and the function returns an integer that represents the
rank of each row in the result.

Computing Top and Bottom Values
You can use RANK to compute top and bottom values as shown in the following examples.

Top(n, column) is computed as QUALIFY RANK(column DESC) <=n.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 491

Bottom(n, column) is computed as QUALIFY RANK(column ASC) <=n.

Result Type and Attributes
The data type, format, and title for RANK(x) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(x)

Examples

Example

Display each item, its total sales, and its sales rank for the top 100 selling items.

 SELECT itemID, sumPrice, RANK(sumPrice)
 FROM
 (SELECT a1.itemID, SUM(a1.Price)
 FROM Sales a1
 GROUP BY a1.itemID AS T1(itemID, sumPrice)
 QUALIFY RANK(sumPrice) <=100;

Example

Sort employees alphabetically and identify their level of seniority in the company.

 SELECT EmployeeName, (HireDate - CURRENT_DATE) AS ServiceDays,
 RANK(ServiceDays) AS Seniority
 FROM Employee
 ORDER BY EmployeeName;

The result might look like the following table.

EmployeeName Service Days Seniority

Ferneyhough 9931 2

Lucier 9409 4

Revueltas 9408 5

Ung 9931 2

Wagner 10248 1

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 492

Example

Sort items by category and report them in order of descending revenue rank.

 SELECT Category, Item, Revenue, RANK(Revenue) AS ItemRank
 FROM ItemCategory,
 (SELECT Item, SUM(sales) AS Revenue
 FROM DailySales
 GROUP BY Item) AS ItemSales
 WHERE ItemCategory.Item = ItemSales.Item
 ORDER BY Category, ItemRank DESC;

The result might look like the following table.

Category Item Revenue ItemRank

Hot Cereal Regular Oatmeal 39112.00 4

Hot Cereal Instant Oatmeal 44918.00 3

Hot Cereal Regular COW 59813.00 2

Hot Cereal Instant COW 75411.00 1

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on the RANK window function, see RANK (ANSI).

ROW_NUMBER
Purpose

Returns the sequential row number, where the first row is number one, of the row within its window partition
according to the window ordering of the window.

Type

ANSI SQL:2011 window function.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 493

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

ORDER BY

The order in which the values in a group or partition are sorted.

ASC

Ascending sort order.

DESC

Descending sort order.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 494

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

Window Aggregate Equivalent
 ROW_NUMBER() OVER (PARTITION BY column
 ORDER BY value
)

is equivalent to

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 495

 COUNT(*) OVER (PARTITION BY column
 ORDER BY value

 ROWS UNBOUNDED PRECEDING).

Example
To order salespersons based on sales within a sales region, the following SQL query might yield the
following results.

 SELECT ROW_NUMBER() OVER (PARTITION BY sales_region
 ORDER BY sales_amount DESC),
 sales_person, sales_region, sales_amount
 FROM sales_table;

 Row_Number() sales_person sales_region sales_amount
 ------------ ------------ ------------ ------------
 1 Baker East 100
 2 Edwards East 99
 3 Davis East 89
 4 Adams East 75
 1 Garabaldi West 100
 2 Connors West 99
 3 Fine West 99

Related Topics
For more information, see:

• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

• For more information on COUNT, see Window Aggregate Functions.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 496

CFilter
 Association Analysis
 Teradata Vantage Analytics Workshop
 ADVANCED ILT

 ©2019 Teradata

Association Analysis Slide 3-1

After completing this module, you will be able to:

• Describe what the CFilter functions does

• Describe typical use cases for CFilter

• Write CFilter queries

• Interpret the output of CFilter queries

Objectives

Association Analysis Slide 3-2

• CFilter
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

Topics

Association Analysis Slide 3-3

• CFilter
• Background Information (Description,

Use Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input
Table Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Background Information

Association Analysis Slide 3-4

• The CFilter function creates baskets (sets) of two-way interactions. The input is
typically a set of purchase transaction records (e.g., what was bought) or Web page-
view logs (e.g., what Web pages were visited)

• Each basket is a unique permutation of two-way interactions; i.e., butter:eggs would
be displayed, as well as eggs:butter. Unlike BasketGenerator, though, with CFilter
we are limited to building two-way interactions

• CFilter writes data to a user-specified output table. Unlike BasketGenerator, CFilter
output includes a host of columns in an attempt to put context to the two-way
interactions that it finds. These output columns can guide the end-user in
understanding the relationships between the items in a pair and the pair in relation to
all other pairs

CFilter Description

The CFilter function creates baskets (sets) of two-way interactions. The input is typically a set of
purchase transaction records (e.g., what was bought) or Web page-view logs (e.g., what Web pages
were visited).

Each basket is a unique permutation of two-way interactions; i.e., butter:eggs would be displayed, as
well as eggs:butter. Unlike BasketGenerator, though, with CFilter we are limited to building two-way
interactions.

CFilter writes data to a user-specified output table. Unlike BasketGenerator, CFilter output includes a
host of columns in an attempt to put context to the two-way interactions that it finds. These output
columns can guide the end-user in understanding the relationships between the items in a pair and the
pair in relation to all other pairs.

Association Analysis Slide 3-5

The CFilter function deals with finding two-way combinations of entities (e.g., product domains
purchased, Web pages visited, etc.) that co-occur at the defined level of analysis; e.g., household,
unique_trans_id, etc. For example, it could be used to identify products that are bought together
(association analysis, basket analysis, affinity analysis), such as peanut butter and jelly.
Many companies across a wide array of industries use collaborative filtering to 1) increase sales, 2)
increase units-moved, 3) increase profit, 4) and increase relevancy to end consumers.
Before embarking on things such as offering free jelly if peanut butter is bought, as is always the
case, it is recommended that you test your theories out in practice with strict adherence to
treatment:control experimental-design principles so as to be able to quantify the effects of your
efforts. For example, certain organizations may be reluctant to co-promote peanut and jelly,
assuming that only one of the two needs to be promoted, as the other one will be bought anyway
(at full-price, moreover); i.e., there will be an "erosion of margin" or a "loss of sales and profit" by
co-promoting the affinity products. Experiment to see what works and what doesn’t work!

CFilter Use Cases

CFilter provides numerous metrics to broaden your understanding of two-way interactions.

Such "Association Analysis" techniques have been used by numerous companies with great success to
drive top- and bottom-line sales.

Take care to experiment find out what works and what doesn’t.

Association Analysis Slide 3-6

Following are some examples of how CFilter could be used:
• A retailer wishes to redesign the layout of its stores, so it runs CFilter to discover what product

domains co-occur together; e.g., peanut butter and jelly. These products will be placed near one
another on the shelf

• A retailer manufactures and carries a private-label peanut butter, but no private-label jelly; i.e.,
customers have no choice but to purchase the national-brand jelly—which is not as profitable as a
private-label jelly would be. The retailer decides to start offering a private-label jelly for sale

• A telecommunications company wishes to offer particular bundlings of products and services to
its clients, so it uses CFilter to discover which products/services have natural attractions to one
another

• A healthcare company wishes to discover which ailments co-occur together on a patient-by-
patient basis so as to help in future diagnoses of patients

• A retailer notices that there is a universe of customers who only purchase one-half of a significant
affinity pairing, so they target such customers with the appropriate affinity-void offer

CFilter Use Cases

CFilter can be used by any business that wishes to understand the interplay of how products/services
are purchased together.

Association Analysis Slide 3-7

• Input Tables: Data is read from a specified input table, views, or query.
• CFilter: The following arguments, at a minimum, are specified when the

function is invoked.
• OutputTable
• TargetColumns
• JoinColumns

• Output table: Data is written to the output table specified.

CFilter Workflow

Input Table CFilter Output Table

The CFilter function will read from a defined table, view, or query, and output the results to a table per
its defined arguments.

Association Analysis Slide 3-8

SELECT * FROM CFilter (
ON { table | view | (query) } AS InputTable
OUT TABLE OutputTable (output_table)
USING
TargetColumns ({ 'target_column' | target_column_range }[,...])
JoinColumns ({ 'join_column' | join_column_range }[,...])
[PartitionColumns ({ 'partition_column' | partition_column_range
}[,...])]
[PartitionKey ('partition_key_column')]
[MaxDistinctItems (max_distinct_items)]
) AS alias;

CFilter Syntax

Here, we show the base syntax for CFilter. Note that there are three required arguments:
• OutputTable
• TargetColumns
• JoinColumns

Association Analysis Slide 3-9

The required arguments for the CFilter function are as follows:
OutputTable: Specify the name of the output table that the function
creates. The table must not exist
TargetColumns: Specify the names of the input table columns that
contain the data to filter

CFilter Required Arguments (1 of 2)

The required arguments for the CFilter function are as follows:

• OutputTable: Specify the name of the output table that the function creates. The table must not
exist.

• TargetColumns: Specify the names of the input table columns that contain the data to filter.
• JoinColumns: Specify the names of join columns, which the function uses as follows:

• The function uses the items in each join column to define groups of items listed in the input
columns.

• The function tries to identify items in each input column that often appear in the same group.

Association Analysis Slide 3-10

JoinColumns: Specify the names of join columns, which the function uses as follows:
1. The function uses the items in each join column to define groups of items listed in the

input columns
2. The function tries to identify items in each input column that often appear in the same

group

For example, a join column might contain a list of sales transactions from a store, and
the input column might contain each individual item purchased at the store. A sales
transaction can include multiple items. For each sales transaction, the function tries to
identify items that often appear in the same sales transaction (that is, items that are
often purchased together).

CFilter Required Arguments (2 of 2)

The required arguments for the CFilter function are as follows:

• OutputTable: Specify the name of the output table that the function creates. The table must not
exist.

• TargetColumns: Specify the names of the input table columns that contain the data to filter.
• JoinColumns: Specify the names of join columns, which the function uses as follows:

• The function uses the items in each join column to define groups of items listed in the input
columns.

• The function tries to identify items in each input column that often appear in the same group.

Association Analysis Slide 3-11

The following CFilter arguments are optional.
PartitionColumns: [Optional] Specify the names of the input columns to
copy to the output table. The function partitions the input data and the
output table on these columns. Default behavior: The function treats the
input data as belonging to one partition

Note: Specifying a column as both a partition_column and a join_column causes
incorrect counts in partitions. This argument makes the function output
nondeterministic unless each partition_column is unique in the group defined by
JoinColumns

CFilter Optional Arguments (1 of 2)

The following CFilter arguments are optional.

• PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The function
partitions the input data and the output table on these columns. Default behavior: The function treats the input
data as belonging to one partition.

• Note: Specifying a column as both a partition_column and a join_column causes incorrect counts in
partitions. This argument makes the function output nondeterministic unless each partition_column is
unique in the group defined by JoinColumns.

• PartitionKey: [Optional] Specify the name of the output column to use as the partition key. Default: 'col1_item1'
• MaxDistinctItems [Optional] Specify the maximum size of the item set. Default: 100

• Note: The function uses max_item_set to determine the size of the data structures it uses to accumulate
intermediate results. If the number of distinct items in an target_column is greater than max_item_set, the
function might report incorrect results without an error message.

Association Analysis Slide 3-12

PartitionKey: [Optional] Specify the name of the output column to use as
the partition key. Default: 'col1_item1'

MaxDistinctItems [Optional] Specify the maximum size of the item set.
Default: 100

• Note: The function uses max_item_set to determine the size of the data
structures it uses to accumulate intermediate results. If the number of distinct
items in an target_column is greater than max_item_set, the function might
report incorrect results without an error message

CFilter Optional Arguments (2 of 2)

The following CFilter arguments are optional.

• PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The function
partitions the input data and the output table on these columns. Default behavior: The function treats the input
data as belonging to one partition.

• Note: Specifying a column as both a partition_column and a join_column causes incorrect counts in
partitions. This argument makes the function output nondeterministic unless each partition_column is
unique in the group defined by JoinColumns.

• PartitionKey: [Optional] Specify the name of the output column to use as the partition key. Default: 'col1_item1'
• MaxDistinctItems [Optional] Specify the maximum size of the item set. Default: 100

• Note: The function uses max_item_set to determine the size of the data structures it uses to accumulate
intermediate results. If the number of distinct items in an target_column is greater than max_item_set, the
function might report incorrect results without an error message.

Association Analysis Slide 3-13

CFilter Input Table Schema
Column Data Type Description

target_column VARCHAR Data to filter

join_column Any Column to join

partition_column Any [Column appears once for each specified
partition_column.] Column to copy to output table. Used
to partition input data and output table. Must not be a
join_column. Must be unique in the group defined by
JoinColumns, or function output is nondeterministic

Note: Input-table column names that you reference in your CFilter
queries must be named using all lower-case letters.

This page displays the input table schema.

Association Analysis Slide 3-14

CFilter Output Table Schema (1 of 5)
Column Data Type Description

col1_item1 VARCHAR Name of item1

col1_item2 VARCHAR Name of item2

cntb INTEGER Count of co-occurrence of both items in partition

cnt1 INTEGER Count of occurrence of item1 in partition

cnt2 INTEGER Count of occurrence of item2 in partition

score DOUBLE
PRECISION

Product of two conditional probabilities:
P({ item2 | item1 }) * P({ item1 | item2 })

Preceding product equals following quotient:

(cntb * cntb)/(cnt1 * cnt2)

This page displays the output table schema.

Association Analysis Slide 3-15

CFilter Output Table Schema (2 of 5)
Column Data Type Description

support DOUBLE
PRECISION

Percentage of transactions in partition in which the two items co-
occur, calculated with this formula:

cntb/tran_cnt

where tran_cnt is the number of transactions in the partition

For example, if eggs and milk were purchased together 3 times in
5 transactions in the same store, and the data is partitioned by
store, then the support value in the partition is 3/5 = 0.6 = 60%

This page displays the output table schema.

Association Analysis Slide 3-16

CFilter Output Table Schema (3 of 5)
Column Data Type Description

confidence DOUBLE
PRECISION

Percentage of transactions in partition in which item1 occurs, in
which item2 also occurs, calculated with this formula:

cntb/cnt1

For example, if, in the same store, the number of times that a
customer buys both milk (item1) and butter (item2) is 3 (cntb) and
the number of times that a customer buys milk is 4 (cnt1), then
the confidence that a person who buys milk will also buy butter is
3/4 = 0.75 = 75%

This page displays the output table schema.

Association Analysis Slide 3-17

CFilter Output Table Schema (4 of 5)
Column Data Type Description

lift DOUBLE
PRECISION

Ratio of observed support value to expected support value if
item1 and item2 were independent; that is:
support(item1 and item2) / [support(item1) * support(item2)]

Value is calculated with this formula:

(cntb/tran_cnt) / [(cnt1/tran_cnt) * (cnt2/tran_cnt)]

• If Lift > 1, the occurrence of item1 or item2 has a positive
effect on the occurrence of the other items

• If Lift = 1, the occurrence of item1 or item2 has a no effect on
the occurrence of the other items

• If Lift < 1, the occurrence of item1 or item2 has a negative
effect on the occurrence of the other items

This page displays the output table schema.

Association Analysis Slide 3-18

CFilter Output Table Schema (5 of 5)
Column Data Type Description

z_score DOUBLE
PRECISION

Significance of co-occurrence, assuming that cntb follows a
normal distribution, calculated with this formula:

(cntb - mean(cntb)) / sd(cntb)

If all cntb values are equal, then sd(cntb) is 0, and function does
not calculate zscore

This page displays the output table schema.

Association Analysis Slide 3-19

• CFilter
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Labs

Association Analysis Slide 3-20

Here, we are scrutinizing the contents of a simple input table. The next many pages will go through
various examples of running the CFilter function against this table and reviewing the resulting output.

c Lab 01a – Understanding CFilter Output:
Reviewing Input Data

SELECT *
FROM bb_cfilter_test
ORDER BY tranid, item;

• For this initial lab, we will
look at a small data-set of
transactions and discuss
each of the fields that
CFilter outputs, using
only required arguments.

• Our transaction data
appears to the right

Data Table

Association Analysis Slide 3-21

Here, we are scrutinizing the contents of a simple input table.

c Lab 01b – Understanding CFilter Output:
Reviewing Input Data

SELECT tranid, item
FROM bb_cfilter_test
ORDER BY tranid, item;

Here, we are segregating fields of
interest and sorting the data:

• We have eight distinct transactions
• We have four distinct items

SELECT item, tranid
FROM bb_cfilter_test
ORDER BY item, tranid;

Eight transactions Four items

Association Analysis Slide 3-22

Here, we are summarizing the domain of transactions that involved either butter or eggs or both.

c Lab 01c – Understanding CFilter Output:
Reviewing Input Data

Here, we are viewing a Venn diagram that
summarizes the transactions for eggs
and/or butter from the previous page:

• Butter occurred in 5 transactions (1+4)
• Eggs occurred in 7 transactions (3+4)
• There were 8 transactions that

contained butter and/or eggs (1+4+3)
• There were 4 transactions that

contained both eggs and butter
• There was 1 transaction that contained

butter with no eggs
• There were 3 transactions that

contained eggs with no butter

Association Analysis Slide 3-23

Here, we are running a simple CFilter query against our input data, utilizing only required arguments.

Note that the OUT TABLE must not exist or the query will fail; therefore, we first drop the defined OUT
TABLE.

c Lab 01d – Understanding CFilter Output:
Running CFilter Query

--must drop output table if exists
DROP TABLE bb_cfilter_test_output;

--run CFilter
SELECT *
FROM CFilter (
ON bb_cfilter_test AS InputTable
OUT TABLE OutputTable
(bb_cfilter_test_output)
USING
TargetColumns ('item')
JoinColumns ('tranid')
) AS my_alias;

Here, we are running CFilter against our input
table. Note the required arguments:

• OUT TABLE: This is the table to which
CFilter will write the results. We have
defined bb_cfilter_test_output

• TargetColumns: This is the column
against which we would like to find co-
occurrences. We have defined item; e.g.,
find co-occurrences of butter and eggs

• JoinColumns: This is the column that
defines at what level we would like to find
co-occurrences of items. We have define
tranid; e.g., find co-occurrences of butter
and eggs if and only if they occurred within
the same transaction

Association Analysis Slide 3-24

Here we are viewing the contents of the generated output table.

Note the following:

• CFilter generates all possible pairs. You will see an output row for butter:eggs and another output
row eggs:butter.

• Out of the five scores to the right of the output, only confidence will differ between any two sister-
rows.

• Unlike BasketGenerator, CFilter does not allow you to specify three-way, four-way, etc.
interactions. CFilter calculates only two-way interactions.

c Lab 01e – Understanding CFilter Output:
Reviewing Output Table

--interrogate output table
SELECT *
FROM bb_cfilter_test_output
ORDER BY col1_item1, col1_item2;

• Here, we are selecting all columns from our
generated output table

• Unlike BasketGenerator, note that in CFilter, by
default, butter:eggs is not equivalent to
eggs:butter; i.e., all product-pairings appear in
both directions

Association Analysis Slide 3-25

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01f – Understanding CFilter Output:
Reviewing Basic Output Columns

Following is a discussion of the first five columns generated by CFilter. Also, note
that CFilter only generates two-way interactions. It cannot generate multi-way
interactions like BasketGenerator can.

• col1_item1: The first item of the pair
• col2_item2: The second item of the pair
• cntb: The number of transactions in which both items appeared
• cnt1: The number of transactions in which item1 appeared
• cnt2: The number of transactions in which item2 appeared

Association Analysis Slide 3-26

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01g – Understanding CFilter Output: Score

Score displays the chance of both products co-occurring together in the same transaction--ONLY
considering the totality of transactions that had both (as opposed to the totality of all transactions).
The formula for calculating score follows:

(cntb * cntb) / (cnt1 * cnt2)

which is equivalent to (cntb / cnt1) * (cntb / cnt2); i.e., ௧௦	௪௧	௧௧௦	௪௧	௨௧௧ 	∗ 	 ௧௦	௪௧	௧௧௦	௪௧	௦	 =	ସହ 	∗ ସ =	0.457142857
That is to say, there is roughly a 45% chance that if either butter or eggs is present in a
transaction, then the other one will be present too. The highest possible score is 1, implying that if
one of them is present, there is a 100% probability that the other one will be as well.

Association Analysis Slide 3-27

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01h – Understanding CFilter Output:
Support

Support displays the percentage of all transactions that had both items present.

cntb / total_trans

In the CFilter output, the value for total_trans (total transaction count) is not displayed. Recall
from an earlier slide, however, that our total count of distinct transactions was 8. Therefore, ௧௦	௪௧	௧௧௧	௧௦௧	௨௧ = 	 ସ଼	 =		0.5
The larger support is, the more commonplace the co-occurrence was. A value of 1 would imply
that every single transaction had the both items present. Here, we are seeing that 50% of all
transactions had both butter and eggs present.

Association Analysis Slide 3-28

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01i – Understanding CFilter Output:
Confidence

Confidence displays out of all transactions with item1, what percentage of them also had
item2. You can think of this as the "crossover percent", with item1 being the focal point.

cntb / cnt1

Therefore, we see that 80% of the transactions with butter also have eggs present.௧௦	௪௧	௧௧௦	௪௧	௨௧௧ = 	 ସହ	 =		0.8
If butter is present in a transaction, there is an 80% confidence that eggs will also be present
in the same transaction. The larger that confidence is for butter, the more likely that eggs will
also be present in the same transaction. A value of 1 would imply that every single
transaction that had butter also had eggs.

Association Analysis Slide 3-29

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01j – Understanding CFilter Output: Lift

Lift displays how many times the actual cntb is from the expectation of what cntb should be. To calculate the
expectation, we need to know how many total transactions there were. From an earlier slide, recall that the total
transaction count was 8. The formula for lift is as follows:

(cntb / total_trans) / ((cnt1 / total_trans) * (cnt2 / total_trans))

The formula for the expectation is (cnt1 * cnt2) / total_trans. Therefore, the expectation is

௧௦	௪௧	௨௧௧	∗	௧௦	௪௧	௦௧௧	௧௦௧௦ = 	 ହ	∗	଼ 	 =	4.375
Our actual cntb was 4, and 4 is 0.9142 times the size 4.375—derived from ସସ.ଷହ	 = 0.914285714. Using our
original formula, we see that (4 / 8) / ((5 / 8) * (7 / 8)) = 0.914285714; i.e., the actual co-occurrence of butter
and eggs wasn't what mere chance would have suggested it should have been (it almost was, at roughly 91%).

• If lift > 1, then actual co-occurrence is greater than the expectation; i.e., product attraction
• If lift = 1, then actual co-occurrence is equal to the expectation; i.e., product neutrality
• If lift < 1, then actual co-occurrence is less than the expectation; i.e., product repulsion

Association Analysis Slide 3-30

Following are brief definitions of all output columns:

For z_score, note that if all cntb values are equal, then sd(cntb) is 0, and the function does not
calculate z_score (returns NULL).

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01k – Understanding CFilter Output:
z_score

Z_score displays how many standard deviations the cntb value lies from the average cntb value.

(cntb - mean(cntb)) / sd(cntb)

In our data-set, the average of cntb is 3.5 and the standard deviation of cntb is 0.957427108. Therefore, for the
co-occurrence of butter and eggs, we see the following:

௧௦	௪௧	௧	ି	ଷ.ହ	.ଽହସଶଵ଼ = ସ	ି	ଷ.ହ	.ଽହସଶଵ଼ =	0.522232968
By its very nature, z_score will be higher for common product-pairings and less for infrequent product-pairings;
i.e., high-volume items will likely have a higher score. If co-promoting affinity pairings, you can think of z_score as
volume potential. The higher the score, the more overall volume potential. Butter and eggs is slightly more than
half a standard deviation to the right of the mean relative to all product-pairings (it is slightly more commonplace).
• If z_score > 0, then product-pairing occurs more frequently than typical product-pairing
• If z_score < 0, then product-pairing occurs less frequently than typical product-pairing
• If z_score = 0, then product-pairing occurs with the same frequency as the typical product-pairing

Association Analysis Slide 3-31

Following are brief definitions of all output columns:

For z_score, note that if all cntb values are equal, then sd(cntb) is 0, and the function does not
calculate z_score (returns NULL).

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01l – Understanding CFilter Output: z_score

3.5

0.522

4.4 5.3 6.22.61.70.8

4.0

• In our data-set, the average of cntb is 3.5 and
the standard deviation of cntb is roughly 0.9
(precision simplified here for illustrative
purposes). Butter and eggs has a cntb value
of 4, or around half (0.522) a standard
deviation to the right of the mean

• Each standard deviation to the left of the mean
decrements by 0.9; i.e., 2.6, 1.7, and 0.8

• Each standard deviation to the right of the
mean increments by 0.9; i.e., 4.4, 5.3, and 6.2

• Our z_score for butter and eggs is roughly
+0.522 (shown in orange to the left), signifying
that its cntb value of 4 is around half a
standard deviation to the right of the cntb
mean; i.e., its co-occurrence value is higher
than the average, by around half a standard
deviation

Association Analysis Slide 3-32

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01m – Understanding CFilter Output:
Summary

Following are some general guidelines on interpreting the output of CFilter.

• No single output metric should necessarily be viewed in isolation: View metrics as a collective

• If volume is of most interest: Focus on high support and/or high z_score values. High values on
these metrics put the emphasis on frequently-occurring product pairings. Products such as bananas,
milk, eggs, bread, etc. by their sheer volume will have high support and high z_score values when
paired with other such similar products. Something like granola paired with organic yogurt will have
lower support and z_score values due to the relatively low volume of both of those products. If
neither one is bought frequently, then, by extension, the raw co-occurrence, support, and z_score
values for the two will be relatively low as well

• If product attraction is paramount: Focus on high score, confidence, and lift values. High values
on these metrics suggest that even though they may or may not be high-volume items, their attraction
towards one another is strong; e.g., granola and organic yogurt

• Of course, you could focus on product pairings that have both high volume and high product attraction

Association Analysis Slide 3-33

Here, we are familiarizing ourselves with the input table.

c
Lab 02a – Discovering Product Pairings

SELECT *
FROM sales_transaction
ORDER BY orderid, product;

Here, we are viewing a sub-set of rows from our
input table. On the next page, we will run a CFilter
query against this input table.

The columns of interest are as follows:
• orderid: The unique identifier of a transaction
• product: The product that was purchased

Association Analysis Slide 3-34

Here, we are running our query. Note that we first drop our OUT TABLE (if it exists).

c
Lab 02b – Discovering Product Pairings

DROP TABLE
bb_borre_cfilter_output;

SELECT * FROM CFilter (
ON sales_transaction AS
InputTable
OUT TABLE OutputTable
(bb_borre_cfilter_output)
USING
TargetColumns ('product')
JoinColumns ('orderid')
) AS my_alias;

Here, we are running our CFilter query. Note the
following:

• We first drop our OUT TABLE
• We have defined the product column as our

TargetColumns value. This is the product that
was purchased

• We have defined orderid as our JoinColumns
value. This is the unique identifier of a
transaction

The end-result of these arguments is that we are
seeking our product-pairings that occurred within
the same transaction

Association Analysis Slide 3-35

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02c – Discovering Product Pairings

SELECT *
FROM bb_borre_cfilter_output;

• Below, we are selecting our CFilter
results from our defined output table

• Data is displayed for product-pairings that
occurred within the same transactions

• Recall that each distinct pairing will
occupy its own row; labels:envelopes
will be in one row, and
envelopes:labels will be in another row

• Refer to the Notes below for a brief
definition of each column in the output

Association Analysis Slide 3-36

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02d – Discovering Product Pairings

• Recall that z_score displays how many standard deviations the cntb value lies
from the average cntb value

• Here, we are sorting our data by z_score DESC. What do you notice?
• The support value displays the percentage of all transactions that had both items

present. What happens when we sort by support DESC?

Association Analysis Slide 3-37

Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02e – Discovering Product Pairings

• Recall that lift displays how many times the actual cntb is from the expectation of
what cntb should be

• Here, we are sorting our data by lift DESC. What do you notice? What does a high
lift value, but low z_score value represent?

Association Analysis Slide 3-38

The default is MaxDistinctItems (100). If your data contains more than 100 distinct entities for which
you are trying to discover pairings, make sure to set MaxDistinctItems appropriately; i.e., greater than
or equal to the number of distinct entities.

c
Lab 03a – MaxDistinctItems

--must drop output table if exists
DROP TABLE bb_cfilter_test_output2;

--run CFilter
SELECT *
FROM CFilter (
ON bb_cfilter_test AS InputTable
OUT TABLE OutputTable
(bb_cfilter_test_output2)
USING
TargetColumns ('item')
JoinColumns ('tranid')
MaxDistinctItems (3)
) AS my_alias;

• Here, we are running another CFilter query
against our input table used in Lab 01. Recall
that this input table has four distinct items
(butter, eggs, flour, milk)

• In our query here, we have specified a value of
MaxDistinctItems (3)

• MaxDistinctItems: [Optional] Specify the
maximum size of the item set. Default: 100
• Note: The function uses max_item_set to

determine the size of the data structures it
uses to accumulate intermediate results. If
the number of distinct items in a
target_column is greater than max_item_set,
the function might report incorrect results
without an error message

Association Analysis Slide 3-39

The default is MaxDistinctItems (100). If your data contains more than 100 distinct entities for which
you are trying to discover pairings, make sure to set MaxDistinctItems appropriately; i.e., greater than
or equal to the number of distinct entities in your data.

c
Lab 03b – MaxDistinctItems

• Below are the results of our CFilter query from Lab 01 compared to our results from this lab, in
which we specified a value of MaxDistinctItems (3)

• Note the highlighted differences
• The lesson here is know your data. The default MaxDistinctItems is 100. If your data

contains more than 100 distinct items, make sure to set the MaxDistinctItems argument
appropriately

Output from Lab 01 (correct) Output from this lab (incorrect)

Association Analysis Slide 3-40

Here, we are familiarizing ourselves with the input table.

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column
might contain each individual item purchased at the store. A sales transaction can include multiple
items. For each sales transaction, the function tries to identify items that often appear in the same sales
transaction (that is, items that are often purchased together).

c
Lab 04a – JoinColumns

SELECT *
FROM bb_basket01
ORDER BY
hh_id, trans_id, prod;

• Here, we view the contents of our input table
• Note that there are 4 distinct households and 7

distinct transactions
• Only trans_id 7 had more than one item present
• All households except hh_id 4 had only single-

item transactions
• On the following pages, we will show examples

of specifying different JoinColumns values
when we run our CFilter function against our
input data-set

• We will specify the following:

• JoinColumns ('hh_id')
• JoinColumns ('trans_id')

Association Analysis Slide 3-41

Here, we are specifying JoinColumns ('trans_id'). This causes the function to seek out product-
pairings that occurred within the same trans_id (transaction).

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column
might contain each individual item purchased at the store. A sales transaction can include multiple
items. For each sales transaction, the function tries to identify items that often appear in the same sales
transaction (that is, items that are often purchased together).

c
Lab 04b – JoinColumns

--drop OUT TABLE
DROP TABLE bb_cfilter_trans;

SELECT *
FROM CFilter (
ON bb_basket01 AS InputTable
OUT TABLE OutputTable
(bb_cfilter_trans)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
) AS my_alias;

SELECT *
FROM bb_cfilter_trans
ORDER BY col1_item1,
col1_item2;

• Here, we are specifying JoinColumns ('trans_id')
• This causes the function to seek out product-

pairings that occurred within the same trans_id
(transaction)

• Since there was only one trans_id in our source
data that had more than one product present
(trans_id 7), only two rows are returned

Association Analysis Slide 3-42

Here, we are specifying JoinColumns ('hh_id'). This causes the function to seek out product-pairings
that were purchased by the same hh_id (household).

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column
might contain each individual item purchased at the store. A sales transaction can include multiple
items. For each sales transaction, the function tries to identify items that often appear in the same sales
transaction (that is, items that are often purchased together).

c
Lab 04c – JoinColumns

DROP TABLE bb_cfilter_hh;

SELECT *
FROM CFilter (
ON bb_basket01 AS InputTable
OUT TABLE OutputTable
(bb_cfilter_hh)
USING
TargetColumns ('prod')
JoinColumns ('hh_id')
) AS my_alias;

SELECT *
FROM bb_cfilter_hh
ORDER BY col1_item1,
col1_item2;

• Here, we are specifying JoinColumns ('hh_id')
• This causes the function to seek out product-

pairings that were purchased by the same hh_id
(household)

• Since every household purchased two products in
our source data, multiple rows are returned

Association Analysis Slide 3-43

Here, we are familiarizing ourselves with the input table.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique

in the group defined by JoinColumns.

c
Lab 05a – PartitionColumns

SELECT *
FROM bb_trans11
ORDER BY hh_id, trans_id;

• Here, we view the contents of our input table
• Note that transactions occurred in two

different regions: Miami and New York
• On the following pages, we will show an

example of how the PartitionColumns
argument can be used

• PartitionColumns: [Optional] Specify the
names of the input columns to copy to the
output table. The function partitions the input
data and the output table on these columns

• PartitionColumns is especially useful if you
wish to have CFilter output calculated
independently for different timeframes,
geographies, customer segments, etc.

Association Analysis Slide 3-44

Here, we are running our query without PartitionColumns.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique

in the group defined by JoinColumns.

Following are brief definitions of all output columns:
• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 05b – PartitionColumns

DROP TABLE bb_cfilter_wop;

SELECT *
FROM CFilter (ON bb_trans11 AS InputTable
OUT TABLE OutputTable (bb_cfilter_wop)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
) AS my_alias;

SELECT *
FROM bb_cfilter_wop
ORDER BY col1_item1, col1_item2;

• Here, we are not using the optional PartitionColumns argument
• All product-pairings and their corresponding metrics are calculated globally

Output

Association Analysis Slide 3-45

Here, we are running our query with the optional PartitionColumns argument.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique

in the group defined by JoinColumns.

Following are brief definitions of all output columns:
• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY

considering the totality of transactions that had both (as opposed to the totality of all transactions).
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2.

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be.
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 05c – PartitionColumns

DROP TABLE bb_cfilter_wp;

SELECT *
FROM CFilter (
ON bb_trans11 AS InputTable
OUT TABLE OutputTable (bb_cfilter_wp)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
PartitionColumns ('region')
) AS my_alias;

SELECT *
FROM bb_cfilter_wp
ORDER BY region, col1_item1, col1_item2;

• Here, we are using the optional PartitionColumns argument
• All product-pairings and their corresponding metrics are calculated by region

Output

Association Analysis Slide 3-46

• CFilter
• Background Information (Description, Use

Cases, Workflow, Syntax, Required
Arguments, Optional Arguments, Input Table
Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Review

Association Analysis Slide 3-47

c
Hackathon: Product Combination Metrics

The following exercise is intended to provide you with further practice on using the CFilter
function. There is no single “right” or “wrong” approach. The intent is for you to become
comfortable writing queries that use CFilter

1. Run a CFilter query on the sales_transaction table. Make sure the CFilter runs its logic against each
region:customer_segment combination. What rows have the highest lift? How often did the highest co-
occurrence occur? Etc

2. Run a CFilter query on the bb_sales_fact table to find product-pairings that customers buy (i.e., don’t
need to be in the same transaction). What rows have the highest lift? What about rows with the most co-
occurrences? Etc. What would you need to do to find product-pairings that co-occurred within the same
transaction?

In this “free-form” exercise, the intent is to get you to write your own CFilter query(ies) so as to become
more comfortable with the syntax.

Association Analysis Slide 3-48

c Hackathon: Product Combination Metrics
(Answers)

SELECT * FROM CFilter (
ON sales_transaction AS InputTable
OUT TABLE OutputTable
(bb_cfilter_hack01)
USING
TargetColumns ('product')
JoinColumns ('orderid')
PartitionColumns ('region',
'customer_segment')
) AS my_alias;

SELECT * FROM CFilter (
ON bb_sales_fact AS InputTable
OUT TABLE OutputTable
(bb_cfilter_hack02)
USING
TargetColumns ('product_name')
JoinColumns ('customer_id')
) AS my_alias;

In this “free-form” exercise,, the intent is to get you to write your own CFilter query(ies) so as to become
more comfortable with the syntax.

Association Analysis Slide 3-49

Game Time! CFilter Hoops!

Click here to start!

This game, containing review questions, reinforces the module objectives.

Association Analysis Slide 3-50

In this module, you learned how to:

• Describe what the CFilter function does

• Describe typical use cases for CFilter

• Write CFilter queries

• Interpret the output of CFilter queries

Summary

Association Analysis Slide 3-51

A typical input table for the CFilter function is a set of sales transactions, with a column of purchased items
and a column of something by which to group the purchased items; for example, a transaction id or time
stamp.

The CFilter function calculates several statistical measures of how likely each pair of items is to be
purchased together. You can use CFilter output as input to the WSRecommender function, which performs
item-based, collaborative filtering, using a weighted-sum algorithm, to make recommendations.

CFilter Syntax
Version 1.13

SELECT * FROM CFilter (
 ON { table | view | (query) } AS InputTable
 OUT TABLE OutputTable (output_table)
 USING
 TargetColumns ({ 'target_column' | target_column_range }[,...])
 JoinColumns ({ 'join_column' | join_column_range }[,...])
 [PartitionColumns ({ 'partition_column' | partition_column_range }[,...])]
 [PartitionKey ('partition_key_column')]
 [MaxDistinctItems (max_distinct_items)]
) AS alias;

Related Information:

Column Specification Syntax Elements

CFilter Syntax Elements
OutputTable

Specify the name of the output table that the function creates. The table must not exist.

TargetColumns
Specify the names of the InputTable columns that contain the data to filter.

JoinColumns
Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input
columns.

2. The function tries to identify items in each input column that often appear in the same group.

CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1746

For example, a join column might contain a list of sales transactions from a store, and the input
column might contain each individual item purchased at the store. A sales transaction can include
multiple items. For each sales transaction, the function tries to identify items that often appear in
the same sales transaction (that is, items that are often purchased together).

PartitionColumns
[Optional] Specify the names of the input columns to copy to the output table. The function
partitions the input data and the output table on these columns.

Specifying a column as both an partition_column and a join_column causes incorrect counts in
partitions.

This syntax element makes the function output nondeterministic unless each partition_column is
unique in the group defined by JoinColumns (for more information, see Nondeterministic Results
and UniqueID Syntax Element).

Default behavior: The function treats the input data as belonging to one partition.

PartitionKey
[Optional] Specify the name of the output column to use as the partition key.

Default: 'col1_item1'

MaxDistinctItems
[Optional] Specify the maximum size of the item set.

The function uses max_item_set to determine the size of the data structures it uses to accumulate
intermediate results. If the number of distinct items in an target_column is greater than
max_item_set, the function might report incorrect results without an error message.

Default: 100

CFilter Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

target_column VARCHAR Data to filter.

join_column Any Column to join.

partition_column Any [Column appears once for each specified partition_column.] Column to
copy to output table. Used to partition input data and output table. Must
not be a join_column. Must be unique in the group defined by
JoinColumns, or function output is nondeterministic (for more
information, see Nondeterministic Results and UniqueID Syntax
Element).

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1747

CFilter Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports that output table was created successfully.

OutputTable Schema

Output is nondeterministic unless each add_column is unique in the group defined by JoinColumns (for
more information, see Nondeterministic Results and UniqueID Syntax Element).

Column Data Type Description

col1_item1 VARCHAR Name of item1.

col1_item2 VARCHAR Name of item2.

cntb INTEGER Count of co-occurrence of both items in partition.

cnt1 INTEGER Count of occurrence of item1 in partition.

cnt2 INTEGER Count of occurrence of item2 in partition.

score DOUBLE
PRECISION

Product of two conditional probabilities:
P({ item2 | item1 }) * P({ item1 | item2 })
Preceding product equals following quotient:
(cntb * cntb)/(cnt1 * cnt2)

support DOUBLE
PRECISION

Percentage of transactions in partition in which the two items co-occur,
calculated with this formula:
cntb/tran_cnt
where tran_cnt is the number of transactions in the partition.
For example, if eggs and milk were purchased together 3 times in 5
transactions in the same store, and the data is partitioned by store, then
the support value in the partition is 3/5 = 0.6 = 60%.

confidence DOUBLE
PRECISION

Percentage of transactions in partition in which item1 occurs, in which
item2 also occurs, calculated with this formula:
cntb/cnt1
For example, if, in the same store, the number of times that a customer
buys both milk (item1) and butter (item2) is 3 (cntb) and the number of
times that a customer buys milk is 4 (cnt1), then the confidence that a
person who buys milk will also buy butter is 3/4 = 0.75 = 75%.

lift DOUBLE
PRECISION

Ratio of observed support value to expected support value if item1 and
item2 were independent; that is:
support(item1 and item2) / [support(item1) * support(item2)]
Value is calculated with this formula:
(cntb/tran_cnt) / [(cnt1/tran_cnt) * (cnt2/tran_cnt)]
If Lift > 1, the occurrence of item1 or item2 has a positive effect on the
occurrence of the other items.

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1748

Column Data Type Description

If Lift = 1, the occurrence of item1 or item2 has a no effect on the occurrence
of the other items.
If Lift < 1, the occurrence of item1 or item2 has a negative effect on the
occurrence of the other items.

z_score DOUBLE
PRECISION

Significance of co-occurrence, assuming that cntb follows a normal
distribution, calculated with this formula:
(cntb - mean(cntb)) / sd(cntb)
If all cntb values are equal, then sd(cntb) is 0, and function does not
calculate zscore.

Deleting Duplicate Output Table Rows
Duplicate output table rows appear because each pair of items appears in two rows—one row has item1
in col1_item1 and item2 in col1_item2, and the other row has item2 in col1_item1 and item1 in col1_item2.
To delete duplicate output table rows, use this code (where output_table is the output table name):

DROP TABLE copy;

CREATE MULTISET TABLE copy AS (
 SELECT *, ROW_NUMBER() OVER(ORDER BY col1_item1, col1_item2) rn
 FROM output_table
) WITH DATA;

DROP TABLE DuplicatesRemoved;

CREATE MULTISET TABLE DuplicatesRemoved AS (
 SELECT * FROM copy
) WITH DATA;

DELETE FROM DuplicatesRemoved WHERE rn IN (
 SELECT a.rn FROM DuplicatesRemoved a
 JOIN copy b
 ON a.col1_item1=b.col1_item2 AND a.col1_item2=b.col1_item1 AND a.rn < b.rn
);

DROP TABLE copy;

CFilter DuplicatesRemoved Table Schema
Column Data Type Description

col1_item1 VARCHAR Name of item1.

col1_item2 VARCHAR Name of item2.

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1749

Column Data Type Description

rn INTEGER Row number in output_table when ordered by col1_item1, col1_item2.

CFilter Examples

CFilter Example: Filter by Product
Collaborative filtering by product is also called item-based collaborative filtering. In this example,
JoinColumns = 'orderid'. The function tries to identify products that are often bought in the same
transaction (as identified by the order_id).

Input
The InputTable has sales transaction data from an office supply chain store, in these columns:

Column Description

orderid Order (transaction) identifier

orderdate Order date

orderqty Quantity of product ordered

region Geographic region of store where order was placed

customer_segment Segment of customer who ordered product

prd_category Category of product ordered

product Product ordered

InputTable: sales_transaction

orderid orderdate orderqty region customer_
segment

prd_
category product

3 2010-10-13 00:
00:00

6 Nunavut Small
Business

Office
Supplies

Storage &
Organization

293 2012-10-01 00:
00:00

49 Nunavut Consumer Office
Supplies

Appliances

293 2012-10-01 00:
00:00

27 Nunavut Consumer Office
Supplies

Binders and
Binder
Accessories

483 2011-07-10 00:
00:00

30 Nunavut Corporate Technology Telephones and
Communication

515 2010-08-28 00:
00:00

19 Nunavut Consumer Office
Supplies

Appliances

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1750

orderid orderdate orderqty region customer_
segment

prd_
category product

515 2010-08-28 00:
00:00

21 Nunavut Consumer Furniture Office
Furnishings

613 2011-06-17 00:
00:00

12 Nunavut Corporate Office
Supplies

Binders and
Binder
Accessories

613 2011-06-17 00:
00:00

22 Nunavut Corporate Office
Supplies

Storage &
Organization

643 2011-03-24 00:
00:00

21 Nunavut Corporate Office
Supplies

Storage &
Organization

678 2010-02-26 00:
00:00

44 Nunavut Home Office Office
Supplies

Paper

807 2010-11-23 00:
00:00

45 Nunavut Home Office Office
Supplies

Paper

807 2010-11-23 00:
00:00

32 Nunavut Home Office Office
Supplies

Rubber Bands

868 2012-06-08 00:
00:00

32 Nunavut Home Office Office
Supplies

Appliances

...

SQL Call

SELECT * FROM CFilter (
 ON sales_transaction AS InputTable
 OUT TABLE OutputTable (cfilter_output)
 USING
 TargetColumns ('product')
 JoinColumns ('orderid')
 PartitionColumns ('region')
) AS dt;

Output

 message

 Output table created successfully
(1 row)

SELECT * FROM cfilter_output;

 region col1_item1 col1_item2
cntb cnt1 cnt2 score support confidence

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1751

lift z_score
 --------------------- ------------------------------
------------------------------ ---- ---- ---- ---------------------
--------------------- -------------------- -------------------

 northwest territories binders and binder accessories
labels 2 44 16 0.005681818181818182
0.007434944237918215 0.045454545454545456 0.7642045454545454 0.12784297268860556
 northwest territories tables labels
1 12 16 0.005208333333333333 0.0037174721189591076 0.08333333333333333
1.4010416666666667 -0.8522864845907044
 northwest territories computer peripherals labels
1 30 16 0.0020833333333333333 0.0037174721189591076 0.03333333333333333
0.5604166666666667 -0.8522864845907044
 nunavut tables bookcases
1 1 2 0.5 0.017857142857142856
1.0 28.0 -0.4588314677411239
 northwest territories binders and binder accessories
tables 2 44 12 0.007575757575757576
0.007434944237918215 0.045454545454545456 1.018939393939394 0.12784297268860556
 nunavut labels rubber bands
1 4 2 0.125 0.017857142857142856
0.25 7.0 -0.4588314677411239
 nunavut binders and binder accessories computer
peripherals 1 10 6 0.016666666666666666
0.017857142857142856 0.1 0.9333333333333333 -0.4588314677411239
 northwest territories labels binders and binder
accessories 2 16 44 0.005681818181818182 0.007434944237918215
0.125 0.7642045454545454 0.12784297268860556
 northwest territories binders and binder accessories rubber
bands 3 44 10 0.020454545454545454 0.011152416356877323
0.06818181818181818 1.834090909090909 1.1079724299679155
 northwest territories labels paper
2 16 40 0.00625 0.007434944237918215 0.125
0.840625 0.12784297268860556
 northwest territories computer peripherals binders and binder
accessories 3 30 44 0.006818181818181818
0.011152416356877323 0.1 0.6113636363636363 1.1079724299679155
 atlantic labels pens & art supplies
1 3 2 0.16666666666666666 0.05555555555555555
0.3333333333333333 3.0 NULL
...

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1752

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

CFilter Example: Filter by Customer Segment
In this example, JoinColumns = 'product'. The function tries to identify segments of customers that often
purchase the same products.

Input

• InputTable: sales_transaction, as in CFilter Example: Filter by Product

SQL Call

SELECT * FROM CFilter (
 ON sales_transaction AS InputTable
 OUT TABLE OutputTable (cfilter_output1)
 USING
 TargetColumns ('customer_segment')
 JoinColumns ('product')
) AS dt;

Output

 message

 Output table created successfully
(1 row)

SELECT * FROM cfilter_output1;

 col1_item1 col1_item2 cntb cnt1 cnt2 score support
confidence lift z_score
 -------------- -------------- ---- ---- ---- ------------------
------------------ ------------------ ------ -------------------
 corporate small business 17 17 17 1.0
1.0 1.0 1.0 1.3728129459672886
 home office small business 16 16 17 0.9411764705882353
0.9411764705882353 1.0 1.0 0.7844645405527365
 consumer small business 13 13 17 0.7647058823529411
0.7647058823529411 1.0 1.0 -0.9805806756909198
 home office consumer 13 16 13 0.8125
0.7647058823529411 0.8125 1.0625 -0.9805806756909198
 consumer corporate 13 13 17 0.7647058823529411
0.7647058823529411 1.0 1.0 -0.9805806756909198
 small business corporate 17 17 17 1.0
1.0 1.0 1.0 1.3728129459672886

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1753

 corporate home office 16 17 16 0.9411764705882353 0.9411764705882353
0.9411764705882353 1.0 0.7844645405527365
 small business home office 16 17 16 0.9411764705882353 0.9411764705882353
0.9411764705882353 1.0 0.7844645405527365
 corporate consumer 13 17 13 0.7647058823529411 0.7647058823529411
0.7647058823529411 1.0 -0.9805806756909198
 small business consumer 13 17 13 0.7647058823529411 0.7647058823529411
0.7647058823529411 1.0 -0.9805806756909198
 consumer home office 13 13 16 0.8125
0.7647058823529411 1.0 1.0625 -0.9805806756909198
 home office corporate 16 16 17 0.9411764705882353
0.9411764705882353 1.0 1.0 0.7844645405527365

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1754

5.0 Validation

and Evaluation

Teradata Vantage: Analytics Certification Learning Resource

Receiver Operating Characteristic

Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied.

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. The true-positive rate is also known as sensitivity, recall or probability of
detection in machine learning. The false-positive rate is also known as probability of false alarm and can be
calculated as (1 − specificity). It can also be thought of as a plot of the power as a function of the Type I Error of
the decision rule (when the performance is calculated from just a sample of the population, it can be thought
of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In
general, if the probability distributions for both detection and false alarm are known, the ROC curve can be

generated by plotting the cumulative distribution function (area under the probability distribution from -∞ to

the discrimination threshold) of the detection probability in the y-axis versus the cumulative distribution
function of the false-alarm probability on the x-axis.

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones independently
from (and prior to specifying) the cost context or the class distribution. ROC analysis is related in a direct and
natural way to cost/benefit analysis of diagnostic decision making.

The ROC curve was first developed by electrical engineers and radar engineers during World War II for
detecting enemy objects in battlefields and was soon introduced to psychology to account for perceptual
detection of stimuli. ROC analysis since then has been used
in medicine, radiology, biometrics, forecasting of natural hazards, meteorology, model performance
assessment, and other areas for many decades and is increasingly used in machine learning and data
mining research.

The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating
characteristics (TPR and FPR) as the criterion changes.

A classification model (classifier or diagnosis) is a mapping of instances between certain classes/groups.
Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier
boundary between classes must be determined by a threshold value (for instance, to determine whether a
person has hypertension based on a blood pressure measure). Or it can be a discrete class label, indicating
one of the classes.

Consider a two-class prediction problem (binary classification), in which the outcomes are labeled either as
positive (p) or negative (n). There are four possible outcomes from a binary classifier. If the outcome from a
prediction is p and the actual value is also p, then it is called a true positive (TP); however if the actual value
is n then it is said to be a false positive (FP). Conversely, a true negative (TN) has occurred when both the
prediction outcome and the actual value are n, and false negative (FN) is when the prediction outcome
is n while the actual value is p.

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks to determine
whether a person has a certain disease. A false positive in this case occurs when the person tests positive, but
does not actually have the disease. A false negative, on the other hand, occurs when the person tests
negative, suggesting they are healthy, when they actually do have the disease.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/Type_I_Error
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Psychology
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Radiology
https://en.wikipedia.org/wiki/Biometrics
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Natural_hazard
https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Classifier_(mathematics)
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Mapping_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Hypertension
https://en.wikipedia.org/wiki/Blood_pressure
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Binary_classification

Teradata Vantage: Analytics Certification Learning Resource

Teradata Vantage: Analytics Certification Learning Resource

ROC space

The contingency table can derive several evaluation "metrics" (see infobox). To draw an ROC curve, only the
true positive rate (TPR) and false positive rate (FPR) are needed (as functions of some classifier parameter).
The TPR defines how many correct positive results occur among all positive samples available during the test.
FPR, on the other hand, defines how many incorrect positive results occur among all negative samples
available during the test.

An ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative trade-offs
between true positive (benefits) and false positive (costs). Since TPR is equivalent to sensitivity and FPR is
equal to 1 − specificity, the ROC graph is sometimes called the sensitivity vs (1 − specificity) plot. Each
prediction result or instance of a confusion matrix represents one point in the ROC space.

The best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no false positives). The
(0,1) point is also called a perfect classification. A random guess would give a point along a diagonal line (the
so-called line of no-discrimination) from the left bottom to the top right corners (regardless of the positive
and negative base rates). An intuitive example of random guessing is a decision by flipping coins. As the size
of the sample increases, a random classifier's ROC point tends towards the diagonal line. In the case of a
balanced coin, it will tend to the point (0.5, 0.5).

The diagonal divides the ROC space. Points above the diagonal represent good classification results (better
than random); points below the line represent bad results (worse than random). Note that the output of a
consistently bad predictor could simply be inverted to obtain a good predictor.

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Base_rate

Teradata Vantage: Analytics Certification Learning Resource

Let us look into four prediction results from 100 positive and 100 negative instances:

Plots of the four results above in the ROC space are given in the figure. The result of method A clearly shows

the best predictive power among A, B, and C. The result of B lies on the random guess line (the diagonal line),

and it can be seen in the table that the accuracy of B is 50%. However, when C is mirrored across the center

point (0.5,0.5), the resulting method C′ is even better than A. This mirrored method simply reverses the

predictions of whatever method or test produced the C contingency table. Although the original C method has

negative predictive power, simply reversing its decisions leads to a new predictive method C′ which has positive

predictive power. When the C method predicts p or n, the C′ method would predict n or p, respectively. In this

manner, the C′ test would perform the best. The closer a result from a contingency table is to the upper left

corner, the better it predicts, but the distance from the random guess line in either direction is the best

indicator of how much predictive power a method has. If the result is below the line (i.e. the method is worse

than a random guess), all of the method's predictions must be reversed in order to utilize its power, thereby

moving the result above the random guess line.

Sometimes, the ROC is used to generate a summary statistic. Common versions are:

• the intercept of the ROC curve with the line at 45 degrees orthogonal to the no-discrimination line - the
balance point where Sensitivity = 1 - Specificity

• the intercept of the ROC curve with the tangent at 45 degrees parallel to the no-discrimination line that
is closest to the error-free point (0,1) - also called Youden's J statistic and generalized as Informedness

• the area between the ROC curve and the no-discrimination line multiplied by two - Gini Coefficient

• the area between the full ROC curve and the triangular ROC curve including only (0,0), (1,1) and one
selected operating point (tpr,fpr) - Consistency

• the area under the ROC curve, or "AUC" ("Area Under Curve"), or A' (pronounced "a-prime"), or "c-
statistic" ("concordance statistic").

• the sensitivity index d' (pronounced "d-prime"), the distance between the mean of the distribution of
activity in the system under noise-alone conditions and its distribution under signal-alone conditions,
divided by their standard deviation, under the assumption that both these distributions are normal with
the same standard deviation. Under these assumptions, the shape of the ROC is entirely determined
by d'.

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Specificity_(statistics)
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Gini_Coefficient
https://en.wikipedia.org/wiki/Sensitivity_index
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Normal_distribution

A receiver operating characteristic (ROC) curve shows the performance of a binary classification model as
its discrimination threshold varies. For a range of thresholds, the curve plots the true positive rate against
the false positive rate.

The Receiver Operating Characteristic (ROC) function takes a set of prediction-actual pairs for a binary
classification model and calculates the following values for a range of discrimination thresholds:

• True positive rate (TPR)
• False positive rate (FPR)
• Area under the ROC curve (AUC)
• Gini coefficient

A prediction-actual pair for a binary classifier consists of:

• Predicted probability that an observation is in the positive class
• Actual class of the observation

A discrimination threshold determines whether an observation is classified as positive (1) or negative (0).
For example, suppose that a model predicts that an observation will be classified as positive with 0.55
probability. If the threshold above which an observation is classified as positive is 0.5, then the observation
is classified as positive. If the threshold is 0.6, the observation is classified as negative.

You can create prediction-actual pairs for ROC with these functions:

• AdaBoostPredict
• DecisionForestPredict_MLE
• DecisionTreePredict_MLE
• GLMPredict_MLE
• XGBoostPredict

ROC Syntax
Version 1.8

SELECT * FROM ROC (
 ON { table | view | (query) } AS InputTable
 { OUT TABLE OutputTable (output_table) |
 OUT TABLE ROCTable (ROC_table) }
 USING
 [ModelIDColumn ('model_id_column')]
 ProbabilityColumn ('probability_column')
 ObservationColumn ('observation_column')
 PositiveClass ('positive_class_label')

Receiver Operating Characteristic (ROC) (ML
Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 135

 [NumThresholds (num_thresholds)]
 [ROCValues ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [AUC ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
 [Gini ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
) AS alias;

ROC Syntax Elements
OutputTable

[Required if you omit ROCTable, disallowed otherwise.] Specify the name for the output table
that the function creates. The output_table must not already exist.

ROCTable
[Required if you omit OutputTable, disallowed otherwise.] Specify the name for the ROC table
that the function creates. The ROC_table must not already exist.

ModelIDColumn
[Optional] Specify the name of the InputTable column that contains the model or partition
identifiers for the ROC curves.

Use this syntax element only when InputTable contains information for more than one model. The
function creates a separate ROC curve for each model identifier in this column. Each model must
include exactly two classes in ObservationColumn.

ProbabilityColumn
Specify the name of the InputTable column that contains the predictions.

ObservationColumn
Specify the name of the InputTable column that contains the actual classes.

PositiveClass
Specify the label of the positive class.

NumThresholds
[Optional] Specify the number of thresholds for the function to use. The num_thresholds must be
a NUMERIC value in the range [1, 10000].

Default: 50 (The function uniformly distributes the thresholds between 0 and 1.)

ROCValues
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
ROC values (thresholds, false positive rates, and true positive rates).

Default: 'true'. See the following note.

AUC
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
the AUC calculated from the ROC values.

Default: 'false'. See the following note.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 136

Gini
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
the Gini coefficient calculated from the ROC values. The Gini coefficient is a measure of inequality
among values of a frequency distribution. A Gini coefficient of 0 indicates that all values are the
same. The closer the Gini coefficient is to 1, the more unequal are the values in the distribution.

Default: 'false'. See the following note.

If you specify OutputTable, the valid combinations of ROCValues, AUC, and Gini syntax elements
are those that specify one of the following:

• ROCValues only
• AUC only
• Gini only
• AUC and Gini

The function issues an error message if you do any of the following:

• Specify AUC only, Gini only, or AUC and Gini only, and ROCValues ('true').

(When specifying AUC only, Gini only, or AUC and Gini only, ROCValues is false by default.)

• Specify an invalid combination (such as ROCValues ('true') and AUC ('true'), or all three
'false').

• Specify ROCTable and also specify any of AUC, Gini, or ROCValues.

ROC Input
Input Table Schema

The table has one row for each observation.

Column Data Type Description

model_id_column Any [Column appears only with ModelIDColumn syntax element.
] Model identifier or partition for ROC curve associated with
observation.

probability_column DOUBLE
PRECISION

Predicted probability that observation is in positive class.

observation_column Any Actual class of observation.

ROC Output
The output depends on whether you specify OutputTable or ROCTable.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 137

ROC Output with OutputTable
If you specify OutputTable, the function outputs a message and creates OutputTable. The OutputTable
schema depends on the ROCValues syntax element.

Output Message Schema

Column Data Type Description

info VARCHAR Reports whether function completed.

OutputTable Schema, ROCValues ('true') (Default)

The table has one row for each threshold for each model, and contains only ROC values.

Column Data Type Description

model Same as model_id_
column in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

threshold DOUBLE PRECISION Threshold at which function classifies an observation as positive.

tpr DOUBLE PRECISION True positive rate for threshold (number of observations correctly
predicted as positive based on threshold, divided by number of
observations known to be positive).

fpr DOUBLE PRECISION False positive rate for threshold (number of observations incorrectly
predicted as positive based on threshold, divided by number of
observations known to be negative).

OutputTable Schema, ROCValues ('false')

This is the default output table if you specify AUC only, Gini only, or AUC and Gini only.

The table has the following:

• One row for each model
• No ROC values
• AUC values, Gini values, or both (depending on AUC and Gini syntax elements)

Column Data Type Description

model Same as model_id_
column in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

AUC DOUBLE PRECISION Area under ROC curve for data in partition. With AUC ('false'), this
value is NULL.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 138

Column Data Type Description

Gini DOUBLE PRECISION Gini coefficient for ROC curve for data in partition. With Gini
('false'), this value is NULL.

ROC Output with ROCTable
If you specify ROCTable, the function outputs a table to the screen and creates ROCTable.

Onscreen Output Table Schema

Column Data Type Description

model Same as model_id_column
in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

auc DOUBLE PRECISION Area under ROC curve for data in partition.

gini DOUBLE PRECISION Gini coefficient for ROC curve for data in partition.

ROCTable Schema

Same as default OutputTable Schema in ROC Output with OutputTable.

ROC Examples

ROC Example: OutputTable, Default Values
Input

All ROC examples use this input table, roc_input, which has data from four different models:

model_id id observation probability
 -------- --- ----------- ------------
 1 7 0 0.15
 1 40 0 0.4
 1 55 1 1.0
 1 57 1 0.85
 1 72 1 1.0
 1 80 1 0.9
 1 95 1 1.0
 1 110 0 0.0
 1 112 0 0.0
 1 118 0 0.0
 1 120 1 0.9

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 139

 1 127 0 0.0
 1 135 0 0.0
 1 150 0 0.1
 1 158 1 1.0
 1 162 0 0.05
 1 167 0 0.0
 1 173 0 0.0
 1 175 0 0.0
 1 190 1 0.9
 1 200 0 0.0
 1 213 1 0.1
 1 217 0 0.0
 1 223 1 1.0
 1 228 0 0.0
 2 230 0 0.05
 2 240 0 0.0
 2 255 0 0.0
 2 268 1 1.0
 2 270 1 1.0
 2 272 1 1.0
 2 278 1 0.9
 2 295 1 1.0
 2 310 1 0.9
 2 343 0 0.0
 2 345 0 0.05
 2 360 0 0.15
 2 383 1 1.0
 2 398 0 0.3
 2 400 1 0.95
 2 406 0 0.0
 2 415 0 0.0
 2 423 0 0.0
 2 438 0 0.0
 2 446 1 1.0
 2 453 0 0.0
 2 455 0 0.05
 2 461 0 0.1
 2 463 0 0.0
 2 478 1 0.85
 3 488 1 0.75
 3 493 1 1.0
 3 501 1 1.0
 3 503 0 0.4
 3 505 0 0.35

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 140

 3 516 0 0.0
 3 518 0 0.0
 3 528 0 0.15
 3 533 1 0.9
 3 543 1 0.7
 3 556 1 0.7
 3 558 1 1.0
 3 560 1 0.95
 3 575 1 0.35
 3 583 0 0.0
 3 598 1 1.0
 3 615 1 0.45
 3 631 1 1.0
 3 648 1 0.9
 3 671 0 0.05
 3 686 0 0.0
 3 688 0 0.1
 3 703 0 0.0
 3 711 0 0.8
 3 718 0 0.15
 4 726 1 1.0
 4 734 0 0.05
 4 741 1 0.4
 4 743 0 0.05
 4 749 0 0.0
 4 751 0 0.0
 4 758 0 0.0
 4 766 1 0.85
 4 781 0 0.7
 4 789 0 0.1
 4 791 1 0.7
 4 793 1 1.0
 4 798 0 0.0
 4 804 1 1.0
 4 806 0 0.0
 4 808 1 0.9
 4 821 1 1.0
 4 831 0 0.0
 4 846 0 0.0
 4 848 0 0.0
 4 861 1 0.8
 4 863 0 0.05
 4 886 0 0.3

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 141

 4 901 0 0.0
 4 903 0 0.0

SQL Call

In this call, the ROCValues, AUC, and Gini syntax elements default to the values 'true', 'false', and 'false',
respectively.

SELECT * FROM ROC (
 ON roc_input AS InputTable
 OUT TABLE OutputTable (roc_out_1)
 USING
 ModelIdColumn ('model_id')
 ProbabilityColumn ('probability')
 ObservationColumn ('observation')
 PositiveClass ('1')
 NumThresholds (100)
) AS dt;

Output

 info

 ROC complete.

SELECT * FROM roc_out_1;

 model_id threshold tpr fpr
 -------- ------------------ ----------------- ------------------
 1 0.0 1.0 1.0
 1 0.0101010101010101 1.0 0.266666666666667
 1 0.0202020202020202 1.0 0.266666666666667
 1 0.0303030303030303 1.0 0.266666666666667
 1 0.0404040404040404 1.0 0.266666666666667
 1 0.0505050505050505 1.0 0.2
 1 0.0606060606060606 1.0 0.2
 1 0.0707070707070707 1.0 0.2
 1 0.0808080808080808 1.0 0.2
 1 0.0909090909090909 1.0 0.2
 1 0.101010101010101 0.9 0.133333333333333
 1 0.111111111111111 0.9 0.133333333333333
 1 0.121212121212121 0.9 0.133333333333333
 1 0.131313131313131 0.9 0.133333333333333
 1 0.141414141414141 0.9 0.133333333333333
 1 0.151515151515152 0.9 0.0666666666666667
 1 0.161616161616162 0.9 0.0666666666666667

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 142

 1 0.171717171717172 0.9 0.0666666666666667
 1 0.181818181818182 0.9 0.0666666666666667
 1 0.191919191919192 0.9 0.0666666666666667
 1 0.202020202020202 0.9 0.0666666666666667
 1 0.212121212121212 0.9 0.0666666666666667
 1 0.222222222222222 0.9 0.0666666666666667
 1 0.232323232323232 0.9 0.0666666666666667
 1 0.242424242424242 0.9 0.0666666666666667
 1 0.252525252525253 0.9 0.0666666666666667
 1 0.262626262626263 0.9 0.0666666666666667
 1 0.272727272727273 0.9 0.0666666666666667
 1 0.282828282828283 0.9 0.0666666666666667
 1 0.292929292929293 0.9 0.0666666666666667
 1 0.303030303030303 0.9 0.0666666666666667
 1 0.313131313131313 0.9 0.0666666666666667
 1 0.323232323232323 0.9 0.0666666666666667
 1 0.333333333333333 0.9 0.0666666666666667
 1 0.343434343434343 0.9 0.0666666666666667
 1 0.353535353535354 0.9 0.0666666666666667
 1 0.363636363636364 0.9 0.0666666666666667
 1 0.373737373737374 0.9 0.0666666666666667
 1 0.383838383838384 0.9 0.0666666666666667
 1 0.393939393939394 0.9 0.0666666666666667
 1 0.404040404040404 0.9 0.0
 1 0.414141414141414 0.9 0.0
 1 0.424242424242424 0.9 0.0
 1 0.434343434343434 0.9 0.0
 1 0.444444444444444 0.9 0.0
 1 0.454545454545455 0.9 0.0
 1 0.464646464646465 0.9 0.0
 1 0.474747474747475 0.9 0.0
 1 0.484848484848485 0.9 0.0
 1 0.494949494949495 0.9 0.0
 1 0.505050505050505 0.9 0.0
 1 0.515151515151515 0.9 0.0
 1 0.525252525252525 0.9 0.0
 1 0.535353535353535 0.9 0.0
 1 0.545454545454546 0.9 0.0
 1 0.555555555555556 0.9 0.0
 1 0.565656565656566 0.9 0.0
 1 0.575757575757576 0.9 0.0
 1 0.585858585858586 0.9 0.0
 1 0.595959595959596 0.9 0.0
 1 0.606060606060606 0.9 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 143

 1 0.616161616161616 0.9 0.0
 1 0.626262626262626 0.9 0.0
 1 0.636363636363636 0.9 0.0
 1 0.646464646464647 0.9 0.0
 1 0.656565656565657 0.9 0.0
 1 0.666666666666667 0.9 0.0
 1 0.676767676767677 0.9 0.0
 1 0.686868686868687 0.9 0.0
 1 0.696969696969697 0.9 0.0
 1 0.707070707070707 0.9 0.0
 1 0.717171717171717 0.9 0.0
 1 0.727272727272727 0.9 0.0
 1 0.737373737373737 0.9 0.0
 1 0.747474747474748 0.9 0.0
 1 0.757575757575758 0.9 0.0
 1 0.767676767676768 0.9 0.0
 1 0.777777777777778 0.9 0.0
 1 0.787878787878788 0.9 0.0
 1 0.797979797979798 0.9 0.0
 1 0.808080808080808 0.9 0.0
 1 0.818181818181818 0.9 0.0
 1 0.828282828282828 0.9 0.0
 1 0.838383838383838 0.9 0.0
 1 0.848484848484849 0.9 0.0
 1 0.858585858585859 0.8 0.0
 1 0.868686868686869 0.8 0.0
 1 0.878787878787879 0.8 0.0
 1 0.888888888888889 0.8 0.0
 1 0.898989898989899 0.8 0.0
 1 0.909090909090909 0.5 0.0
 1 0.919191919191919 0.5 0.0
 1 0.929292929292929 0.5 0.0
 1 0.939393939393939 0.5 0.0
 1 0.94949494949495 0.5 0.0
 1 0.95959595959596 0.5 0.0
 1 0.96969696969697 0.5 0.0
 1 0.97979797979798 0.5 0.0
 1 0.98989898989899 0.5 0.0
 1 1.0 0.5 0.0
 2 0.0 1.0 1.0
 2 0.0101010101010101 1.0 0.4
 2 0.0202020202020202 1.0 0.4
 2 0.0303030303030303 1.0 0.4
 2 0.0404040404040404 1.0 0.4

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 144

 2 0.0505050505050505 1.0 0.2
 2 0.0606060606060606 1.0 0.2
 2 0.0707070707070707 1.0 0.2
 2 0.0808080808080808 1.0 0.2
 2 0.0909090909090909 1.0 0.2
 2 0.101010101010101 1.0 0.133333333333333
 2 0.111111111111111 1.0 0.133333333333333
 2 0.121212121212121 1.0 0.133333333333333
 2 0.131313131313131 1.0 0.133333333333333
 2 0.141414141414141 1.0 0.133333333333333
 2 0.151515151515152 1.0 0.0666666666666667
 2 0.161616161616162 1.0 0.0666666666666667
 2 0.171717171717172 1.0 0.0666666666666667
 2 0.181818181818182 1.0 0.0666666666666667
 2 0.191919191919192 1.0 0.0666666666666667
 2 0.202020202020202 1.0 0.0666666666666667
 2 0.212121212121212 1.0 0.0666666666666667
 2 0.222222222222222 1.0 0.0666666666666667
 2 0.232323232323232 1.0 0.0666666666666667
 2 0.242424242424242 1.0 0.0666666666666667
 2 0.252525252525253 1.0 0.0666666666666667
 2 0.262626262626263 1.0 0.0666666666666667
 2 0.272727272727273 1.0 0.0666666666666667
 2 0.282828282828283 1.0 0.0666666666666667
 2 0.292929292929293 1.0 0.0666666666666667
 2 0.303030303030303 1.0 0.0
 2 0.313131313131313 1.0 0.0
 2 0.323232323232323 1.0 0.0
 2 0.333333333333333 1.0 0.0
 2 0.343434343434343 1.0 0.0
 2 0.353535353535354 1.0 0.0
 2 0.363636363636364 1.0 0.0
 2 0.373737373737374 1.0 0.0
 2 0.383838383838384 1.0 0.0
 2 0.393939393939394 1.0 0.0
 2 0.404040404040404 1.0 0.0
 2 0.414141414141414 1.0 0.0
 2 0.424242424242424 1.0 0.0
 2 0.434343434343434 1.0 0.0
 2 0.444444444444444 1.0 0.0
 2 0.454545454545455 1.0 0.0
 2 0.464646464646465 1.0 0.0
 2 0.474747474747475 1.0 0.0
 2 0.484848484848485 1.0 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 145

 2 0.494949494949495 1.0 0.0
 2 0.505050505050505 1.0 0.0
 2 0.515151515151515 1.0 0.0
 2 0.525252525252525 1.0 0.0
 2 0.535353535353535 1.0 0.0
 2 0.545454545454546 1.0 0.0
 2 0.555555555555556 1.0 0.0
 2 0.565656565656566 1.0 0.0
 2 0.575757575757576 1.0 0.0
 2 0.585858585858586 1.0 0.0
 2 0.595959595959596 1.0 0.0
 2 0.606060606060606 1.0 0.0
 2 0.616161616161616 1.0 0.0
 2 0.626262626262626 1.0 0.0
 2 0.636363636363636 1.0 0.0
 2 0.646464646464647 1.0 0.0
 2 0.656565656565657 1.0 0.0
 2 0.666666666666667 1.0 0.0
 2 0.676767676767677 1.0 0.0
 2 0.686868686868687 1.0 0.0
 2 0.696969696969697 1.0 0.0
 2 0.707070707070707 1.0 0.0
 2 0.717171717171717 1.0 0.0
 2 0.727272727272727 1.0 0.0
 2 0.737373737373737 1.0 0.0
 2 0.747474747474748 1.0 0.0
 2 0.757575757575758 1.0 0.0
 2 0.767676767676768 1.0 0.0
 2 0.777777777777778 1.0 0.0
 2 0.787878787878788 1.0 0.0
 2 0.797979797979798 1.0 0.0
 2 0.808080808080808 1.0 0.0
 2 0.818181818181818 1.0 0.0
 2 0.828282828282828 1.0 0.0
 2 0.838383838383838 1.0 0.0
 2 0.848484848484849 1.0 0.0
 2 0.858585858585859 0.9 0.0
 2 0.868686868686869 0.9 0.0
 2 0.878787878787879 0.9 0.0
 2 0.888888888888889 0.9 0.0
 2 0.898989898989899 0.9 0.0
 2 0.909090909090909 0.7 0.0
 2 0.919191919191919 0.7 0.0
 2 0.929292929292929 0.7 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 146

 2 0.939393939393939 0.7 0.0
 2 0.94949494949495 0.7 0.0
 2 0.95959595959596 0.6 0.0
 2 0.96969696969697 0.6 0.0
 2 0.97979797979798 0.6 0.0
 2 0.98989898989899 0.6 0.0
 2 1.0 0.6 0.0
 3 0.0 1.0 1.0
 3 0.0101010101010101 1.0 0.583333333333333
 3 0.0202020202020202 1.0 0.583333333333333
 3 0.0303030303030303 1.0 0.583333333333333
 3 0.0404040404040404 1.0 0.583333333333333
 3 0.0505050505050505 1.0 0.5
 3 0.0606060606060606 1.0 0.5
 3 0.0707070707070707 1.0 0.5
 3 0.0808080808080808 1.0 0.5
 3 0.0909090909090909 1.0 0.5
 3 0.101010101010101 1.0 0.416666666666667
 3 0.111111111111111 1.0 0.416666666666667
 3 0.121212121212121 1.0 0.416666666666667
 3 0.131313131313131 1.0 0.416666666666667
 3 0.141414141414141 1.0 0.416666666666667
 3 0.151515151515152 1.0 0.25
 3 0.161616161616162 1.0 0.25
 3 0.171717171717172 1.0 0.25
 3 0.181818181818182 1.0 0.25
 3 0.191919191919192 1.0 0.25
 3 0.202020202020202 1.0 0.25
 3 0.212121212121212 1.0 0.25
 3 0.222222222222222 1.0 0.25
 3 0.232323232323232 1.0 0.25
 3 0.242424242424242 1.0 0.25
 3 0.252525252525253 1.0 0.25
 3 0.262626262626263 1.0 0.25
 3 0.272727272727273 1.0 0.25
 3 0.282828282828283 1.0 0.25
 3 0.292929292929293 1.0 0.25
 3 0.303030303030303 1.0 0.25
 3 0.313131313131313 1.0 0.25
 3 0.323232323232323 1.0 0.25
 3 0.333333333333333 1.0 0.25
 3 0.343434343434343 1.0 0.25
 3 0.353535353535354 0.923076923076923 0.166666666666667
 3 0.363636363636364 0.923076923076923 0.166666666666667

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 147

 3 0.373737373737374 0.923076923076923 0.166666666666667
 3 0.383838383838384 0.923076923076923 0.166666666666667
 3 0.393939393939394 0.923076923076923 0.166666666666667
 3 0.404040404040404 0.923076923076923 0.0833333333333333
 3 0.414141414141414 0.923076923076923 0.0833333333333333
 3 0.424242424242424 0.923076923076923 0.0833333333333333
 3 0.434343434343434 0.923076923076923 0.0833333333333333
 3 0.444444444444444 0.923076923076923 0.0833333333333333
 3 0.454545454545455 0.846153846153846 0.0833333333333333
 3 0.464646464646465 0.846153846153846 0.0833333333333333
 3 0.474747474747475 0.846153846153846 0.0833333333333333
 3 0.484848484848485 0.846153846153846 0.0833333333333333
 3 0.494949494949495 0.846153846153846 0.0833333333333333
 3 0.505050505050505 0.846153846153846 0.0833333333333333
 3 0.515151515151515 0.846153846153846 0.0833333333333333
 3 0.525252525252525 0.846153846153846 0.0833333333333333
 3 0.535353535353535 0.846153846153846 0.0833333333333333
 3 0.545454545454546 0.846153846153846 0.0833333333333333
 3 0.555555555555556 0.846153846153846 0.0833333333333333
 3 0.565656565656566 0.846153846153846 0.0833333333333333
 3 0.575757575757576 0.846153846153846 0.0833333333333333
 3 0.585858585858586 0.846153846153846 0.0833333333333333
 3 0.595959595959596 0.846153846153846 0.0833333333333333
 3 0.606060606060606 0.846153846153846 0.0833333333333333
 3 0.616161616161616 0.846153846153846 0.0833333333333333
 3 0.626262626262626 0.846153846153846 0.0833333333333333
 3 0.636363636363636 0.846153846153846 0.0833333333333333
 3 0.646464646464647 0.846153846153846 0.0833333333333333
 3 0.656565656565657 0.846153846153846 0.0833333333333333
 3 0.666666666666667 0.846153846153846 0.0833333333333333
 3 0.676767676767677 0.846153846153846 0.0833333333333333
 3 0.686868686868687 0.846153846153846 0.0833333333333333
 3 0.696969696969697 0.846153846153846 0.0833333333333333
 3 0.707070707070707 0.692307692307692 0.0833333333333333
 3 0.717171717171717 0.692307692307692 0.0833333333333333
 3 0.727272727272727 0.692307692307692 0.0833333333333333
 3 0.737373737373737 0.692307692307692 0.0833333333333333
 3 0.747474747474748 0.692307692307692 0.0833333333333333
 3 0.757575757575758 0.615384615384615 0.0833333333333333
 3 0.767676767676768 0.615384615384615 0.0833333333333333
 3 0.777777777777778 0.615384615384615 0.0833333333333333
 3 0.787878787878788 0.615384615384615 0.0833333333333333
 3 0.797979797979798 0.615384615384615 0.0833333333333333
 3 0.808080808080808 0.615384615384615 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 148

 3 0.818181818181818 0.615384615384615 0.0
 3 0.828282828282828 0.615384615384615 0.0
 3 0.838383838383838 0.615384615384615 0.0
 3 0.848484848484849 0.615384615384615 0.0
 3 0.858585858585859 0.615384615384615 0.0
 3 0.868686868686869 0.615384615384615 0.0
 3 0.878787878787879 0.615384615384615 0.0
 3 0.888888888888889 0.615384615384615 0.0
 3 0.898989898989899 0.615384615384615 0.0
 3 0.909090909090909 0.461538461538462 0.0
 3 0.919191919191919 0.461538461538462 0.0
 3 0.929292929292929 0.461538461538462 0.0
 3 0.939393939393939 0.461538461538462 0.0
 3 0.94949494949495 0.461538461538462 0.0
 3 0.95959595959596 0.384615384615385 0.0
 3 0.96969696969697 0.384615384615385 0.0
 3 0.97979797979798 0.384615384615385 0.0
 3 0.98989898989899 0.384615384615385 0.0
 3 1.0 0.384615384615385 0.0
 4 0.0 1.0 1.0
 4 0.0101010101010101 1.0 0.375
 4 0.0202020202020202 1.0 0.375
 4 0.0303030303030303 1.0 0.375
 4 0.0404040404040404 1.0 0.375
 4 0.0505050505050505 1.0 0.1875
 4 0.0606060606060606 1.0 0.1875
 4 0.0707070707070707 1.0 0.1875
 4 0.0808080808080808 1.0 0.1875
 4 0.0909090909090909 1.0 0.1875
 4 0.101010101010101 1.0 0.125
 4 0.111111111111111 1.0 0.125
 4 0.121212121212121 1.0 0.125
 4 0.131313131313131 1.0 0.125
 4 0.141414141414141 1.0 0.125
 4 0.151515151515152 1.0 0.125
 4 0.161616161616162 1.0 0.125
 4 0.171717171717172 1.0 0.125
 4 0.181818181818182 1.0 0.125
 4 0.191919191919192 1.0 0.125
 4 0.202020202020202 1.0 0.125
 4 0.212121212121212 1.0 0.125
 4 0.222222222222222 1.0 0.125
 4 0.232323232323232 1.0 0.125
 4 0.242424242424242 1.0 0.125

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 149

 4 0.252525252525253 1.0 0.125
 4 0.262626262626263 1.0 0.125
 4 0.272727272727273 1.0 0.125
 4 0.282828282828283 1.0 0.125
 4 0.292929292929293 1.0 0.125
 4 0.303030303030303 1.0 0.0625
 4 0.313131313131313 1.0 0.0625
 4 0.323232323232323 1.0 0.0625
 4 0.333333333333333 1.0 0.0625
 4 0.343434343434343 1.0 0.0625
 4 0.353535353535354 1.0 0.0625
 4 0.363636363636364 1.0 0.0625
 4 0.373737373737374 1.0 0.0625
 4 0.383838383838384 1.0 0.0625
 4 0.393939393939394 1.0 0.0625
 4 0.404040404040404 0.888888888888889 0.0625
 4 0.414141414141414 0.888888888888889 0.0625
 4 0.424242424242424 0.888888888888889 0.0625
 4 0.434343434343434 0.888888888888889 0.0625
 4 0.444444444444444 0.888888888888889 0.0625
 4 0.454545454545455 0.888888888888889 0.0625
 4 0.464646464646465 0.888888888888889 0.0625
 4 0.474747474747475 0.888888888888889 0.0625
 4 0.484848484848485 0.888888888888889 0.0625
 4 0.494949494949495 0.888888888888889 0.0625
 4 0.505050505050505 0.888888888888889 0.0625
 4 0.515151515151515 0.888888888888889 0.0625
 4 0.525252525252525 0.888888888888889 0.0625
 4 0.535353535353535 0.888888888888889 0.0625
 4 0.545454545454546 0.888888888888889 0.0625
 4 0.555555555555556 0.888888888888889 0.0625
 4 0.565656565656566 0.888888888888889 0.0625
 4 0.575757575757576 0.888888888888889 0.0625
 4 0.585858585858586 0.888888888888889 0.0625
 4 0.595959595959596 0.888888888888889 0.0625
 4 0.606060606060606 0.888888888888889 0.0625
 4 0.616161616161616 0.888888888888889 0.0625
 4 0.626262626262626 0.888888888888889 0.0625
 4 0.636363636363636 0.888888888888889 0.0625
 4 0.646464646464647 0.888888888888889 0.0625
 4 0.656565656565657 0.888888888888889 0.0625
 4 0.666666666666667 0.888888888888889 0.0625
 4 0.676767676767677 0.888888888888889 0.0625
 4 0.686868686868687 0.888888888888889 0.0625

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 150

 4 0.696969696969697 0.888888888888889 0.0625
 4 0.707070707070707 0.777777777777778 0.0
 4 0.717171717171717 0.777777777777778 0.0
 4 0.727272727272727 0.777777777777778 0.0
 4 0.737373737373737 0.777777777777778 0.0
 4 0.747474747474748 0.777777777777778 0.0
 4 0.757575757575758 0.777777777777778 0.0
 4 0.767676767676768 0.777777777777778 0.0
 4 0.777777777777778 0.777777777777778 0.0
 4 0.787878787878788 0.777777777777778 0.0
 4 0.797979797979798 0.777777777777778 0.0
 4 0.808080808080808 0.666666666666667 0.0
 4 0.818181818181818 0.666666666666667 0.0
 4 0.828282828282828 0.666666666666667 0.0
 4 0.838383838383838 0.666666666666667 0.0
 4 0.848484848484849 0.666666666666667 0.0
 4 0.858585858585859 0.555555555555556 0.0
 4 0.868686868686869 0.555555555555556 0.0
 4 0.878787878787879 0.555555555555556 0.0
 4 0.888888888888889 0.555555555555556 0.0
 4 0.898989898989899 0.555555555555556 0.0
 4 0.909090909090909 0.444444444444444 0.0
 4 0.919191919191919 0.444444444444444 0.0
 4 0.929292929292929 0.444444444444444 0.0
 4 0.939393939393939 0.444444444444444 0.0
 4 0.94949494949495 0.444444444444444 0.0
 4 0.95959595959596 0.444444444444444 0.0
 4 0.96969696969697 0.444444444444444 0.0
 4 0.97979797979798 0.444444444444444 0.0
 4 0.98989898989899 0.444444444444444 0.0
 4 1.0 0.444444444444444 0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: OutputTable, AUC ('true')
This example uses AUC values to check the performance of the model used in ROC Example:
OutputTable, Default Values.

Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 151

SQL Call

Because this call specifies AUC ('true') and omits the ROCValues syntax element, the ROCValues syntax
element has the value 'false'.

SELECT * FROM ROC (
 ON roc_input AS InputTable
 OUT TABLE OutputTable (roc_out_2)
 USING
 ModelIdColumn ('model_id')
 ProbabilityColumn ('probability')
 ObservationColumn ('observation')
 PositiveClass ('1')
 NumThresholds (100)
 AUC ('true')
) AS dt;

Output

 info

 ROC complete.

SELECT * FROM roc_out_2;

 model_id auc gini
 -------- ------------------ ----
 1 0.9833333333333334 NULL
 2 1.0 NULL
 3 0.9583333333333333 NULL
 4 0.9895833333333334 NULL

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: OutputTable, AUC ('true'), Gini ('true')
Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.

SQL Call

Because this call specifies AUC ('true') and Gini ('true') and omits the ROCValues syntax element, the
ROCValues syntax element has the value 'false'.

SELECT * FROM ROC (
 ON roc_input AS InputTable

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 152

 OUT TABLE OutputTable (roc_out_3)
 USING
 ProbabilityColumn ('model_id')
 ObservationColumn ('observation')
 PositiveClass ('1')
 NumThresholds (100)
 AUC ('true')
 Gini ('true')
) AS dt;

Output

 info

 ROC complete.

SELECT * FROM roc_out_3;

 model_id auc gini
 -------- ------------------ ------------------
 1 0.9833333333333334 0.9666666666666668
 2 1.0 1.0
 3 0.9583333333333333 0.9166666666666665
 4 0.9895833333333334 0.9791666666666667

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: ROCTable
Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.

SQL Call

SELECT * FROM ROC (
 ON roc_input AS InputTable
 OUT TABLE ROCTable (roc_out_4)
 USING
 ModelIdColumn ('model_id')
 ProbabilityColumn ('probability')
 ObservationColumn ('observation')
 PositiveClass ('1')
 NumThresholds (100)
) AS dt;

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 153

Output

Onscreen:

model_id auc gini
 -------- ------------------ ------------------
 1 0.9833333333333334 0.9666666666666668
 2 1.0 1.0
 3 0.9583333333333333 0.9166666666666665
 4 0.9895833333333334 0.9791666666666667

The ROCTable, roc_out_4, is the same as the OutputTable in ROC Example: OutputTable, Default
Values.

SELECT * FROM roc_out_4;

model_id threshold tpr fpr
 -------- ------------------ ----------------- ------------------
 1 0.0 1.0 1.0
 1 0.0101010101010101 1.0 0.266666666666667
 1 0.0202020202020202 1.0 0.266666666666667
 1 0.0303030303030303 1.0 0.266666666666667
 1 0.0404040404040404 1.0 0.266666666666667
 1 0.0505050505050505 1.0 0.2
 1 0.0606060606060606 1.0 0.2
 1 0.0707070707070707 1.0 0.2
 1 0.0808080808080808 1.0 0.2
 1 0.0909090909090909 1.0 0.2
 1 0.101010101010101 0.9 0.133333333333333
 1 0.111111111111111 0.9 0.133333333333333
 1 0.121212121212121 0.9 0.133333333333333
 1 0.131313131313131 0.9 0.133333333333333
 1 0.141414141414141 0.9 0.133333333333333
 1 0.151515151515152 0.9 0.0666666666666667
 1 0.161616161616162 0.9 0.0666666666666667
 1 0.171717171717172 0.9 0.0666666666666667
 1 0.181818181818182 0.9 0.0666666666666667
 1 0.191919191919192 0.9 0.0666666666666667
 1 0.202020202020202 0.9 0.0666666666666667
 1 0.212121212121212 0.9 0.0666666666666667
 1 0.222222222222222 0.9 0.0666666666666667
 1 0.232323232323232 0.9 0.0666666666666667
 1 0.242424242424242 0.9 0.0666666666666667
 1 0.252525252525253 0.9 0.0666666666666667
 1 0.262626262626263 0.9 0.0666666666666667

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 154

 1 0.272727272727273 0.9 0.0666666666666667
 1 0.282828282828283 0.9 0.0666666666666667
 1 0.292929292929293 0.9 0.0666666666666667
 1 0.303030303030303 0.9 0.0666666666666667
 1 0.313131313131313 0.9 0.0666666666666667
 1 0.323232323232323 0.9 0.0666666666666667
 1 0.333333333333333 0.9 0.0666666666666667
 1 0.343434343434343 0.9 0.0666666666666667
 1 0.353535353535354 0.9 0.0666666666666667
 1 0.363636363636364 0.9 0.0666666666666667
 1 0.373737373737374 0.9 0.0666666666666667
 1 0.383838383838384 0.9 0.0666666666666667
 1 0.393939393939394 0.9 0.0666666666666667
 1 0.404040404040404 0.9 0.0
 1 0.414141414141414 0.9 0.0
 1 0.424242424242424 0.9 0.0
 1 0.434343434343434 0.9 0.0
 1 0.444444444444444 0.9 0.0
 1 0.454545454545455 0.9 0.0
 1 0.464646464646465 0.9 0.0
 1 0.474747474747475 0.9 0.0
 1 0.484848484848485 0.9 0.0
 1 0.494949494949495 0.9 0.0
 1 0.505050505050505 0.9 0.0
 1 0.515151515151515 0.9 0.0
 1 0.525252525252525 0.9 0.0
 1 0.535353535353535 0.9 0.0
 1 0.545454545454546 0.9 0.0
 1 0.555555555555556 0.9 0.0
 1 0.565656565656566 0.9 0.0
 1 0.575757575757576 0.9 0.0
 1 0.585858585858586 0.9 0.0
 1 0.595959595959596 0.9 0.0
 1 0.606060606060606 0.9 0.0
 1 0.616161616161616 0.9 0.0
 1 0.626262626262626 0.9 0.0
 1 0.636363636363636 0.9 0.0
 1 0.646464646464647 0.9 0.0
 1 0.656565656565657 0.9 0.0
 1 0.666666666666667 0.9 0.0
 1 0.676767676767677 0.9 0.0
 1 0.686868686868687 0.9 0.0
 1 0.696969696969697 0.9 0.0
 1 0.707070707070707 0.9 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 155

 1 0.717171717171717 0.9 0.0
 1 0.727272727272727 0.9 0.0
 1 0.737373737373737 0.9 0.0
 1 0.747474747474748 0.9 0.0
 1 0.757575757575758 0.9 0.0
 1 0.767676767676768 0.9 0.0
 1 0.777777777777778 0.9 0.0
 1 0.787878787878788 0.9 0.0
 1 0.797979797979798 0.9 0.0
 1 0.808080808080808 0.9 0.0
 1 0.818181818181818 0.9 0.0
 1 0.828282828282828 0.9 0.0
 1 0.838383838383838 0.9 0.0
 1 0.848484848484849 0.9 0.0
 1 0.858585858585859 0.8 0.0
 1 0.868686868686869 0.8 0.0
 1 0.878787878787879 0.8 0.0
 1 0.888888888888889 0.8 0.0
 1 0.898989898989899 0.8 0.0
 1 0.909090909090909 0.5 0.0
 1 0.919191919191919 0.5 0.0
 1 0.929292929292929 0.5 0.0
 1 0.939393939393939 0.5 0.0
 1 0.94949494949495 0.5 0.0
 1 0.95959595959596 0.5 0.0
 1 0.96969696969697 0.5 0.0
 1 0.97979797979798 0.5 0.0
 1 0.98989898989899 0.5 0.0
 1 1.0 0.5 0.0
 2 0.0 1.0 1.0
 2 0.0101010101010101 1.0 0.4
 2 0.0202020202020202 1.0 0.4
 2 0.0303030303030303 1.0 0.4
 2 0.0404040404040404 1.0 0.4
 2 0.0505050505050505 1.0 0.2
 2 0.0606060606060606 1.0 0.2
 2 0.0707070707070707 1.0 0.2
 2 0.0808080808080808 1.0 0.2
 2 0.0909090909090909 1.0 0.2
 2 0.101010101010101 1.0 0.133333333333333
 2 0.111111111111111 1.0 0.133333333333333
 2 0.121212121212121 1.0 0.133333333333333
 2 0.131313131313131 1.0 0.133333333333333
 2 0.141414141414141 1.0 0.133333333333333

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 156

 2 0.151515151515152 1.0 0.0666666666666667
 2 0.161616161616162 1.0 0.0666666666666667
 2 0.171717171717172 1.0 0.0666666666666667
 2 0.181818181818182 1.0 0.0666666666666667
 2 0.191919191919192 1.0 0.0666666666666667
 2 0.202020202020202 1.0 0.0666666666666667
 2 0.212121212121212 1.0 0.0666666666666667
 2 0.222222222222222 1.0 0.0666666666666667
 2 0.232323232323232 1.0 0.0666666666666667
 2 0.242424242424242 1.0 0.0666666666666667
 2 0.252525252525253 1.0 0.0666666666666667
 2 0.262626262626263 1.0 0.0666666666666667
 2 0.272727272727273 1.0 0.0666666666666667
 2 0.282828282828283 1.0 0.0666666666666667
 2 0.292929292929293 1.0 0.0666666666666667
 2 0.303030303030303 1.0 0.0
 2 0.313131313131313 1.0 0.0
 2 0.323232323232323 1.0 0.0
 2 0.333333333333333 1.0 0.0
 2 0.343434343434343 1.0 0.0
 2 0.353535353535354 1.0 0.0
 2 0.363636363636364 1.0 0.0
 2 0.373737373737374 1.0 0.0
 2 0.383838383838384 1.0 0.0
 2 0.393939393939394 1.0 0.0
 2 0.404040404040404 1.0 0.0
 2 0.414141414141414 1.0 0.0
 2 0.424242424242424 1.0 0.0
 2 0.434343434343434 1.0 0.0
 2 0.444444444444444 1.0 0.0
 2 0.454545454545455 1.0 0.0
 2 0.464646464646465 1.0 0.0
 2 0.474747474747475 1.0 0.0
 2 0.484848484848485 1.0 0.0
 2 0.494949494949495 1.0 0.0
 2 0.505050505050505 1.0 0.0
 2 0.515151515151515 1.0 0.0
 2 0.525252525252525 1.0 0.0
 2 0.535353535353535 1.0 0.0
 2 0.545454545454546 1.0 0.0
 2 0.555555555555556 1.0 0.0
 2 0.565656565656566 1.0 0.0
 2 0.575757575757576 1.0 0.0
 2 0.585858585858586 1.0 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 157

 2 0.595959595959596 1.0 0.0
 2 0.606060606060606 1.0 0.0
 2 0.616161616161616 1.0 0.0
 2 0.626262626262626 1.0 0.0
 2 0.636363636363636 1.0 0.0
 2 0.646464646464647 1.0 0.0
 2 0.656565656565657 1.0 0.0
 2 0.666666666666667 1.0 0.0
 2 0.676767676767677 1.0 0.0
 2 0.686868686868687 1.0 0.0
 2 0.696969696969697 1.0 0.0
 2 0.707070707070707 1.0 0.0
 2 0.717171717171717 1.0 0.0
 2 0.727272727272727 1.0 0.0
 2 0.737373737373737 1.0 0.0
 2 0.747474747474748 1.0 0.0
 2 0.757575757575758 1.0 0.0
 2 0.767676767676768 1.0 0.0
 2 0.777777777777778 1.0 0.0
 2 0.787878787878788 1.0 0.0
 2 0.797979797979798 1.0 0.0
 2 0.808080808080808 1.0 0.0
 2 0.818181818181818 1.0 0.0
 2 0.828282828282828 1.0 0.0
 2 0.838383838383838 1.0 0.0
 2 0.848484848484849 1.0 0.0
 2 0.858585858585859 0.9 0.0
 2 0.868686868686869 0.9 0.0
 2 0.878787878787879 0.9 0.0
 2 0.888888888888889 0.9 0.0
 2 0.898989898989899 0.9 0.0
 2 0.909090909090909 0.7 0.0
 2 0.919191919191919 0.7 0.0
 2 0.929292929292929 0.7 0.0
 2 0.939393939393939 0.7 0.0
 2 0.94949494949495 0.7 0.0
 2 0.95959595959596 0.6 0.0
 2 0.96969696969697 0.6 0.0
 2 0.97979797979798 0.6 0.0
 2 0.98989898989899 0.6 0.0
 2 1.0 0.6 0.0
 3 0.0 1.0 1.0
 3 0.0101010101010101 1.0 0.583333333333333
 3 0.0202020202020202 1.0 0.583333333333333

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 158

 3 0.0303030303030303 1.0 0.583333333333333
 3 0.0404040404040404 1.0 0.583333333333333
 3 0.0505050505050505 1.0 0.5
 3 0.0606060606060606 1.0 0.5
 3 0.0707070707070707 1.0 0.5
 3 0.0808080808080808 1.0 0.5
 3 0.0909090909090909 1.0 0.5
 3 0.101010101010101 1.0 0.416666666666667
 3 0.111111111111111 1.0 0.416666666666667
 3 0.121212121212121 1.0 0.416666666666667
 3 0.131313131313131 1.0 0.416666666666667
 3 0.141414141414141 1.0 0.416666666666667
 3 0.151515151515152 1.0 0.25
 3 0.161616161616162 1.0 0.25
 3 0.171717171717172 1.0 0.25
 3 0.181818181818182 1.0 0.25
 3 0.191919191919192 1.0 0.25
 3 0.202020202020202 1.0 0.25
 3 0.212121212121212 1.0 0.25
 3 0.222222222222222 1.0 0.25
 3 0.232323232323232 1.0 0.25
 3 0.242424242424242 1.0 0.25
 3 0.252525252525253 1.0 0.25
 3 0.262626262626263 1.0 0.25
 3 0.272727272727273 1.0 0.25
 3 0.282828282828283 1.0 0.25
 3 0.292929292929293 1.0 0.25
 3 0.303030303030303 1.0 0.25
 3 0.313131313131313 1.0 0.25
 3 0.323232323232323 1.0 0.25
 3 0.333333333333333 1.0 0.25
 3 0.343434343434343 1.0 0.25
 3 0.353535353535354 0.923076923076923 0.166666666666667
 3 0.363636363636364 0.923076923076923 0.166666666666667
 3 0.373737373737374 0.923076923076923 0.166666666666667
 3 0.383838383838384 0.923076923076923 0.166666666666667
 3 0.393939393939394 0.923076923076923 0.166666666666667
 3 0.404040404040404 0.923076923076923 0.0833333333333333
 3 0.414141414141414 0.923076923076923 0.0833333333333333
 3 0.424242424242424 0.923076923076923 0.0833333333333333
 3 0.434343434343434 0.923076923076923 0.0833333333333333
 3 0.444444444444444 0.923076923076923 0.0833333333333333
 3 0.454545454545455 0.846153846153846 0.0833333333333333
 3 0.464646464646465 0.846153846153846 0.0833333333333333

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 159

 3 0.474747474747475 0.846153846153846 0.0833333333333333
 3 0.484848484848485 0.846153846153846 0.0833333333333333
 3 0.494949494949495 0.846153846153846 0.0833333333333333
 3 0.505050505050505 0.846153846153846 0.0833333333333333
 3 0.515151515151515 0.846153846153846 0.0833333333333333
 3 0.525252525252525 0.846153846153846 0.0833333333333333
 3 0.535353535353535 0.846153846153846 0.0833333333333333
 3 0.545454545454546 0.846153846153846 0.0833333333333333
 3 0.555555555555556 0.846153846153846 0.0833333333333333
 3 0.565656565656566 0.846153846153846 0.0833333333333333
 3 0.575757575757576 0.846153846153846 0.0833333333333333
 3 0.585858585858586 0.846153846153846 0.0833333333333333
 3 0.595959595959596 0.846153846153846 0.0833333333333333
 3 0.606060606060606 0.846153846153846 0.0833333333333333
 3 0.616161616161616 0.846153846153846 0.0833333333333333
 3 0.626262626262626 0.846153846153846 0.0833333333333333
 3 0.636363636363636 0.846153846153846 0.0833333333333333
 3 0.646464646464647 0.846153846153846 0.0833333333333333
 3 0.656565656565657 0.846153846153846 0.0833333333333333
 3 0.666666666666667 0.846153846153846 0.0833333333333333
 3 0.676767676767677 0.846153846153846 0.0833333333333333
 3 0.686868686868687 0.846153846153846 0.0833333333333333
 3 0.696969696969697 0.846153846153846 0.0833333333333333
 3 0.707070707070707 0.692307692307692 0.0833333333333333
 3 0.717171717171717 0.692307692307692 0.0833333333333333
 3 0.727272727272727 0.692307692307692 0.0833333333333333
 3 0.737373737373737 0.692307692307692 0.0833333333333333
 3 0.747474747474748 0.692307692307692 0.0833333333333333
 3 0.757575757575758 0.615384615384615 0.0833333333333333
 3 0.767676767676768 0.615384615384615 0.0833333333333333
 3 0.777777777777778 0.615384615384615 0.0833333333333333
 3 0.787878787878788 0.615384615384615 0.0833333333333333
 3 0.797979797979798 0.615384615384615 0.0833333333333333
 3 0.808080808080808 0.615384615384615 0.0
 3 0.818181818181818 0.615384615384615 0.0
 3 0.828282828282828 0.615384615384615 0.0
 3 0.838383838383838 0.615384615384615 0.0
 3 0.848484848484849 0.615384615384615 0.0
 3 0.858585858585859 0.615384615384615 0.0
 3 0.868686868686869 0.615384615384615 0.0
 3 0.878787878787879 0.615384615384615 0.0
 3 0.888888888888889 0.615384615384615 0.0
 3 0.898989898989899 0.615384615384615 0.0
 3 0.909090909090909 0.461538461538462 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 160

 3 0.919191919191919 0.461538461538462 0.0
 3 0.929292929292929 0.461538461538462 0.0
 3 0.939393939393939 0.461538461538462 0.0
 3 0.94949494949495 0.461538461538462 0.0
 3 0.95959595959596 0.384615384615385 0.0
 3 0.96969696969697 0.384615384615385 0.0
 3 0.97979797979798 0.384615384615385 0.0
 3 0.98989898989899 0.384615384615385 0.0
 3 1.0 0.384615384615385 0.0
 4 0.0 1.0 1.0
 4 0.0101010101010101 1.0 0.375
 4 0.0202020202020202 1.0 0.375
 4 0.0303030303030303 1.0 0.375
 4 0.0404040404040404 1.0 0.375
 4 0.0505050505050505 1.0 0.1875
 4 0.0606060606060606 1.0 0.1875
 4 0.0707070707070707 1.0 0.1875
 4 0.0808080808080808 1.0 0.1875
 4 0.0909090909090909 1.0 0.1875
 4 0.101010101010101 1.0 0.125
 4 0.111111111111111 1.0 0.125
 4 0.121212121212121 1.0 0.125
 4 0.131313131313131 1.0 0.125
 4 0.141414141414141 1.0 0.125
 4 0.151515151515152 1.0 0.125
 4 0.161616161616162 1.0 0.125
 4 0.171717171717172 1.0 0.125
 4 0.181818181818182 1.0 0.125
 4 0.191919191919192 1.0 0.125
 4 0.202020202020202 1.0 0.125
 4 0.212121212121212 1.0 0.125
 4 0.222222222222222 1.0 0.125
 4 0.232323232323232 1.0 0.125
 4 0.242424242424242 1.0 0.125
 4 0.252525252525253 1.0 0.125
 4 0.262626262626263 1.0 0.125
 4 0.272727272727273 1.0 0.125
 4 0.282828282828283 1.0 0.125
 4 0.292929292929293 1.0 0.125
 4 0.303030303030303 1.0 0.0625
 4 0.313131313131313 1.0 0.0625
 4 0.323232323232323 1.0 0.0625
 4 0.333333333333333 1.0 0.0625
 4 0.343434343434343 1.0 0.0625

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 161

 4 0.353535353535354 1.0 0.0625
 4 0.363636363636364 1.0 0.0625
 4 0.373737373737374 1.0 0.0625
 4 0.383838383838384 1.0 0.0625
 4 0.393939393939394 1.0 0.0625
 4 0.404040404040404 0.888888888888889 0.0625
 4 0.414141414141414 0.888888888888889 0.0625
 4 0.424242424242424 0.888888888888889 0.0625
 4 0.434343434343434 0.888888888888889 0.0625
 4 0.444444444444444 0.888888888888889 0.0625
 4 0.454545454545455 0.888888888888889 0.0625
 4 0.464646464646465 0.888888888888889 0.0625
 4 0.474747474747475 0.888888888888889 0.0625
 4 0.484848484848485 0.888888888888889 0.0625
 4 0.494949494949495 0.888888888888889 0.0625
 4 0.505050505050505 0.888888888888889 0.0625
 4 0.515151515151515 0.888888888888889 0.0625
 4 0.525252525252525 0.888888888888889 0.0625
 4 0.535353535353535 0.888888888888889 0.0625
 4 0.545454545454546 0.888888888888889 0.0625
 4 0.555555555555556 0.888888888888889 0.0625
 4 0.565656565656566 0.888888888888889 0.0625
 4 0.575757575757576 0.888888888888889 0.0625
 4 0.585858585858586 0.888888888888889 0.0625
 4 0.595959595959596 0.888888888888889 0.0625
 4 0.606060606060606 0.888888888888889 0.0625
 4 0.616161616161616 0.888888888888889 0.0625
 4 0.626262626262626 0.888888888888889 0.0625
 4 0.636363636363636 0.888888888888889 0.0625
 4 0.646464646464647 0.888888888888889 0.0625
 4 0.656565656565657 0.888888888888889 0.0625
 4 0.666666666666667 0.888888888888889 0.0625
 4 0.676767676767677 0.888888888888889 0.0625
 4 0.686868686868687 0.888888888888889 0.0625
 4 0.696969696969697 0.888888888888889 0.0625
 4 0.707070707070707 0.777777777777778 0.0
 4 0.717171717171717 0.777777777777778 0.0
 4 0.727272727272727 0.777777777777778 0.0
 4 0.737373737373737 0.777777777777778 0.0
 4 0.747474747474748 0.777777777777778 0.0
 4 0.757575757575758 0.777777777777778 0.0
 4 0.767676767676768 0.777777777777778 0.0
 4 0.777777777777778 0.777777777777778 0.0
 4 0.787878787878788 0.777777777777778 0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 162

 4 0.797979797979798 0.777777777777778 0.0
 4 0.808080808080808 0.666666666666667 0.0
 4 0.818181818181818 0.666666666666667 0.0
 4 0.828282828282828 0.666666666666667 0.0
 4 0.838383838383838 0.666666666666667 0.0
 4 0.848484848484849 0.666666666666667 0.0
 4 0.858585858585859 0.555555555555556 0.0
 4 0.868686868686869 0.555555555555556 0.0
 4 0.878787878787879 0.555555555555556 0.0
 4 0.888888888888889 0.555555555555556 0.0
 4 0.898989898989899 0.555555555555556 0.0
 4 0.909090909090909 0.444444444444444 0.0
 4 0.919191919191919 0.444444444444444 0.0
 4 0.929292929292929 0.444444444444444 0.0
 4 0.939393939393939 0.444444444444444 0.0
 4 0.94949494949495 0.444444444444444 0.0
 4 0.95959595959596 0.444444444444444 0.0
 4 0.96969696969697 0.444444444444444 0.0
 4 0.97979797979798 0.444444444444444 0.0
 4 0.98989898989899 0.444444444444444 0.0
 4 1.0 0.444444444444444 0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 163

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 1/11

Receiver operating characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The method was developed for operators of military radar receivers, which
is why it is so named.

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The true-positive rate is also known as sensitivity, recall or probability of detection[7] in machine learning. The false-positive rate is
also known as probability of false alarm[7] and can be calculated as (1 − specificity). It can also be thought of as a plot of the power as
a function of the Type I Error of the decision rule (when the performance is calculated from just a sample of the population, it can be
thought of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In general, if the
probability distributions for both detection and false alarm are known, the ROC curve can be generated by plotting the cumulative
distribution function (area under the probability distribution from to the discrimination threshold) of the detection probability
in the y-axis versus the cumulative distribution function of the false-alarm probability on the x-axis.

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones independently from (and prior to
specifying) the cost context or the class distribution. ROC analysis is related in a direct and natural way to cost/benefit analysis of
diagnostic decision making.

The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in
battlefields and was soon introduced to psychology to account for perceptual detection of stimuli. ROC analysis since then has been
used in medicine, radiology, biometrics, forecasting of natural hazards,[8] meteorology,[9] model performance assessment,[10] and
other areas for many decades and is increasingly used in machine learning and data mining research.

The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR
and FPR) as the criterion changes.[11]

Basic concept
ROC space
Curves in ROC space
Further interpretations

Area under the curve
Other measures

Detection error tradeoff graph
Z-score
History
ROC curves beyond binary classification
See also
References
External links
Further reading

A classification model (classifier or diagnosis) is a mapping of instances between certain classes/groups. Because the classifier or
diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a
threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure). Or it can be a
discrete class label, indicating one of the classes.

Consider a two-class prediction problem (binary classification), in which the outcomes are labeled either as positive (p) or negative
(n). There are four possible outcomes from a binary classifier. If the outcome from a prediction is p and the actual value is also p, then
it is called a true positive (TP); however if the actual value is n then it is said to be a false positive (FP). Conversely, a true negative
(TN) has occurred when both the prediction outcome and the actual value are n, and false negative (FN) is when the prediction
outcome is n while the actual value is p.

Contents

Basic concept

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/Type_I_Error
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Psychology
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Radiology
https://en.wikipedia.org/wiki/Biometrics
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Natural_hazard
https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Classifier_(mathematics)
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Mapping_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Hypertension
https://en.wikipedia.org/wiki/Blood_pressure
https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Binary_classification

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 2/11

Terminology and derivations
from a confusion matrix

condition positive (P)
the number of real positive cases in the data

condition negative (N)
the number of real negative cases in the data

true positive (TP)
eqv. with hit

true negative (TN)
eqv. with correct rejection

false positive (FP)
eqv. with false alarm, Type I error

false negative (FN)
eqv. with miss, Type II error

sensitivity, recall, hit rate, or true positive rate (TPR)

specificity, selectivity or true negative rate (TNR)

precision or positive predictive value (PPV)

negative predictive value (NPV)

miss rate or false negative rate (FNR)

fall-out or false positive rate (FPR)

false discovery rate (FDR)

false omission rate (FOR)

Prevalence Threshold (PT)

Threat score (TS) or critical success index (CSI)

accuracy (ACC)

balanced accuracy (BA)

F1 score
is the harmonic mean of precision and sensitivity

Matthews correlation coefficient (MCC)

ROC curve of three predictors of
peptide cleaving in the proteasome.

To get an appropriate
example in a real-world
problem, consider a
diagnostic test that seeks to
determine whether a
person has a certain
disease. A false positive in
this case occurs when the
person tests positive, but
does not actually have the
disease. A false negative,
on the other hand, occurs
when the person tests
negative, suggesting they
are healthy, when they
actually do have the

disease.

Let us define an experiment from P positive instances and N
negative instances for some condition. The four outcomes can
be formulated in a 2×2 contingency table or confusion matrix,
as follows:

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/False_alarm
https://en.wikipedia.org/wiki/Type_I_error
https://en.wikipedia.org/wiki/Type_II_error
https://en.wikipedia.org/wiki/Sensitivity_(test)
https://en.wikipedia.org/wiki/Precision_and_recall#Recall
https://en.wikipedia.org/wiki/Hit_rate
https://en.wikipedia.org/wiki/Sensitivity_(test)
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Information_retrieval#Precision
https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Negative_predictive_value
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#False_positive_and_false_negative_rates
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/False_discovery_rate
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values
https://en.wikipedia.org/wiki/Accuracy
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Harmonic_mean#Harmonic_mean_of_two_numbers
https://en.wikipedia.org/wiki/Information_retrieval#Precision
https://en.wikipedia.org/wiki/Sensitivity_(test)
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/File:Roccurves.png
https://en.wikipedia.org/wiki/Proteasome
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Confusion_matrix

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 3/11

Fowlkes–Mallows index (FM)

informedness or bookmaker informedness (BM)

markedness (MK) or deltaP

Sources: Fawcett (2006),[1] Powers (2011),[2] Ting (2011),[3] and
CAWCR[4] Chicco & Jurman (2020),[5] Tharwat (2018).[6]

The ROC space and plots of the four
prediction examples.

True condition

Total
population Condition positive Condition negative

Prevalence
= Σ Condition positive

Σ Total population

Accuracy (ACC) =
Σ True positive + Σ True negative

Σ Total population

Predicted
condition
positive

True positive False positive,
Type I error

Positive predictive value (PPV),
Precision =

Σ True positive
Σ Predicted condition positive

False discovery rate (FDR) =
Σ False positive

Σ Predicted condition positive

Predicted
condition
negative

False negative,
Type II error True negative

False omission rate (FOR) =
Σ False negative

Σ Predicted condition negative

Negative predictive value (NPV) =
Σ True negative

Σ Predicted condition negative

True positive rate (TPR), Recall,
Sensitivity, probability of detection,

Power = Σ True positive
Σ Condition positive

False positive rate (FPR), Fall-out,
probability of false alarm
= Σ False positive

Σ Condition negative

Positive likelihood ratio (LR+)
= TPR

FPR Diagnostic
odds ratio

(DOR) = LR+
LR−

F1 score =

2 · Precision · Recall
Precision + RecallFalse negative rate (FNR), Miss rate

= Σ False negative
Σ Condition positive

Specificity (SPC), Selectivity, True
negative rate (TNR)

= Σ True negative
Σ Condition negative

Negative likelihood ratio (LR−)
= FNR

TNR

The contingency table can derive several evaluation "metrics" (see infobox). To draw a ROC
curve, only the true positive rate (TPR) and false positive rate (FPR) are needed (as functions
of some classifier parameter). The TPR defines how many correct positive results occur
among all positive samples available during the test. FPR, on the other hand, defines how
many incorrect positive results occur among all negative samples available during the test.

An ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative
trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent
to sensitivity and FPR is equal to 1 − specificity, the ROC graph is sometimes called the
sensitivity vs (1 − specificity) plot. Each prediction result or instance of a confusion matrix
represents one point in the ROC space.

The best possible prediction method would yield a point in the upper left corner or
coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). The (0,1) point is also called a perfect classification. A
random guess would give a point along a diagonal line (the so-called line of no-
discrimination) from the left bottom to the top right corners (regardless of the positive and
negative base rates). An intuitive example of random guessing is a decision by flipping coins.
As the size of the sample increases, a random classifier's ROC point tends towards the diagonal line. In the case of a balanced coin, it
will tend to the point (0.5, 0.5).

The diagonal divides the ROC space. Points above the diagonal represent good classification results (better than random); points
below the line represent bad results (worse than random). Note that the output of a consistently bad predictor could simply be
inverted to obtain a good predictor.

Let us look into four prediction results from 100 positive and 100 negative instances:

Pr
ed

ic
te

d
co

nd
iti

on

ROC space

https://en.wikipedia.org/wiki/Fowlkes%E2%80%93Mallows_index
https://en.wikipedia.org/wiki/Informedness
https://en.wikipedia.org/wiki/Markedness
https://en.wikipedia.org/wiki/File:ROC_space-2.png
https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Prevalence
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/True_positive
https://en.wikipedia.org/wiki/False_positive
https://en.wikipedia.org/wiki/Type_I_error
https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/False_discovery_rate
https://en.wikipedia.org/wiki/False_negative
https://en.wikipedia.org/wiki/Type_II_error
https://en.wikipedia.org/wiki/True_negative
https://en.wikipedia.org/wiki/False_omission_rate
https://en.wikipedia.org/wiki/Negative_predictive_value
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Positive_likelihood_ratio
https://en.wikipedia.org/wiki/Diagnostic_odds_ratio
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/False_negative_rate
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/True_negative_rate
https://en.wikipedia.org/wiki/Negative_likelihood_ratio
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Base_rate

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 4/11

A B C C′

TP=63 FP=28 91

FN=37 TN=72 109

100 100 200

TP=77 FP=77 154

FN=23 TN=23 46

100 100 200

TP=24 FP=88 112

FN=76 TN=12 88

100 100 200

TP=76 FP=12 88

FN=24 TN=88 112

100 100 200

TPR = 0.63 TPR = 0.77 TPR = 0.24 TPR = 0.76

FPR = 0.28 FPR = 0.77 FPR = 0.88 FPR = 0.12

PPV = 0.69 PPV = 0.50 PPV = 0.21 PPV = 0.86

F1 = 0.66 F1 = 0.61 F1 = 0.23 F1 = 0.81

ACC = 0.68 ACC = 0.50 ACC = 0.18 ACC = 0.82

Plots of the four results above in the ROC space are given in the figure. The result of method A clearly shows the best predictive power
among A, B, and C. The result of B lies on the random guess line (the diagonal line), and it can be seen in the table that the accuracy
of B is 50%. However, when C is mirrored across the center point (0.5,0.5), the resulting method C′ is even better than A. This
mirrored method simply reverses the predictions of whatever method or test produced the C contingency table. Although the original
C method has negative predictive power, simply reversing its decisions leads to a new predictive method C′ which has positive
predictive power. When the C method predicts p or n, the C′ method would predict n or p, respectively. In this manner, the C′ test
would perform the best. The closer a result from a contingency table is to the upper left corner, the better it predicts, but the distance
from the random guess line in either direction is the best indicator of how much predictive power a method has. If the result is below
the line (i.e. the method is worse than a random guess), all of the method's predictions must be reversed in order to utilize its power,
thereby moving the result above the random guess line.

In binary classification, the class prediction for each instance is often made based on a
continuous random variable , which is a "score" computed for the instance (e.g. the
estimated probability in logistic regression). Given a threshold parameter , the
instance is classified as "positive" if , and "negative" otherwise. follows a
probability density if the instance actually belongs to class "positive", and

if otherwise. Therefore, the true positive rate is given by

and the false positive rate is given by . The ROC curve plots

parametrically TPR(T) versus FPR(T) with T as the varying parameter.

For example, imagine that the blood protein levels in diseased people and healthy
people are normally distributed with means of 2 g/dL and 1 g/dL respectively. A
medical test might measure the level of a certain protein in a blood sample and classify any number above a certain threshold as
indicating disease. The experimenter can adjust the threshold (black vertical line in the figure), which will in turn change the false
positive rate. Increasing the threshold would result in fewer false positives (and more false negatives), corresponding to a leftward
movement on the curve. The actual shape of the curve is determined by how much overlap the two distributions have.

Sometimes, the ROC is used to generate a summary statistic. Common versions are:

the intercept of the ROC curve with the line at 45 degrees orthogonal to the no-discrimination line - the balance point where
Sensitivity = 1 - Specificity
the intercept of the ROC curve with the tangent at 45 degrees parallel to the no-discrimination line that is closest to the error-free
point (0,1) - also called Youden's J statistic and generalized as Informedness
the area between the ROC curve and the no-discrimination line multiplied by two is called the Gini coefficient. It should not be
confused with the measure of statistical dispersion also called Gini coefficient.
the area between the full ROC curve and the triangular ROC curve including only (0,0), (1,1) and one selected operating point
(tpr,fpr) - Consistency[12]

the area under the ROC curve, or "AUC" ("Area Under Curve"), or A' (pronounced "a-prime"),[13] or "c-statistic" ("concordance
statistic").[14]

Curves in ROC space

Further interpretations

https://en.wikipedia.org/wiki/File:ROC_curves.svg
https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Gram
https://en.wikipedia.org/wiki/Decilitre
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Specificity_(statistics)
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Gini_coefficient

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 5/11

the sensitivity index d' (pronounced "d-prime"), the distance between the mean of the distribution of activity in the system under
noise-alone conditions and its distribution under signal-alone conditions, divided by their standard deviation, under the
assumption that both these distributions are normal with the same standard deviation. Under these assumptions, the shape of the
ROC is entirely determined by d'.

However, any attempt to summarize the ROC curve into a single number loses information about the pattern of tradeoffs of the
particular discriminator algorithm.

When using normalized units, the area under the curve (often referred to as simply the AUC) is equal to the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher
than 'negative').[15] This can be seen as follows: the area under the curve is given by (the integral boundaries are reversed as large T
has a lower value on the x-axis)

where is the score for a positive instance and is the score for a negative instance, and and are probability densities as
defined in previous section.

It can further be shown that the AUC is closely related to the Mann–Whitney U,[16][17] which tests whether positives are ranked
higher than negatives. It is also equivalent to the Wilcoxon test of ranks.[17] For a predictor , an unbiased estimator of its AUC can be
expressed by the following Wilcoxon-Mann-Whitney statistic[18]:

where, denotes an indicator function which returns 1 iff otherwise return 0; is the set of negative
examples, and is the set of positive examples.

The AUC is related to the *Gini coefficient* () by the formula , where:

[19]

In this way, it is possible to calculate the AUC by using an average of a number of trapezoidal approximations. should not be
confused with the measure of statistical dispersion that is also called Gini coefficient.

It is also common to calculate the Area Under the ROC Convex Hull (ROC AUCH = ROCH AUC) as any point on the line segment
between two prediction results can be achieved by randomly using one or the other system with probabilities proportional to the
relative length of the opposite component of the segment.[20] It is also possible to invert concavities – just as in the figure the worse
solution can be reflected to become a better solution; concavities can be reflected in any line segment, but this more extreme form of
fusion is much more likely to overfit the data.[21]

The machine learning community most often uses the ROC AUC statistic for model comparison.[22] This practice has been questioned
because AUC estimates are quite noisy and suffer from other problems.[23][24][25] Nonetheless, the coherence of AUC as a measure of
aggregated classification performance has been vindicated, in terms of a uniform rate distribution,[26] and AUC has been linked to a
number of other performance metrics such as the Brier score.[27]

Another problem with ROC AUC is that reducing the ROC Curve to a single number ignores the fact that it is about the tradeoffs
between the different systems or performance points plotted and not the performance of an individual system, as well as ignoring the
possibility of concavity repair, so that related alternative measures such as Informedness or DeltaP are recommended.[12][28] These
measures are essentially equivalent to the Gini for a single prediction point with DeltaP' = Informedness = 2AUC-1, whilst DeltaP =
Markedness represents the dual (viz. predicting the prediction from the real class) and their geometric mean is the Matthews
correlation coefficient.

Whereas ROC AUC varies between 0 and 1 — with an uninformative classifier yielding 0.5 — the alternative measures known as
Informedness, Certainty [12] and Gini Coefficient (in the single parameterization or single system case) all have the advantage that 0
represents chance performance whilst 1 represents perfect performance, and −1 represents the "perverse" case of full informedness

Area under the curve

https://en.wikipedia.org/wiki/Sensitivity_index
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Brier_score
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Informedness

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 6/11

TOC Curve

ROC Curve

Example DET graph

always giving the wrong response.[29] Bringing chance performance to 0 allows these alternative scales to be interpreted as Kappa
statistics. Informedness has been shown to have desirable characteristics for Machine Learning versus other common definitions of
Kappa such as Cohen Kappa and Fleiss Kappa.[30]

Sometimes it can be more useful to look at a specific region of the ROC Curve rather than at the whole curve. It is possible to compute
partial AUC.[31] For example, one could focus on the region of the curve with low false positive rate, which is often of prime interest
for population screening tests.[32] Another common approach for classification problems in which P ≪ N (common in bioinformatics
applications) is to use a logarithmic scale for the x-axis.[33]

The ROC area under the curve is also called c-statistic or c statistic.[34]

The Total Operating Characteristic (TOC) also characterizes diagnostic ability while revealing
more information than the ROC. For each threshold, ROC reveals two ratios, TP/(TP + FN) and
FP/(FP + TN). In other words, ROC reveals hits/(hits + misses) and false alarms/(false alarms +
correct rejections). On the other hand, TOC shows the total information in the contingency table
for each threshold.[35] The TOC method reveals all of the information that the ROC method
provides, plus additional important information that ROC does not reveal, i.e. the size of every
entry in the contingency table for each threshold. TOC also provides the popular AUC of the
ROC.[36]

These figures are the TOC and ROC curves using the same data and thresholds. Consider the
point that corresponds to a threshold of 74. The TOC curve shows the number of hits, which is 3,
and hence the number of misses, which is 7. Additionally, the TOC curve shows that the number
of false alarms is 4 and the number of correct rejections is 16. At any given point in the ROC
curve, it is possible to glean values for the ratios of false alarms/(false alarms + correct rejections)
and hits/(hits + misses). For example, at threshold 74, it is evident that the x coordinate is 0.2
and the y coordinate is 0.3. However, these two values are insufficient to construct all entries of
the underlying two-by-two contingency table.

An alternative to the ROC curve is the detection error tradeoff (DET) graph, which plots the false
negative rate (missed detections) vs. the false positive rate (false alarms) on non-linearly
transformed x- and y-axes. The transformation function is the quantile function of the normal
distribution, i.e., the inverse of the cumulative normal distribution. It is, in fact, the same
transformation as zROC, below, except that the complement of the hit rate, the miss rate or false
negative rate, is used. This alternative spends more graph area on the region of interest. Most of
the ROC area is of little interest; one primarily cares about the region tight against the y-axis and
the top left corner – which, because of using miss rate instead of its complement, the hit rate, is
the lower left corner in a DET plot. Furthermore, DET graphs have the useful property of linearity
and a linear threshold behavior for normal distributions.[37] The DET plot is used extensively in
the automatic speaker recognition community, where the name DET was first used. The analysis
of the ROC performance in graphs with this warping of the axes was used by psychologists in
perception studies halfway through the 20th century, where this was dubbed "double probability paper".[38]

If a standard score is applied to the ROC curve, the curve will be transformed into a straight line.[39] This z-score is based on a normal
distribution with a mean of zero and a standard deviation of one. In memory strength theory, one must assume that the zROC is not
only linear, but has a slope of 1.0. The normal distributions of targets (studied objects that the subjects need to recall) and lures (non
studied objects that the subjects attempt to recall) is the factor causing the zROC to be linear.

The linearity of the zROC curve depends on the standard deviations of the target and lure strength distributions. If the standard
deviations are equal, the slope will be 1.0. If the standard deviation of the target strength distribution is larger than the standard
deviation of the lure strength distribution, then the slope will be smaller than 1.0. In most studies, it has been found that the zROC

Other measures

Detection error tradeoff graph

Z-score

https://en.wikipedia.org/wiki/File:TOC.png
https://en.wikipedia.org/wiki/File:ROC.png
https://en.wikipedia.org/wiki/File:Example_of_DET_curves.png
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Fleiss%27_kappa
https://en.wikipedia.org/wiki/Total_Operating_Characteristic
https://en.wikipedia.org/wiki/Detection_error_tradeoff
https://en.wikipedia.org/wiki/Automatic_speaker_recognition
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Strength_theory

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 7/11

curve slopes constantly fall below 1, usually between 0.5 and 0.9.[40] Many experiments yielded a zROC slope of 0.8. A slope of 0.8
implies that the variability of the target strength distribution is 25% larger than the variability of the lure strength distribution.[41]

Another variable used is d' (d prime) (discussed above in "Other measures"), which can easily be expressed in terms of z-values.
Although d' is a commonly used parameter, it must be recognized that it is only relevant when strictly adhering to the very strong
assumptions of strength theory made above.[42]

The z-score of an ROC curve is always linear, as assumed, except in special situations. The Yonelinas familiarity-recollection model is
a two-dimensional account of recognition memory. Instead of the subject simply answering yes or no to a specific input, the subject
gives the input a feeling of familiarity, which operates like the original ROC curve. What changes, though, is a parameter for
Recollection (R). Recollection is assumed to be all-or-none, and it trumps familiarity. If there were no recollection component, zROC
would have a predicted slope of 1. However, when adding the recollection component, the zROC curve will be concave up, with a
decreased slope. This difference in shape and slope result from an added element of variability due to some items being recollected.
Patients with anterograde amnesia are unable to recollect, so their Yonelinas zROC curve would have a slope close to 1.0.[43]

The ROC curve was first used during World War II for the analysis of radar signals before it was employed in signal detection
theory.[44] Following the attack on Pearl Harbor in 1941, the United States army began new research to increase the prediction of
correctly detected Japanese aircraft from their radar signals. For these purposes they measured the ability of a radar receiver operator
to make these important distinctions, which was called the Receiver Operating Characteristic.[45]

In the 1950s, ROC curves were employed in psychophysics to assess human (and occasionally non-human animal) detection of weak
signals.[44] In medicine, ROC analysis has been extensively used in the evaluation of diagnostic tests.[46][47] ROC curves are also used
extensively in epidemiology and medical research and are frequently mentioned in conjunction with evidence-based medicine. In
radiology, ROC analysis is a common technique to evaluate new radiology techniques.[48] In the social sciences, ROC analysis is often
called the ROC Accuracy Ratio, a common technique for judging the accuracy of default probability models. ROC curves are widely
used in laboratory medicine to assess the diagnostic accuracy of a test, to choose the optimal cut-off of a test and to compare
diagnostic accuracy of several tests.

ROC curves also proved useful for the evaluation of machine learning techniques. The first application of ROC in machine learning
was by Spackman who demonstrated the value of ROC curves in comparing and evaluating different classification algorithms.[49]

ROC curves are also used in verification of forecasts in meteorology.[50]

The extension of ROC curves for classification problems with more than two classes has always been cumbersome, as the degrees of
freedom increase quadratically with the number of classes, and the ROC space has dimensions, where is the number of
classes.[51] Some approaches have been made for the particular case with three classes (three-way ROC).[52] The calculation of the
volume under the ROC surface (VUS) has been analyzed and studied as a performance metric for multi-class problems.[53] However,
because of the complexity of approximating the true VUS, some other approaches [54] based on an extension of AUC are more popular
as an evaluation metric.

Given the success of ROC curves for the assessment of classification models, the extension of ROC curves for other supervised tasks
has also been investigated. Notable proposals for regression problems are the so-called regression error characteristic (REC) Curves
[55] and the Regression ROC (RROC) curves.[56] In the latter, RROC curves become extremely similar to ROC curves for classification,
with the notions of asymmetry, dominance and convex hull. Also, the area under RROC curves is proportional to the error variance of
the regression model.

Brier score
Coefficient of determination
Constant false alarm rate
Detection error tradeoff
Detection theory
F1 score
False alarm
Precision and recall
ROCCET
Total operating characteristic

History

ROC curves beyond binary classification

See also

https://en.wikipedia.org/wiki/D_prime
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Signal_detection_theory
https://en.wikipedia.org/wiki/Attack_on_Pearl_Harbor
https://en.wikipedia.org/wiki/Psychophysics
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Diagnostic_test
https://en.wikipedia.org/wiki/Epidemiology
https://en.wikipedia.org/wiki/Medical_research
https://en.wikipedia.org/wiki/Evidence-based_medicine
https://en.wikipedia.org/wiki/Radiology
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Brier_score
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Constant_false_alarm_rate
https://en.wikipedia.org/wiki/Detection_error_tradeoff
https://en.wikipedia.org/wiki/Detection_theory
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/False_alarm
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/ROCCET
https://en.wikipedia.org/wiki/Total_operating_characteristic

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 8/11

1. Fawcett, Tom (2006). "An Introduction to ROC Analysis" (http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf) (PDF). Pattern
Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010 (https://doi.org/10.1016%2Fj.patrec.2005.10.010).

2. Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness &
Correlation" (https://www.researchgate.net/publication/228529307). Journal of Machine Learning Technologies. 2 (1): 37–63.

3. Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-
387-30164-8 (https://doi.org/10.1007%2F978-0-387-30164-8). ISBN 978-0-387-30164-8.

4. Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-
26). "WWRP/WGNE Joint Working Group on Forecast Verification Research" (https://www.cawcr.gov.au/projects/verification/).
Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2019-07-17.

5. Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941312). BMC Genomics. 21 (1): 6-1–6-13.
doi:10.1186/s12864-019-6413-7 (https://doi.org/10.1186%2Fs12864-019-6413-7). PMC 6941312 (https://www.ncbi.nlm.nih.gov/p
mc/articles/PMC6941312). PMID 31898477 (https://pubmed.ncbi.nlm.nih.gov/31898477).

6. Tharwat A (August 2018). "Classification assessment methods" (https://doi.org/10.1016/j.aci.2018.08.003). Applied Computing
and Informatics. doi:10.1016/j.aci.2018.08.003 (https://doi.org/10.1016%2Fj.aci.2018.08.003).

7. "Detector Performance Analysis Using ROC Curves - MATLAB & Simulink Example" (http://www.mathworks.com/help/phased/exa
mples/detector-performance-analysis-using-roc-curves.html). www.mathworks.com. Retrieved 11 August 2016.

8. Peres, D. J.; Cancelliere, A. (2014-12-08). "Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo
approach" (https://doi.org/10.5194/hess-18-4913-2014). Hydrol. Earth Syst. Sci. 18 (12): 4913–4931.
Bibcode:2014HESS...18.4913P (https://ui.adsabs.harvard.edu/abs/2014HESS...18.4913P). doi:10.5194/hess-18-4913-2014 (http
s://doi.org/10.5194%2Fhess-18-4913-2014). ISSN 1607-7938 (https://www.worldcat.org/issn/1607-7938).

9. Murphy, Allan H. (1996-03-01). <0003:tfaase>2.0.co;2 "The Finley Affair: A Signal Event in the History of Forecast Verification" (ht
tps://doi.org/10.1175/1520-0434(1996)011). Weather and Forecasting. 11 (1): 3–20. Bibcode:1996WtFor..11....3M (https://ui.adsa
bs.harvard.edu/abs/1996WtFor..11....3M). doi:10.1175/1520-0434(1996)011<0003:tfaase>2.0.co;2 (https://doi.org/10.1175%2F15
20-0434%281996%29011%3C0003%3Atfaase%3E2.0.co%3B2). ISSN 0882-8156 (https://www.worldcat.org/issn/0882-8156).

10. Peres, D. J.; Iuppa, C.; Cavallaro, L.; Cancelliere, A.; Foti, E. (2015-10-01). "Significant wave height record extension by neural
networks and reanalysis wind data". Ocean Modelling. 94: 128–140. Bibcode:2015OcMod..94..128P (https://ui.adsabs.harvard.ed
u/abs/2015OcMod..94..128P). doi:10.1016/j.ocemod.2015.08.002 (https://doi.org/10.1016%2Fj.ocemod.2015.08.002).

11. Swets, John A.; Signal detection theory and ROC analysis in psychology and diagnostics : collected papers (https://www.questia.
com/PM.qst?a=o&d=91082370), Lawrence Erlbaum Associates, Mahwah, NJ, 1996

12. Powers, David MW (2012). "ROC-ConCert: ROC-Based Measurement of Consistency and Certainty" (http://www.academia.edu/d
ownload/31939951/201203-SCET30795-ROC-ConCert-PID1124774.pdf) (PDF). Spring Congress on Engineering and
Technology (SCET). 2. IEEE. pp. 238–241.

13. Fogarty, James; Baker, Ryan S.; Hudson, Scott E. (2005). "Case studies in the use of ROC curve analysis for sensor-based
estimates in human computer interaction" (http://portal.acm.org/citation.cfm?id=1089530). ACM International Conference
Proceeding Series, Proceedings of Graphics Interface 2005. Waterloo, ON: Canadian Human-Computer Communications
Society.

14. Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome H. (2009). The elements of statistical learning: data mining, inference, and
prediction (2nd ed.).

15. Fawcett, Tom (2006); An introduction to ROC analysis (https://www.math.ucdavis.edu/~saito/data/roc/fawcett-roc.pdf), Pattern
Recognition Letters, 27, 861–874.

16. Hanley, James A.; McNeil, Barbara J. (1982). "The Meaning and Use of the Area under a Receiver Operating Characteristic
(ROC) Curve". Radiology. 143 (1): 29–36. doi:10.1148/radiology.143.1.7063747 (https://doi.org/10.1148%2Fradiology.143.1.7063
747). PMID 7063747 (https://pubmed.ncbi.nlm.nih.gov/7063747). S2CID 10511727 (https://api.semanticscholar.org/CorpusID:105
11727).

17. Mason, Simon J.; Graham, Nicholas E. (2002). "Areas beneath the relative operating characteristics (ROC) and relative operating
levels (ROL) curves: Statistical significance and interpretation" (https://web.archive.org/web/20081120134338/http://www.inmet.go
v.br/documentos/cursoI_INMET_IRI/Climate_Information_Course/References/Mason%2BGraham_2002.pdf) (PDF). Quarterly
Journal of the Royal Meteorological Society. 128 (584): 2145–2166. Bibcode:2002QJRMS.128.2145M (https://ui.adsabs.harvard.
edu/abs/2002QJRMS.128.2145M). CiteSeerX 10.1.1.458.8392 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.83
92). doi:10.1256/003590002320603584 (https://doi.org/10.1256%2F003590002320603584). Archived from the original (http://ww
w.inmet.gov.br/documentos/cursoI_INMET_IRI/Climate_Information_Course/References/Mason+Graham_2002.pdf) (PDF) on
2008-11-20.

18. Calders, Toon; Jaroszewicz, Szymon (2007). Kok, Joost N.; Koronacki, Jacek; Lopez de Mantaras, Ramon; Matwin, Stan;
Mladenič, Dunja; Skowron, Andrzej (eds.). "Efficient AUC Optimization for Classification" (https://doi.org/10.1007/978-3-540-7497
6-9_8). Knowledge Discovery in Databases: PKDD 2007. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 4702:
42–53. doi:10.1007/978-3-540-74976-9_8 (https://doi.org/10.1007%2F978-3-540-74976-9_8). ISBN 978-3-540-74976-9.

19. Hand, David J.; and Till, Robert J. (2001); A simple generalization of the area under the ROC curve for multiple class
classification problems, Machine Learning, 45, 171–186.

20. Provost, F.; Fawcett, T. (2001). "Robust classification for imprecise environments". Machine Learning. 42 (3): 203–231.
arXiv:cs/0009007 (https://arxiv.org/abs/cs/0009007). doi:10.1023/a:1007601015854 (https://doi.org/10.1023%2Fa%3A100760101
5854).

References

http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.patrec.2005.10.010
https://www.researchgate.net/publication/228529307
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-0-387-30164-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-30164-8
https://www.cawcr.gov.au/projects/verification/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941312
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1186%2Fs12864-019-6413-7
https://en.wikipedia.org/wiki/PMC_(identifier)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941312
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/31898477
https://doi.org/10.1016/j.aci.2018.08.003
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.aci.2018.08.003
http://www.mathworks.com/help/phased/examples/detector-performance-analysis-using-roc-curves.html
https://doi.org/10.5194/hess-18-4913-2014
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2014HESS...18.4913P
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.5194%2Fhess-18-4913-2014
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/1607-7938
https://doi.org/10.1175/1520-0434(1996)011
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1996WtFor..11....3M
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1175%2F1520-0434%281996%29011%3C0003%3Atfaase%3E2.0.co%3B2
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0882-8156
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2015OcMod..94..128P
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.ocemod.2015.08.002
https://www.questia.com/PM.qst?a=o&d=91082370
http://www.academia.edu/download/31939951/201203-SCET30795-ROC-ConCert-PID1124774.pdf
http://portal.acm.org/citation.cfm?id=1089530
https://en.wikipedia.org/wiki/Trevor_Hastie
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://www.math.ucdavis.edu/~saito/data/roc/fawcett-roc.pdf
https://en.wikipedia.org/wiki/Barbara_Joyce_McNeil
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1148%2Fradiology.143.1.7063747
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/7063747
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:10511727
https://web.archive.org/web/20081120134338/http://www.inmet.gov.br/documentos/cursoI_INMET_IRI/Climate_Information_Course/References/Mason%2BGraham_2002.pdf
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2002QJRMS.128.2145M
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.8392
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1256%2F003590002320603584
http://www.inmet.gov.br/documentos/cursoI_INMET_IRI/Climate_Information_Course/References/Mason+Graham_2002.pdf
https://doi.org/10.1007/978-3-540-74976-9_8
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-540-74976-9_8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-74976-9
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/cs/0009007
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1023%2Fa%3A1007601015854

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 9/11

21. Flach, P.A.; Wu, S. (2005). "Repairing concavities in ROC curves." (http://www.icml-2011.org/papers/385_icmlpaper.pdf) (PDF).
19th International Joint Conference on Artificial Intelligence (IJCAI'05). pp. 702–707.

22. Hanley, James A.; McNeil, Barbara J. (1983-09-01). "A method of comparing the areas under receiver operating characteristic
curves derived from the same cases" (https://doi.org/10.1148/radiology.148.3.6878708). Radiology. 148 (3): 839–843.
doi:10.1148/radiology.148.3.6878708 (https://doi.org/10.1148%2Fradiology.148.3.6878708). PMID 6878708 (https://pubmed.ncbi.
nlm.nih.gov/6878708).

23. Hanczar, Blaise; Hua, Jianping; Sima, Chao; Weinstein, John; Bittner, Michael; Dougherty, Edward R (2010). "Small-sample
precision of ROC-related estimates" (https://doi.org/10.1093/bioinformatics/btq037). Bioinformatics. 26 (6): 822–830.
doi:10.1093/bioinformatics/btq037 (https://doi.org/10.1093%2Fbioinformatics%2Fbtq037). PMID 20130029 (https://pubmed.ncbi.n
lm.nih.gov/20130029).

24. Lobo, Jorge M.; Jiménez-Valverde, Alberto; Real, Raimundo (2008). "AUC: a misleading measure of the performance of
predictive distribution models". Global Ecology and Biogeography. 17 (2): 145–151. doi:10.1111/j.1466-8238.2007.00358.x (http
s://doi.org/10.1111%2Fj.1466-8238.2007.00358.x). S2CID 15206363 (https://api.semanticscholar.org/CorpusID:15206363).

25. Hand, David J (2009). "Measuring classifier performance: A coherent alternative to the area under the ROC curve" (https://doi.or
g/10.1007/s10994-009-5119-5). Machine Learning. 77: 103–123. doi:10.1007/s10994-009-5119-5 (https://doi.org/10.1007%2Fs10
994-009-5119-5).

26. Flach, P.A.; Hernandez-Orallo, J.; Ferri, C. (2011). "A coherent interpretation of AUC as a measure of aggregated classification
performance." (http://www.icml-2011.org/papers/385_icmlpaper.pdf) (PDF). Proceedings of the 28th International Conference on
Machine Learning (ICML-11). pp. 657–664.

27. Hernandez-Orallo, J.; Flach, P.A.; Ferri, C. (2012). "A unified view of performance metrics: translating threshold choice into
expected classification loss" (http://jmlr.org/papers/volume13/hernandez-orallo12a/hernandez-orallo12a.pdf) (PDF). Journal of
Machine Learning Research. 13: 2813–2869.

28. Powers, David M.W. (2012). "The Problem of Area Under the Curve". International Conference on Information Science and
Technology.

29. Powers, David M. W. (2003). "Recall and Precision versus the Bookmaker" (https://dl.dropbox.com/u/27743223/200302-ICCS-Bo
okmaker.pdf) (PDF). Proceedings of the International Conference on Cognitive Science (ICSC-2003), Sydney Australia, 2003,
pp. 529–534.

30. Powers, David M. W. (2012). "The Problem with Kappa" (http://arquivo.pt/wayback/20160518183306/http://dl.dropbox.com/u/2774
3223/201209-eacl2012-Kappa.pdf) (PDF). Conference of the European Chapter of the Association for Computational Linguistics
(EACL2012) Joint ROBUS-UNSUP Workshop. Archived from the original (https://dl.dropbox.com/u/27743223/201209-eacl2012-K
appa.pdf) (PDF) on 2016-05-18. Retrieved 2012-07-20.

31. McClish, Donna Katzman (1989-08-01). "Analyzing a Portion of the ROC Curve". Medical Decision Making. 9 (3): 190–195.
doi:10.1177/0272989X8900900307 (https://doi.org/10.1177%2F0272989X8900900307). PMID 2668680 (https://pubmed.ncbi.nlm.
nih.gov/2668680). S2CID 24442201 (https://api.semanticscholar.org/CorpusID:24442201).

32. Dodd, Lori E.; Pepe, Margaret S. (2003). "Partial AUC Estimation and Regression" (http://biostats.bepress.com/cgi/viewcontent.c
gi?article=1005&context=uwbiostat). Biometrics. 59 (3): 614–623. doi:10.1111/1541-0420.00071 (https://doi.org/10.1111%2F1541-
0420.00071). PMID 14601762 (https://pubmed.ncbi.nlm.nih.gov/14601762).

33. Karplus, Kevin (2011); Better than Chance: the importance of null models (http://www.soe.ucsc.edu/~karplus/papers/better-than-c
hance-sep-07.pdf), University of California, Santa Cruz, in Proceedings of the First International Workshop on Pattern Recognition
in Proteomics, Structural Biology and Bioinformatics (PR PS BB 2011)

34. "C-Statistic: Definition, Examples, Weighting and Significance" (https://www.statisticshowto.datasciencecentral.com/c-statistic/).
Statistics How To. August 28, 2016.

35. Pontius, Robert Gilmore; Parmentier, Benoit (2014). "Recommendations for using the Relative Operating Characteristic (ROC)".
Landscape Ecology. 29 (3): 367–382. doi:10.1007/s10980-013-9984-8 (https://doi.org/10.1007%2Fs10980-013-9984-8).
S2CID 15924380 (https://api.semanticscholar.org/CorpusID:15924380).

36. Pontius, Robert Gilmore; Si, Kangping (2014). "The total operating characteristic to measure diagnostic ability for multiple
thresholds". International Journal of Geographical Information Science. 28 (3): 570–583. doi:10.1080/13658816.2013.862623 (htt
ps://doi.org/10.1080%2F13658816.2013.862623). S2CID 29204880 (https://api.semanticscholar.org/CorpusID:29204880).

37. Navratil, J.; Klusacek, D. (2007-04-01). On Linear DETs. 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing - ICASSP '07. 4. pp. IV–229–IV–232. doi:10.1109/ICASSP.2007.367205 (https://doi.org/10.1109%2FICASSP.2007.36
7205). ISBN 978-1-4244-0727-9. S2CID 18173315 (https://api.semanticscholar.org/CorpusID:18173315).

38. Dev P. Chakraborty (December 14, 2017). "double+probability+paper" Observer Performance Methods for Diagnostic Imaging:
Foundations, Modeling, and Applications with R-Based Examples (https://books.google.com/books?id=MwZDDwAAQBAJ&pg=P
T214&lpg=PT214&dq=). CRC Press. p. 214. ISBN 9781351230711. Retrieved July 11, 2019.

39. MacMillan, Neil A.; Creelman, C. Douglas (2005). Detection Theory: A User's Guide (2nd ed.). Mahwah, NJ: Lawrence Erlbaum
Associates. ISBN 978-1-4106-1114-7.

40. Glanzer, Murray; Kisok, Kim; Hilford, Andy; Adams, John K. (1999). "Slope of the receiver-operating characteristic in recognition
memory". Journal of Experimental Psychology: Learning, Memory, and Cognition. 25 (2): 500–513. doi:10.1037/0278-
7393.25.2.500 (https://doi.org/10.1037%2F0278-7393.25.2.500).

41. Ratcliff, Roger; McCoon, Gail; Tindall, Michael (1994). "Empirical generality of data from recognition memory ROC functions and
implications for GMMs". Journal of Experimental Psychology: Learning, Memory, and Cognition. 20 (4): 763–785.
CiteSeerX 10.1.1.410.2114 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.410.2114). doi:10.1037/0278-
7393.20.4.763 (https://doi.org/10.1037%2F0278-7393.20.4.763).

http://www.icml-2011.org/papers/385_icmlpaper.pdf
https://doi.org/10.1148/radiology.148.3.6878708
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1148%2Fradiology.148.3.6878708
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/6878708
https://doi.org/10.1093/bioinformatics/btq037
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fbioinformatics%2Fbtq037
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/20130029
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1111%2Fj.1466-8238.2007.00358.x
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:15206363
https://doi.org/10.1007/s10994-009-5119-5
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs10994-009-5119-5
http://www.icml-2011.org/papers/385_icmlpaper.pdf
http://jmlr.org/papers/volume13/hernandez-orallo12a/hernandez-orallo12a.pdf
https://dl.dropbox.com/u/27743223/200302-ICCS-Bookmaker.pdf
http://arquivo.pt/wayback/20160518183306/http://dl.dropbox.com/u/27743223/201209-eacl2012-Kappa.pdf
https://dl.dropbox.com/u/27743223/201209-eacl2012-Kappa.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1177%2F0272989X8900900307
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/2668680
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:24442201
http://biostats.bepress.com/cgi/viewcontent.cgi?article=1005&context=uwbiostat
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1111%2F1541-0420.00071
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/14601762
http://www.soe.ucsc.edu/~karplus/papers/better-than-chance-sep-07.pdf
https://www.statisticshowto.datasciencecentral.com/c-statistic/
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs10980-013-9984-8
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:15924380
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1080%2F13658816.2013.862623
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:29204880
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICASSP.2007.367205
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4244-0727-9
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:18173315
https://books.google.com/books?id=MwZDDwAAQBAJ&pg=PT214&lpg=PT214&dq=
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781351230711
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4106-1114-7
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1037%2F0278-7393.25.2.500
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.410.2114
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1037%2F0278-7393.20.4.763

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 10/11

ROC demo (https://kennis-research.shinyapps.io/ROC-Curves/)
another ROC demo (http://www.navan.name/roc/)
ROC video explanation (https://www.youtube.com/watch?v=OAl6eAyP-yo)
An Introduction to the Total Operating Characteristic: Utility in Land Change Model Evaluation (https://www.youtube.com/watch?v
=KKVC3GT5EPw)
How to run the TOC Package in R (https://www.youtube.com/watch?v=1JRwVOi0FSE)
TOC R package on Github (https://github.com/amsantac/TOC)
Excel Workbook for generating TOC curves (http://www2.clarku.edu/~rpontius/TOCexample2.xlsx)

Balakrishnan, Narayanaswamy (1991); Handbook of the Logistic Distribution, Marcel Dekker, Inc., ISBN 978-0-8247-8587-1
Brown, Christopher D.; Davis, Herbert T. (2006). "Receiver operating characteristic curves and related decision measures: a
tutorial". Chemometrics and Intelligent Laboratory Systems. 80: 24–38. doi:10.1016/j.chemolab.2005.05.004 (https://doi.org/10.10
16%2Fj.chemolab.2005.05.004).

42. Zhang, Jun; Mueller, Shane T. (2005). "A note on ROC analysis and non-parametric estimate of sensitivity". Psychometrika. 70:
203–212. CiteSeerX 10.1.1.162.1515 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.162.1515). doi:10.1007/s11336-
003-1119-8 (https://doi.org/10.1007%2Fs11336-003-1119-8). S2CID 122355230 (https://api.semanticscholar.org/CorpusID:12235
5230).

43. Yonelinas, Andrew P.; Kroll, Neal E. A.; Dobbins, Ian G.; Lazzara, Michele; Knight, Robert T. (1998). "Recollection and familiarity
deficits in amnesia: Convergence of remember-know, process dissociation, and receiver operating characteristic data".
Neuropsychology. 12 (3): 323–339. doi:10.1037/0894-4105.12.3.323 (https://doi.org/10.1037%2F0894-4105.12.3.323).
PMID 9673991 (https://pubmed.ncbi.nlm.nih.gov/9673991).

44. Green, David M.; Swets, John A. (1966). Signal detection theory and psychophysics. New York, NY: John Wiley and Sons Inc.
ISBN 978-0-471-32420-1.

45. "Using the Receiver Operating Characteristic (ROC) curve to analyze a classification model: A final note of historical interest" (htt
p://www.math.utah.edu/~gamez/files/ROC-Curves.pdf) (PDF). Department of Mathematics, University of Utah. Department of
Mathematics, University of Utah. Retrieved May 25, 2017.

46. Zweig, Mark H.; Campbell, Gregory (1993). "Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in
clinical medicine" (http://www.clinchem.org/content/39/4/561.full.pdf) (PDF). Clinical Chemistry. 39 (8): 561–577.
doi:10.1093/clinchem/39.4.561 (https://doi.org/10.1093%2Fclinchem%2F39.4.561). PMID 8472349 (https://pubmed.ncbi.nlm.nih.g
ov/8472349).

47. Pepe, Margaret S. (2003). The statistical evaluation of medical tests for classification and prediction. New York, NY: Oxford.
ISBN 978-0-19-856582-6.

48. Obuchowski, Nancy A. (2003). "Receiver operating characteristic curves and their use in radiology". Radiology. 229 (1): 3–8.
doi:10.1148/radiol.2291010898 (https://doi.org/10.1148%2Fradiol.2291010898). PMID 14519861 (https://pubmed.ncbi.nlm.nih.go
v/14519861).

49. Spackman, Kent A. (1989). "Signal detection theory: Valuable tools for evaluating inductive learning". Proceedings of the Sixth
International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann. pp. 160–163.

50. Kharin, Viatcheslav (2003). <4145:OTRSOP>2.0.CO;2 "On the ROC score of probability forecasts" (https://doi.org/10.1175/1520-
0442(2003)016). Journal of Climate. 16 (24): 4145–4150. Bibcode:2003JCli...16.4145K (https://ui.adsabs.harvard.edu/abs/2003J
Cli...16.4145K). doi:10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2 (https://doi.org/10.1175%2F1520-0442%282003%29
016%3C4145%3AOTRSOP%3E2.0.CO%3B2).

51. Srinivasan, A. (1999). "Note on the Location of Optimal Classifiers in N-dimensional ROC Space". Technical Report PRG-TR-2-
99, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford. CiteSeerX 10.1.1.35.703 (https://citeseerx.is
t.psu.edu/viewdoc/summary?doi=10.1.1.35.703).

52. Mossman, D. (1999). "Three-way ROCs". Medical Decision Making. 19 (1): 78–89. doi:10.1177/0272989x9901900110 (https://doi.
org/10.1177%2F0272989x9901900110). PMID 9917023 (https://pubmed.ncbi.nlm.nih.gov/9917023).

53. Ferri, C.; Hernandez-Orallo, J.; Salido, M.A. (2003). "Volume under the ROC Surface for Multi-class Problems". Machine
Learning: ECML 2003. pp. 108–120.

54. Till, D.J.; Hand, R.J. (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification
Problems" (https://doi.org/10.1023/A:1010920819831). Machine Learning. 45 (2): 171–186. doi:10.1023/A:1010920819831 (http
s://doi.org/10.1023%2FA%3A1010920819831).

55. Bi, J.; Bennett, K.P. (2003). "Regression error characteristic curves" (https://www.aaai.org/Papers/ICML/2003/ICML03-009.pdf)
(PDF). Twentieth International Conference on Machine Learning (ICML-2003). Washington, DC.

56. Hernandez-Orallo, J. (2013). "ROC curves for regression". Pattern Recognition. 46 (12): 3395–3411.
doi:10.1016/j.patcog.2013.06.014 (https://doi.org/10.1016%2Fj.patcog.2013.06.014). hdl:10251/40252 (https://hdl.handle.net/102
51%2F40252).

External links

Further reading

https://kennis-research.shinyapps.io/ROC-Curves/
http://www.navan.name/roc/
https://www.youtube.com/watch?v=OAl6eAyP-yo
https://www.youtube.com/watch?v=KKVC3GT5EPw
https://www.youtube.com/watch?v=1JRwVOi0FSE
https://github.com/amsantac/TOC
http://www2.clarku.edu/~rpontius/TOCexample2.xlsx
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8247-8587-1
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.chemolab.2005.05.004
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.162.1515
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs11336-003-1119-8
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:122355230
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1037%2F0894-4105.12.3.323
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/9673991
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-32420-1
http://www.math.utah.edu/~gamez/files/ROC-Curves.pdf
http://www.clinchem.org/content/39/4/561.full.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Fclinchem%2F39.4.561
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/8472349
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-856582-6
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1148%2Fradiol.2291010898
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/14519861
https://en.wikipedia.org/wiki/Morgan_Kaufmann
https://doi.org/10.1175/1520-0442(2003)016
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2003JCli...16.4145K
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1175%2F1520-0442%282003%29016%3C4145%3AOTRSOP%3E2.0.CO%3B2
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.703
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1177%2F0272989x9901900110
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/9917023
https://doi.org/10.1023/A:1010920819831
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1023%2FA%3A1010920819831
https://www.aaai.org/Papers/ICML/2003/ICML03-009.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.patcog.2013.06.014
https://en.wikipedia.org/wiki/Hdl_(identifier)
https://hdl.handle.net/10251%2F40252

9/18/2020 Receiver operating characteristic - Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic 11/11

Rotello, Caren M.; Heit, Evan; Dubé, Chad (2014). "When more data steer us wrong: replications with the wrong dependent
measure perpetuate erroneous conclusions" (http://faculty.ucmerced.edu/sites/default/files/eheit/files/rotello_heit_dube_pbr.pdf)
(PDF). Psychonomic Bulletin & Review. 22 (4): 944–954. doi:10.3758/s13423-014-0759-2 (https://doi.org/10.3758%2Fs13423-01
4-0759-2). PMID 25384892 (https://pubmed.ncbi.nlm.nih.gov/25384892). S2CID 6046065 (https://api.semanticscholar.org/Corpus
ID:6046065).
Fawcett, Tom (2004). "ROC Graphs: Notes and Practical Considerations for Researchers" (http://home.comcast.net/~tom.fawcett/
public_html/papers/ROC101.pdf) (PDF). Pattern Recognition Letters. 27 (8): 882–891. CiteSeerX 10.1.1.145.4649 (https://citesee
rx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.4649). doi:10.1016/j.patrec.2005.10.012 (https://doi.org/10.1016%2Fj.patrec.200
5.10.012).
Gonen, Mithat (2007); Analyzing Receiver Operating Characteristic Curves Using SAS, SAS Press, ISBN 978-1-59994-298-8
Green, William H., (2003) Econometric Analysis, fifth edition, Prentice Hall, ISBN 0-13-066189-9
Heagerty, Patrick J.; Lumley, Thomas; Pepe, Margaret S. (2000). "Time-dependent ROC Curves for Censored Survival Data and
a Diagnostic Marker". Biometrics. 56 (2): 337–344. doi:10.1111/j.0006-341x.2000.00337.x (https://doi.org/10.1111%2Fj.0006-341x.
2000.00337.x). PMID 10877287 (https://pubmed.ncbi.nlm.nih.gov/10877287). S2CID 8822160 (https://api.semanticscholar.org/Co
rpusID:8822160).
Hosmer, David W.; and Lemeshow, Stanley (2000); Applied Logistic Regression, 2nd ed., New York, NY: Wiley, ISBN 0-471-
35632-8
Lasko, Thomas A.; Bhagwat, Jui G.; Zou, Kelly H.; Ohno-Machado, Lucila (2005). "The use of receiver operating characteristic
curves in biomedical informatics". Journal of Biomedical Informatics. 38 (5): 404–415. CiteSeerX 10.1.1.97.9674 (https://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.97.9674). doi:10.1016/j.jbi.2005.02.008 (https://doi.org/10.1016%2Fj.jbi.2005.02.008).
PMID 16198999 (https://pubmed.ncbi.nlm.nih.gov/16198999).
Mas, Jean-François; Filho, Britaldo Soares; Pontius, Jr, Robert Gilmore; Gutiérrez, Michelle Farfán; Rodrigues, Hermann (2013).
"A suite of tools for ROC analysis of spatial models" (https://doi.org/10.3390/ijgi2030869). ISPRS International Journal of Geo-
Information. 2 (3): 869–887. Bibcode:2013IJGI....2..869M (https://ui.adsabs.harvard.edu/abs/2013IJGI....2..869M).
doi:10.3390/ijgi2030869 (https://doi.org/10.3390%2Fijgi2030869).
Pontius, Jr, Robert Gilmore; Parmentier, Benoit (2014). "Recommendations for using the Relative Operating Characteristic
(ROC)" (https://www.researchgate.net/publication/263195341). Landscape Ecology. 29 (3): 367–382. doi:10.1007/s10980-013-
9984-8 (https://doi.org/10.1007%2Fs10980-013-9984-8). S2CID 15924380 (https://api.semanticscholar.org/CorpusID:15924380).
Pontius, Jr, Robert Gilmore; Pacheco, Pablo (2004). "Calibration and validation of a model of forest disturbance in the Western
Ghats, India 1920–1990" (https://www.researchgate.net/publication/226020087). GeoJournal. 61 (4): 325–334.
doi:10.1007/s10708-004-5049-5 (https://doi.org/10.1007%2Fs10708-004-5049-5). S2CID 155073463 (https://api.semanticscholar.
org/CorpusID:155073463).
Pontius, Jr, Robert Gilmore; Batchu, Kiran (2003). "Using the relative operating characteristic to quantify certainty in prediction of
location of land cover change in India". Transactions in GIS. 7 (4): 467–484. doi:10.1111/1467-9671.00159 (https://doi.org/10.111
1%2F1467-9671.00159). S2CID 14452746 (https://api.semanticscholar.org/CorpusID:14452746).
Pontius, Jr, Robert Gilmore; Schneider, Laura (2001). "Land-use change model validation by a ROC method for the Ipswich
watershed, Massachusetts, USA" (https://www.academia.edu/19474075). Agriculture, Ecosystems & Environment. 85 (1–3): 239–
248. doi:10.1016/S0167-8809(01)00187-6 (https://doi.org/10.1016%2FS0167-8809%2801%2900187-6).
Stephan, Carsten; Wesseling, Sebastian; Schink, Tania; Jung, Klaus (2003). "Comparison of Eight Computer Programs for
Receiver-Operating Characteristic Analysis" (https://doi.org/10.1373/49.3.433). Clinical Chemistry. 49 (3): 433–439.
doi:10.1373/49.3.433 (https://doi.org/10.1373%2F49.3.433). PMID 12600955 (https://pubmed.ncbi.nlm.nih.gov/12600955).
Swets, John A.; Dawes, Robyn M.; and Monahan, John (2000); Better Decisions through Science, Scientific American, October,
pp. 82–87
Zou, Kelly H.; O'Malley, A. James; Mauri, Laura (2007). "Receiver-operating characteristic analysis for evaluating diagnostic tests
and predictive models" (https://doi.org/10.1161/circulationaha.105.594929). Circulation. 115 (5): 654–7.
doi:10.1161/circulationaha.105.594929 (https://doi.org/10.1161%2Fcirculationaha.105.594929). PMID 17283280 (https://pubmed.
ncbi.nlm.nih.gov/17283280).
Zhou, Xiao-Hua; Obuchowski, Nancy A.; McClish, Donna K. (2002). Statistical Methods in Diagnostic Medicine. New York, NY:
Wiley & Sons. ISBN 978-0-471-34772-9.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Receiver_operating_characteristic&oldid=976536795"

This page was last edited on 3 September 2020, at 14:08 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and
Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

http://faculty.ucmerced.edu/sites/default/files/eheit/files/rotello_heit_dube_pbr.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3758%2Fs13423-014-0759-2
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/25384892
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:6046065
http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.4649
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.patrec.2005.10.012
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59994-298-8
https://en.wikipedia.org/wiki/Prentice_Hall
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-066189-9
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1111%2Fj.0006-341x.2000.00337.x
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/10877287
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:8822160
https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-471-35632-8
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.9674
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.jbi.2005.02.008
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/16198999
https://doi.org/10.3390/ijgi2030869
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2013IJGI....2..869M
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3390%2Fijgi2030869
https://www.researchgate.net/publication/263195341
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs10980-013-9984-8
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:15924380
https://www.researchgate.net/publication/226020087
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2Fs10708-004-5049-5
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:155073463
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1111%2F1467-9671.00159
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:14452746
https://www.academia.edu/19474075
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2FS0167-8809%2801%2900187-6
https://doi.org/10.1373/49.3.433
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1373%2F49.3.433
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/12600955
https://en.wikipedia.org/wiki/Scientific_American
https://doi.org/10.1161/circulationaha.105.594929
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1161%2Fcirculationaha.105.594929
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/17283280
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-34772-9
https://en.wikipedia.org/w/index.php?title=Receiver_operating_characteristic&oldid=976536795
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 3

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Classification: ROC Curve and AUC

ROC curve

An ROC curve (receiver operating characteristic curve) is a graph showing the performance
of a classification model at all classification thresholds. This curve plots two parameters:

 True Positive Rate

 False Positive Rate

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

TPR=TP/(TP+FN)

False Positive Rate (FPR) is defined as follows:

FPR=FP/(FP+TN)

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the
classification threshold classifies more items as positive, thus increasing both False Positives and
True Positives. The following figure shows a typical ROC curve.

Figure 4. TP vs. FP rate at different classification thresholds.

To compute the points in an ROC curve, we could evaluate a logistic regression model many
times with different classification thresholds, but this would be inefficient. Fortunately, there's an
efficient, sorting-based algorithm that can provide this information for us, called AUC.

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 3

AUC: Area Under the ROC Curve

AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-
dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1).

Figure 5. AUC (Area under the ROC Curve).

AUC provides an aggregate measure of performance across all possible classification thresholds.
One way of interpreting AUC is as the probability that the model ranks a random positive
example more highly than a random negative example. For example, given the following
examples, which are arranged from left to right in ascending order of logistic regression
predictions:

Figure 6. Predictions ranked in ascending order of logistic regression score.

AUC represents the probability that a random positive (green) example is positioned to the right
of a random negative (red) example.

AUC ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUC of
0.0; one whose predictions are 100% correct has an AUC of 1.0.

AUC is desirable for the following two reasons:

 AUC is scale-invariant. It measures how well predictions are ranked, rather than their absolute values.

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 3

 AUC is classification-threshold-invariant. It measures the quality of the model's predictions irrespective
of what classification threshold is chosen.

However, both these reasons come with caveats, which may limit the usefulness of AUC in
certain use cases:

 Scale invariance is not always desirable. For example, sometimes we really do need well
calibrated probability outputs, and AUC won’t tell us about that.

 Classification-threshold invariance is not always desirable. In cases where there are wide
disparities in the cost of false negatives vs. false positives, it may be critical to minimize one
type of classification error. For example, when doing email spam detection, you likely want to
prioritize minimizing false positives (even if that results in a significant increase of false
negatives). AUC isn't a useful metric for this type of optimization.

Except as otherwise noted, the content of this page is licensed under the Creative Commons
Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For
details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or
its affiliates.

Teradata Vantage: Analytics Certification Learning Resource

Page 1 of 9

Source: https://sanchom.wordpress.com/2011/09/01/precision-recall/

It’s a bird… it’s a plane… it… depends on
your classifier’s threshold
 Sancho McCann Uncategorized September 1, 2011

Evaluation of an information retrieval system (a search engine, for
example) generally focuses on two things:
1. How relevant are the retrieved results? (precision)
2. Did the system retrieve many of the truly relevant documents? (recall)

For those that aren’t familiar, I’ll explain what precision and recall are, and
for those that are familiar, I’ll explain some of the confusion in the
literature when comparing precision-recall curves.

Geese and airplanes
Suppose you have an image collection consisting of airplanes and geese.

You want your system to retrieve all the airplane images and none of the
geese images.
Given a set of images that your system retrieves from this collection, we can
define four accuracy counts:
True positives: Airplane images that your system correctly retrieved
True negatives: Geese images that your system correctly did not retrieve

Teradata Vantage: Analytics Certification Learning Resource

Page 2 of 9

False positives: Geese images that your system incorrectly retrieved,
believing them to be airplanes
False negatives: Airplane images that your system did incorrectly did not
retrieve, believing them to be geese

In this example retrieval, there are three true positives and one false
positive.
Using the terms I just defined, in this example retrieval, there are three true
positives and one false positive. How many false negatives are there? How
many true negatives are there?

There are two false negatives (the airplanes that the system failed to
retrieve) and four true negatives (the geese that the system did not
retrieve).

Precision and recall
Now, you’ll be able to understand more exactly
what precision and recall are.

Precision is the percentage true positives in the retrieved results. That is:

Teradata Vantage: Analytics Certification Learning Resource

Page 3 of 9

where n is equal to the total number of images retrieved (tp + fp).

Recall is the percentage of the airplanes that the system retrieves. That is:

In our example above, with 3 true positives, 1 false positive, 4 true
negatives, and 2 false negatives, precision = 0.75, and recall = 0.6.

75% of the retrieved results were airplanes, and 60% of the airplanes were
retrieved.

Adjusting the threshold
What if we’re not happy with that performance? We could ask the system to
return more examples. This would be done be relaxing our threshold of
what we want our system to consider as an airplane. We could also ask our
system to be more strict, and return fewer examples. In our example so far,
the system retrieved four examples. That corresponds to a particular
threshold (shown below by a blue line). The system retrieved the examples
that appeared more airplane-like than that threshold.

Teradata Vantage: Analytics Certification Learning Resource

Page 4 of 9

This is a hypothetical ordering that our airplane retrieval system could
give to the images in our collection. More airplane-like are at the top of
the list. The blue line is the threshold that gave our example retrieval.

We can move that threshold up and down to get a different set of retrieved
documents. At each position of the threshold, we would get a different
precision and recall value. Specifically, if we retrieved only the top example,
precision would be 100% and recall would be 20%. If we retrieved the top

Teradata Vantage: Analytics Certification Learning Resource

Page 5 of 9

two examples, precision would still be 100%, and recall will have gone up to
40%. The following chart gives precision and recall for the above
hypothetical ordering at all the possible thresholds.

Retrieval cutoff Precision Recall

Top 1 image 100% 20%

Top 2 images 100% 40%

Top 3 images 66% 40%

Top 4 images 75% 60%

Top 5 images 60% 60%

Top 6 images 66% 80%

Top 7 images 57% 80%

Top 8 images 50% 80%

Top 9 images 44% 80%

Top 10 images 50% 100%

Teradata Vantage: Analytics Certification Learning Resource

Page 6 of 9

Precision-recall curves
A good way to characterize the performance of a classifier is to look at how
precision and recall change as you change the threshold. A good classifier
will be good at ranking actual airplane images near the top of the list, and
be able to retrieve a lot of airplane images before retrieving any geese: its
precision will stay high as recall increases. A poor classifier will have to take
a large hit in precision to get higher recall. Usually, a publication will
present a precision-recall curve to show how this tradeoff looks for their
classifier. This is a plot of precision p as a function of recall r.

The precision-recall curve for our example airplane classifier. It can achieve
40% recall without sacrificing any precision, but to get 100% recall, its
precision drops to 50%.

Average precision

Teradata Vantage: Analytics Certification Learning Resource

Page 7 of 9

Rather than comparing curves, its sometimes useful to have a single
number that characterizes the performance of a classifier. A common
metric is the average precision. This can actually mean one of several
things.

Average precision

Strictly, the average precision is precision averaged across all values of
recall between 0 and 1:

That’s equal to taking the area under the curve. In practice, the integral is
closely approximated by a sum over the precisions at every possible
threshold value, multiplied by the change in recall:

where N is the total number of images in the collection, P(k) is the precision
at a cutoff of k images, and delta r(k) is the change in recall that happened
between cutoff k-1 and cutoff k.

In our example, this is (1 * 0.2) + (1 * 0.2) + (0.66 * 0) + (0.75 * 0.2) + (0.6
* 0) + (0.66 * 0.2) + (0.57 * 0) + (0.5 * 0) + (0.44 * 0) + (0.5 * 0.2) = 0.782.

Notice that the points at which the recall doesn’t change don’t contribute to
this sum (in the graph, these points are on the vertical sections of the plot,
where it’s dropping straight down). This makes sense, because since we’re
computing the area under the curve, those sections of the curve aren’t
adding any area.

Interpolated average precision

Some authors choose an alternate approximation that is called
the interpolated average precision. Often, they still call it average
precision. Instead of using P(k), the precision at a retrieval cutoff
of k images, the interpolated average precision uses:

Teradata Vantage: Analytics Certification Learning Resource

Page 8 of 9

In other words, instead of using the precision that was actually observed at
cutoff k, the interpolated average precision uses the maximum precision
observed across all cutoffs with higher recall. The full equation for
computing the interpolated average precision is:

Visually, here’s how the interpolated average precision compares to the
approximated average precision (to show a more interesting plot, this one
isn’t from the earlier example):

Teradata Vantage: Analytics Certification Learning Resource

Page 9 of 9

The approximated average precision closely hugs the actually observed
curve. The interpolated average precision over estimates the precision at
many points and produces a higher average precision value than the
approximated average precision.

Further, there are variations on where to take the samples when computing
the interpolated average precision. Some take samples at a fixed 11 points
from 0 to 1: {0, 0.1, 0.2, …, 0.9, 1.0}. This is called the 11-point interpolated
average precision. Others sample at every k where the recall changes.

Confusion
Some important publications use the interpolated average precision as their
metric and still call it average precision. For example, the PASCAL Visual
Objects Challenge has used this as their evaluation metric since 2007. I
don’t think their justification is strong. They say, “the intention in
interpolating the precision/recall curve in this way is to reduce the impact
of the “wiggles” in the precision/recall curve”. Regardless, everyone
compares against each other on this metric, so within the competition, this
is not an issue. However, the rest of us need to be careful when comparing
“average precision” values against other published results. Are we using the
VOC’s interpolated average precision, while previous work had used the
non-interpolated average precision? This would incorrectly show
improvement of a new method when compared to the previous work.

Summary
Precision and recall are useful metrics for evaluating the performance of a
classifier.

Precision and recall vary with the strictness of your classifier’s threshold.

There are several ways to summarize the precision-recall curve with a single
number called average precision; be sure you’re using the same metric as
the previous work that you’re comparing with.

	1.0 Data Management and Governance
	1.1 Standard Statistical Distributions
	1.1.1 Types of Distributions
	1.2 Normal Distribution
	1.3 Data Quality Issues Through Plots
	1.4 Resolution of Data Quality Issues
	1.5 Data Prep and Transformations
	1.6 Identifying Data Transformation Functions Part 1
	1.7 Identifying Data Transformation Functions Part 2
	1.8 Normalization
	1.9 CASE Expressions
	1.9.1 CASE Expressions Examples
	1.10 Connecting to External Sources
	1.11 Creating High Performance Tables
	2.0 Data Visualization & Presentation
	2.1 SQL Configuration and Performance Optimizations
	2.2 Data Visualizations
	2.2.1 Custom Visualizations in AppCenter
	2.3.1 Misleading Graphs
	2.3.2 Boxplot Caveats
	2.3.3 Calculation Errors
	2.3.4 Histogram Issues
	2.3.5 Dual Axis Issues
	2.4 AppCenter Visualization Formats and Types
	3.0 Statistical Techniques
	3.1.1 Scatterplots and Correlation
	3.1.2 Histogram Issues
	3.1.3 Assumption Linearity
	3.2 Statistical Analysis for Univariate Statistics
	3.3 Hypothesis Testing
	3.4 GLM Stats Model
	3.4.1 GLM Stats Model Outcome and Significance
	3.5 Linear Regression
	3.5.1 Simple Linear Regression Model
	4.0 Data Analytics Methods & Algorithms
	4.1 Text Analysis Function Reference
	4.2 Text Analytics Function Reference ML Engine
	4.3 Sentiment Extractor
	4.4 Named Entity Recognition
	4.5 nPath
	4.5.1 nPath Advanced
	4.6 nPath Function Reference
	4.7 Sessionize
	4.8 Time Series
	4.8.1 Time Series Detail
	4.9 Time Series
	4.9.1 Time Series Aggregation
	4.10 Windowing Functions
	4.11 CFilter
	4.12 CFilter Syntax and Examples
	5.0 Validation and Evaluation
	5.1 ROC Introduction
	5.1.1 ROC Function Reference
	5.2 ROC Overview
	5.2.1 ROC Curve and AUC Classification
	5.3 Classifier Thresholds

