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Standard Statistical Distributions  
(e.g. Normal, Poisson, Binomial) and their uses 

 
Source: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-
methods/statistical-distributions 
  

Statistics: Distributions 
  

Summary 

Normal distribution describes continuous data which have a symmetric distribution, with a characteristic 
'bell' shape. 

Binomial distribution describes the distribution of binary data from a finite sample. Thus it gives the 
probability of getting r events out of n trials. 

Poisson distribution describes the distribution of binary data from an infinite sample. Thus it gives the 
probability of getting r events in a population. 

  

The Normal Distribution 

It is often the case with medical data that the histogram of a continuous variable obtained from a single 
measurement on different subjects will have a characteristic `bell-shaped' distribution known as a 
Normal distribution. One such example is the histogram of the birth weight (in kilograms) of the 3,226 
new born babies shown in Figure 1. 

  
Figure 1 Distribution of birth weight in 3,226 newborn babies (data from O' Cathain et al 2002) 
  

https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/statistical-distributions
https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/statistical-distributions
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To distinguish the use of the same word in normal range and Normal distribution we have used a lower 
and upper case convention throughout. 

The histogram of the sample data is an estimate of the population distribution of birth weights in new 
born babies. This population distribution can be estimated by the superimposed smooth `bell-shaped' 
curve or `Normal' distribution shown. We presume that if we were able to look at the entire population 
of new born babies then the distribution of birth weight would have exactly the Normal shape. We often 
infer, from a sample whose histogram has the approximate Normal shape, that the population will have 
exactly, or as near as makes no practical difference, that Normal shape. 

The Normal distribution is completely described by two parameters μ and σ, where μ represents the 
population mean, or centre of the distribution, and σ the population standard deviation. It is 
symmetrically distributed around the mean. Populations with small values of the standard deviation σ 
have a distribution concentrated close to the centre μ; those with large standard deviation have a 
distribution widely spread along the measurement axis. One mathematical property of the Normal 
distribution is that exactly 95% of the distribution lies between 

μ−(1.96xσ)andμ+(1.96xσ)μ−(1.96xσ)andμ+(1.96xσ) 
Changing the multiplier 1.96 to 2.58, exactly 99% of the Normal distribution lies in the corresponding 
interval. 

In practice the two parameters of the Normal distribution, μ and σ, must be estimated from the sample 
data. For this purpose a random sample from the population is first taken. The sample mean  and the 
sample standard deviation, SD(x¯)=SSD(x¯)=S , are then calculated. If a sample is taken from such a 
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Normal distribution, and provided the sample is not too small, then approximately 95% of the sample lie 
within the interval: 
x¯−[1.96×SD(x¯)]x¯−[1.96×SD(x¯)] to x¯+[1.96×SD(x¯)]x¯+[1.96×SD(x¯)] 
  
This is calculated by merely replacing the population parameters μ and σ by the sample 
estimates  and s in the previous expression. 
In appropriate circumstances this interval may estimate the reference interval for a particular laboratory 
test which is then used for diagnostic purposes. 

We can use the fact that our sample birth weight data appear Normally distributed to calculate a 
reference range. We have already mentioned that about 95% of the observations (from a Normal 
distribution) lie within ±1.96 SDs of the mean. So a reference range for our sample of babies, using the 
values given in the histogram above, is: 

3.39 - [1.96 x 0.55]  to  3.39 + [1.96 x 0.55] 
  
2.31kg to 4.47kg 
  

A baby's weight at birth is strongly associated with mortality risk during the first year and, to a lesser 
degree, with developmental problems in childhood and the risk of various diseases in adulthood. If the 
data are not Normally distributed then we can base the normal reference range on the observed 
percentiles of the sample, i.e. 95% of the observed data lie between the 2.5 and 97.5 percentiles. In this 
example, the percentile-based reference range for our sample was calculated as 2.19kg to 4.43kg. 

Most reference ranges are based on samples larger than 3500 people. Over many years, and millions of 
births, the WHO has come up with a normal birth weight range for new born babies. These ranges 
represent results than are acceptable in newborn babies and actually cover the middle 80% of the 
population distribution, i.e. the 10th to 90th centiles. Low birth weight babies are usually defined (by 
the WHO) as weighing less than 2500g (the 10th centile) regardless of gestational age, and large birth 
weight babies are defined as weighing above 4000kg (the 90th centile). Hence the normal birth weight 
range is around 2.5kg to 4kg. For our sample data, the 10th to 90th centile range was similar, 2.75 to 
4.03kg. 

  

The Binomial Distribution 

If a group of patients is given a new drug for the relief of a particular condition, then the 
proportion p being successively treated can be regarded as estimating the population treatment success 
rate . 
The sample proportion p is analogous to the sample mean , in that if we score zero for those s patients 
who fail on treatment, and 1 for those r who succeed, then p=r/n, where n=r+s is the total number of 
patients treated. Thus p also represents a mean. 
Data which can take only a binary (0 or 1) response, such as treatment failure or treatment success, 
follow the binomial distribution provided the underlying population response rate does not change. The 
binomial probabilities are calculated from: 

P(rresponsesoutofn)=n!r!(n−r)!πr(1−π)n−rP(rresponsesoutofn)=n!r!(n−r)!πr(1−π)n−r 
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…for successive values of R from 0 through to n. In the above, n! is read as “n factorial” and r! as “r 
factorial”. For r=4, r!=4×3×2×1=24. Both 0! and 1! are taken as equal to 1. The shaded area marked in 
Figure 2 (below) corresponds to the above expression for the binomial distribution calculated for each 
of r=8,9,...,20 and then added. This area totals 0.1018. So the probability of eight or more responses out 
of 20 is 0.1018. 
For a fixed sample size n the shape of the binomial distribution depends only on . Suppose n = 20 
patients are to be treated, and it is known that on average a quarter, or  =0.25, will respond to this 
particular treatment. The number of responses actually observed can only take integer values between 
0 (no responses) and 20 (all respond). The binomial distribution for this case is illustrated in Figure 2. 
The distribution is not symmetric, it has a maximum at five responses and the height of the blocks 
corresponds to the probability of obtaining the particular number of responses from the 20 patients yet 
to be treated. It should be noted that the expected value for r, the number of successes yet to be 
observed if we treated n patients, is (nx ). The potential variation about this expectation is expressed 
by the corresponding standard deviation: 

SD(r)=nπ(1−π)−−−−−−−−√SD(r)=nπ(1−π) 
Figure 2 also shows the Normal distribution arranged to have μ = n  = 5 and σ = √[n (1 - )] = 1.94, 
superimposed on to a binomial distribution with  = 0.25 and n = 20. The Normal distribution describes 
fairly precisely the binomial distribution in this case.      If n is small, however, or  close to 0 or 1, the 
disparity between the Normal and binomial distributions with the same mean and standard deviation 
increases and the Normal distribution can no longer be used to approximate the binomial distribution. 
In such cases the probabilities generated by the binomial distribution itself must be used. 
It is also only in situations in which reasonable agreement exists between the distributions that we 
would use the confidence interval expression given previously. For technical reasons, the expression 
given for a confidence interval for a proportion is an approximation. The approximation will usually be 
quite good provided p is not too close to 0 or 1, situations in which either almost none or nearly all of 
the patients respond to treatment. The approximation improves with increasing sample size n. 
  
Figure 2: Binomial distribution for n=20 with =0.25 and the Normal approximation 
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The Poisson Distribution 

The Poisson distribution is used to describe discrete quantitative data such as counts in which the 
population size n is large, the probability of an individual event  is small, but the expected number of 
events, n , is moderate (say five or more). Typical examples are the number of deaths in a town from a 
particular disease per day, or the number of admissions to a particular hospital. 
  

Example 
Wight et al (2004) looked at the variation in cadaveric heart beating organ donor rates in the UK. They 
found that there were 1330 organ donors, aged 15-69, across the UK for the two years 1999 and 2000 
combined. Heart-beating donors are patients who are seriously ill in an intensive care unit (ICU) and are 
placed on a ventilator. 

Now it is clear that the distribution of the number of donors takes integer values only, thus the 
distribution is similar in this respect to the binomial. However, there is no theoretical limit to the 
number of organ donors that could happen on a particular day. Here the population is the UK 
population aged 15-69, over two years, which is over 82 million person years, so in this case each 
member can be thought to have a very small probability of actually suffering an event, in this case being 
admitted to a hospital ICU and placed on a ventilator with a life threatening condition. 

The mean number of organ donors per day over the two year period is calculated as: 

r=1330(365+365)=1330730=1.82r=1330(365+365)=1330730=1.82 organ donations per day  
  
It should be noted that the expression for the mean is similar to that for , except here multiple data 
values are common; and so instead of writing each as a distinct figure in the numerator they are first 
grouped and counted. For data arising from a Poisson distribution the standard error, that is the 
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standard deviation of r, is estimated by SE(r) = √(r/n), where n is the total number of days (or an 
alternative time unit). Provided the organ donation rate is not too low, a 95% confidence interval for the 
underlying (true) organ donation rate λ can be calculated in the usual way: 

r−[1.96×SE(r)]tor+[1.96×SE(r)]r−[1.96×SE(r)]tor+[1.96×SE(r)] 
In the above example r=1.82, SE(r)=√(1.82/730)=0.05, and therefore the 95% confidence interval for λ is 
1.72 to 1.92 organ donations per day. Exact confidence intervals can be calculated as described by 
Altman et al. (2000). 
The Poisson probabilities are calculated from: 

P(rresponses)=λrr!e−λP(rresponses)=λrr!e−λ 
  

…for successive values of r from 0 to infinity. Here e is the exponential constant 2.7182…, and λ is the 
population rate which is estimated by r in the example above. 
  

Example 
Suppose that before the study of Wight et al. (2004) was conducted it was expected that the number of 
organ donations per day was approximately two. Then assuming λ = 2, we would anticipate the 
probability of 0 organ donations in a given day to be (20/0!)e-2 =e-2 = 0.135. (Remember that 20 and 0! 
are both equal to 1.) The probability of one organ donation would be (21/1!)e-2 = 2(e-2) = 0.271. Similarly 
the probability of two organ donations per day is (22/2!)e-2= 2(e-2) = 0.271; and so on to give for three 
donations 0.180, four donations 0.090, five donations 0.036, six donations 0.012, etc. If the study is then 
to be conducted over 2 years (730 days), each of these probabilities is multiplied by 730 to give the 
expected number of days during which 0, 1, 2, 3, etc. donations will occur. These expectations are 98.8, 
197.6, 197.6, 131.7, 26.3, 8.8 days. A comparison can then be made between what is expected and what 
is actually observed. 

  
Other Distributions 

A brief description of some other distributions are given for completeness. 

  

t-distribution 

Student’s t-distribution is a continuous probability distribution with a similar shape to the Normal 
distribution but with wider tails. t-distributions are used to describe samples which have been drawn 
from a population, and the exact shape of the distribution varies with the sample size. The smaller the 
sample size, the more spread out the tails, and the larger the sample size, the closer the t-distribution is 
to the Normal distribution (Figure 3). Whilst in general the Normal distribution is used as an 
approximation when estimating means of samples from a Normally-distribution population, when the 
same size is small (say n<30), the t-distribution should be used in preference. 
  

Figure 3. The t-distribution for various sample sizes. As the sample size increases, the t-distribution more 
closely approximates the Normal. 
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Chi-squared distribution 
The chi-squared distribution is continuous probability distribution whose shape is defined by the 
number of degrees of freedom. It is a right-skew distribution, but as the number of degrees of freedom 
increases it approximates the Normal distribution (Figure 4). The chi-squared distribution is important 
for its use in chi-squared tests. These are often used to test deviations between observed and expected 
frequencies, or to determine the independence between categorical variables. When conducting a chi-
squared test, the probability values derived from chi-squared distributions can be looked up in a 
statistical table. 

  

Figure 4. The chi-squared distribution for various degrees of freedom. The distribution becomes less 
right-skew as the number of degrees of freedom increases. 

 

  

Histogram 
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A bar diagram easy to understand but what is a histogram? Unlike a bar graph that depicts discrete data, 
histograms depict continuous data. The continuous data takes the form of class intervals. Thus, a histogram 
is a graphical representation of a frequency distribution with class intervals or attributes as the base and 
frequency as the height. 

The key difference is that histograms have bars without any spaces between them and the rectangles need 
not be of equal width. So, we will understand histograms using an example. 

 

In this case, see that we are considering class intervals such as 0-5, 5-10, 10-15 and 15-20. These are 
continuous data. In case, the class intervals given to you are not continuous, you must make it continuous 
first. 

Here, you can interpret the histogram using the information that the graph gives. Consider the frequency to 
be as given on the left vertical axis and ignore the values on the right vertical axis. Thus, for the class interval 
0-5, the corresponding frequency is 3. Again, for 5-10, the frequency is 7, and so on. 

Note that we have taken the simple case of a histogram with bars of equal width. But as mentioned, it 
might not be the case if the class intervals are not even in size. In that case, you will get a histogram with 
bars stuck to each other (without any space between them) but with different widths. It could look 
something like this, but exactly how it will look depends on the data: 

 

 

https://www.toppr.com/guides/maths/introduction-to-graphs/bar-graphs/
https://www.toppr.com/guides/maths/statistics/data/
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Types of Distributions 
 

Source: http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm 

  

Discrete data, the entire distribution can either be developed from scratch or the data can be fitted to a 

pre-specified discrete distribution. With the former, there are two steps to building the distribution. The 

first is identifying the possible outcomes and the second is to estimate probabilities to each outcome. As 

we noted in the text, we can draw on historical data or experience as well as specific knowledge about 

the investment being analyzed to arrive at the final distribution.  This process is relatively simple to 

accomplish when there are a few outcomes with a well-established basis for estimating probabilities but 

becomes more tedious as the number of outcomes increases. If it is difficult or impossible to build up a 

customized distribution, it may still be possible fit the data to one of the following discrete distributions: 

a.     Binomial distribution: The binomial distribution measures the probabilities of the number of 

successes over a given number of trials with a specified probability of success in each try. In the 

simplest scenario of a coin toss (with a fair coin), where the probability of getting a head with each 

toss is 0.50 and there are a hundred trials, the binomial distribution will measure the likelihood of 

getting anywhere from no heads in a hundred tosses (very unlikely) to 50 heads (the most likely) to 

100 heads (also very unlikely). The binomial distribution in this case will be symmetric, reflecting the 

even odds; as the probabilities shift from even odds, the distribution will get more skewed. Figure 

6A.1 presents binomial distributions for three scenarios – two with 50% probability of success and 

one with a 70% probability of success and different trial sizes. 

Figure 6A.1: Binomial Distribution 

 

http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm
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As the probability of success is varied (from 50%) the distribution will also shift its shape, becoming 

positively skewed for probabilities less than 50% and negatively skewed for probabilities greater 

than 50%.[1] 

b.     Poisson distribution: The Poisson distribution measures the likelihood of a number of events 

occurring within a given time interval, where the key parameter that is required is the average number 

of events in the given interval (l). The resulting distribution looks similar to the binomial, with the 

skewness being positive but decreasing with l.  Figure 6A.2 presents three Poisson distributions, 

with l ranging from 1 to 10. 

Figure 6A.2: Poisson Distribution 

 

 

c.     Negative Binomial distribution: Returning again to the coin toss example, assume that you hold the 

number of successes fixed at a given number and estimate the number of tries you will have before 

you reach the specified number of successes. The resulting distribution is called the negative binomial 

and it very closely resembles the Poisson. In fact, the negative binomial distribution converges on the 

Poisson distribution, but will be more skewed to the right (positive values) than the Poisson 

distribution with similar parameters. 
 
 
There are some datasets that exhibit symmetry, i.e., the upside is mirrored by the downside. The 
symmetric distribution that most practitioners have familiarity with is the normal distribution, sown in 
Figure 6A.6, for a range of parameters: 
 

Figure 6A.6: Normal Distribution 

http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm#_ftn1
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The normal distribution has several features that make it popular. First, it can be fully characterized by 

just two parameters – the mean and the standard deviation – and thus reduces estimation pain. Second, 

the probability of any value occurring can be obtained simply by knowing how many standard deviations 

separate the value from the mean; the probability that a value will fall 2 standard deviations from the 

mean is roughly 95%.   The normal distribution is best suited for data that, at the minimum, meets the 

following conditions: 

a. There is a strong tendency for the data to take on a central value. 

b. Positive and negative deviations from this central value are equally likely 

c. The frequency of the deviations falls off rapidly as we move further away from the central value. 
 

 

f.      Discrete uniform distribution: This is the simplest of discrete distributions and applies when all of 

the outcomes have an equal probability of occurring.  Figure 6A.5 presents a uniform discrete 

distribution with five possible outcomes, each occurring 20% of the time: 

Figure 6A.5: Discrete Uniform Distribution 
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Most data does not exhibit symmetry and instead skews towards either very large positive or very 

large negative values. If the data is positively skewed, one common choice is the lognormal distribution, 

which is typically characterized by three parameters: a shape (s or sigma), a scale (m or median) and a 

shift parameter ( ). When m=0 and =1, you have the standard lognormal distribution and when =0, 

the distribution requires only scale and sigma parameters. As the sigma rises, the peak of the distribution 

shifts to the left and the skewness in the distribution increases. Figure 6A.9 graphs lognormal distributions 

for a range of parameters: 

Figure 6A.9: Lognormal distribution 

 
 

Gaussian Distribution and Reference Range 

Gaussian distribution (also known as normal distribution) is a bell-shaped curve, and it is assumed that 

during any measurement values will follow a normal distribution with an equal number of 

measurements above and below the mean value. In order to understand normal distribution, it is 

important to know the definitions of “mean,” “median,” and “mode.” The “mean” is the calculated 

average of all values, the “median” is the value at the center point (mid-point) of the distribution, while 

the “mode” is the value that was observed most frequently during the measurement. If a distribution is 

normal, then the values of the mean, median, and mode are the same. However, the value of the mean, 

median, and mode may be different if the distribution is skewed (not Gaussian distribution). Other 

characteristics of Gaussian distributions are as follows: 
▪ 

Mean±1 SD contain 68.2% of all values. 

▪ 

Mean±2 SD contain 95.5% of all values. 

▪ 
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Mean±3 SD contain 99.7% of all values. 

A Gaussian distribution is shown in Figure 4.1. Usually, reference range is determined by measuring the 

value of an analyte in a large number of normal subjects (at least 100 normal healthy people, but 

preferably 200–300 healthy individuals). Then the mean and standard deviations are determined. 

 

 

Tests for Fit 

            The simplest test for distributional fit is visual with a comparison of the histogram of the actual 

data to the fitted distribution. Consider figure 6A.16, where we report the distribution of current price 

earnings ratios for US stocks in early 2007, with a normal distribution superimposed on it. 

Figure 6A.16: Current PE Ratios for US Stocks – January 2007 
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Normal distribution

In probability theory, a normal (or
Gaussian or Gauss or Laplace–
Gauss) distribution is a type of
continuous probability distribution
for a real-valued random variable.
The general form of its probability
density function is

The parameter  is the mean or
expectation of the distribution (and
also its median and mode), while the
parameter  is its standard
deviation.[1] The variance of the
distribution is .[2] A random
variable with a Gaussian distribution
is said to be normally distributed,
and is called a normal deviate.

Normal distributions are important in
statistics and are often used in the
natural and social sciences to
represent real-valued random
variables whose distributions are not
known.[3][4] Their importance is
partly due to the central limit
theorem. It states that, under some
conditions, the average of many
samples (observations) of a random
variable with finite mean and
variance is itself a random variable—
whose distribution converges to a
normal distribution as the number of
samples increases. Therefore,
physical quantities that are expected
to be the sum of many independent
processes, such as measurement
errors, often have distributions that
are nearly normal.[5]

Moreover, Gaussian distributions
have some unique properties that are
valuable in analytic studies. For
instance, any linear combination of a
fixed collection of normal deviates is a
normal deviate. Many results and
methods, such as propagation of
uncertainty and least squares
parameter fitting, can be derived
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Fisher
information

Kullback-
Leibler
divergence

analytically in explicit form when the
relevant variables are normally
distributed.

A normal distribution is sometimes
informally called a bell curve.[6]

However, many other distributions
are bell-shaped (such as the Cauchy,
Student's t, and logistic distributions).
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The simplest case of a normal distribution is known as the standard normal distribution. This is a special case when 
 and , and it is described by this probability density function:[1]

Here, the factor  ensures that the total area under the curve  is equal to one.[note 1] The factor  in the
exponent ensures that the distribution has unit variance (i.e., variance being equal to one), and therefore also unit
standard deviation. This function is symmetric around , where it attains its maximum value  and has
inflection points at  and .

Definitions

Standard normal distribution
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Authors differ on which normal distribution should be called the "standard" one. Carl Friedrich Gauss, for example,
defined the standard normal as having a variance of . That is:

On the other hand, Stephen Stigler[7] goes even further, defining the standard normal as having a variance of 
:

Every normal distribution is a version of the standard normal distribution, whose domain has been stretched by a
factor  (the standard deviation) and then translated by  (the mean value):

The probability density must be scaled by  so that the integral is still 1.

If  is a standard normal deviate, then  will have a normal distribution with expected value  and
standard deviation . Conversely, if  is a normal deviate with parameters  and , then the distribution 

 will have a standard normal distribution. This variate is also called the standardized form of .

The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit
variance) is often denoted with the Greek letter  (phi).[8] The alternative form of the Greek letter phi, , is also used
quite often.[1]

The normal distribution is often referred to as  or .[1][9] Thus when a random variable  is
normally distributed with mean  and variance , one may write

Some authors advocate using the precision  as the parameter defining the width of the distribution, instead of the
deviation  or the variance . The precision is normally defined as the reciprocal of the variance, .[10] The
formula for the distribution then becomes

This choice is claimed to have advantages in numerical computations when  is very close to zero, and simplifies
formulas in some contexts, such as in the Bayesian inference of variables with multivariate normal distribution.

Alternatively, the reciprocal of the standard deviation  might be defined as the precision, in which case the
expression of the normal distribution becomes

General normal distribution

Notation

Alternative parameterizations
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According to Stigler, this formulation is advantageous because of a much simpler and easier-to-remember formula,
and simple approximate formulas for the quantiles of the distribution.

Normal distributions form an exponential family with natural parameters  and , and natural

statistics x and x2. The dual expectation parameters for normal distribution are η1 = μ and η2 = μ2 + σ2.

The cumulative distribution function (CDF) of the standard normal distribution, usually denoted with the capital
Greek letter  (phi),[1] is the integral

The related error function  gives the probability of a random variable, with normal distribution of mean 0 and
variance 1/2 falling in the range . That is:[1]

These integrals cannot be expressed in terms of elementary functions, and are often said to be special functions.
However, many numerical approximations are known; see below for more.

The two functions are closely related, namely

For a generic normal distribution with density , mean  and deviation , the cumulative distribution function is

The complement of the standard normal CDF, , is often called the Q-function, especially in
engineering texts.[11][12] It gives the probability that the value of a standard normal random variable  will exceed : 

. Other definitions of the -function, all of which are simple transformations of , are also used
occasionally.[13]

The graph of the standard normal CDF  has 2-fold rotational symmetry around the point (0,1/2); that is, 
. Its antiderivative (indefinite integral) can be expressed as follows:

The CDF of the standard normal distribution can be expanded by Integration by parts into a series:

where  denotes the double factorial.

Cumulative distribution function
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For the normal distribution, the values less than one
standard deviation away from the mean account for
68.27% of the set; while two standard deviations from the
mean account for 95.45%; and three standard deviations
account for 99.73%.

An asymptotic expansion of the CDF for large x can also be derived using integration by parts. For more, see Error
function#Asymptotic expansion.[14]

About 68% of values drawn from a normal distribution are
within one standard deviation σ away from the mean; about
95% of the values lie within two standard deviations; and
about 99.7% are within three standard deviations.[6] This fact
is known as the 68-95-99.7 (empirical) rule, or the 3-sigma
rule.

More precisely, the probability that a normal deviate lies in the
range between  and  is given by

To 12 significant figures, the values for  are:[15]

OEIS

1 0.682 689 492 137 0.317 310 507 863 3.151 487 187 53 OEIS: A178647

2 0.954 499 736 104 0.045 500 263 896 21.977 894 5080 OEIS: A110894

3 0.997 300 203 937 0.002 699 796 063 370.398 347 345 OEIS: A270712

4 0.999 936 657 516 0.000 063 342 484 15 787.192 7673

5 0.999 999 426 697 0.000 000 573 303 1 744 277.893 62

6 0.999 999 998 027 0.000 000 001 973 506 797 345.897

For large , one can use the approximation .

The quantile function of a distribution is the inverse of the cumulative distribution function. The quantile function of
the standard normal distribution is called the probit function, and can be expressed in terms of the inverse error
function:

For a normal random variable with mean  and variance , the quantile function is

The quantile  of the standard normal distribution is commonly denoted as . These values are used in
hypothesis testing, construction of confidence intervals and Q-Q plots. A normal random variable  will exceed 

 with probability , and will lie outside the interval  with probability . In particular, the

Standard deviation and coverage

Quantile function
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quantile  is 1.96; therefore a normal random variable will lie outside the interval  in only 5% of cases.

The following table gives the quantile  such that  will lie in the range  with a specified probability .
These values are useful to determine tolerance interval for sample averages and other statistical estimators with
normal (or asymptotically normal) distributions:.[16][17] NOTE: the following table shows 

, not  as defined above.

 

0.80 1.281 551 565 545 0.999 3.290 526 731 492

0.90 1.644 853 626 951 0.9999 3.890 591 886 413

0.95 1.959 963 984 540 0.99999 4.417 173 413 469

0.98 2.326 347 874 041 0.999999 4.891 638 475 699

0.99 2.575 829 303 549 0.9999999 5.326 723 886 384

0.995 2.807 033 768 344 0.99999999 5.730 728 868 236

0.998 3.090 232 306 168 0.999999999 6.109 410 204 869

For small , the quantile function has the useful asymptotic expansion 

The normal distribution is the only distribution whose cumulants beyond the first two (i.e., other than the mean and
variance) are zero. It is also the continuous distribution with the maximum entropy for a specified mean and
variance.[18][19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the
only distribution where the mean and variance calculated from a set of independent draws are independent of each
other.[20][21]

The normal distribution is a subclass of the elliptical distributions. The normal distribution is symmetric about its
mean, and is non-zero over the entire real line. As such it may not be a suitable model for variables that are
inherently positive or strongly skewed, such as the weight of a person or the price of a share. Such variables may be
better described by other distributions, such as the log-normal distribution or the Pareto distribution.

The value of the normal distribution is practically zero when the value  lies more than a few standard deviations
away from the mean (e.g., a spread of three standard deviations covers all but 0.27% of the total distribution).
Therefore, it may not be an appropriate model when one expects a significant fraction of outliers—values that lie
many standard deviations away from the mean—and least squares and other statistical inference methods that are
optimal for normally distributed variables often become highly unreliable when applied to such data. In those cases, a
more heavy-tailed distribution should be assumed and the appropriate robust statistical inference methods applied.

The Gaussian distribution belongs to the family of stable distributions which are the attractors of sums of
independent, identically distributed distributions whether or not the mean or variance is finite. Except for the
Gaussian which is a limiting case, all stable distributions have heavy tails and infinite variance. It is one of the few
distributions that are stable and that have probability density functions that can be expressed analytically, the others
being the Cauchy distribution and the Lévy distribution.

The normal distribution with density  (mean  and standard deviation ) has the following properties:

Properties

Symmetries and derivatives
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It is symmetric around the point  which is at the same time the mode, the median and the mean of the
distribution.[22]

It is unimodal: its first derivative is positive for  negative for  and zero only at 
The area under the curve and over the -axis is unity (i.e. equal to one).

Its first derivative is 

Its density has two inflection points (where the second derivative of  is zero and changes sign), located one
standard deviation away from the mean, namely at  and [22]

Its density is log-concave.[22]

Its density is infinitely differentiable, indeed supersmooth of order 2.[23]

Furthermore, the density  of the standard normal distribution (i.e.  and ) also has the following
properties:

Its first derivative is 

Its second derivative is 

More generally, its nth derivative is  where  is the nth (probabilist) Hermite
polynomial.[24]

The probability that a normally distributed variable  with known  and  is in a particular set, can be calculated
by using the fact that the fraction  has a standard normal distribution.

The plain and absolute moments of a variable  are the expected values of  and , respectively. If the expected
value  of  is zero, these parameters are called central moments. Usually we are interested only in moments with
integer order .

If  has a normal distribution, these moments exist and are finite for any  whose real part is greater than −1. For
any non-negative integer , the plain central moments are:[25]

Here  denotes the double factorial, that is, the product of all numbers from  to 1 that have the same parity as 

The central absolute moments coincide with plain moments for all even orders, but are nonzero for odd orders. For
any non-negative integer 

The last formula is valid also for any non-integer  When the mean  the plain and absolute moments
can be expressed in terms of confluent hypergeometric functions  and 

Moments
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These expressions remain valid even if  is not integer. See also generalized Hermite polynomials.

Order Non-central moment Central moment

1

2

3

4

5

6

7

8

The expectation of  conditioned on the event that  lies in an interval  is given by

where  and  respectively are the density and the cumulative distribution function of . For  this is known
as the inverse Mills ratio. Note that above, density  of  is used instead of standard normal density as in inverse
Mills ratio, so here we have  instead of .

The Fourier transform of a normal density  with mean  and standard deviation  is[26]

where  is the imaginary unit. If the mean , the first factor is 1, and the Fourier transform is, apart from a
constant factor, a normal density on the frequency domain, with mean 0 and standard deviation . In particular,
the standard normal distribution  is an eigenfunction of the Fourier transform.

In probability theory, the Fourier transform of the probability distribution of a real-valued random variable  is
closely connected to the characteristic function  of that variable, which is defined as the expected value of ,
as a function of the real variable  (the frequency parameter of the Fourier transform). This definition can be
analytically extended to a complex-value variable .[27] The relation between both is:

Fourier transform and characteristic function

Moment and cumulant generating functions
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The moment generating function of a real random variable  is the expected value of , as a function of the real
parameter . For a normal distribution with density , mean  and deviation , the moment generating function
exists and is equal to

The cumulant generating function is the logarithm of the moment generating function, namely

Since this is a quadratic polynomial in , only the first two cumulants are nonzero, namely the mean  and the
variance .

Within Stein's method the Stein operator and class of a random variable  are 
 and  the class of all absolutely continuous functions 

.

In the limit when  tends to zero, the probability density  eventually tends to zero at any , but grows
without limit if , while its integral remains equal to 1. Therefore, the normal distribution cannot be defined as
an ordinary function when .

However, one can define the normal distribution with zero variance as a generalized function; specifically, as Dirac's
"delta function"  translated by the mean , that is  Its CDF is then the Heaviside step function
translated by the mean , namely

Of all probability distributions over the reals with a specified mean  and variance , the normal distribution 
 is the one with maximum entropy.[28] If  is a continuous random variable with probability density ,

then the entropy of  is defined as[29][30][31]

where  is understood to be zero whenever . This functional can be maximized, subject to the
constraints that the distribution is properly normalized and has a specified variance, by using variational calculus. A
function with two Lagrange multipliers is defined:

where  is, for now, regarded as some density function with mean  and standard deviation .

At maximum entropy, a small variation  about  will produce a variation  about  which is equal to 0:

Stein operator and class

Zero-variance limit

Maximum entropy
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Since this must hold for any small , the term in brackets must be zero, and solving for  yields:

Using the constraint equations to solve for  and  yields the density of the normal distribution:

The entropy of a normal distribution is equal to

The family of normal distributions is closed under linear transformations: if  is normally distributed with mean 
and standard deviation , then the variable , for any real numbers  and , is also normally distributed,
with mean  and standard deviation .

Also if  and  are two independent normal random variables, with means ,  and standard deviations , ,
then their sum  will also be normally distributed,[proof] with mean  and variance .

In particular, if  and  are independent normal deviates with zero mean and variance , then  and 
are also independent and normally distributed, with zero mean and variance . This is a special case of the
polarization identity.[32]

Also, if ,  are two independent normal deviates with mean  and deviation , and ,  are arbitrary real
numbers, then the variable

is also normally distributed with mean  and deviation . It follows that the normal distribution is stable (with
exponent ).

More generally, any linear combination of independent normal deviates is a normal deviate.

For any positive integer , any normal distribution with mean  and variance  is the distribution of the sum of 

independent normal deviates, each with mean  and variance . This property is called infinite divisibility.[33]

Conversely, if  and  are independent random variables and their sum  has a normal distribution, then
both  and  must be normal deviates.[34]

This result is known as Cramér’s decomposition theorem, and is equivalent to saying that the convolution of two
distributions is normal if and only if both are normal. Cramér's theorem implies that a linear combination of
independent non-Gaussian variables will never have an exactly normal distribution, although it may approach it
arbitrarily closely.[35]

Operations on normal deviates

Infinite divisibility and Cramér's theorem
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Bernstein's theorem states that if  and  are independent and  and  are also independent, then both
X and Y must necessarily have normal distributions.[36][37]

More generally, if  are independent random variables, then two distinct linear combinations 

and will be independent if and only if all  are normal and , where  denotes the

variance of .[36]

1. If the characteristic function  of some random variable  is of the form , where  is a
polynomial, then the Marcinkiewicz theorem (named after Józef Marcinkiewicz) asserts that  can be at most a
quadratic polynomial, and therefore  is a normal random variable.[35] The consequence of this result is that the
normal distribution is the only distribution with a finite number (two) of non-zero cumulants.

2. If  and  are jointly normal and uncorrelated, then they are independent. The requirement that  and  should
be jointly normal is essential; without it the property does not hold.[38][39][proof] For non-normal random variables
uncorrelatedness does not imply independence.

3. The Kullback–Leibler divergence of one normal distribution  from another  is
given by:[40]

The Hellinger distance between the same distributions is equal to

4. The Fisher information matrix for a normal distribution is diagonal and takes the form

5. The conjugate prior of the mean of a normal distribution is another normal distribution.[41] Specifically, if 
 are iid  and the prior is , then the posterior distribution for the estimator of 

 will be

6. The family of normal distributions not only forms an exponential family (EF), but in fact forms a natural
exponential family (NEF) with quadratic variance function (NEF-QVF). Many properties of normal distributions
generalize to properties of NEF-QVF distributions, NEF distributions, or EF distributions generally. NEF-QVF
distributions comprises 6 families, including Poisson, Gamma, binomial, and negative binomial distributions, while
many of the common families studied in probability and statistics are NEF or EF.

7. In information geometry, the family of normal distributions forms a statistical manifold with constant curvature .
The same family is flat with respect to the (±1)-connections ∇  and ∇ .[42]

Bernstein's theorem

Other properties

Related distributions
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As the number of discrete events
increases, the function begins to
resemble a normal distribution

Comparison of probability density
functions,  for the sum of  fair 6-
sided dice to show their convergence to a
normal distribution with increasing , in
accordance to the central limit theorem.
In the bottom-right graph, smoothed
profiles of the previous graphs are
rescaled, superimposed and compared
with a normal distribution (black curve).

The central limit theorem states that under certain (fairly common)
conditions, the sum of many random variables will have an approximately
normal distribution. More specifically, where  are independent
and identically distributed random variables with the same arbitrary
distribution, zero mean, and variance  and  is their mean scaled by 

Then, as  increases, the probability distribution of  will tend to the normal
distribution with zero mean and variance .

The theorem can be extended to variables  that are not independent
and/or not identically distributed if certain constraints are placed on the
degree of dependence and the moments of the distributions.

Many test statistics, scores, and estimators encountered in practice contain
sums of certain random variables in them, and even more estimators can be
represented as sums of random variables through the use of influence
functions. The central limit theorem implies that those statistical parameters
will have asymptotically normal distributions.

The central limit theorem also implies that certain distributions can be
approximated by the normal distribution, for example:

The binomial distribution  is approximately normal with mean 
and variance  for large  and for  not too close to 0 or 1.
The Poisson distribution with parameter  is approximately normal with
mean  and variance , for large values of .[43]

The chi-squared distribution  is approximately normal with mean 
and variance , for large .
The Student's t-distribution  is approximately normal with mean 0
and variance 1 when  is large.

Whether these approximations are sufficiently accurate depends on the
purpose for which they are needed, and the rate of convergence to the
normal distribution. It is typically the case that such approximations are less
accurate in the tails of the distribution.

A general upper bound for the approximation error in the central limit theorem is given by the Berry–Esseen
theorem, improvements of the approximation are given by the Edgeworth expansions.

If X is distributed normally with mean μ and variance σ2, then

The exponential of X is distributed log-normally: eX ~ ln(N (μ, σ2)).
The absolute value of X has folded normal distribution: |X| ~ Nf (μ, σ2). If μ = 0 this is known as the half-normal
distribution.
The absolute value of normalized residuals, |X − μ|/σ, has chi distribution with one degree of freedom: |X − μ|/σ ~ 

.

Central limit theorem

Operations on a single random variable
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The square of X/σ has the noncentral chi-squared distribution with one degree of freedom: X2/σ2 ~ (μ2/σ2). If μ
= 0, the distribution is called simply chi-squared.
The distribution of the variable X restricted to an interval [a, b] is called the truncated normal distribution.
(X − μ)−2 has a Lévy distribution with location 0 and scale σ−2.

If  and  are two independent standard normal random variables with mean 0 and variance 1, then

Their sum and difference is distributed normally with mean zero and variance two: .

Their product  follows the "product-normal" distribution[44] with density function 
where  is the modified Bessel function of the second kind. This distribution is symmetric around zero,
unbounded at , and has the characteristic function .
Their ratio follows the standard Cauchy distribution: .

Their Euclidean norm  has the Rayleigh distribution.

If  are independent standard normal random variables, then the sum of their squares has the chi-
squared distribution with  degrees of freedom

If  are independent normally distributed random variables with means  and variances , then
their sample mean is independent from the sample standard deviation,[45] which can be demonstrated using
Basu's theorem or Cochran's theorem.[46] The ratio of these two quantities will have the Student's t-distribution
with  degrees of freedom:

If ,  are independent standard normal random variables, then the ratio of their
normalized sums of squares will have the F-distribution with (n, m) degrees of freedom:[47]

The split normal distribution is most directly defined in terms of joining scaled sections of the density functions of
different normal distributions and rescaling the density to integrate to one. The truncated normal distribution results
from rescaling a section of a single density function.

Combination of two independent random variables

Combination of two or more independent random variables

Operations on the density function

Extensions
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The notion of normal distribution, being one of the most important distributions in probability theory, has been
extended far beyond the standard framework of the univariate (that is one-dimensional) case (Case 1). All these
extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists.

The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector
X ∈ Rk is multivariate-normally distributed if any linear combination of its components ∑k

j=1aj Xj has a (univariate)
normal distribution. The variance of X is a k×k symmetric positive-definite matrix V. The multivariate normal
distribution is a special case of the elliptical distributions. As such, its iso-density loci in the k = 2 case are ellipses
and in the case of arbitrary k are ellipsoids.
Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0
Complex normal distribution deals with the complex normal vectors. A complex vector X ∈ Ck is said to be normal
if both its real and imaginary components jointly possess a 2k-dimensional multivariate normal distribution. The
variance-covariance structure of X is described by two matrices: the variance matrix Γ, and the relation matrix C.
Matrix normal distribution describes the case of normally distributed matrices.
Gaussian processes are the normally distributed stochastic processes. These can be viewed as elements of
some infinite-dimensional Hilbert space H, and thus are the analogues of multivariate normal vectors for the case
k = ∞. A random element h ∈ H is said to be normal if for any constant a ∈ H the scalar product (a, h) has a
(univariate) normal distribution. The variance structure of such Gaussian random element can be described in
terms of the linear covariance operator K: H → H. Several Gaussian processes became popular enough to have
their own names:

Brownian motion,
Brownian bridge,
Ornstein–Uhlenbeck process.

Gaussian q-distribution is an abstract mathematical construction that represents a "q-analogue" of the normal
distribution.
the q-Gaussian is an analogue of the Gaussian distribution, in the sense that it maximises the Tsallis entropy, and
is one type of Tsallis distribution. Note that this distribution is different from the Gaussian q-distribution above.

A random variable X has a two-piece normal distribution if it has a distribution

where μ is the mean and σ1 and σ2 are the standard deviations of the distribution to the left and right of the mean
respectively.

The mean, variance and third central moment of this distribution have been determined[48]

where E(X), V(X) and T(X) are the mean, variance, and third central moment respectively.

One of the main practical uses of the Gaussian law is to model the empirical distributions of many different random
variables encountered in practice. In such case a possible extension would be a richer family of distributions, having
more than two parameters and therefore being able to fit the empirical distribution more accurately. The examples of
such extensions are:

Pearson distribution — a four-parameter family of probability distributions that extend the normal law to include
different skewness and kurtosis values.
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The generalized normal distribution, also known as the exponential power distribution, allows for distribution tails
with thicker or thinner asymptotic behaviors.

It is often the case that we do not know the parameters of the normal distribution, but instead want to estimate them.
That is, having a sample  from a normal  population we would like to learn the approximate
values of parameters  and . The standard approach to this problem is the maximum likelihood method, which
requires maximization of the log-likelihood function:

Taking derivatives with respect to  and  and solving the resulting system of first order conditions yields the
maximum likelihood estimates:

Estimator  is called the sample mean, since it is the arithmetic mean of all observations. The statistic  is complete
and sufficient for , and therefore by the Lehmann–Scheffé theorem,  is the uniformly minimum variance unbiased
(UMVU) estimator.[49] In finite samples it is distributed normally:

The variance of this estimator is equal to the μμ-element of the inverse Fisher information matrix . This implies
that the estimator is finite-sample efficient. Of practical importance is the fact that the standard error of  is
proportional to , that is, if one wishes to decrease the standard error by a factor of 10, one must increase the
number of points in the sample by a factor of 100. This fact is widely used in determining sample sizes for opinion
polls and the number of trials in Monte Carlo simulations.

From the standpoint of the asymptotic theory,  is consistent, that is, it converges in probability to  as . The
estimator is also asymptotically normal, which is a simple corollary of the fact that it is normal in finite samples:

The estimator  is called the sample variance, since it is the variance of the sample ( ). In practice,
another estimator is often used instead of the . This other estimator is denoted , and is also called the sample
variance, which represents a certain ambiguity in terminology; its square root  is called the sample standard
deviation. The estimator  differs from  by having (n − 1) instead of n in the denominator (the so-called Bessel's
correction):

Statistical inference

Estimation of parameters

Sample mean

Sample variance
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The difference between  and  becomes negligibly small for large n's. In finite samples however, the motivation
behind the use of  is that it is an unbiased estimator of the underlying parameter , whereas  is biased. Also, by
the Lehmann–Scheffé theorem the estimator  is uniformly minimum variance unbiased (UMVU),[49] which makes
it the "best" estimator among all unbiased ones. However it can be shown that the biased estimator  is "better"
than the  in terms of the mean squared error (MSE) criterion. In finite samples both  and  have scaled chi-
squared distribution with (n − 1) degrees of freedom:

The first of these expressions shows that the variance of  is equal to , which is slightly greater than the
σσ-element of the inverse Fisher information matrix . Thus,  is not an efficient estimator for , and moreover,
since  is UMVU, we can conclude that the finite-sample efficient estimator for  does not exist.

Applying the asymptotic theory, both estimators  and  are consistent, that is they converge in probability to  as
the sample size . The two estimators are also both asymptotically normal:

In particular, both estimators are asymptotically efficient for .

By Cochran's theorem, for normal distributions the sample mean  and the sample variance s2 are independent,
which means there can be no gain in considering their joint distribution. There is also a converse theorem: if in a
sample the sample mean and sample variance are independent, then the sample must have come from the normal
distribution. The independence between  and s can be employed to construct the so-called t-statistic:

This quantity t has the Student's t-distribution with (n − 1) degrees of freedom, and it is an ancillary statistic
(independent of the value of the parameters). Inverting the distribution of this t-statistics will allow us to construct
the confidence interval for μ;[50] similarly, inverting the χ2 distribution of the statistic s2 will give us the confidence
interval for σ2:[51]

where tk,p and χ 
2
k,p  are the pth quantiles of the t- and χ2-distributions respectively. These confidence intervals are of

the confidence level 1 − α, meaning that the true values μ and σ2 fall outside of these intervals with probability (or
significance level) α. In practice people usually take α = 5%, resulting in the 95% confidence intervals. The
approximate formulas in the display above were derived from the asymptotic distributions of  and s2. The
approximate formulas become valid for large values of n, and are more convenient for the manual calculation since
the standard normal quantiles zα/2 do not depend on n. In particular, the most popular value of α = 5%, results in
|z0.025| = 1.96.

Confidence intervals

Normality tests
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Normality tests assess the likelihood that the given data set {x1, ..., xn} comes from a normal distribution. Typically
the null hypothesis H0 is that the observations are distributed normally with unspecified mean μ and variance σ2,
versus the alternative Ha that the distribution is arbitrary. Many tests (over 40) have been devised for this problem,
the more prominent of them are outlined below:

"Visual" tests are more intuitively appealing but subjective at the same time, as they rely on informal human
judgement to accept or reject the null hypothesis.

Q-Q plot— is a plot of the sorted values from the data set against the expected values of the corresponding
quantiles from the standard normal distribution. That is, it's a plot of point of the form (Φ−1(pk), x(k)), where
plotting points pk are equal to pk = (k − α)/(n + 1 − 2α) and α is an adjustment constant, which can be anything
between 0 and 1. If the null hypothesis is true, the plotted points should approximately lie on a straight line.
P-P plot— similar to the Q-Q plot, but used much less frequently. This method consists of plotting the points
(Φ(z(k)), pk), where . For normally distributed data this plot should lie on a 45° line
between (0, 0) and (1, 1).
Shapiro-Wilk test employs the fact that the line in the Q-Q plot has the slope of σ. The test compares the least
squares estimate of that slope with the value of the sample variance, and rejects the null hypothesis if these
two quantities differ significantly.
Normal probability plot (rankit plot)

Moment tests:

D'Agostino's K-squared test
Jarque–Bera test

Empirical distribution function tests:

Lilliefors test (an adaptation of the Kolmogorov–Smirnov test)
Anderson–Darling test

Bayesian analysis of normally distributed data is complicated by the many different possibilities that may be
considered:

Either the mean, or the variance, or neither, may be considered a fixed quantity.
When the variance is unknown, analysis may be done directly in terms of the variance, or in terms of the
precision, the reciprocal of the variance. The reason for expressing the formulas in terms of precision is that the
analysis of most cases is simplified.
Both univariate and multivariate cases need to be considered.
Either conjugate or improper prior distributions may be placed on the unknown variables.
An additional set of cases occurs in Bayesian linear regression, where in the basic model the data is assumed to
be normally distributed, and normal priors are placed on the regression coefficients. The resulting analysis is
similar to the basic cases of independent identically distributed data.

The formulas for the non-linear-regression cases are summarized in the conjugate prior article.

The following auxiliary formula is useful for simplifying the posterior update equations, which otherwise become
fairly tedious.

Bayesian analysis of the normal distribution

Sum of two quadratics

Scalar form
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This equation rewrites the sum of two quadratics in x by expanding the squares, grouping the terms in x, and
completing the square. Note the following about the complex constant factors attached to some of the terms:

1. The factor  has the form of a weighted average of y and z.

2.  This shows that this factor can be thought of as resulting from a situation

where the reciprocals of quantities a and b add directly, so to combine a and b themselves, it's necessary to
reciprocate, add, and reciprocate the result again to get back into the original units. This is exactly the sort of

operation performed by the harmonic mean, so it is not surprising that  is one-half the harmonic mean of a

and b.

A similar formula can be written for the sum of two vector quadratics: If x, y, z are vectors of length k, and A and B
are symmetric, invertible matrices of size , then

where

Note that the form x′ A x is called a quadratic form and is a scalar:

In other words, it sums up all possible combinations of products of pairs of elements from x, with a separate
coefficient for each. In addition, since , only the sum  matters for any off-diagonal elements of
A, and there is no loss of generality in assuming that A is symmetric. Furthermore, if A is symmetric, then the form 

Another useful formula is as follows:

where 

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with known variance σ2, the conjugate prior distribution is also normally distributed.

This can be shown more easily by rewriting the variance as the precision, i.e. using τ = 1/σ2. Then if 
and  we proceed as follows.

Vector form

Sum of differences from the mean

With known variance
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First, the likelihood function is (using the formula above for the sum of differences from the mean):

Then, we proceed as follows:

In the above derivation, we used the formula above for the sum of two quadratics and eliminated all constant factors

not involving μ. The result is the kernel of a normal distribution, with mean  and precision , i.e.

This can be written as a set of Bayesian update equations for the posterior parameters in terms of the prior
parameters:

That is, to combine n data points with total precision of nτ (or equivalently, total variance of n/σ2) and mean of
values , derive a new total precision simply by adding the total precision of the data to the prior total precision, and
form a new mean through a precision-weighted average, i.e. a weighted average of the data mean and the prior
mean, each weighted by the associated total precision. This makes logical sense if the precision is thought of as
indicating the certainty of the observations: In the distribution of the posterior mean, each of the input components
is weighted by its certainty, and the certainty of this distribution is the sum of the individual certainties. (For the
intuition of this, compare the expression "the whole is (or is not) greater than the sum of its parts". In addition,
consider that the knowledge of the posterior comes from a combination of the knowledge of the prior and likelihood,
so it makes sense that we are more certain of it than of either of its components.)
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The above formula reveals why it is more convenient to do Bayesian analysis of conjugate priors for the normal
distribution in terms of the precision. The posterior precision is simply the sum of the prior and likelihood precisions,
and the posterior mean is computed through a precision-weighted average, as described above. The same formulas
can be written in terms of variance by reciprocating all the precisions, yielding the more ugly formulas

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with known mean μ, the conjugate prior of the variance has an inverse gamma distribution or a scaled inverse chi-
squared distribution. The two are equivalent except for having different parameterizations. Although the inverse
gamma is more commonly used, we use the scaled inverse chi-squared for the sake of convenience. The prior for σ2 is
as follows:

The likelihood function from above, written in terms of the variance, is:

where

Then:

With known mean
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The above is also a scaled inverse chi-squared distribution where

or equivalently

Reparameterizing in terms of an inverse gamma distribution, the result is:

For a set of i.i.d. normally distributed data points X of size n where each individual point x follows 
with unknown mean μ and unknown variance σ2, a combined (multivariate) conjugate prior is placed over the mean
and variance, consisting of a normal-inverse-gamma distribution. Logically, this originates as follows:

1. From the analysis of the case with unknown mean but known variance, we see that the update equations involve
sufficient statistics computed from the data consisting of the mean of the data points and the total variance of the
data points, computed in turn from the known variance divided by the number of data points.

2. From the analysis of the case with unknown variance but known mean, we see that the update equations involve
sufficient statistics over the data consisting of the number of data points and sum of squared deviations.

3. Keep in mind that the posterior update values serve as the prior distribution when further data is handled. Thus,
we should logically think of our priors in terms of the sufficient statistics just described, with the same semantics
kept in mind as much as possible.

4. To handle the case where both mean and variance are unknown, we could place independent priors over the
mean and variance, with fixed estimates of the average mean, total variance, number of data points used to
compute the variance prior, and sum of squared deviations. Note however that in reality, the total variance of the
mean depends on the unknown variance, and the sum of squared deviations that goes into the variance prior
(appears to) depend on the unknown mean. In practice, the latter dependence is relatively unimportant: Shifting
the actual mean shifts the generated points by an equal amount, and on average the squared deviations will
remain the same. This is not the case, however, with the total variance of the mean: As the unknown variance

With unknown mean and unknown variance
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increases, the total variance of the mean will increase proportionately, and we would like to capture this
dependence.

5. This suggests that we create a conditional prior of the mean on the unknown variance, with a hyperparameter
specifying the mean of the pseudo-observations associated with the prior, and another parameter specifying the
number of pseudo-observations. This number serves as a scaling parameter on the variance, making it possible
to control the overall variance of the mean relative to the actual variance parameter. The prior for the variance
also has two hyperparameters, one specifying the sum of squared deviations of the pseudo-observations
associated with the prior, and another specifying once again the number of pseudo-observations. Note that each
of the priors has a hyperparameter specifying the number of pseudo-observations, and in each case this controls
the relative variance of that prior. These are given as two separate hyperparameters so that the variance (aka the
confidence) of the two priors can be controlled separately.

6. This leads immediately to the normal-inverse-gamma distribution, which is the product of the two distributions just
defined, with conjugate priors used (an inverse gamma distribution over the variance, and a normal distribution
over the mean, conditional on the variance) and with the same four parameters just defined.

The priors are normally defined as follows:

The update equations can be derived, and look as follows:

The respective numbers of pseudo-observations add the number of actual observations to them. The new mean
hyperparameter is once again a weighted average, this time weighted by the relative numbers of observations. Finally,
the update for  is similar to the case with known mean, but in this case the sum of squared deviations is taken
with respect to the observed data mean rather than the true mean, and as a result a new "interaction term" needs to
be added to take care of the additional error source stemming from the deviation between prior and data mean.

[Proof]

The prior distributions are
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Therefore, the joint prior is

The likelihood function from the section above with known variance is:

Writing it in terms of variance rather than precision, we get:

where 

Therefore, the posterior is (dropping the hyperparameters as conditioning factors):

In other words, the posterior distribution has the form of a product of a normal distribution over p(μ | σ2) times an
inverse gamma distribution over p(σ2), with parameters that are the same as the update equations above.

The occurrence of normal distribution in practical problems can be loosely classified into four categories:

1. Exactly normal distributions;
2. Approximately normal laws, for example when such approximation is justified by the central limit theorem; and
3. Distributions modeled as normal – the normal distribution being the distribution with maximum entropy for a given

mean and variance.

Occurrence and applications
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The ground state of a
quantum harmonic
oscillator has the
Gaussian distribution.

Histogram of sepal widths for Iris
versicolor from Fisher's Iris flower
data set, with superimposed best-
fitting normal distribution.

4. Regression problems – the normal distribution being found after systematic effects have been modeled
sufficiently well.

Certain quantities in physics are distributed normally, as was first demonstrated by
James Clerk Maxwell. Examples of such quantities are:

Probability density function of a ground state in a quantum harmonic oscillator.
The position of a particle that experiences diffusion. If initially the particle is located at
a specific point (that is its probability distribution is the Dirac delta function), then after
time t its location is described by a normal distribution with variance t, which satisfies

the diffusion equation . If the initial location is given by a

certain density function , then the density at time t is the convolution of g and the
normal PDF.

Approximately normal distributions occur in many situations, as explained by the central limit theorem. When the
outcome is produced by many small effects acting additively and independently, its distribution will be close to
normal. The normal approximation will not be valid if the effects act multiplicatively (instead of additively), or if
there is a single external influence that has a considerably larger magnitude than the rest of the effects.

In counting problems, where the central limit theorem includes a discrete-to-continuum approximation and where
infinitely divisible and decomposable distributions are involved, such as

Binomial random variables, associated with binary response variables;
Poisson random variables, associated with rare events;

Thermal radiation has a Bose–Einstein distribution on very short time scales, and a normal distribution on longer
timescales due to the central limit theorem.

I can only recognize the occurrence of the normal curve – the
Laplacian curve of errors – as a very abnormal phenomenon. It is
roughly approximated to in certain distributions; for this reason, and
on account for its beautiful simplicity, we may, perhaps, use it as a
first approximation, particularly in theoretical investigations.

— Pearson (1901)

There are statistical methods to empirically test that assumption, see the above
Normality tests section.

In biology, the logarithm of various variables tend to have a normal
distribution, that is, they tend to have a log-normal distribution (after
separation on male/female subpopulations), with examples including:

Measures of size of living tissue (length, height, skin area, weight);[52]

The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth;
presumably the thickness of tree bark also falls under this category;
Certain physiological measurements, such as blood pressure of adult humans.

Exact normality

Approximate normality

Assumed normality
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Fitted cumulative normal distribution
to October rainfalls, see distribution
fitting

In finance, in particular the Black–Scholes model, changes in the logarithm of exchange rates, price indices, and
stock market indices are assumed normal (these variables behave like compound interest, not like simple
interest, and so are multiplicative). Some mathematicians such as Benoit Mandelbrot have argued that log-Levy
distributions, which possesses heavy tails would be a more appropriate model, in particular for the analysis for
stock market crashes. The use of the assumption of normal distribution occurring in financial models has also
been criticized by Nassim Nicholas Taleb in his works.
Measurement errors in physical experiments are often modeled by a normal distribution. This use of a normal
distribution does not imply that one is assuming the measurement errors are normally distributed, rather using the
normal distribution produces the most conservative predictions possible given only knowledge about the mean
and variance of the errors.[53]

In standardized testing, results can be made to have a normal distribution by either selecting the number and
difficulty of questions (as in the IQ test) or transforming the raw test scores into "output" scores by fitting them to
the normal distribution. For example, the SAT's traditional range of 200–800 is based on a normal distribution with
a mean of 500 and a standard deviation of 100.

Many scores are derived from the normal distribution, including percentile
ranks ("percentiles" or "quantiles"), normal curve equivalents, stanines, z-
scores, and T-scores. Additionally, some behavioral statistical procedures
assume that scores are normally distributed; for example, t-tests and
ANOVAs. Bell curve grading assigns relative grades based on a normal
distribution of scores.
In hydrology the distribution of long duration river discharge or rainfall, e.g.
monthly and yearly totals, is often thought to be practically normal according
to the central limit theorem.[54] The blue picture, made with CumFreq,
illustrates an example of fitting the normal distribution to ranked October
rainfalls showing the 90% confidence belt based on the binomial distribution.
The rainfall data are represented by plotting positions as part of the
cumulative frequency analysis.

In regression analysis, lack of normality in residuals simply indicates that the model postulated is inadequate in
accounting for the tendency in the data and needs to be augmented; in other words, normality in residuals can always
be achieved given a properly constructed model.

In computer simulations, especially in applications of the Monte-Carlo method, it is often desirable to generate
values that are normally distributed. The algorithms listed below all generate the standard normal deviates, since a

N(μ, σ2) can be generated as X = μ + σZ, where Z is standard normal. All these algorithms rely on the availability of a
random number generator U capable of producing uniform random variates.

The most straightforward method is based on the probability integral transform property: if U is distributed
uniformly on (0,1), then Φ−1(U) will have the standard normal distribution. The drawback of this method is that it
relies on calculation of the probit function Φ−1, which cannot be done analytically. Some approximate methods
are described in Hart (1968) and in the erf article. Wichura gives a fast algorithm for computing this function to 16
decimal places,[55] which is used by R to compute random variates of the normal distribution.
An easy to program approximate approach, that relies on the central limit theorem, is as follows: generate 12
uniform U(0,1) deviates, add them all up, and subtract 6 – the resulting random variable will have approximately
standard normal distribution. In truth, the distribution will be Irwin–Hall, which is a 12-section eleventh-order
polynomial approximation to the normal distribution. This random deviate will have a limited range of (−6, 6).[56]

The Box–Muller method uses two independent random numbers U and V distributed uniformly on (0,1). Then the
two random variables X and Y

Produced normality

Computational methods

Generating values from normal distribution
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The bean machine, a device invented by
Francis Galton, can be called the first
generator of normal random variables.
This machine consists of a vertical board
with interleaved rows of pins. Small balls
are dropped from the top and then
bounce randomly left or right as they hit
the pins. The balls are collected into bins
at the bottom and settle down into a
pattern resembling the Gaussian curve.

will both have the standard normal distribution, and will be
independent. This formulation arises because for a bivariate normal
random vector (X, Y) the squared norm X2 + Y2 will have the chi-
squared distribution with two degrees of freedom, which is an easily
generated exponential random variable corresponding to the quantity
−2ln(U) in these equations; and the angle is distributed uniformly
around the circle, chosen by the random variable V.

The Marsaglia polar method is a modification of the Box–Muller method
which does not require computation of the sine and cosine functions. In
this method, U and V are drawn from the uniform (−1,1) distribution, and
then S = U2 + V2 is computed. If S is greater or equal to 1, then the
method starts over, otherwise the two quantities

are returned. Again, X and Y are independent, standard normal
random variables.

The Ratio method[57] is a rejection method. The algorithm proceeds as
follows:

Generate two independent uniform deviates U and V;
Compute X = √8/e (V − 0.5)/U;
Optional: if X2 ≤ 5 − 4e1/4U then accept X and terminate algorithm;
Optional: if X2 ≥ 4e−1.35/U + 1.4 then reject X and start over from step 1;
If X2 ≤ −4 lnU then accept X, otherwise start over the algorithm.

The two optional steps allow the evaluation of the logarithm in the last step to be avoided in most cases. These
steps can be greatly improved[58] so that the logarithm is rarely evaluated.

The ziggurat algorithm[59] is faster than the Box–Muller transform and still exact. In about 97% of all cases it uses
only two random numbers, one random integer and one random uniform, one multiplication and an if-test. Only in
3% of the cases, where the combination of those two falls outside the "core of the ziggurat" (a kind of rejection
sampling using logarithms), do exponentials and more uniform random numbers have to be employed.
Integer arithmetic can be used to sample from the standard normal distribution.[60] This method is exact in the
sense that it satisfies the conditions of ideal approximation;[61] i.e., it is equivalent to sampling a real number from
the standard normal distribution and rounding this to the nearest representable floating point number.
There is also some investigation[62] into the connection between the fast Hadamard transform and the normal
distribution, since the transform employs just addition and subtraction and by the central limit theorem random
numbers from almost any distribution will be transformed into the normal distribution. In this regard a series of
Hadamard transforms can be combined with random permutations to turn arbitrary data sets into a normally
distributed data.

The standard normal CDF is widely used in scientific and statistical computing.

The values Φ(x) may be approximated very accurately by a variety of methods, such as numerical integration, Taylor
series, asymptotic series and continued fractions. Different approximations are used depending on the desired level
of accuracy.

Numerical approximations for the normal CDF
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Zelen & Severo (1964) give the approximation for Φ(x) for x > 0 with the absolute error |ε(x)| < 7.5·10−8

(algorithm 26.2.17 (http://www.math.sfu.ca/~cbm/aands/page_932.htm)):

where ϕ(x) is the standard normal PDF, and b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978, b5 = 1.330274429.
Hart (1968) lists some dozens of approximations – by means of rational functions, with or without exponentials –
for the erfc() function. His algorithms vary in the degree of complexity and the resulting precision, with
maximum absolute precision of 24 digits. An algorithm by West (2009) combines Hart's algorithm 5666 with a
continued fraction approximation in the tail to provide a fast computation algorithm with a 16-digit precision.
Cody (1969) after recalling Hart68 solution is not suited for erf, gives a solution for both erf and erfc, with maximal
relative error bound, via Rational Chebyshev Approximation.
Marsaglia (2004) suggested a simple algorithm[note 2] based on the Taylor series expansion

for calculating Φ(x) with arbitrary precision. The drawback of this algorithm is comparatively slow calculation time
(for example it takes over 300 iterations to calculate the function with 16 digits of precision when x = 10).
The GNU Scientific Library calculates values of the standard normal CDF using Hart's algorithms and
approximations with Chebyshev polynomials.

Shore (1982) introduced simple approximations that may be incorporated in stochastic optimization models of
engineering and operations research, like reliability engineering and inventory analysis. Denoting p=Φ(z), the
simplest approximation for the quantile function is:

This approximation delivers for z a maximum absolute error of 0.026 (for 0.5 ≤ p ≤ 0.9999, corresponding to
0 ≤ z ≤ 3.719). For p < 1/2 replace p by 1 − p and change sign. Another approximation, somewhat less accurate, is the
single-parameter approximation:

The latter had served to derive a simple approximation for the loss integral of the normal distribution, defined by
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Carl Friedrich Gauss
discovered the normal
distribution in 1809 as a way
to rationalize the method of
least squares.

This approximation is particularly accurate for the right far-tail (maximum error of 10−3 for z≥1.4). Highly accurate
approximations for the CDF, based on Response Modeling Methodology (RMM, Shore, 2011, 2012), are shown in
Shore (2005).

Some more approximations can be found at: Error function#Approximation with elementary functions. In particular,
small relative error on the whole domain for the CDF  and the quantile function  as well, is achieved via an
explicitly invertible formula by Sergei Winitzki in 2008.

Some authors[63][64] attribute the credit for the discovery of the normal distribution to de Moivre, who in 1738[note 3]

published in the second edition of his "The Doctrine of Chances" the study of the coefficients in the binomial
expansion of (a + b)n. De Moivre proved that the middle term in this expansion has the approximate magnitude of 

, and that "If m or ½n be a Quantity infinitely great, then the Logarithm of the Ratio, which a Term distant

from the middle by the Interval ℓ, has to the middle Term, is ."[65] Although this theorem can be interpreted as

the first obscure expression for the normal probability law, Stigler points out that de Moivre himself did not interpret
his results as anything more than the approximate rule for the binomial coefficients, and in particular de Moivre
lacked the concept of the probability density function.[66]

In 1809 Gauss published his monograph "Theoria motus corporum coelestium in
sectionibus conicis solem ambientium" where among other things he introduces
several important statistical concepts, such as the method of least squares, the method
of maximum likelihood, and the normal distribution. Gauss used M, M′, M′′, ... to
denote the measurements of some unknown quantity V, and sought the "most
probable" estimator of that quantity: the one that maximizes the probability
φ(M − V) · φ(M′ − V) · φ(M′′ − V) · ... of obtaining the observed experimental results.
In his notation φΔ is the probability law of the measurement errors of magnitude Δ.
Not knowing what the function φ is, Gauss requires that his method should reduce to
the well-known answer: the arithmetic mean of the measured values.[note 4] Starting
from these principles, Gauss demonstrates that the only law that rationalizes the
choice of arithmetic mean as an estimator of the location parameter, is the normal law
of errors:[67]

where h is "the measure of the precision of the observations". Using this normal law as
a generic model for errors in the experiments, Gauss formulates what is now known as
the non-linear weighted least squares (NWLS) method.[68]

Although Gauss was the first to suggest the normal distribution law, Laplace made significant contributions.[note 5] It
was Laplace who first posed the problem of aggregating several observations in 1774,[69] although his own solution
led to the Laplacian distribution. It was Laplace who first calculated the value of the integral ∫ e−t2

 dt = √π in 1782,
providing the normalization constant for the normal distribution.[70] Finally, it was Laplace who in 1810 proved and
presented to the Academy the fundamental central limit theorem, which emphasized the theoretical importance of
the normal distribution.[71]

It is of interest to note that in 1809 an Irish mathematician Adrain published two derivations of the normal
probability law, simultaneously and independently from Gauss.[72] His works remained largely unnoticed by the
scientific community, until in 1871 they were "rediscovered" by Abbe.[73]

History

Development
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Pierre-Simon Laplace proved
the central limit theorem in
1810, consolidating the
importance of the normal
distribution in statistics.

In the middle of the 19th century Maxwell demonstrated that the normal distribution
is not just a convenient mathematical tool, but may also occur in natural
phenomena:[74] "The number of particles whose velocity, resolved in a certain
direction, lies between x and x + dx is

Since its introduction, the normal distribution has been known by many different
names: the law of error, the law of facility of errors, Laplace's second law, Gaussian
law, etc. Gauss himself apparently coined the term with reference to the "normal
equations" involved in its applications, with normal having its technical meaning of
orthogonal rather than "usual".[75] However, by the end of the 19th century some
authors[note 6] had started using the name normal distribution, where the word
"normal" was used as an adjective – the term now being seen as a reflection of the fact
that this distribution was seen as typical, common – and thus "normal". Peirce (one of
those authors) once defined "normal" thus: "...the 'normal' is not the average (or any
other kind of mean) of what actually occurs, but of what would, in the long run, occur under certain
circumstances."[76] Around the turn of the 20th century Pearson popularized the term normal as a designation for
this distribution.[77]

Many years ago I called the Laplace–Gaussian curve the normal curve, which name, while it avoids an
international question of priority, has the disadvantage of leading people to believe that all other
distributions of frequency are in one sense or another 'abnormal'.

— Pearson (1920)

Also, it was Pearson who first wrote the distribution in terms of the standard deviation σ as in modern notation. Soon
after this, in year 1915, Fisher added the location parameter to the formula for normal distribution, expressing it in
the way it is written nowadays:

The term "standard normal", which denotes the normal distribution with zero mean and unit variance came into
general use around the 1950s, appearing in the popular textbooks by P.G. Hoel (1947) "Introduction to mathematical
statistics" and A.M. Mood (1950) "Introduction to the theory of statistics".[78]

Bates distribution — similar to the Irwin–Hall distribution, but rescaled back into the 0 to 1 range
Behrens–Fisher problem — the long-standing problem of testing whether two normal samples with different
variances have same means;
Bhattacharyya distance – method used to separate mixtures of normal distributions
Erdős–Kac theorem—on the occurrence of the normal distribution in number theory
Gaussian blur—convolution, which uses the normal distribution as a kernel
Normally distributed and uncorrelated does not imply independent
Reciprocal normal distribution
Ratio normal distribution
Standard normal table
Stein's lemma

Naming

See also
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Sub-Gaussian distribution
Sum of normally distributed random variables
Tweedie distribution — The normal distribution is a member of the family of Tweedie exponential dispersion
models
Wrapped normal distribution — the Normal distribution applied to a circular domain
Z-test— using the normal distribution

1. For the proof see Gaussian integral.
2. For example, this algorithm is given in the article Bc programming language.
3. De Moivre first published his findings in 1733, in a pamphlet "Approximatio ad Summam Terminorum Binomii

(a + b)n in Seriem Expansi" that was designated for private circulation only. But it was not until the year 1738 that
he made his results publicly available. The original pamphlet was reprinted several times, see for example Walker
(1985).

4. "It has been customary certainly to regard as an axiom the hypothesis that if any quantity has been determined
by several direct observations, made under the same circumstances and with equal care, the arithmetical mean
of the observed values affords the most probable value, if not rigorously, yet very nearly at least, so that it is
always most safe to adhere to it." — Gauss (1809, section 177)

5. "My custom of terming the curve the Gauss–Laplacian or normal curve saves us from proportioning the merit of
discovery between the two great astronomer mathematicians." quote from Pearson (1905, p. 189)

6. Besides those specifically referenced here, such use is encountered in the works of Peirce, Galton (Galton (1889,
chapter V)) and Lexis (Lexis (1878), Rohrbasser & Véron (2003)) c. 1875.
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Source: https://en.wikipedia.org/wiki/Box_plot 

A boxplot is a standardized way of displaying the dataset based on a five-number summary: the 
minimum, the maximum, the sample median, and the first and third quartiles. 

Minimum : the lowest data point excluding any outliers. 

Maximum : the largest data point excluding any outliers. 

Median (Q2 / 50th percentile) : the middle value of the dataset. 

First quartile (Q1 / 25th percentile) : also known as the lower quartile qn(0.25), is the median of the 
lower half of the dataset. 

Third quartile (Q3 / 75th percentile) : also known as the upper quartile qn(0.75), is the median of the 
upper half of the dataset.[4] 

An important element used to construct the box plot by determining the minimum and maximum data 
values feasible, but is not part of the aforementioned five-number summary, is the interquartile range 
or IQR denoted below: 

Interquartile range (IQR) : is the distance between the upper and lower quartiles. 

A boxplot is constructed of two parts, a box and a set of whiskers shown in Figure 2. The lowest 
point is the minimum of the data set and the highest point is the maximum of the data set. The 
box is drawn from Q1 to Q3 with a horizontal line drawn in the middle to denote the median. 

The same data set can also be represented as a boxplot shown in Figure 3. From above the 
upper quartile, a distance of 1.5 times the IQR is measured out and a whisker is drawn up to the 
largest observed point from the dataset that falls within this distance. Similarly, a distance of 1.5 
times the IQR is measured out below the lower quartile and a whisker is drawn up to the lower 
observed point from the dataset that falls within this distance. All other observed points are 
plotted as outliers.  

However, the whiskers can represent several possible alternative values, among them: 

 the minimum and maximum of all of the data (as in figure 2) 
 one standard deviation above and below the mean of the data 
 the 9th percentile and the 91st percentile 
 the 2nd percentile and the 98th percentile. 

Any data not included between the whiskers should be plotted as an outlier with a dot, small 
circle, or star, but occasionally this is not done. 

Some box plots include an additional character to represent the mean of the data.  

On some box plots a crosshatch is placed on each whisker, before the end of the whisker. 

Rarely, box plots can be presented with no whiskers at all. 

Because of this variability, it is appropriate to describe the convention being used for the 
whiskers and outliers in the caption for the plot. 

The unusual percentiles 2%, 9%, 91%, 98% are sometimes used for whisker cross-hatches and 
whisker ends to show the seven-number summary. If the data are normally distributed, the 
locations of the seven marks on the box plot will be equally spaced. 
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Boxplot with whiskers from minimum to maximum 

 

 

Figure 3. Same Boxplot with whiskers with maximum 1.5 IQR 
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Example without outliers 
 

 

Figure 5. The generated boxplot figure of our example on the left with no outliers. 

A series of hourly temperatures were measured throughout the day in degrees Fahrenheit. The 
recorded values are listed in order as follows: 50, 50, 55, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 
70, 72, 73, 75, 75, 76, 76, 78, 79, 81. 

A box plot of the data can be generated by calculating five relevant values: minimum, maximum, 
median, first quartile, and third quartile. 

The minimum is the smallest number of the set. In this case, the minimum day temperature is 50 °F. 

The maximum is the largest number of the set. In this case, the maximum day temperature is 81 °F. 

The median is the "middle" number of the ordered set. This means that there are exactly 50% of the 
elements less than the median and 50% of the elements greater than the median. The median of 
this ordered set is 70 °F. 

The first quartile value is the number that marks one quarter of the ordered set. In other words, there 
are exactly 25% of the elements that are less than the first quartile and exactly 75% of the elements 
that are greater. The first quartile value can easily be determined by finding the "middle" number 
between the minimum and the median. For the hourly temperatures, the "middle" number between 
50 °F and 70 °F is 66 °F. 

The third quartile value is the number that marks three quarters of the ordered set. In other words, 
there are exactly 75% of the elements that are less than the first quartile and 25% of the elements 
that are greater. The third quartile value can be easily determined by finding the "middle" number 
between the median and the maximum. For the hourly temperatures, the "middle" number between 
70 °F and 81 °F is 75 °F. 

The upper whisker of the box plot is the largest dataset number smaller than 1.5IQR above the third 
quartile. Here, 1.5IQR above the third quartile is 88.5 °F and the maximum is 81 °F. Therefore, the 
upper whisker is drawn at the value of the maximum, 81 °F. 

Similarly, the lower whisker of the box plot is the smallest dataset number larger than 1.5IQR below 
the first quartile. Here, 1.5IQR below the first quartile is 52.5 °F and the minimum is 50 °F. Therefore, 
the lower whisker is drawn at the value of the smallest dataset number larger than 52.5 °F, 55 °F. 
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Example with outliers 

 

Figure 6. The generated boxplot of our example on the left with outliers. 

Above is an example without outliers. Here is a followup example with outliers: 

The ordered set is: 52, 57, 57, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 
78, 79, 89. 

In this example, only the first and the last number are changed. The median, third quartile, and first 
quartile remain the same. 

In this case, the maximum is 89 °F and 1.5IQR above the third quartile is 88.5 °F. The maximum is 
greater than 1.5IQR plus the third quartile, so the maximum is an outlier. Therefore, the upper 
whisker is drawn at the greatest value smaller than 1.5IQR above the third quartile, which is 79 °F. 

Similarly, the minimum is 52 °F and 1.5IQR below the first quartile is 52.5 °F. The minimum is 
smaller than 1.5IQR minus the first quartile, so the minimum is also an outlier. Therefore, the lower 
whisker is drawn at the smallest value greater than 1.5IQR below the first quartile, which is 57 °F. 
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Scatter plot (method comparison) 

A scatter plot shows the relationship between two methods. 
 

 

 

The scatter plot shows measured values of the reference or comparison method on the 
horizontal axis, against the test method on the vertical axis. 

The relationship between the methods may indicate a constant, or proportional bias, and 
the variability in the measurements across the measuring interval. If the points form a 
constant-width band, the method has a constant standard deviation (constant SD). If the 
points form a band that is narrower at small values and wider at large values, there is a 
constant relationship between the standard deviation and value, and the method has 
constant a coefficient of variation (CV). Some measurement procedures exhibit constant SD 
in the low range and constant CV in the high range. 

If both methods measure on the same scale, a gray identity line shows ideal agreement and 
is useful for comparing the relationship against. 
 

2.5: Correlation and Causation, Scatter Plots 

The strength of a relationship between two variables is called correlation. Variables that are 
strongly related to each other have strong correlation. However, if two variables are correlated it 
does not mean that one variable caused the other variable to occur. The above example from the 
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Planters Cocktail Peanuts label is an example of this. There is a strong correlation between eating 
a diet that is low in saturated fat and cholesterol and heart disease. But that correlation does not 
mean that eating a diet that is low in saturated fat and cholesterol will cause your risk of heart 
disease to go down. There could be many different variables that could cause both variables in 
question to go down or up. One example is that a person’s genetic makeup could make them not 
want to eat fatty food and also not develop heart disease. No matter how strong a correlation is 
between two variables, you can never know for sure if one variable causes the other variable to 
occur without conducting experimentation. The only way to find out if eating a diet low in 
saturated fat and cholesterol actually lowers the risk of heart disease is to do an experiment. This 
is where you tell one group of people that they have to eat a diet low in saturated fat and cholesterol 
and another group of people that they have to eat a diet high in saturated fat and cholesterol, and 
then observe what happens to both groups over the years. You cannot morally do this experiment, 
so there is no way to prove the statement. That is why the word “may” is in the statement. We see 
many correlations like this one. Always be sure not to make a correlation statement into a causation 
statement. 

Example 2.5.12.5.1: Correlation vs Causation 

For each of the following scenarios answer the question and give an example of another variable 
that could explain the correlation. 

1. There is a negative correlation between number of children a woman has and her life 
expectancy. Does that mean that having children causes a woman to die earlier? 

A correlation between two variables does not mean that one causes the other. A possible cause for 
both variables could be better health care. If there is better health care, then life expectancy goes 
up, and also with better health care birth control is more readily available. 

2. There is a positive correlation between ice cream sales and the number of drownings at the 
beach. Does that mean that eating ice cream can cause a person to drown? 

A correlation between two variables does not mean that one causes the other. The cause for both 
could be that the temperature is going up. The higher the temperature, the more likely someone 
will buy ice cream and the more people at the beach. 

3. There is a correlation between waist measures and wrist measures. Does this mean that your 
waist measurement causes your wrist measurement to change? 

A correlation between two variables does not mean that one causes the other. The cause of both 
could be a person’s genetics, eating habits, exercise habits, etc. 

How do we tell if there is a correlation between two variables? The easiest way is to graph the two 
variables together as ordered pairs on a graph called a scatter plot. To create a scatter plot, 
consider that one variable is the independent variable and the other is the dependent variable. This 
means that the dependent variable depends on the independent variable. We usually set up these 
two variables as ordered pairs where the independent variable is first and the dependent variable 
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is second. Thus, when graphed, the independent variable is graphed along the horizontal axis and 
the dependent variable is graphed along the vertical axis. You do not connect the dots after plotting 
these ordered pairs. Instead look to see if there is a pattern, such as a line, that fits the data well. 
Here are some examples of scatter plots and how strong the linear correlation is between the two 
variables. 

 

Figure 2.5.12.5.1: Scatter Plots Showing Types of Linear Correlation 
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Null Replacement 
 

Source: https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/Rgr~tkmosOxOreWqyseB_A 

Purpose 

NULL value replacement is offered as a transformation function. A literal value, the mean, 
median, mode, or an imputed value joined from another table can be used as the replacement 
value. The median value can be requested with or without averaging of two middle values 
when there is an even number of values. 

Literal value replacement is supported for numeric, character, and date data types. Mean value 
replacement is supported for columns of numeric type or date type. Median without averaging, 
mode, and imputed value replacement are valid for any supported type. Median with averaging 
is supported only for numeric and date type. 

Null can be checked by below query-: 

SELECT Salary 
FROM Employee 
WHERE DeptNo IS NULL; 

 

Examples 

These examples demonstrate the Null Replacement transformation. To run the provided 
examples, the td_analyze function must be installed in a database called twm and the TWM 
tutorial data must be installed in the twm_source database. 

The first example operates on numeric data. 

call 
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;keycolumns=cust
_id;nullreplacement={nullstyle(literal,0),columns(age,income/inc)}{nullstyle(mean),columns(ag
e/age1)}{nullstyle(median),columns(age/age2)}{nullstyle(medianwithoutaveraging),columns(ag
e/age3)}{nullstyle(mode),columns(age/age4)}{nullstyle(imputed,twm_customer_analysis),colu
mns(income)};'); 

 

 

 

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/Rgr~tkmosOxOreWqyseB_A


Teradata Vantage: Analytics Certification Learning Resource 

 

Page 2 of 6 
 

 

This example operates on date and character type data. 

call 
twm.td_analyze('vartran','database=twm_source;tablename=twm_credit_acct;keycolumns=cus
t_id;nullreplacement={nullstyle(literal,DATE 1995-12-
23),columns(acct_end_date/date1)}{nullstyle(literal,U),columns(account_active/char1)}{nullstyl
e(mean),columns(acct_end_date/date2)}{nullstyle(median),columns(acct_end_date/date2A)}{n
ullstyle(medianwithoutaveraging),columns(acct_end_date/date3)}{nullstyle(mode),columns(ac
ct_end_date/date4)}{nullstyle(imputed,twm_checking_acct),columns(acct_end_date/date5)}{n
ullstyle(medianwithoutaveraging),columns(account_active/char2)}{nullstyle(mode),columns(ac
count_active/char3)}{nullstyle(imputed,twm_checking_acct),columns(account_active/char4)};')
; 

Recode 

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/HTwi8XbIqKAnLR_hQpNG9A 

Recoding a categorical data column is done to re-express existing values of a column (variable) 
into a new coding scheme or to correct data quality problems and focus an analysis on a 
particular value. It allows for mapping individual values, NULL values, or any number of 
remaining values (ELSE option) to a new value, a NULL value or the same value. 

Recoding supports character, numeric, and date type columns. If date values are entered, the 
keyword DATE must precede the date value, and do not enclose in single quotes. 

The following example demonstrates the Recode transformation. 

call 
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;recode={recodeva
lues(M/SAME,F/f),recodeother(NULL),columns(gender)}{recodevalues(1/SAME,2/NULL,3/6,4/4,
NULL/NULL),recodeother(NULL),columns(marital_status)}{recodevalues(F/f,null/0),recodeother
(same),columns(gender/gender2)}{recodevalues(0/0,1/1,2/1,3/1,4/1,5/1),recodeother(0),colu
mns(nbr_children,years_with_bank)};'); 

 

Rescale 
https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/aIIZUpU7O1Jvsq~9_NUfWw 

 

Purpose 

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/HTwi8XbIqKAnLR_hQpNG9A
https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/aIIZUpU7O1Jvsq~9_NUfWw
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Rescaling limits the upper and lower boundaries of the data in a continuous numeric column 
using a linear rescaling function based on maximum and minimum data values. Rescale is useful 
with algorithms that require or work better with data within a certain range. Rescale is only 
valid on numeric columns, and not columns of type date. 

You can supply new minimum and maximum values to form new variable boundaries. If only 
the lower boundary is supplied, the variable is aligned to this value; if only an upper boundary 
value is specified, the variable is aligned to that value. If a requested column has a constant 
value (max and min are the same), then the transformation fails with an SQL error.  

 
 
The following example demonstrates the Rescale transformation. 

call 
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;rescale={rescaleb
ounds(lowerbound/0,upperbound/1),columns(income/inc,age)}{rescalebounds(upperbound/1),
columns(income/income1,age/age1)}{rescalebounds(lowerbound/0),columns(income/income2
,age/age2)};'); 

 
Sigmoid 
 
https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/h8ApE8PwhJ6HpZ0GaQUhZQ 

Purpose 

A Sigmoid transformation provides rescaling of continuous numeric data in a more 
sophisticated way than the Rescaling transformation function. In a Sigmoid transformation a 
numeric column is transformed using a type of sigmoid or s-shaped function. The logit function 
produces a continuously increasing value between 0 and 1. The modified logit function is twice 
the logit minus 1 and produces a value between -1 and 1. The hyperbolic tangent function also 
produces a value between -1 and 1. These non-linear transformations are more useful in data 
mining than a linear Rescaling transformation. 

For absolute values of x greater than or equal to 36, the value of the sigmoid function is 
effectively 1 for positive arguments or 0 for negative arguments, within about 15 digits of 
significance. 

The Sigmoid transformation is supported for numeric columns only, not date columns. The only 
required parameter for the Sigmoid transformation is columns. The datatype parameter 
controls the output data type. The sigmoidstyle parameter is also specifies the style of sigmoid 
function. 

https://docs.teradata.com/reader/D8pLcnswlJUTD9q0xD0Buw/h8ApE8PwhJ6HpZ0GaQUhZQ
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The following example demonstrates the Sigmoid transformation. 

call 
twm.td_analyze('vartran','database=twm_source;tablename=twm_customer;sigmoid={sigmoid
style(logit),columns(cust_id,age,income)}{sigmoidstyle(modifiedlogit),columns(cust_id/cid2,age
/age2,income/inc2)}{sigmoidstyle(tanh),columns(cust_id/cid3,age/age3,income/inc3)};'); 

BAD QUALITY DATA CHECK 

(source-: Teradata SQL Function Expression and Predicates document) 

EXIST and NOT EXIST PREDICATES 

EXISTS predicate tests the existence of specified rows of a subquery. In general, EXISTS can be used to  
replace comparisons with IN and NOT EXISTS can be used to replace comparisons with NOT IN. However,  
the reverse is not true. Some problems can be solved only by using EXISTS and/or NOT EXISTS predicate.  

SELECT SName, SNo 
FROM student s 
WHERE EXISTS 
(SELECT * 
FROM department d 
WHERE EXISTS 
(SELECT * 
FROM course c, registration r, class cl 
WHERE c.Dept=d.Dept 
AND c.CNo=r.CNo 
AND s.SNo=r.SNo 
AND r.CNo=cl.CNo 
AND r.Sec=cl.Sec)); 

 

SELECT SName, SNo 
FROM student s 
WHERE NOT EXISTS 
(SELECT * 
FROM department d 
WHERE d.Dept IN 
(SELECT Dept 
FROM course) AND NOT EXISTS 
(SELECT * 
FROM course c, registration r, class cl 
WHERE c.Dept=d.Dept 
AND c.CNo=r.CNo 
AND s.SNo=r.SNo 



Teradata Vantage: Analytics Certification Learning Resource 

 

Page 5 of 6 
 

AND r.CNo=cl.CNo 
AND r.Sec=cl.Sec))); 

IN/NOT IN 
Purpose 
Tests the existence of the value of an expression or expression list in a comparable set in one of two ways:  
• Compares the value of an expression with values in an explicit list of literals. 
• Compares values in a list of expressions with values and in a set of corresponding expressions in a 
subquery. 

 

The following statement searches for the names of all employees who work in Atlanta. 
SELECT Name 
FROM Employee 
WHERE DeptNo IN 
(SELECT DeptNo 
FROM Department 
WHERE Loc = 'ATL'); 

 

Example: Using IN/NOT IN with a List of Literals 
This example shows the behavior of IN/NOT IN with a list of literals. 
Consider the following table definition and contents:  
CREATE TABLE t (x INTEGER); 
INSERT t (1); 
INSERT t (2); 
INSERT t (3); 
INSERT t (4); 
INSERT t (5); 
IF you use this query … 

Query Result 

SELECT * FROM t WHERE x IN (1,2)  1, 2 

SELECT * FROM t WHERE x IN ANY (1,2)  1, 2 

SELECT * FROM t WHERE NOT (x NOT IN (1,2))  1, 2 

SELECT * FROM t WHERE x NOT IN (1,2)  3, 4, 5 

SELECT * FROM t WHERE x NOT IN ALL (1,2)  3, 4, 5 

SELECT * FROM t WHERE NOT (x IN (1, 2))  3, 4, 5 

SELECT * FROM t WHERE NOT (x IN ANY (1,2))  3, 4, 5 

SELECT * FROM t WHERE x IN (3 TO 5)  3, 4, 5 

SELECT * FROM t WHERE x NOT IN SOME (1, 2)  
1, 2, 3, 
4, 5 

SELECT * FROM t WHERE x IN (1, 2 TO 4, 5)  
1, 2, 3, 
4, 5 

SELECT * FROM t WHERE x IN ALL (1,2)  no rows 

SELECT * FROM t WHERE NOT (x NOT IN SOME (1,2))  no rows 

SELECT * FROM t WHERE x NOT IN (1 TO 5)  no rows 
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The 
 THEN the T 

 
The data can be deleted which is not required using -: 
DELETE FROM t WHERE NOT (x IN (1, 2)) 

 

Basic Sampling (Weighted) 
https://docs.teradata.com/reader/JtLhZxnZVIJAs8pZG1VVfg/EE9WkcAqwaJmGDLD32QShw 

 

This example uses basic sampling to select a sample of 10 rows, weighted by car weight. 
Because the function call includes the Seed and SeedColumn arguments, it always produces the 
same output from the same input. 

The sampling can be done to avoid data quality issues. 

SELECT * FROM RandomSample ( 
  ON (SELECT 1) PARTITION BY 1 
  InputTable ('fs_input') 
  SamplingMode ('basic') 
  NumSample ('10') 
  WeightColumn ('wt') 
  Seed ('1') 
  SeedColumn ('model') 
) ORDER BY 1, 2, 3; 

 

https://docs.teradata.com/reader/JtLhZxnZVIJAs8pZG1VVfg/EE9WkcAqwaJmGDLD32QShw


The MultiCaseMatch function extends the capability of the SQL CASE statement by supporting matches to
multiple criteria in a single row.

When SQL CASE finds a match, it outputs the result and immediately proceeds to the next row without
searching for more matches in the current row.

The MultiCaseMatch function iterates through the input data set only once and outputs matches whenever
a match occurs. If multiple matches occur for a given input row, the function outputs one output row for each
match.

Use the MultiCaseMatch function when the conditions in your CASE statement do not form a mutually
exclusive set.

MultiCaseMatch Syntax
Version 1.5

SELECT * FROM MultiCaseMatch (
  ON (SELECT t.*, condition AS case [,...] FROM { table | view | (query) } AS t)
  USING
  Labels ('case AS "label"' [,...])
) AS alias;

MultiCaseMatch Syntax Elements
Labels

Specify a label for each case. Each case corresponds to a condition, which is a SQL predicate
that includes input column names. When an input value satisfies condition, that is a match, and
the function outputs the input row and the corresponding label.

MultiCaseMatch Input
Input Table Schema

Column Data Type Description

column_in_condition Any [Column appears once for each column specified in a condition.]

other_column Any [Column appears zero or more times.] Column to copy to output
table.

MultiCaseMatch (ML Engine)

29
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MultiCaseMatch Output
Output Table Schema

Column Data Type Description

column_in_
condition

Same as in input
table

[Column appears once for each column specified in a condition.
] Column copied from input table.

labels VARCHAR [Column appears once for each matching label.] Labels that
correspond to case that column_in_condition value matches.

MultiCaseMatch Example
This example labels people with the age groups to which they belong, which overlap:

Age Group Description

infant Younger than 1 year

toddler 1-2 years, inclusive

kid 2-12 years, inclusive

teenager 13-19 years, inclusive

young adult 16-25 years, inclusive

adult 21-40 years, inclusive

middle-aged person 35-60 years, inclusive

senior citizen 60 years or older

Input

people_age
id name age

1 John 0.5

2 Freddy 2

3 Marie 6

4 Tom Sawyer 17

5 Becky Thatcher 16

6 Philip 22

7 Joseph 25

29: MultiCaseMatch (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 417



id name age

8 Roger 35

9 Natalie 30

10 Henry 40

11 George 50

12 Sir William 65

SQL Call

SELECT * FROM MultiCaseMatch (
ON (SELECT t.*, 
   (case when t.age < 1 THEN '1' ELSE '0' END) AS case1,
   (case when t.age >= 1 AND t.age <= 2 THEN '1' ELSE '0' END) AS case2,
   (case when t.age >= 2 AND t.age <= 12 THEN '1' ELSE '0' END) AS case3,
   (case when t.age >= 13 AND t.age <= 19 THEN '1' ELSE '0' END) AS case4,
   (case when t.age >= 16 AND t.age <= 25 THEN '1' ELSE '0' END) AS case5,
   (case when t.age >= 21 AND t.age <= 40 THEN '1' ELSE '0' END) AS case6,
   (case when t.age >= 35 AND t.age <= 60 THEN '1' ELSE '0' END) AS case7,
   (case when t.age >= 60 THEN '1' ELSE '0' END) AS case8
   FROM people_age AS t)
USING
   LABELS (
     'case1 AS "infant"',
     'case2 AS "toddler"',
     'case3 AS "kid"',
     'case4 AS "teenager"',
     'case5 AS "young adult"',
     'case6 AS "adult"',
     'case7 AS "middle aged person"',
     'case8 AS "senior citizen"')
  ) AS dt;

Output

Several people have two labels. For example, Freddy is both a toddler and a kid, and Tom Sawyer and
Becky Thatcher are both teenagers and young adults.

 id name           age  labels             
 -- -------------- ---- ------------------ 
  7 joseph         25.0 young adult       
  6 philip         22.0 young adult       
  7 joseph         25.0 adult             
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  6 philip         22.0 adult             
 12 sir william    65.0 senior citizen    
 11 george         50.0 middle aged person
  4 tom sawyer     17.0 teenager          
  9 natalie        30.0 adult             
  4 tom sawyer     17.0 young adult       
 10 henry          40.0 adult             
  5 becky thatcher 16.0 teenager          
 10 henry          40.0 middle aged person
  5 becky thatcher 16.0 young adult       
  3 marie           6.0 kid               
  1 john            0.5 infant            
  8 roger          35.0 adult             
  8 roger          35.0 middle aged person
  2 freddy          2.0 toddler           
  2 freddy          2.0 kid

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The OutlierFilter function is useful for filtering a numeric data set before applying ML Engine functions for
which outliers can skew the estimates of parameters and cause inaccurate predictions. Such functions
include time series functions, GLM, LAR, LinReg, PCA, and KMeans. The input data set is expected to
have millions of attribute-value pairs.

The OutlierFilter function filters outliers from a data set, either deleting them or replacing them with a
specified value. Optionally, the function stores the outliers in their own table. The function provides these
methods for filtering outliers:

• Percentile
• Tukey's test
• Carling's modification to Tukey's test
• Median absolute deviation

The method determines the criteria for an observation to classify as an outlier.

OutlierFilter Syntax
Version 1.10

SELECT * FROM OutlierFilter (
  ON { table | view | (query) } AS InputTable
  OUT TABLE OutputTable (output_table)
  [ OUT TABLE OutliersTable (outliers_table) ]
  USING
  TargetColumns ('target_column' [,...])
  [ GroupByColumns ('group_column' [,...]) ]
  [ OutlierMethod ('method' [,...]) ]
  [ ApproxPercentile ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ PercentileThreshold (perc_lower, perc_upper]) ]
  [ PercentAccuracy (accuracy) ]
  [ IQRMultiplier (k) ]
  [ RemoveTail ({ 'both' | 'upper' | 'lower' }) ]
  [ ReplacementValue ({ 'delete' | 'null' | 'median' | 'newval' }) ]
  [ MADScaleConstant (constant) ]
  [ MADThreshold (madlimit) ]
) AS alias;

OutlierFilter (ML Engine)

31
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OutlierFilter Syntax Elements
OutputTable

Specify the name of the table where the function stores the copy of the InputTable (including the
PARTITION BY column) with the outliers either deleted (by default) or replaced (as specified by
the ReplacementValue syntax element).

OutliersTable
[Optional] Specify the name of the table where the function outputs copies of the rows of the
InputTable that contain outliers.

Default behavior: Function does not output an outlier table.

TargetColumns
Specify the names of the InputTable columns that contain numeric data to filter.

GroupByColumns
[Optional] Specify the names of the InputTable columns by which to group the data. If the data
schema format is name:value, this list must include name.

Default behavior: Function does not group data.

OutlierMethod
[Optional] Specify one or more of the following methods of filtering outliers:

method Description

'percentile'
(Default)

Percentile.

'tukey' Tukey's test:
An outlier is defined as any observation smaller than V1 - k*(V3-V1) or larger
than V3 + k*(V3-V1), where V1 and V3 are 25th and 75th percentiles of data
and k is specified by IQRMultiplier syntax element.

'carling' Carling's modification to Tukey's test:
An outlier is defined as an observation outside the range V2 ± c*(V3 - V1),
where V2 is median of data, V1 and V3 are 25th and 75th percentiles of
data, and c is constant (which you cannot change).
For more information about Carling's modification, see:
Carling, Kenneth. "Resistant outlier rules and the non-Gaussian case."
Computational Statistics and Data Analysis 33, no. 3 (2000): 249-258.
Available at https://core.ac.uk/download/pdf/6559387.pdf.

'MAD-median' Median absolute deviation (MAD), median of absolute values of residuals.
For example, for i datapoints and median value of data M, MAD=mediani(|
xi-M |).

Specify either one method, which the function uses for all columns specified by TargetColumns,
or specify a method for each column specified by TargetColumns.
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ApproxPercentile
[Optional] Specify whether the function calculates the percentiles used as filter limits exactly.
Approximate percentiles are typically faster, but can fail when the number of groups exceeds one
million.

Default: 'false'

PercentileThreshold
[Optional] Specify the range of percentile values for 'percentile' filtering, [perc_lower, 100 -
perc_lower].

Default: [5, 95]

PercentAccuracy
[Optional] Specify the accuracy of percentiles used for filtering. The value accuracy must be in
the range [0.01, 50].

Default: 0.5%

IQRMultiplier
[Optional] Specify the multiplier of interquartile range for 'tukey' filtering.

Default: 1.5

RemoveTail
[Optional] Specify the side of the distribution to filter.

Default: 'both'

ReplacementValue
[Optional] Specify how the function handles outliers:

Option Description

'delete'
(Default)

Function does not copy row to output table.

'null' Function copies row to output table, replacing each outlier with value NULL.

'median' Function copies row to output table, replacing each outlier with median
value for its group.

newval Function copies row to output table, replacing each outlier with newval,
which must be a numeric value.

MadScaleConstant
[Optional] Specify the scale constant used with 'MAD-median' filtering; a DOUBLE PRECISION
value.

Default: 1.4826, which means MAD = 1.4826 * median(|x - median(x)|)

MadThreshold
[Optional] Specify the threshold used with 'MAD-median' filtering; a DOUBLE PRECISION value.

Default: 3, which means that |x-median(x)|/MAD > 3 is flagged as an outlier
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OutlierFilter Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

target_column BYTEINT, SMALLINT,
INTEGER, BIGINT,
NUMERIC, or DOUBLE
PRECISION

[Column appears once for each specified target_
column.] Numeric data to filter.

group_column Any [Column appears once for each specified group_
column.] Column by which to group data.

OutlierFilter Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports whether tables were created successfully.

OutputTable Schema

The table has the same schema as the OutlierFilter Input table.

OutliersTable Schema

This table appears only with OutliersTable syntax element. It has the same schema as the OutlierFilter
Input table.

OutlierFilter Examples

OutlierFilter Example: OutlierMethod ('percentile'),
ReplacementValue ('null')
Input

The InputTable has a time series of atmospheric pressure readings (in mbar) for five cities.

InputTable: ville_pressuredata
sn city period pressure_mbar

1 Asheville 2010-01-01 00:00:00 1020.5
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sn city period pressure_mbar

2 Asheville 2010-01-01 01:00:00 9000

3 Asheville 2010-01-01 02:00:00 1020

4 Asheville 2010-01-01 03:00:00 10000

5 Asheville 2010-01-01 04:00:00 1020.2

6 Asheville 2010-01-01 05:00:00 1020

7 Asheville 2010-01-01 06:00:00 1020.3

8 Asheville 2010-01-01 07:00:00 1020.8

9 Asheville 2010-01-01 08:00:00 1020.3

10 Asheville 2010-01-01 09:00:00 1020.7

... ... ... ...

25 Greenville 2010-01-01 00:00:00 1020.6

26 Greenville 2010-01-01 01:00:00 9000

27 Greenville 2010-01-01 02:00:00 1020.1

28 Greenville 2010-01-01 03:00:00 10000

29 Greenville 2010-01-01 04:00:00 1020.2

30 Greenville 2010-01-01 05:00:00 1020

... ... ... ...

49 Brownsville 2010-01-01 00:00:00 1020.5

50 Brownsville 2010-01-01 01:00:00 9000

51 Brownsville 2010-01-01 02:00:00 1020

52 Brownsville 2010-01-01 03:00:00 10000

53 Brownsville 2010-01-01 04:00:00 1020.2

54 Brownsville 2010-01-01 05:00:00 1020

... ... ... ...

73 Nashville 2010-01-01 00:00:00 1020.4

74 Nashville 2010-01-01 01:00:00 9000

75 Nashville 2010-01-01 02:00:00 1019.9

76 Nashville 2010-01-01 03:00:00 10000

77 Nashville 2010-01-01 04:00:00 1020.1
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sn city period pressure_mbar

78 Nashville 2010-01-01 05:00:00 1019.9

... ... ... ...

97 Knoxville 2010-01-01 00:00:00 1020.4

98 Knoxville 2010-01-01 01:00:00 9000

99 Knoxville 2010-01-01 02:00:00 1019.9

100 Knoxville 2010-01-01 03:00:00 10000

101 Knoxville 2010-01-01 04:00:00 1020

102 Knoxville 2010-01-01 05:00:00 1019.9

... ... ... ...

SQL Call

SELECT  * FROM OutlierFilter (
  ON ville_pressuredata AS InputTable
  OUT TABLE OutputTable (of_output1)
  USING
  TargetColumns ('pressure_mbar ')
  OutlierMethod ('percentile')
  PercentileThreshold (1,90)
  RemoveTail ('both')
  ReplacementValue ('null')
  GroupByColumns ('city')
) AS dt  ;

Output

The outlying values have been replaced by NULL.

 message                            
 ---------------------------------- 
 Output tables created successfully

SELECT * FROM of_output1 ORDER BY 1,2,3;
 sn  city        period                     pressure_mbar 
 --- ----------- -------------------------- ------------- 
   1 ashville    2010-01-01 00:00:00.000000        1020.5
   2 ashville    2010-01-01 01:00:00.000000          NULL
   3 ashville    2010-01-01 02:00:00.000000        1020.0
   4 ashville    2010-01-01 03:00:00.000000          NULL
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   5 ashville    2010-01-01 04:00:00.000000        1020.2
   6 ashville    2010-01-01 05:00:00.000000        1020.0
   7 ashville    2010-01-01 06:00:00.000000        1020.3
   8 ashville    2010-01-01 07:00:00.000000        1020.8
   9 ashville    2010-01-01 08:00:00.000000        1021.3
  10 ashville    2010-01-01 09:00:00.000000        1021.7
  11 ashville    2010-01-01 10:00:00.000000        1022.1
  12 ashville    2010-01-01 11:00:00.000000        1022.0
  13 ashville    2010-01-01 12:00:00.000000        1021.1
  14 ashville    2010-01-01 13:00:00.000000        1020.0
  15 ashville    2010-01-01 14:00:00.000000        1019.3
  16 ashville    2010-01-01 15:00:00.000000        1019.0
  17 ashville    2010-01-01 16:00:00.000000        1019.2
  18 ashville    2010-01-01 17:00:00.000000        1019.6
  19 ashville    2010-01-01 18:00:00.000000        1020.1
  20 ashville    2010-01-01 19:00:00.000000        1020.6
  21 ashville    2010-01-01 20:00:00.000000        1020.9
  22 ashville    2010-01-01 21:00:00.000000        1021.1
  23 ashville    2010-01-01 22:00:00.000000        1021.0
  24 ashville    2010-01-01 23:00:00.000000        1020.9
  25 greenville  2010-01-01 00:00:00.000000        1020.6
  26 greenville  2010-01-01 01:00:00.000000          NULL
  27 greenville  2010-01-01 02:00:00.000000        1020.1
  28 greenville  2010-01-01 03:00:00.000000          NULL
  29 greenville  2010-01-01 04:00:00.000000        1020.2
  30 greenville  2010-01-01 05:00:00.000000        1020.0
  31 greenville  2010-01-01 06:00:00.000000        1020.4
  32 greenville  2010-01-01 07:00:00.000000        1020.8
  33 greenville  2010-01-01 08:00:00.000000        1021.3
  34 greenville  2010-01-01 09:00:00.000000        1021.7
  35 greenville  2010-01-01 10:00:00.000000        1022.0
  36 greenville  2010-01-01 11:00:00.000000        1021.9
  37 greenville  2010-01-01 12:00:00.000000        1021.1
  38 greenville  2010-01-01 13:00:00.000000        1020.0
  39 greenville  2010-01-01 14:00:00.000000        1019.3
  40 greenville  2010-01-01 15:00:00.000000        1019.0
  41 greenville  2010-01-01 16:00:00.000000        1019.2
  42 greenville  2010-01-01 17:00:00.000000        1019.6
  43 greenville  2010-01-01 18:00:00.000000        1020.1
  44 greenville  2010-01-01 19:00:00.000000        1020.6
  45 greenville  2010-01-01 20:00:00.000000        1020.9
  46 greenville  2010-01-01 21:00:00.000000        1021.0
  47 greenville  2010-01-01 22:00:00.000000        1020.9
  48 greenville  2010-01-01 23:00:00.000000        1020.9
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  49 brownsville 2010-01-01 00:00:00.000000        1020.5
  50 brownsville 2010-01-01 01:00:00.000000          NULL
  51 brownsville 2010-01-01 02:00:00.000000        1020.0
  52 brownsville 2010-01-01 03:00:00.000000          NULL
  53 brownsville 2010-01-01 04:00:00.000000        1020.2
  54 brownsville 2010-01-01 05:00:00.000000        1020.0
  55 brownsville 2010-01-01 06:00:00.000000        1020.3
  56 brownsville 2010-01-01 07:00:00.000000        1020.8
  57 brownsville 2010-01-01 08:00:00.000000        1021.2
  58 brownsville 2010-01-01 09:00:00.000000        1021.6
  59 brownsville 2010-01-01 10:00:00.000000        1022.0
  60 brownsville 2010-01-01 11:00:00.000000        1021.9
  61 brownsville 2010-01-01 12:00:00.000000        1021.0
  62 brownsville 2010-01-01 13:00:00.000000        1019.9
  63 brownsville 2010-01-01 14:00:00.000000        1019.2
  64 brownsville 2010-01-01 15:00:00.000000        1019.0
  65 brownsville 2010-01-01 16:00:00.000000        1019.2
  66 brownsville 2010-01-01 17:00:00.000000        1019.6
  67 brownsville 2010-01-01 18:00:00.000000        1020.0
  68 brownsville 2010-01-01 19:00:00.000000        1020.5
  69 brownsville 2010-01-01 20:00:00.000000        1020.8
  70 brownsville 2010-01-01 21:00:00.000000        1020.9
  71 brownsville 2010-01-01 22:00:00.000000        1020.9
  72 brownsville 2010-01-01 23:00:00.000000        1020.8
  73 nashville   2010-01-01 00:00:00.000000        1020.4
  74 nashville   2010-01-01 01:00:00.000000          NULL
  75 nashville   2010-01-01 02:00:00.000000        1019.9
  76 nashville   2010-01-01 03:00:00.000000          NULL
  77 nashville   2010-01-01 04:00:00.000000        1020.1
  78 nashville   2010-01-01 05:00:00.000000        1019.9
  79 nashville   2010-01-01 06:00:00.000000        1020.2
  80 nashville   2010-01-01 07:00:00.000000        1020.6
  81 nashville   2010-01-01 08:00:00.000000        1021.1
  82 nashville   2010-01-01 09:00:00.000000        1021.5
  83 nashville   2010-01-01 10:00:00.000000        1021.9
  84 nashville   2010-01-01 11:00:00.000000        1021.8
  85 nashville   2010-01-01 12:00:00.000000        1021.0
  86 nashville   2010-01-01 13:00:00.000000        1019.8
  87 nashville   2010-01-01 14:00:00.000000        1019.2
  88 nashville   2010-01-01 15:00:00.000000        1018.9
  89 nashville   2010-01-01 16:00:00.000000        1019.1
  90 nashville   2010-01-01 17:00:00.000000        1019.5
  91 nashville   2010-01-01 18:00:00.000000        1019.9
  92 nashville   2010-01-01 19:00:00.000000        1020.4
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  93 nashville   2010-01-01 20:00:00.000000        1020.7
  94 nashville   2010-01-01 21:00:00.000000        1020.9
  95 nashville   2010-01-01 22:00:00.000000        1020.8
  96 nashville   2010-01-01 23:00:00.000000        1020.7
  97 knoxville   2010-01-01 00:00:00.000000        1020.4
  98 knoxville   2010-01-01 01:00:00.000000          NULL
  99 knoxville   2010-01-01 02:00:00.000000        1019.9
 100 knoxville   2010-01-01 03:00:00.000000          NULL
 101 knoxville   2010-01-01 04:00:00.000000        1020.0
 102 knoxville   2010-01-01 05:00:00.000000        1019.9
 103 knoxville   2010-01-01 06:00:00.000000        1020.2
 104 knoxville   2010-01-01 07:00:00.000000        1020.6
 105 knoxville   2010-01-01 08:00:00.000000        1021.1
 106 knoxville   2010-01-01 09:00:00.000000        1021.5
 107 knoxville   2010-01-01 10:00:00.000000        1021.9
 108 knoxville   2010-01-01 11:00:00.000000        1021.8
 109 knoxville   2010-01-01 12:00:00.000000        1021.0
 110 knoxville   2010-01-01 13:00:00.000000        1019.9
 111 knoxville   2010-01-01 14:00:00.000000        1019.2
 112 knoxville   2010-01-01 15:00:00.000000        1018.9
 113 knoxville   2010-01-01 16:00:00.000000        1019.2
 114 knoxville   2010-01-01 17:00:00.000000        1019.6
 115 knoxville   2010-01-01 18:00:00.000000        1020.0
 116 knoxville   2010-01-01 19:00:00.000000        1020.5
 117 knoxville   2010-01-01 20:00:00.000000        1020.8
 118 knoxville   2010-01-01 21:00:00.000000        1020.9
 119 knoxville   2010-01-01 22:00:00.000000        1020.9
 120 knoxville   2010-01-01 23:00:00.000000        1020.8

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

OutlierFilter Example: OutlierMethod ('MAD-median'),
ReplacementValue ('median')
Input

• InputTable: ville_pressuredata, as in OutlierFilter Example: OutlierMethod ('percentile'),
ReplacementValue ('null')

SQL Call

SELECT * FROM OutlierFilter (
 ON ville_pressuredata AS InputTable
 OUT TABLE OutputTable (of_output2)
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 OUT TABLE OutliersTable (of_outlier2)
 USING
 TargetColumns ('pressure_mbar')
 ReplacementValue ('median')
 OutlierMethod ('MAD-median')
 MADScaleConstant (1.4826)
 MADThreshold (3)
 GroupByColumns ('city')
) AS dt ;

Output

The outlying values have been replaced with the median value for the group.

 message                            
 ---------------------------------- 
 Output tables created successfully

SELECT * FROM of_output2 ORDER BY 1, 2, 3;
 sn  city        period                     pressure_mbar 
 --- ----------- -------------------------- ------------- 
   1 ashville    2010-01-01 00:00:00.000000        1020.5
   2 ashville    2010-01-01 01:00:00.000000        1020.8
   3 ashville    2010-01-01 02:00:00.000000        1020.0
   4 ashville    2010-01-01 03:00:00.000000        1020.8
   5 ashville    2010-01-01 04:00:00.000000        1020.2
   6 ashville    2010-01-01 05:00:00.000000        1020.0
   7 ashville    2010-01-01 06:00:00.000000        1020.3
   8 ashville    2010-01-01 07:00:00.000000        1020.8
   9 ashville    2010-01-01 08:00:00.000000        1021.3
  10 ashville    2010-01-01 09:00:00.000000        1021.7
  11 ashville    2010-01-01 10:00:00.000000        1022.1
  12 ashville    2010-01-01 11:00:00.000000        1022.0
  13 ashville    2010-01-01 12:00:00.000000        1021.1
  14 ashville    2010-01-01 13:00:00.000000        1020.0
  15 ashville    2010-01-01 14:00:00.000000        1019.3
  16 ashville    2010-01-01 15:00:00.000000        1019.0
  17 ashville    2010-01-01 16:00:00.000000        1019.2
  18 ashville    2010-01-01 17:00:00.000000        1019.6
  19 ashville    2010-01-01 18:00:00.000000        1020.1
  20 ashville    2010-01-01 19:00:00.000000        1020.6
  21 ashville    2010-01-01 20:00:00.000000        1020.9
  22 ashville    2010-01-01 21:00:00.000000        1021.1
  23 ashville    2010-01-01 22:00:00.000000        1021.0
  24 ashville    2010-01-01 23:00:00.000000        1020.9
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  25 greenville  2010-01-01 00:00:00.000000        1020.6
  26 greenville  2010-01-01 01:00:00.000000        1020.8
  27 greenville  2010-01-01 02:00:00.000000        1020.1
  28 greenville  2010-01-01 03:00:00.000000        1020.8
  29 greenville  2010-01-01 04:00:00.000000        1020.2
  30 greenville  2010-01-01 05:00:00.000000        1020.0
  31 greenville  2010-01-01 06:00:00.000000        1020.4
  32 greenville  2010-01-01 07:00:00.000000        1020.8
  33 greenville  2010-01-01 08:00:00.000000        1021.3
  34 greenville  2010-01-01 09:00:00.000000        1021.7
  35 greenville  2010-01-01 10:00:00.000000        1022.0
  36 greenville  2010-01-01 11:00:00.000000        1021.9
  37 greenville  2010-01-01 12:00:00.000000        1021.1
  38 greenville  2010-01-01 13:00:00.000000        1020.0
  39 greenville  2010-01-01 14:00:00.000000        1019.3
  40 greenville  2010-01-01 15:00:00.000000        1019.0
  41 greenville  2010-01-01 16:00:00.000000        1019.2
  42 greenville  2010-01-01 17:00:00.000000        1019.6
  43 greenville  2010-01-01 18:00:00.000000        1020.1
  44 greenville  2010-01-01 19:00:00.000000        1020.6
  45 greenville  2010-01-01 20:00:00.000000        1020.9
  46 greenville  2010-01-01 21:00:00.000000        1021.0
  47 greenville  2010-01-01 22:00:00.000000        1020.9
  48 greenville  2010-01-01 23:00:00.000000        1020.9
  49 brownsville 2010-01-01 00:00:00.000000        1020.5
  50 brownsville 2010-01-01 01:00:00.000000        1020.8
  51 brownsville 2010-01-01 02:00:00.000000        1020.0
  52 brownsville 2010-01-01 03:00:00.000000        1020.8
  53 brownsville 2010-01-01 04:00:00.000000        1020.2
  54 brownsville 2010-01-01 05:00:00.000000        1020.0
  55 brownsville 2010-01-01 06:00:00.000000        1020.3
  56 brownsville 2010-01-01 07:00:00.000000        1020.8
  57 brownsville 2010-01-01 08:00:00.000000        1021.2
  58 brownsville 2010-01-01 09:00:00.000000        1021.6
  59 brownsville 2010-01-01 10:00:00.000000        1022.0
  60 brownsville 2010-01-01 11:00:00.000000        1021.9
  61 brownsville 2010-01-01 12:00:00.000000        1021.0
  62 brownsville 2010-01-01 13:00:00.000000        1019.9
  63 brownsville 2010-01-01 14:00:00.000000        1019.2
  64 brownsville 2010-01-01 15:00:00.000000        1019.0
  65 brownsville 2010-01-01 16:00:00.000000        1019.2
  66 brownsville 2010-01-01 17:00:00.000000        1019.6
  67 brownsville 2010-01-01 18:00:00.000000        1020.0
  68 brownsville 2010-01-01 19:00:00.000000        1020.5
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  69 brownsville 2010-01-01 20:00:00.000000        1020.8
  70 brownsville 2010-01-01 21:00:00.000000        1020.9
  71 brownsville 2010-01-01 22:00:00.000000        1020.9
  72 brownsville 2010-01-01 23:00:00.000000        1020.8
  73 nashville   2010-01-01 00:00:00.000000        1020.4
  74 nashville   2010-01-01 01:00:00.000000        1020.6
  75 nashville   2010-01-01 02:00:00.000000        1019.9
  76 nashville   2010-01-01 03:00:00.000000        1020.6
  77 nashville   2010-01-01 04:00:00.000000        1020.1
  78 nashville   2010-01-01 05:00:00.000000        1019.9
  79 nashville   2010-01-01 06:00:00.000000        1020.2
  80 nashville   2010-01-01 07:00:00.000000        1020.6
  81 nashville   2010-01-01 08:00:00.000000        1021.1
  82 nashville   2010-01-01 09:00:00.000000        1021.5
  83 nashville   2010-01-01 10:00:00.000000        1021.9
  84 nashville   2010-01-01 11:00:00.000000        1021.8
  85 nashville   2010-01-01 12:00:00.000000        1021.0
  86 nashville   2010-01-01 13:00:00.000000        1019.8
  87 nashville   2010-01-01 14:00:00.000000        1019.2
  88 nashville   2010-01-01 15:00:00.000000        1018.9
  89 nashville   2010-01-01 16:00:00.000000        1019.1
  90 nashville   2010-01-01 17:00:00.000000        1019.5
  91 nashville   2010-01-01 18:00:00.000000        1019.9
  92 nashville   2010-01-01 19:00:00.000000        1020.4
  93 nashville   2010-01-01 20:00:00.000000        1020.7
  94 nashville   2010-01-01 21:00:00.000000        1020.9
  95 nashville   2010-01-01 22:00:00.000000        1020.8
  96 nashville   2010-01-01 23:00:00.000000        1020.7
  97 knoxville   2010-01-01 00:00:00.000000        1020.4
  98 knoxville   2010-01-01 01:00:00.000000        1020.6
  99 knoxville   2010-01-01 02:00:00.000000        1019.9
 100 knoxville   2010-01-01 03:00:00.000000        1020.6
 101 knoxville   2010-01-01 04:00:00.000000        1020.0
 102 knoxville   2010-01-01 05:00:00.000000        1019.9
 103 knoxville   2010-01-01 06:00:00.000000        1020.2
 104 knoxville   2010-01-01 07:00:00.000000        1020.6
 105 knoxville   2010-01-01 08:00:00.000000        1021.1
 106 knoxville   2010-01-01 09:00:00.000000        1021.5
 107 knoxville   2010-01-01 10:00:00.000000        1021.9
 108 knoxville   2010-01-01 11:00:00.000000        1021.8
 109 knoxville   2010-01-01 12:00:00.000000        1021.0
 110 knoxville   2010-01-01 13:00:00.000000        1019.9
 111 knoxville   2010-01-01 14:00:00.000000        1019.2
 112 knoxville   2010-01-01 15:00:00.000000        1018.9
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 113 knoxville   2010-01-01 16:00:00.000000        1019.2
 114 knoxville   2010-01-01 17:00:00.000000        1019.6
 115 knoxville   2010-01-01 18:00:00.000000        1020.0
 116 knoxville   2010-01-01 19:00:00.000000        1020.5
 117 knoxville   2010-01-01 20:00:00.000000        1020.8
 118 knoxville   2010-01-01 21:00:00.000000        1020.9
 119 knoxville   2010-01-01 22:00:00.000000        1020.9
 120 knoxville   2010-01-01 23:00:00.000000        1020.8

SELECT * FROM of_outlier2 ORDER BY 1, 2, 3;

 sn  city        period                     pressure_mbar 
 --- ----------- -------------------------- ------------- 
   2 ashville    2010-01-01 01:00:00.000000        9000.0
   4 ashville    2010-01-01 03:00:00.000000       10000.0
  26 greenville  2010-01-01 01:00:00.000000        9000.0
  28 greenville  2010-01-01 03:00:00.000000       10000.0
  50 brownsville 2010-01-01 01:00:00.000000        9000.0
  52 brownsville 2010-01-01 03:00:00.000000       10000.0
  74 nashville   2010-01-01 01:00:00.000000        9000.0
  76 nashville   2010-01-01 03:00:00.000000       10000.0
  98 knoxville   2010-01-01 01:00:00.000000        9000.0
 100 knoxville   2010-01-01 03:00:00.000000       10000.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
  ON { table | view | (query) }
  USING
  [ TargetColumns ({ 'target_column' | target_column_range }[,... ]) ]
  [ Delimiter ('delimiter') ]
  [ IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)
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Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.
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ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
  FROM Pack_MLE (
  ON ville_temperature
  USING
  Delimiter(',')
  OutputColumn('packed_data')
  IncludeColumnName('true')
  TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data                                                           sn 
 ------ --------------------------------------------------------------------- -- 
      3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1  1
      5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2  2
      2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5  3
      2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6  4
      1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1  5
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      3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2  6
      1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8  7
      4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4  8
      6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2  9
      7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data                                  sn 
 ------ -------------------------------------------- -- 
      5 nashville|tennessee|2010-01-01 00:00:00|35.1  1
      7 nashville|tennessee|2010-01-01 01:00:00|36.2  2
      4 nashville|tennessee|2010-01-01 02:00:00|34.5  3
      2 nashville|tennessee|2010-01-01 03:00:00|33.6  4
      3 nashville|tennessee|2010-01-01 04:00:00|33.1  5
      3 knoxville|tennessee|2010-01-01 03:00:00|33.2  6
      1 knoxville|tennessee|2010-01-01 04:00:00|32.8  7
      6 knoxville|tennessee|2010-01-01 05:00:00|32.4  8
      1 knoxville|tennessee|2010-01-01 06:00:00|32.2  9
      2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The Pivoting function pivots data that is stored in rows into columns. It outputs a table whose columns are
based on the individual values from an input table column. The output table schema depends on the function
syntax elements. The function handles missing or NULL values automatically.

The reverse of this function is Unpivoting (ML Engine).

Pivoting Syntax
Version 1.9

SELECT * FROM Pivoting (
  ON { table | view | (query) } PARTITION BY partition_column [,...]
  [ ORDER BY order_column ]
  USING
  PartitionColumns ({ 'partition_column' | partition_column_range }[,...])
  { NumberOfRows (number_of_rows) |
    PivotColumn ('pivot_column')
    [ PivotKeys ('pivot_key' [,...]) ]
    [ NumericPivotKey ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  }
  TargetColumns ({ 'target_column' | 'target_column_range' }[,...])
) AS alias;

Related Information:

Column Specification Syntax Elements

Pivoting Syntax Elements
PartitionColumns

Specify the same columns as the PARTITION BY clause (in any order).

NumberOfRows
[Required if you omit PivotColumn.] Use NumberOfRows when no column contains pivot keys,
but you can specify a maximum number of rows in any partition. The function pivots the input
rows into this number of columns in the output table.

If a partition has fewer than number_of_rows rows, the function adds NULL values; if a partition
has more than number_of_rows rows, the function omits the extra rows.

If you use NumberOfRows, you must use the ORDER BY clause to order the input data;
otherwise, the contents of the output table columns may vary from run to run.

Pivoting (ML Engine)

33

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 442



PivotColumn
[Required if you omit NumberOfRows.] Specify the name of the input column that contains the
pivot keys.

If pivot_column contains numeric values, the function casts them to VARCHAR; function
performance improves slightly if you specify NumericPivotKey ('true').

PivotKeys
[Required if you specify PivotColumn.] Specify the values in pivot_column to use as pivot keys.
The function ignores rows that contain other values in pivot_column.

NumericPivotKey
[Optional] Use this syntax element only with the PivotColumn syntax element. If pivot_column is
numeric, NumericPivotKey ('true') improves function performance slightly.

Default: 'false'

TargetColumns
[Optional] Specify the names of the target columns (input columns that contain the values to
pivot).

Pivoting Input
Input Table Schema

Column Data Type Description

partition_column Any [Column appears once for each specified partition_column.] Column by
which to partition input data.

target_column Any [Column appears once for each specified target_column.] Values to pivot.

Pivoting Output
The output table schema depends on whether you specify the syntax element NumberOfRows or
PivotColumn.

Output Table Schema, NumberOfRows

Column Data Type Description

partition_
column

Same as in
input table

[Column appears once for each specified partition_column.] Column by
which input data is partitioned.

value_i Any [Column appears number_of_rows times.] Value in ith target column,
where i is in range [0, number_of_rows-1]. Columns appear in order
specified by ORDER BY clause.
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Output Table Schema, PivotColumn

Column Data
Type Description

partition_column Any [Column appears once for each specified partition_column.] Column
by which input data is partitioned.

value_target_
column

Any [Column appears once for each pivot_key.] Values for pivot_key that
are associated with partitions in row.

Pivoting Examples

Pivoting Example: NumberOfRows
This example specifies the NumberOfRows syntax element.

Input

The input table, pivot_input, contains temperature, pressure, and dewpoint data for three cities, in sparse
format.

pivot_input
sn city week attribute value1

1 Asheville 1 temp 32

1 Asheville 1 pressure 1020.8

1 Asheville 1 dewpoint 27.6F

2 Asheville 2 temp 32

2 Asheville 2 pressure 1021.3

2 Asheville 2 dewpoint 27.4F

3 Asheville 3 temp 34

3 Asheville 3 pressure 1021.7

3 Asheville 3 dewpoint 28.2F

4 Nashville 1 temp 42

4 Nashville 1 pressure 1021

4 Nashville 1 dewpoint 29.4F

5 Nashville 2 temp 44

5 Nashville 2 pressure 1019.8
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sn city week attribute value1

5 Nashville 2 dewpoint 29.2F

6 Brownsville 2 temp 47

6 Brownsville 2 pressure 1019

6 Brownsville 2 dewpoint 28.9F

7 Brownsville 3 temp 46

7 Brownsville 3 pressure 1019.2

7 Brownsville 3 dewpoint 28.9F

SQL Call

SELECT * FROM Pivoting (
  ON pivot_input PARTITION BY sn,city,week
  ORDER BY week,attribute
  USING
  PartitionColumns ('sn','city', 'week')
  NumberOfRows (3)
  TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

The ORDER BY clause is required. If omitted, the output table column content is nondeterministic (for
more information, see Nondeterministic Results and UniqueID Syntax Element). The function adds any
NULL values at the end.

Output

The function outputs the input column contents in dense format in the output columns value1_0, value1_1,
and value1_2, which contain the dewpoint, pressure, and temperature, respectively. Because these
values are numeric, the function casts them to VARCHAR.

 sn city        week value1_0 value1_1 value1_2 
 -- ----------- ---- -------- -------- -------- 
  1 asheville      1 27.6f    1020.8   32      
  2 asheville      2 27.4f    1021.3   32      
  3 asheville      3 28.2f    1021.7   34      
  4 nashville      1 29.4f    1021     42      
  5 nashville      2 29.2f    1019.8   44      
  6 brownsville    2 28.9f    1019     47      
  7 brownsville    3 28.9f    1019.2   46

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 445



Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pivoting Example: PivotKeys
Input

• Input table: pivot_input, as in Pivoting Example: NumberOfRows

SQL Call

SELECT * FROM Pivoting (
  ON pivot_input PARTITION BY sn,city,week
  USING
  PartitionColumns ('sn','city', 'week')
  PivotKeys ('temp','pressure')
  PivotColumn ('attribute')
  TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

With PivotKeys, the function does not use the ORDER BY clause.

Output

To create the output table, the function pivots the input table on the partition columns (sn, city, and week)
and outputs the contents of the target column (value1) in dense format in the output columns
value1_pressure and value1_temp.

 sn city        week value1_pressure value1_temp 
 -- ----------- ---- --------------- ----------- 
  1 asheville      1 1020.8          32         
  2 asheville      2 1021.3          32         
  3 asheville      3 1021.7          34         
  4 nashville      1 1021            42         
  5 nashville      2 1019.8          44         
  6 brownsville    2 1019            47         
  7 brownsville    3 1019.2          46

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
  ON { table | view | (query) }
  USING
  [ TargetColumns ({ 'target_column' | target_column_range }[,... ]) ]
  [ Delimiter ('delimiter') ]
  [ IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)
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Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.
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ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
  FROM Pack_MLE (
  ON ville_temperature
  USING
  Delimiter(',')
  OutputColumn('packed_data')
  IncludeColumnName('true')
  TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data                                                           sn 
 ------ --------------------------------------------------------------------- -- 
      3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1  1
      5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2  2
      2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5  3
      2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6  4
      1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1  5
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      3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2  6
      1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8  7
      4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4  8
      6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2  9
      7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data                                  sn 
 ------ -------------------------------------------- -- 
      5 nashville|tennessee|2010-01-01 00:00:00|35.1  1
      7 nashville|tennessee|2010-01-01 01:00:00|36.2  2
      4 nashville|tennessee|2010-01-01 02:00:00|34.5  3
      2 nashville|tennessee|2010-01-01 03:00:00|33.6  4
      3 nashville|tennessee|2010-01-01 04:00:00|33.1  5
      3 knoxville|tennessee|2010-01-01 03:00:00|33.2  6
      1 knoxville|tennessee|2010-01-01 04:00:00|32.8  7
      6 knoxville|tennessee|2010-01-01 05:00:00|32.4  8
      1 knoxville|tennessee|2010-01-01 06:00:00|32.2  9
      2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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Antiselect
Antiselect returns all columns except those specified in the Exclude syntax element.

Note:
This function requires the UTF8 client character set.

Antiselect Syntax
SELECT * FROM Antiselect (
  ON { table | view | (query) }
  USING 
  Exclude ({ 'exclude_column' | exclude_column_range }[,...])
) AS alias;

Antiselect Syntax Elements
Exclude

Specify the names of the input table columns to exclude from the output table. Column names
must be valid object names, which are defined in Teradata Vantage™ SQL Fundamentals,
B035-1141.

The exclude_column is a column name. This is the syntax of exclude_column_range:

'start_column:end_column' [, '-exclude_in-range_column' ]

The range includes its endpoints.

The start_column and end_column can be:

• Column names (for example, 'column1:column2')

Column names must contain only letters in the English alphabet, digits, and special
characters. If a column name includes any special characters, surround the column name
with double quotation marks. For example, if the column name is a*b, specify it as "a*b". A
column name cannot contain a double quotation mark.

• Nonnegative integers that represent the indexes of columns in the table (for example,
'[0:4]')

The first column has index 0; therefore, '[0:4]' specifies the first five columns in the table.

• Empty. For example:

Teradata Vantage NewSQL Engine Analytic
Functions
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◦ '[:4]' specifies all columns up to and including the column with index 4.
◦ '[4:]' specifies the column with index 4 and all columns after it.
◦ '[:]' specifies all columns in the table.

The exclude_in-range_column is a column in the specified range, represented by either its name
or its index (for example, '[0:99]', '-[50]', '-column10' specifies the columns with
indexes 0 through 99, except the column with index 50 and column10).

Column ranges cannot overlap, and cannot include any specified exclude_column.

Antiselect Input
The input table can have any schema.

Antiselect Output
The output table has all input table columns except those specified by the Exclude syntax element.

Antiselect Examples

Antiselect Example: No Column Ranges

Input

The input table, antiselect_test, is a sample set of sales data containing 13 columns.

antiselect_test
sno id orderdate priority qty sales disct dmode custname province region custsegment prodcat

1 3 2010-10-13
00:00:00

Low 6 261.
54

0.04 Regular
Air

Muhammed
MacIntyre

Nunavut Nunavut Small
Business

Office
Supplies

49 293 2012-10-01
00:00:00

High 49 10123 0.07 Delivery
Truck

Barry
French

Nunavut Nunavut Consumer Office
Supplies

50 293 2012-10-01
00:00:00

High 27 244.
57

0.01 Regular
Air

Barry
French

Nunavut Nunavut Consumer Office
Supplies

80 483 2011-07-10
00:00:00

High 30 4965.
76

0.08 Regular
Air

Clay
Rozendal

Nunavut Nunavut Corporate Technology

85 515 2010-08-28
00:00:00

Not
specified

19 394.
27

0.08 Regular
Air

Carlos
Soltero

Nunavut Nunavut Consumer Office
Supplies

86 515 2010-08-28
00:00:00

Not
specified

21 146.
69

0.05 Regular
Air

Carlos
Soltero

Nunavut Nunavut Consumer Furniture

97 613 2011-06-17
00:00:00

High 12 93.54 0.03 Regular
Air

Carl
Jackson

Nunavut Nunavut Corporate Office
Supplies
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SQL Call

SELECT * FROM Antiselect (
  ON antiselect_test
  USING
  Exclude ('id', 'orderdate', 'disct', 'province', 'custsegment')
) AS dt ORDER BY 1, 4;

Output

sno priority qty sales dmode custname region prodcat

1 Low 6 2.
61540000000000E
002

Regular
Air

Muhammed
MacIntyre

Nunavut Office
Supplies

49 High 49 1.
01230000000000E
004

Delivery
Truck

Barry French Nunavut Office
Supplies

50 High 27 2.
44570000000000E
002

Regular
Air

Barry French Nunavut Office
Supplies

80 High 30 4.
96576000000000E
003

Regular
Air

Clay
Rozendal

Nunavut Technology

85 Not
specified

19 3.
94270000000000E
002

Regular
Air

Carlos
Soltero

Nunavut Office
Supplies

86 Not
specified

21 1.
46690000000000E
002

Regular
Air

Carlos
Soltero

Nunavut Furniture

97 High 12 9.
35400000000000E
001

Regular
Air

Carl Jackson Nunavut Office
Supplies

Antiselect Example: Column Range

Input

The input table is antiselect_test, as in Antiselect Example: No Column Ranges.

SQL Call

SELECT * FROM Antiselect (
  ON antiselect_test
  USING
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  Exclude ('id', '[2:3]', 'custname:prodcat')
) AS dt ORDER BY 1, 4;

Output

sno qty sales disct dmode

1 6 2.61540000000000E 002 0.04 Regular Air

49 49 1.01230000000000E 004 0.07 Delivery Truck

50 27 2.44570000000000E 002 0.01 Regular Air

80 30 4.96576000000000E 003 0.08 Regular Air

85 19 3.94270000000000E 002 0.08 Regular Air

86 21 1.46690000000000E 002 0.05 Regular Air

97 12 9.35400000000000E 001 0.03 Regular Air

Attribution
The Attribution function is used in web page analysis, where it lets companies assign weights to pages
before certain events, such as buying a product.

The function takes data and parameters from multiple tables and outputs attributions.
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The Pack_MLE function packs data from multiple input columns into a single column. The packed column
has a virtual column for each input column. By default, virtual columns are separated by commas and each
virtual column value is labeled with its column name.

Pack_MLE complements the function Unpack_MLE (ML Engine), but you can use it on any columns that
meet the input requirements.

Note:
To use Pack_MLE and Unpack_MLE together, you must run both on ML Engine platform. Pack_MLE
and Unpack_MLE are incompatible with Advanced SQL Engine Pack and Unpack functions.

Before packing columns, note their data types—you need them if you want to unpack the packed column.

Pack_MLE Syntax
Version 1.6

SELECT * FROM Pack_MLE (
  ON { table | view | (query) }
  USING
  [ TargetColumns ({ 'target_column' | target_column_range }[,... ]) ]
  [ Delimiter ('delimiter') ]
  [ IncludeColumnName ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  OutputColumn ('output_column')
) AS alias;

Related Information:

Column Specification Syntax Elements

Pack_MLE Syntax Elements
TargetColumns

[Optional] Specify the names of the input columns to pack into a single output column. These
names become the column names of the virtual columns. If you specify this syntax element, but
do not specify all input table columns, the function copies the unspecified input table columns to
the output table.

Default behavior: All input table columns are packed into a single output column.

Delimiter
[Optional] Specify the delimiter (a string) that separates the virtual columns in the packed data.

Pack_MLE (ML Engine)
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Default: ',' (comma)

IncludeColumnName
[Optional] Specify whether to label each virtual column value with its column name (making the
virtual column target_column:value).

Default: 'true'

OutputColumn
Specify the name to give to the packed output column.

Pack_MLE Input
Input Table Schema

Column Data
Type Description

target_column Any [Column appears once for each specified target_column.] Column to
pack, with other target columns, into single output column.

other_input_column Any [Column appears zero or more times.] Column to copy to output table.

Pack_MLE Output
Output Table Schema

Column Data Type Description

row_id BIGINT Column created by function. Value may vary from run to run
on same data set.

output_column CLOB Packed column.

other_input_column Same as in input
table

[Column appears once for each specified other_input_
column.]Column copied from input table.

Pack_MLE Examples

Pack_MLE Example: Default Values
Input

The input table, ville_temperature, contains temperature readings for the cities Nashville and Knoxville,
in the state of Tennessee.

32: Pack_MLE (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 438



ville_temperature
sn city state period temp_f

1 Nashville Tennessee 2010-01-01 00:00:00 35.1

2 Nashville Tennessee 2010-01-01 01:00:00 36.2

3 Nashville Tennessee 2010-01-01 02:00:00 34.5

4 Nashville Tennessee 2010-01-01 03:00:00 33.6

5 Nashville Tennessee 2010-01-01 04:00:00 33.1

6 Knoxville Tennessee 2010-01-01 03:00:00 33.2

7 Knoxville Tennessee 2010-01-01 04:00:00 32.8

8 Knoxville Tennessee 2010-01-01 05:00:00 32.4

9 Knoxville Tennessee 2010-01-01 06:00:00 32.2

10 Knoxville Tennessee 2010-01-01 07:00:00 32.4

SQL Call

Delimiter and IncludeColumnName have their default values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
  FROM Pack_MLE (
  ON ville_temperature
  USING
  Delimiter(',')
  OutputColumn('packed_data')
  IncludeColumnName('true')
  TargetColumns('city', 'state', 'period', 'temp_F')
) AS dt ORDER BY sn;

Output

The columns specified by TargetColumns are packed in the column packed_data. Virtual columns are
separated by commas, and each virtual column value is labeled with its column name. The input column
sn, which was not specified by TargetColumns, is unchanged in the output table.

 row_id packed_data                                                           sn 
 ------ --------------------------------------------------------------------- -- 
      3 city:nashville,state:tennessee,period:2010-01-01 00:00:00,temp_f:35.1  1
      5 city:nashville,state:tennessee,period:2010-01-01 01:00:00,temp_f:36.2  2
      2 city:nashville,state:tennessee,period:2010-01-01 02:00:00,temp_f:34.5  3
      2 city:nashville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.6  4
      1 city:nashville,state:tennessee,period:2010-01-01 04:00:00,temp_f:33.1  5
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      3 city:knoxville,state:tennessee,period:2010-01-01 03:00:00,temp_f:33.2  6
      1 city:knoxville,state:tennessee,period:2010-01-01 04:00:00,temp_f:32.8  7
      4 city:knoxville,state:tennessee,period:2010-01-01 05:00:00,temp_f:32.4  8
      6 city:knoxville,state:tennessee,period:2010-01-01 06:00:00,temp_f:32.2  9
      7 city:knoxville,state:tennessee,period:2010-01-01 07:00:00,temp_f:32.4 10

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pack_MLE Example: Nondefault Values
Input

• Input table: ville_temperature, as in Pack_MLE Example: Default Values

SQL Call

Delimiter and IncludeColumnName have nondefault values.

SELECT row_id, cast(packed_data as varchar(100)), sn 
FROM Pack_MLE(
ON ville_temperature
USING
Delimiter('|')
OutputColumn('packed_data')
IncludeColumnName('false')
TargetColumns('city', 'state', 'period', 'temp_F')
) as dt ORDER BY sn;

Output

Virtual columns are separated by pipe characters and not labeled with their column names.

 row_id packed_data                                  sn 
 ------ -------------------------------------------- -- 
      5 nashville|tennessee|2010-01-01 00:00:00|35.1  1
      7 nashville|tennessee|2010-01-01 01:00:00|36.2  2
      4 nashville|tennessee|2010-01-01 02:00:00|34.5  3
      2 nashville|tennessee|2010-01-01 03:00:00|33.6  4
      3 nashville|tennessee|2010-01-01 04:00:00|33.1  5
      3 knoxville|tennessee|2010-01-01 03:00:00|33.2  6
      1 knoxville|tennessee|2010-01-01 04:00:00|32.8  7
      6 knoxville|tennessee|2010-01-01 05:00:00|32.4  8
      1 knoxville|tennessee|2010-01-01 06:00:00|32.2  9
      2 knoxville|tennessee|2010-01-01 07:00:00|32.4 10
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The Pivoting function pivots data that is stored in rows into columns. It outputs a table whose columns are
based on the individual values from an input table column. The output table schema depends on the function
syntax elements. The function handles missing or NULL values automatically.

The reverse of this function is Unpivoting (ML Engine).

Pivoting Syntax
Version 1.9

SELECT * FROM Pivoting (
  ON { table | view | (query) } PARTITION BY partition_column [,...]
  [ ORDER BY order_column ]
  USING
  PartitionColumns ({ 'partition_column' | partition_column_range }[,...])
  { NumberOfRows (number_of_rows) |
    PivotColumn ('pivot_column')
    [ PivotKeys ('pivot_key' [,...]) ]
    [ NumericPivotKey ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  }
  TargetColumns ({ 'target_column' | 'target_column_range' }[,...])
) AS alias;

Related Information:

Column Specification Syntax Elements

Pivoting Syntax Elements
PartitionColumns

Specify the same columns as the PARTITION BY clause (in any order).

NumberOfRows
[Required if you omit PivotColumn.] Use NumberOfRows when no column contains pivot keys,
but you can specify a maximum number of rows in any partition. The function pivots the input
rows into this number of columns in the output table.

If a partition has fewer than number_of_rows rows, the function adds NULL values; if a partition
has more than number_of_rows rows, the function omits the extra rows.

If you use NumberOfRows, you must use the ORDER BY clause to order the input data;
otherwise, the contents of the output table columns may vary from run to run.

Pivoting (ML Engine)
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PivotColumn
[Required if you omit NumberOfRows.] Specify the name of the input column that contains the
pivot keys.

If pivot_column contains numeric values, the function casts them to VARCHAR; function
performance improves slightly if you specify NumericPivotKey ('true').

PivotKeys
[Required if you specify PivotColumn.] Specify the values in pivot_column to use as pivot keys.
The function ignores rows that contain other values in pivot_column.

NumericPivotKey
[Optional] Use this syntax element only with the PivotColumn syntax element. If pivot_column is
numeric, NumericPivotKey ('true') improves function performance slightly.

Default: 'false'

TargetColumns
[Optional] Specify the names of the target columns (input columns that contain the values to
pivot).

Pivoting Input
Input Table Schema

Column Data Type Description

partition_column Any [Column appears once for each specified partition_column.] Column by
which to partition input data.

target_column Any [Column appears once for each specified target_column.] Values to pivot.

Pivoting Output
The output table schema depends on whether you specify the syntax element NumberOfRows or
PivotColumn.

Output Table Schema, NumberOfRows

Column Data Type Description

partition_
column

Same as in
input table

[Column appears once for each specified partition_column.] Column by
which input data is partitioned.

value_i Any [Column appears number_of_rows times.] Value in ith target column,
where i is in range [0, number_of_rows-1]. Columns appear in order
specified by ORDER BY clause.
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Output Table Schema, PivotColumn

Column Data
Type Description

partition_column Any [Column appears once for each specified partition_column.] Column
by which input data is partitioned.

value_target_
column

Any [Column appears once for each pivot_key.] Values for pivot_key that
are associated with partitions in row.

Pivoting Examples

Pivoting Example: NumberOfRows
This example specifies the NumberOfRows syntax element.

Input

The input table, pivot_input, contains temperature, pressure, and dewpoint data for three cities, in sparse
format.

pivot_input
sn city week attribute value1

1 Asheville 1 temp 32

1 Asheville 1 pressure 1020.8

1 Asheville 1 dewpoint 27.6F

2 Asheville 2 temp 32

2 Asheville 2 pressure 1021.3

2 Asheville 2 dewpoint 27.4F

3 Asheville 3 temp 34

3 Asheville 3 pressure 1021.7

3 Asheville 3 dewpoint 28.2F

4 Nashville 1 temp 42

4 Nashville 1 pressure 1021

4 Nashville 1 dewpoint 29.4F

5 Nashville 2 temp 44

5 Nashville 2 pressure 1019.8

33: Pivoting (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 444



sn city week attribute value1

5 Nashville 2 dewpoint 29.2F

6 Brownsville 2 temp 47

6 Brownsville 2 pressure 1019

6 Brownsville 2 dewpoint 28.9F

7 Brownsville 3 temp 46

7 Brownsville 3 pressure 1019.2

7 Brownsville 3 dewpoint 28.9F

SQL Call

SELECT * FROM Pivoting (
  ON pivot_input PARTITION BY sn,city,week
  ORDER BY week,attribute
  USING
  PartitionColumns ('sn','city', 'week')
  NumberOfRows (3)
  TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

The ORDER BY clause is required. If omitted, the output table column content is nondeterministic (for
more information, see Nondeterministic Results and UniqueID Syntax Element). The function adds any
NULL values at the end.

Output

The function outputs the input column contents in dense format in the output columns value1_0, value1_1,
and value1_2, which contain the dewpoint, pressure, and temperature, respectively. Because these
values are numeric, the function casts them to VARCHAR.

 sn city        week value1_0 value1_1 value1_2 
 -- ----------- ---- -------- -------- -------- 
  1 asheville      1 27.6f    1020.8   32      
  2 asheville      2 27.4f    1021.3   32      
  3 asheville      3 28.2f    1021.7   34      
  4 nashville      1 29.4f    1021     42      
  5 nashville      2 29.2f    1019.8   44      
  6 brownsville    2 28.9f    1019     47      
  7 brownsville    3 28.9f    1019.2   46
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

Pivoting Example: PivotKeys
Input

• Input table: pivot_input, as in Pivoting Example: NumberOfRows

SQL Call

SELECT * FROM Pivoting (
  ON pivot_input PARTITION BY sn,city,week
  USING
  PartitionColumns ('sn','city', 'week')
  PivotKeys ('temp','pressure')
  PivotColumn ('attribute')
  TargetColumns ('value1')
) AS dt ORDER BY 1,2,3;

With PivotKeys, the function does not use the ORDER BY clause.

Output

To create the output table, the function pivots the input table on the partition columns (sn, city, and week)
and outputs the contents of the target column (value1) in dense format in the output columns
value1_pressure and value1_temp.

 sn city        week value1_pressure value1_temp 
 -- ----------- ---- --------------- ----------- 
  1 asheville      1 1020.8          32         
  2 asheville      2 1021.3          32         
  3 asheville      3 1021.7          34         
  4 nashville      1 1021            42         
  5 nashville      2 1019.8          44         
  6 brownsville    2 1019            47         
  7 brownsville    3 1019.2          46

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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Description - Normalization (Scale and ScaleMap)
• In statistics and applications of statistics, Normalization can have a range of

meanings. In the simplest cases, normalization of ratings means adjusting values
measured on different scales to a notionally common scale, often prior to averaging

• In more complicated cases, Normalization may refer to more sophisticated
adjustments where the intention is to bring the entire probability distributions of
adjusted values into alignment. In the case of normalization of scores in educational
assessment, there may be an intention to align distributions to a normal distribution

High-bias ML algorithms (like Linear Regression, Logistic Regression, Kmeans) can 
underfit Model; i.e., can't make accurate Predictions on either Train or Test set. 

Normalization can minimize this tendency

Normalization uses Feature scaling which is a method used to standardize the range of independent 
variables or features of data. 

In data processing, it is also known as data normalization and is generally performed during the data 
preprocessing step.
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Why Used - Normalization
• The black box answer is you can’t train models when your features have different

ranges (1-5 vs 1-5000)
• In essence, Normalization is done to have the same range of values for each of the

inputs to the Model. This can guarantee stable convergence of weight and biases

If one of the features has a broad 
range of values, the distance will be 
governed by this particular feature 

Range in column 'room area' is 50 and it is significantly larger than  
the range in column 'height'.  So we can't compare them directly

Since the range of values of raw data varies widely, in some machine learning algorithms, objective 
functions will not work properly without normalization. 

For example, the majority of classifiers calculate the distance between two points by the Euclidean 
distance. If one of the features has a broad range of values, the distance will be governed by this 
particular feature. Therefore, the range of all features should be normalized so that each feature 
contributes approximately proportionately to the final distance. Another reason why feature scaling is 
applied is that gradient descent converges much faster with feature scaling than without it.[
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Workflow - Normalization 

Input Table scaleMap and 
scale

Output Table 
(or Console)

ScaleSummary
(see Appendix) ScaleByPartition

Function Description

ScaleMap Takes data set and outputs its statistical information (assembled at vworker level)

Scale Takes ScaleMap output and outputs scaled (normalized) values for input data set. You can use 
Scale output as input to distance-based analysis functions, such as KMeans

ScaleSummary Takes ScaleMap output and outputs global statistical information for the entire input data set

ScaleByPartition Scales sequences in each partition, using same formula as Scale

'ScaleMap' performs stat analysis 
while 'Scale' generates new values

Here are the four functions associated with Normalization:

• ScaleMap and Scale
• ScaleSummary
• ScaleByPartition
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SELECT * FROM Scale
(ON { table | view | (query) } AS "input" PARTITION BY ANY
ON (
SELECT * FROM ScaleMap (
ON { table | view | (query) }
USING
TargetColumns ( { 'target_column' | target_column_range }[,...] )
[ MissValue ({ 'KEEP' | 'OMIT' | 'ZERO' | 'LOCATION' })]
) AS alias_1
) AS statistic DIMENSION
USING
ScaleMethod ('method' [,...])
[ GlobalScale ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
[ TargetColumns ( { 'target_column' | target_column_range }[,...] ) ]
[ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
[ Multiplier (multiplier [,...]) ]
[ Intercept (intercept [,...]) ]
) AS dt;

Syntax - Scale and ScaleMap 

ScaleMap performs stat analysis 
while Scale generates new values

'Method' tells you how to scale variables

Here's the generic syntax for the Outlier function.  The next few slides will cover the individual 
arguments in detail.
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• TargetColumns Specify the names of input table columns for which to calculate 
statistics. The columns must contain numeric values

• MissValue [Optional] Specify how the Scale, ScaleMap, and ScaleByPartition 
functions are to process NULL values in input, as follows:

Arguments - ScaleMap

Option Description

Keep(Default) Keep NULL values
Omit Ignore any row that has a NULL value
Zero Replace each NULL value with zero
Location Replace each NULL value with its location value. 

Note: Location definition varies by Method; e.g., for 
Method "midrange", defined as (max X + min X) / 2

The 'MissValue' argument has four options which determine how NULL values are handled.
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• Method Specify one or more statistical methods to Scale the data set

Arguments - Scale (1 of 3)

Method Location Scale

mean Xmean 1

sum 0 Σ X

ustd 0 Standard deviation, calculated according to biased estimator of 
variance

std Xmean Standard deviation, calculated according to unbiased estimator 
of variance

range minx maxX - minX

midrange (maxx+minx)/2 (maxX - minX)/2

There are a number of statistical algorithms that can be used with the 'Scale' function as shown in the 
slide.
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• Global [Optional] Specify whether all input columns scaled to same location and scale

• TargetColumns [Optional] Specify columns that contain values to scale.
Default: All columns from ScaleMap except stattype

• Accumulate [Optional] Specify the input table columns to copy to the output table

• Multiplier [Optional] Specify one or more multiplying factors to apply to the input variables 
- multiplier in the following formula:

X' = intercept + multiplier * (X - location)/scale

Default: multiplier is 1

Arguments - Scale (2 of 3)
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Intercept [Optional] Specify one or more addition factors incrementing the scaled 
results - intercept in the following formula:

X' = intercept + multiplier * (X - location)/scale
If you specify only one intercept, it applies to all columns specified by the 
TargetColumns argument. If you specify multiple addition factors, each intercept 
applies to the corresponding input column. This is the syntax of intercept:

[-]{number | min | mean | max }
where min, mean, and max are the scaled global minimum, maximum, mean values 
of the corresponding columns. This is the formula for computing the scaled global 
minimum: scaledmin = (minX - location)/scale          Default: intercept is 0

Arguments - Scale (3 of 3)
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Data We’ll Be Using

SELECT * FROM scale_housing;

The Input variables are as follows 

0          1          2             3             4            5              6

Here's the data we'll be using for the next lab.
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c
Lab 05: Scale and ScaleMap (Method='midrange')

SELECT * FROM Scale
(ON ScaleMap
(ON scale_housing
USING
TargetColumns ('[2:6]')
MissValue ('omit')
) AS statistic DIMENSION
ON scale_housing AS "input" PARTITION BY ANY
USING
"Method" ('midrange')
Accumulate ('id')
) AS dt 
ORDER BY id, price, lotsize;

'ScaleMap' performs stat analysis 
while 'Scale' generates new values

Output

-- (maxX - minX)/2

Ignore any row with NULL

How to Scale variables
Put Column in Output

1

2

2

Output from ScaleMap (Input for Scale)

Here we normalize the data using Method = 'midrange'.

Transformation Analytic Functions    Slide 4-27

Teradata Vantage Analytics Certification: Learning Resource



c
Lab 06: Scale and ScaleMap (Multiple Method)

SELECT * FROM Scale
(ON ScaleMap
(ON scale_housing
USING
TargetColumns ('[2:6]')
MissValue ('omit')
) AS statistic DIMENSION
ON scale_housing AS "input" PARTITION BY ANY
USING
"Method" ('midrange', 'mean', 'maxabs', 'range')
Accumulate ('id')
) AS dt 
ORDER BY id, price, lotsize;

Output

Ignore any row with NULL
Output from ScaleMap (Input for Scale)

Here we normalize the data using four different 'Methods’. The Output displays all four.
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c
Lab 07: Scale and ScaleMap (Method='maxabs')

CREATE MULTISET TABLE pc_normalized AS
(SELECT * FROM Scale
(ON computers_train1 AS INPUT PARTITION BY ANY
ON(SELECT * FROM ScaleMap
(ON computers_train1
USING
TargetColumns ('[1:5]')
MissValue ('omit')
) AS dt1
) AS statistic DIMENSION
USING
"Method" ('maxabs')
Accumulate ('id')
) AS dt2 
ORDER BY id
) WITH DATA;

Input

Output

1      2     3    4    5

Ignore any row with NULL

All Output values between 0
and 1 if all input numbers are 

positive.

And, final,y we Normalize using Method = 'maxabs'.
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Description and Syntax - ScalebyPartition
The ScaleByPartition function scales the sequences in each partition independently, 
using the same formula as the function Scale

SELECT * FROM ScaleByPartition
(ON { table | view | (query) } PARTITION BY partition_columns
USING
"Method" ('method' [,…])
[ MissValue ({ 'KEEP' | 'OMIT' | 'ZERO' | 'LOCATION' })]
TargetColumns ( { 'input_column' | input_column_range }[,...] )
[ "Global" ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
[ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
[ Multiplier ('multiplier' [,...]) ]
[ Intercept ('intercept' [,...]) ]
) AS alias;

If your data has Partitions (like we did earlier with OutlierFilter (Temperature and Pressure), 
you can 'group' these partitions via ScaleByPartition function

If your Input data has partitions, you can use the ScaleByPartition function instead of the Scale function.
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Data We’ll Be Using
SELECT * FROM scale_housing;

0          1          2             3             4            5              6

We will Partition by the 'types' column in our housing dataset

Here's the data we'll be using for the next lab.
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c
Lab 08: ScaleByPartition

SELECT * FROM ScaleByPartition
(ON scale_housing PARTITION BY types
USING
TargetColumns ('[2:6]')
"Method" ('maxabs')
Accumulate ('types', 'id')
) AS dt 
ORDER BY 1 desc,2;

Recall without Partitions, we used the 'PARTITION BY ANY' argument

Output

The Output show the statistics from the Input based on the two partitions, Classic and Bungalow.
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Overview
The following sections describe SQL CASE expressions.

CASE
Purpose

Specifies alternate values for a conditional expression or expressions based on equality comparisons and
conditions that evaluate to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Overview
CASE provides an efficient and powerful method for application developers to change the representation
of data, permitting conversion without requiring host program intervention.

For example, you could code employee status as 1 or 2, meaning full-time or part-time, respectively. For
efficiency, the system stores the numeric code but prints or displays the appropriate textual description in
reports. This storage and conversion is managed by Teradata Database.

In addition, CASE permits applications to generate nulls based on information derived from the database,
again without host program intervention. Conversely, CASE can be used to convert a null into a value.

Two Forms of CASE Expressions
CASE expressions are specified in these forms:

• Valued CASE is described under “Valued CASE Expression”.
• Searched CASE is described under “Searched CASE Expression”.

CASE Shorthands for Handling Nulls
Two shorthand forms of CASE are provided to handle nulls:

• COALESCE is described under “COALESCE Expression”.
• NULLIF is described under “NULLIF Expression”.

CASE Expressions
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Valued CASE Expression
Purpose

Evaluates a set of expressions for equality with a test expression and returns as its result the value of the
scalar expression defined for the first WHEN clause whose value equals that of the test expression. If no
equality is found, then CASE returns the scalar value defined by an optional ELSE clause, or if omitted,
NULL.

Syntax

Syntax Elements

value_expression_1

An expression whose value is tested for equality with value_expression_n.

value_expression_n

A set of expressions against which the value for value_expression_1 is tested for equality.

scalar_expression_n

An expression whose value is returned on the first equality comparison of value_expression_1 and
value_expression_n.

scalar_expression_m

An expression whose value is returned if evaluation falls through to the ELSE clause.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.
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Teradata Database does not enforce the ANSI restriction that value_expression_1 must be a deterministic
function. In particular, Teradata Database allows the function RANDOM to be used in value_expression_1.

Note that if RANDOM is used, nondeterministic behavior may occur, depending on whether
value_expression_1 is recalculated for each comparison to value_expression_n.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause value_expression_n that equates to value_expression_1 returns the value of its
associated scalar_expression_n as its result. The evaluation process then terminates.

If no value_expression_n equals value_expression_1, then scalar_expression_m, the argument of the
ELSE clause, is the result.

If no ELSE clause is defined, then the result defaults to NULL.

The data type of value_expression_1 must be comparable with the data types of all of the
value_expression_n values.

For information on the result data type of a CASE expression, see Rules for the CASE Expression Result
Type.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

Default Title
The default title for a CASE expression appears as:

   <CASE expression>

Restrictions on the Data Types in a CASE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 311



Data
Type Restrictions

• The data type of value_expression_1 through value_expression_n must have the same UDT
data type if one of them has a UDT data type.

• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them
has a UDT data type.

Teradata Database does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language Syntax
and Examples, B035-1144.

Examples

Example: Calculating the Fraction of Cost

The following example uses a Valued CASE expression to calculate the fraction of cost in the total cost
of inventory represented by parts of type ‘1’:

   SELECT SUM(CASE part
               WHEN '1' 
               THEN cost
               ELSE 0
              END
             )/SUM(cost)
   FROM t;

Example: Using a CASE Expression

A CASE expression can be used in place of any value-expression.

   SELECT *
   FROM t
   WHERE x = CASE y
              WHEN 2
              THEN 1001
              WHEN 5
              THEN 1002
             END;
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Example: Combining a CASE Expression with a Concatenation Operator

The following example shows how to combine a CASE expression with a concatenation operator:

   SELECT prodID, CASE prodSTATUS 
                    WHEN 1 
                    THEN 'SENT' 
                    ELSE 'BACK ORDER' 
                    END || ' STATUS'
   FROM t1;

Example: Using UDT Data Types in Value Expressions

You use value_expression_1through value_expression_nto test for equality in a valued CASE
expression.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2 testrectangleudt) 
PRIMARY INDEX (id);

The following example shows a valued CASE expression, where all value expressions are of the same
UDT data type:

   SELECT CASE udt1
                    WHEN new testcircleudt('1,1,2,yellow,circ')
                    THEN 'Row 1'
                    WHEN new testcircleudt('2,2,4,purple,circ')
                    THEN 'Row 2'
                    WHEN new testcircleudt('3,3,9,green,circ')
                    THEN 'Row 3'
                    ELSE 'Row is NULL'
                    END
   FROM t1;
*** Query completed. 4 rows found. One column returned.
<CASE  expression>
------------------
Row 3
Row 1
Row is NULL
Row 2

However, the following example does not complete successfully because testrectangleudt does not
match the other UDT data types:
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   SELECT CASE udt1
                    WHEN new testcircleudt('1,1,2,yellow,circ')
                    THEN 'Row 1'
                    WHEN new testrectangleudt('2,2,4,4,purple,rect')
                    THEN 'Row 2'
                    WHEN new testcircleudt('3,3,9,green,circ')
                    THEN 'Row 3'
                    ELSE 'Row is NULL'
                    END
   FROM t1;

Example 1: Using UDT Data Types in Scalar Expressions

You use scalar_expression_nand scalar_expression_mas the expressions to return on when the
equality comparison on a valued or searched CASE expression evaluates to TRUE, or the value to
return on in an ELSE condition.

For these examples, the table is defined as follows:

create table udtval038_t1(id integer, udt1 testcircleudt, udt2 testrectangleudt) 
PRIMARY INDEX (id);

Following is an example of a searched CASE Expression where all scalar expressions are of the same
UDT data type.

Note:
The search_condition_ncan be a different UDT data type than the scalar_expression_n.   SELECT
* FROM udtval038_t1

          WHERE udt1 = CASE
          WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')
          THEN new testcircleudt('1,1,2,blue,circ')
          ELSE new testcircleudt('2,2,4,purple,circ')
*** Query completed. 2 rows found. 3 columns returned.
          END;
id udt1
----------- -----------------------------------------------
          1 1, 1, 2, yellow, circ
          2 2, 2, 4, purple, circ

However, the following example does not complete successfully because the scalar expressions are of
different data types.

   SELECT * FROM udtval038_t1
          WHERE udt1 = CASE
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          WHEN udt2 <> new testrectangleudt('2,2,4,4,pink,rect')
          THEN new testcircleudt('1,1,2,blue,circ')
          ELSE new testrectangleudt('2,2,4,4,purple,rect')
          END;

Related Topics
For more information, see:

• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.
• For information about nulls and CASE expressions, see CASE and Nulls.

Searched CASE Expression
Purpose

Evaluates a search condition and returns one of a WHEN clause-defined set of scalar values when it finds
a value that evaluates to TRUE. If no TRUE test is found, then CASE returns the scalar value defined by
an ELSE clause, or if omitted, NULL.

Syntax

Syntax Elements

search_condition_n

A predicate condition to be tested for truth.

scalar_expression_n

A scalar expression whose value is returned when search_condition_n is the first search condition that
evaluates to TRUE.
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scalar_expression_m

A scalar expression whose value is returned when no search_condition_n evaluates to TRUE.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
WHEN clauses are processed sequentially.

The first WHEN clause search_condition_n that is TRUE returns the value of its associated
scalar_expression_n as its result. The evaluation process then ends.

If no search_condition_n is TRUE, then scalar_expression_m, the argument of the ELSE clause, is the
result.

If no ELSE clause is defined, then the default value for the result is NULL.

You can use a scalar subquery in the WHEN clause, THEN clause, and ELSE clause of a CASE
expression. If you use a non-scalar subquery (a subquery that returns more than one row), a runtime error
is returned.

Recommendation: Do not use the built-in functions CURRENT_DATE or CURRENT_TIMESTAMP in a
CASE expression that is specified in a partitioning expression for a partitioned primary index (PPI). In this
case, all rows are scanned during reconciliation.

Default Title
The default title for a CASE expression appears as:

   <CASE expression>

Rules for WHEN Search Conditions
WHEN search conditions have the following properties:

• Can take the form of any comparison operator, such as LIKE, =, or <>.
• Can be a quantified predicate, such as ALL or ANY.
• Can contain a scalar subquery.
• Can contain joins of two tables.

For example:

   SELECT CASE 
   WHEN t1.x=t2.x THEN t1.y 
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   ELSE t2.y 
   END FROM t1,t2;
   

• Cannot contain SELECT statements.

Restrictions on the Data Types in a CASE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a CASE expression:

Data
Type Restrictions

BLOB A BLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in value_expression_1, value_expression_n, scalar_expression_m, or
scalar_expression_n when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in a CASE expression, with the following restrictions:
• The data type of value_expression_1 through value_expression_n must have the same UDT

data type if one of them has a UDT data type.
• scalar_expression_n and scalar_expression_m must be the same UDT data type if one them

has a UDT data type.
Teradata Database does not perform implicit type conversion on UDTs in CASE expressions. A
workaround for this restriction is to use CREATE CAST to define casts that cast between the
UDTs, and then explicitly invoke the CAST function in the CASE expression. For more
information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language Syntax
and Examples, B035-1144.

Examples

Example: Evaluating a Search Condition

The following statement is equivalent to the first example of the valued form of CASE on “Example”:

   SELECT SUM(CASE 
               WHEN part='1'
               THEN cost
               ELSE 0
              END
             ) / SUM(cost)
   FROM t;
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Example: Using a CASE Expression

CASE expressions can be used in place of any value-expressions.

Note that the following example does not specify an ELSE clause. ELSE clauses are always optional in
a CASE expression. If an ELSE clause is not specified and none of the WHEN conditions are TRUE,
then a null is returned.

   SELECT * 
   FROM t 
   WHERE x = CASE 
              WHEN y=2 
              THEN 1
              WHEN (z=3 AND y=5) 
              THEN 2 
             END;

Example: Using an ELSE Clause

The following example uses an ELSE clause.

   SELECT * 
   FROM t 
   WHERE x = CASE 
              WHEN y=2 
              THEN 1 
              ELSE 2 
             END;

Example: Using a CASE expression to Enhance Performance

The following example shows how using a CASE expression can result in significantly enhanced
performance by eliminating multiple passes over the data. Without using CASE, you would have to
perform multiple queries for each region and then consolidate the answers to the individual queries in a
final report.

   SELECT SalesMonth, SUM(CASE 
                           WHEN Region='NE' 
                           THEN Revenue 
                           ELSE 0 
                          END),
                      SUM(CASE 
                           WHEN Region='NW' 
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                           THEN Revenue 
                           ELSE 0 
                          END),
                      SUM(CASE 
                           WHEN Region LIKE 'N%' 
                           THEN Revenue 
                           ELSE 0 
                          END)
   AS NorthernExposure, NorthernExposure/SUM(Revenue),
   SUM(Revenue)
   FROM Sales
   GROUP BY SalesMonth;

Example: Producing a Report to Show Employee Salary

All employees whose salary is less than $40000 are eligible for an across the board pay increase.

IF your salary is less than … AND you have greater than this
many years of service …

THEN you receive this
percentage salary increase …

$30000.00 8 15

$35000.00 10 10

$40000.00 5

The following SELECT statement uses a CASE expression to produce a report showing all employees
making under $40000, displaying the first 15 characters of the last name, the salary amount (formatted
with $and punctuation), the number of years of service based on the current date (in the column named
On_The_Job) and which of the four categories they qualify for: '15% Increase', '10% Increase', '05%
Increase' or 'Not Qualified'.

   SELECT CAST(last_name AS CHARACTER(15))
      ,salary_amount (FORMAT '$,$$9,999.99')
      ,(date - hire_date)/365.25 (FORMAT 'Z9.99') AS On_The_Job
      ,CASE 
          WHEN salary_amount < 30000 AND On_The_Job > 8 
          THEN '15% Increase'
          WHEN salary_amount < 35000 AND On_The_Job > 10 
          THEN '10% Increase'
          WHEN salary_amount < 40000 AND On_The_Job > 10
          THEN '05% Increase'
          ELSE 'Not Qualified'
         END  AS Plan
   WHERE salary_amount < 40000
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   FROM employee
   ORDER BY 4;

The result of this query appears in the following table:

last_name salary_amount On_The_Job Plan

Trader $37,850.00 20.61 05% Increase

Charles $39,500.00 18.44 05% Increase

Johnson $36,300.00 20.41 05% Increase

Hopkins $37,900.00 19.99 05% Increase

Morrissey $38,750.00 18.44 05% Increase

Ryan $31,200.00 20.41 10% Increase

Machado $32,300.00 18.03 10% Increase

Short $34,700.00 17.86 10% Increase

Lombardo $31,000.00 20.11 10% Increase

Phillips $24,500.00 19.95 15% Increase

Rabbit $26,500.00 18.03 15% Increase

Kanieski $29,250.00 20.11 15% Increase

Hoover $25,525.00 20.73 15% Increase

Crane $24,500.00 19.15 15% Increase

Stein $29,450.00 20.41 15% Increase

Related Topics
For more information, see:

• For information about error conditions, see Error Conditions.
• For information about the result data type of a CASE expression, see Rules for the CASE Expression

Result Type.
• For information about format of the result of a CASE expression, see Default Format.
• For information about nulls and CASE expressions, see CASE and Nulls.

Error Conditions
The following conditions or expressions are considered illegal in a CASE expression:
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Condition or Expression Example

A condition after the keyword CASE is supplied. SELECT CASE a=1
        WHEN 1
        THEN 1
        ELSE 0
        END
FROM t;

A non valid WHEN expression is supplied in a valued
CASE expression.

SELECT CASE a
        WHEN a=1
        THEN 1 
        ELSE 0 
       END 
FROM t;

A non valid WHEN condition is supplied in a searched
CASE expression.

SELECT CASE 
        WHEN a
        THEN 1 
        ELSE 0 
       END 
FROM t;
SELECT CASE
        WHEN NULL
        THEN 'NULL'
       END
FROM table_1;

A non-scalar subquery is specified in a WHEN condition
of a searched CASE expression.

SELECT CASE 
        WHEN t.a IN 
         (SELECT u.a 
          FROM u)
        THEN 1 
        ELSE 0 
       END 
FROM t;

A CASE expression references multiple UDTs that are not
identical to each other.

SELECT CASE t.shape.gettype()
        WHEN 1 
        THEN NEW circle('18,18,324')
        WHEN 2
        THEN NEW square('20,20,400')
       END;

Rules for the CASE Expression Result Type
Because the expressions in CASE THEN/ELSE clauses can be different data types, determining the result
type is not always straightforward. You can use the TYPE attribute function with the CASE expression as
the argument to find out the result data type. See TYPE.

The following rules apply to the data type of the CASE expression result.
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THEN/ELSE Expressions Having the Same Non-Character Data
Type
If all of the THEN and ELSE expressions have the same non-character data type, the result of the CASE
expression is that type. For example, if all of the THEN and ELSE expressions have an INTEGER type,
the result type of the CASE expression is INTEGER.

For information about how the precision and scale of DECIMAL results are calculated, see Binary
Arithmetic Result Data Types.

THEN/ELSE Character Type Expressions
The following rules apply to CASE expressions where the data types of all of the THEN/ELSE expressions
are character:

• The result of the CASE expression is also a character data type, with the length equal to the maximum
length of the different character data types of the THEN/ELSE expressions.

• If the data types of all of the THEN/ELSE expressions are CHARACTER (or CHAR), the result data
type is CHARACTER. If one or more expressions are VARCHAR (or LONG VARCHAR), the result
data type is VARCHAR.

• The server character set of the result is determined as follows:

◦ If the CASE expression contains 1 nonliteral character expression and 1 or more literals, then
Teradata Database tries to translate every literal to the character set of the nonliteral. If the
translations are successful, then the character set of the nonliteral is used for the result data type.
If the translations are not successful, the server character set of the result is Unicode.

◦ If the CASE expression contains more than 1 nonliteral character expression and 1 or more
literals, then:

If all of the nonliteral expressions have the same character set, then Teradata Database uses
this character set as the common data type. Otherwise, if the nonliteral expressions have differing
character sets, then Teradata Database uses the Unicode character set as the common data
type.

Teradata Database tries to translate every literal to the character set of the common data type.
If the translations are successful, then the result data type has the character set of the common
data type. If the translations are not successful, the server character set of the result is Unicode.

Examples

Examples of Character Data in a CASE Expression

For the following examples of CHARACTER data behavior, assume the default server character set is
KANJI1 and the table definition for the CASE examples is as follow:
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   CREATE TABLE table_1
   (
    i        INTEGER,
    column_l CHARACTER(10) CHARACTER SET LATIN,
    column_u CHARACTER(10) CHARACTER SET UNICODE,
    column_j CHARACTER(10) CHARACTER SET KANJISJIS,
    column_g CHARACTER(10) CHARACTER SET GRAPHIC,
    column_k CHARACTER(10) CHARACTER SET KANJI1
   );

Note:
In accordance with Teradata internationalization plans, KANJI1 support is deprecated and is to be
discontinued in the near future. KANJI1 is not allowed as a default character set; the system changes
the KANJI1 default character set to the UNICODE character set. Creation of new KANJI1 objects
is highly restricted. Although many KANJI1 queries and applications may continue to operate, sites
using KANJI1 should convert to another character set as soon as possible. For more information,
see "KANJI1 Character Set" in Teradata Vantage™ NewSQL Engine International Character Set
Support, B035-1125.

Examples of Character Data in a CASE Expression: Example 1

The server character set of the result of the following query is UNICODE because the CASE expression
contains more than 1 nonliteral character expressions with differing character sets.

   SELECT i, CASE
               WHEN i=2 THEN column_u
               WHEN i=3 THEN column_j
               WHEN i=4 THEN column_g
               WHEN i=5 THEN column_k
               ELSE column_l
             END
   FROM table_1
   ORDER BY 1;

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

   SELECT a, CASE
                WHEN a=1 
                THEN TIME
                ELSE USER
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               END
   FROM table_1
   ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 2

The result of the following query is a 5354 failure (Arguments must be of type KANJI1) because one
THEN/ELSE expression is a KANJI1 literal, but the server character sets of all the other THEN/ELSE
expressions are not KANJI1.

   SELECT i, CASE
               WHEN i=1 THEN column_l
               WHEN i=2 THEN column_u
               WHEN i=3 THEN column_j
               WHEN i=4 THEN column_g
               WHEN i=5 THEN _Kanji1'4142'XC
               ELSE column_k
             END
   FROM table_1
   ORDER BY 1;

For this example, assume the following table definition:

   CREATE table_1
     (i        INTEGER,
      column_l CHARACTER(10) CHARACTER SET LATIN,
      column_u CHARACTER(10) CHARACTER SET UNICODE,
      column_j CHARACTER(10) CHARACTER SET KANJISJIS,
      column_g CHARACTER(10) CHARACTER SET GRAPHIC,
      column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character
set of the first THEN with a character type is GRAPHIC):

   SELECT i, CASE
               WHEN i=1 THEN 4
               WHEN i=2 THEN column_g
               WHEN i=3 THEN 5
               WHEN i=4 THEN column_l
               WHEN i=5 THEN column_k
               ELSE 10
             END
   FROM table_1
   ORDER BY 1;
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Examples of Character Data in a CASE Expression: Example 3

One THEN/ELSE expression in the following query has a Unicode column. The query is successful and
the result data type is UNICODE because the CASE expression contains 1 Unicode column and all other
literals can be successfully translated to Unicode.

   SELECT i, CASE
               WHEN i=1 THEN column_u
               WHEN i=2 THEN 'abc'
               WHEN i=3 THEN 8
               WHEN i=4 THEN _KanjiSJIS'4142'XC
               ELSE 10
             END
   FROM table_1
   ORDER BY 1;

Examples of Character Data in a CASE Expression: Example 4

One THEN/ELSE expression in the following query has a Latin column. The query is successful and the
result data type is Latin because the other literals can be successfully translated to Latin.

   SELECT i, CASE
               WHEN i=1 THEN 'abc'
               WHEN i=2 THEN column_l
               ELSE 'def'
             END
   FROM table_1
   ORDER BY 1;

THEN/ELSE Expressions Having Mixed Data Types

The rules for mixed data appear in the following table.

IF the THEN / ELSE
clause expressions … THEN …

consist of BYTE and/or
VARBYTE data types

if the data types of all of the THEN/ELSE expressions are BYTE, the result
data type is BYTE. If one or more expressions are VARBYTE, the result
data type is VARBYTE.
The result has a length equal to the maximum length of the different byte
data types.

contain a DateTime or
Interval data type

all of the THEN/ELSE clause expressions must have the same data type.
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IF the THEN / ELSE
clause expressions … THEN …

contain a FLOAT
(approximate numeric) and
no character strings

the CASE expression returns a FLOAT result.
Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types are
involved.

are composed only of
DECIMAL data

the CASE expression returns a DECIMAL result.
Note:
A DECIMAL arithmetic result can have up to 38 digits. A result larger than
38 digits produces a numeric overflow error.
For information about how the precision and scale of DECIMAL results are
calculated, see Binary Arithmetic Result Data Types.
all are implicitly converted to FLOAT and the CASE expression returns a
FLOAT result.

Note:
Some inaccuracy is inherent and unavoidable when FLOAT data types are
involved. Implicit conversion of DECIMAL and INTEGER values to FLOAT
values may result in a loss of precision or produce a number that cannot
be represented exactly.

are composed only of
mixed DECIMAL,
BYTEINT, SMALLINT,
INTEGER, and BIGINT
data

are a mix of BYTEINT,
SMALLINT, INTEGER, and
BIGINT data

the resulting type is the largest type of any of the THEN/ELSE clause
expressions, where the following list orders the types from largest to
smallest:
• BIGINT
• INTEGER
• SMALLINT
• BYTEINT

are composed only of
numeric and character data

the numeric data is converted to CHARACTER with a length as determined
by the format associated with the numeric expression. Then, the rules for
the result data type for character, length, and character set are applied. For
details, see THEN/ELSE Character Type Expressions.
Note:
An error is generated if the server character set is GRAPHIC.

Examples of Numeric Data in a CASE Expression

For the following examples of numeric data behavior, assume the following table definitions for the CASE
examples:

   CREATE TABLE dec22
      (column_l INTEGER
      ,column_2 INTEGER
      ,column_3 DECIMAL(22,2) );
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Example: CASE Expression Fails

In the following statement, the CASE expression fails when column_2 contains the value 1 and column_3
contains the value 11223344556677889900.12 because the result is a DECIMAL value that requires
more than 38 digits of precision:

   SELECT SUM (CASE
                WHEN column_2=1 
                THEN column_3 * 6.112233445566778800000
                ELSE column_3
               END )
   FROM dec22;

Example: Shortening the Scale of the Multiplier

The following query corrects the problem in Example: CASE Expression Fails by shortening the scale of
the multiplier in the THEN expression:

   SELECT SUM (CASE
                WHEN column_2=1 
                THEN column_3 * 6.1122334455667788
                ELSE column_3
               END )
   FROM dec22;

Example: Returning a DECIMAL(38,2) Result

In the following query, the CASE expression returns a DECIMAL(38,2) result because the THEN  and  
ELSE clauses contain DECIMAL values:

   SELECT SUM (CASE
                WHEN column_2=1 
                THEN column_3 * 6
                ELSE column_3
               END )
   FROM dec22;

Examples of Character and Numeric Data in a CASE Expression

The following examples illustrate the behavior of queries containing CASE expressions with a THEN/
ELSE clause composed of numeric and character data.
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Examples of Character and Numeric Data in a CASE Expression:
Example 1

In the following query, the CASE expression returns a VARCHAR result because the THEN  and  ELSE
clause contains FLOAT and VARCHAR values. The length of the result is 30 since the default format for
FLOAT is a string less than 30 characters, and USER is defined as VARCHAR(30) CHARACTER SET
UNICODE. The result is CHARACTER SET UNICODE because USER is UNICODE.

   SELECT a, CASE
                WHEN a=1 
                THEN TIME
                ELSE USER
               END
   FROM table_1
   ORDER BY 1;

Examples of Character and Numeric Data in a CASE Expression:
Example 2

For this example, assume the following table definition:

   CREATE table_1
     (i        INTEGER,
      column_l CHARACTER(10) CHARACTER SET LATIN,
      column_u CHARACTER(10) CHARACTER SET UNICODE,
      column_j CHARACTER(10) CHARACTER SET KANJISJIS,
      column_g CHARACTER(10) CHARACTER SET GRAPHIC,
      column_k CHARACTER(10) CHARACTER SET KANJI1);

The following query fails because the server character set is GRAPHIC (because the server character
set of the first THEN with a character type is GRAPHIC):

   SELECT i, CASE
               WHEN i=1 THEN 4
               WHEN i=2 THEN column_g
               WHEN i=3 THEN 5
               WHEN i=4 THEN column_l
               WHEN i=5 THEN column_k
               ELSE 10
             END
   FROM table_1
   ORDER BY 1;
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Related Topics
For more information, see:

• Binary Arithmetic Result Data Types

Format for a CASE Expression

Default Format
The result of a CASE expression is displayed using the default format for the resulting data type. The result
of a CASE expression does not apply the explicit format that may be defined for a column appearing in a
THEN/ELSE expression.

Consider the following table definition:

   CREATE TABLE duration
      (i INTEGER
      ,start_date DATE FORMAT 'EEEEBMMMBDD,BYYYY'
      ,end_date DATE FORMAT 'DDBM3BY4' );

Assume the default format for the DATE data type is 'YY/MM/DD'.

The following query displays the result of the CASE expression using the 'YY/MM/DD' default DATE format,
not the format defined for the start_date or end_date columns:

   SELECT i, CASE
              WHEN i=1 
              THEN start_date
              WHEN i=2 
              THEN end_date
             END
   FROM duration
   ORDER BY 1;

Using Explicit Type Conversion to Change Format
To modify the format of the result of a CASE expression, use CAST and specify the FORMAT clause.

Here is an example that uses CAST to change the format of the result of the CASE expression in the
previous query.

   SELECT i, ( CAST ((CASE
                WHEN i=1 
                THEN start_date
                WHEN i=2 
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                THEN end_date
               END) AS DATE FORMAT 'M4BDD,BYYYY'))
   FROM duration
   ORDER BY 1;

For information on the default data type formats and the FORMAT phrase, see Teradata Vantage™ Data
Types and Literals, B035-1143.

CASE and Nulls
The ANSI SQL:2011 standard specifies that the CASE expression and its related expressions COALESCE
and NULLIF must be capable of returning a null result.

Nulls and CASE Expressions

The rules for null usage in CASE, NULLIF, and COALESCE expressions are as follows.

• If no ELSE clause is specified in a CASE expression and the evaluation falls through all the WHEN
clauses, the result is null.

• Nulls and expressions containing nulls are valid as value_expression_1 in a valued CASE expression.

The following examples are valid.

   SELECT CASE NULL
           WHEN 10 
           THEN 'TEN'
          END;
   
   SELECT CASE NULL + 1
           WHEN 10 
           THEN 'TEN'
          END;
   

Both of the preceding examples return NULL because no ELSE clause is specified, and the evaluation
falls through the WHEN clause because NULL is not equal to any value or to NULL.

• Comparing NULL to any value or to NULL is always FALSE. When testing for NULL, it is best to use
a searched CASE expression using IS NULL or IS NOT NULL in the WHEN condition.

The following example is valid.

   SELECT CASE
           WHEN column_1 IS NULL
           THEN 'NULL'
          END
   FROM table_1;
   

9: CASE Expressions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 330



Often, Teradata Database can detect when an expression that always evaluates to NULL is compared
to some other expression or NULL, and gives an error that recommends using IS NULL or IS NOT
NULL instead. Note that ANSI SQL does not consider this to be an error; however, Teradata Database
reports an error since it is unlikely that comparing NULL in this manner is the intent of the user.

The following examples are not legal.

   SELECT CASE column_1
           WHEN NULL
           THEN 'NULL'
          END
   FROM table_1;
   
   SELECT CASE column_1
           WHEN NULL + 1
           THEN 'NULL'
          END
   FROM table_1;
   SELECT CASE
           WHEN column_1 = NULL
           THEN 'NULL'
          END
   FROM table_1;
   SELECT CASE
           WHEN column_1 = NULL + 1
           THEN 'NULL'
          END
   FROM table_1;

• Nulls and expressions containing nulls are valid as THEN clause expressions.

The following example is valid.

   SELECT CASE
           WHEN column_1 = 10
           THEN NULL
          END
   FROM table_1

Note that, unlike the previous examples, the NULL in the THEN clause is an SQL keyword and not the
value of a character literal.

CASE Shorthands
ANSI also defines two shorthand special cases of CASE specifically for handling nulls.

• COALESCE expression (see COALESCE Expression)
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• NULLIF expression (see NULLIF Expression)

COALESCE Expression
Purpose

Returns NULL if all its arguments evaluate to null. Otherwise, it returns the value of the first non-null
argument in the scalar_expression list.

COALESCE is a shorthand expression for the following full CASE expression:

   CASE 
    WHEN  scalar_expression_1  IS NOT NULL 
    THEN  scalar_expression_1  
    ...
    WHEN  scalar_expression_n  IS NOT NULL 
    THEN  scalar_expression_n  
    ELSE NULL 
   END

Syntax

Syntax Elements

scalar_expression_n

An argument list.

Each COALESCE function must have at least two operands.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
A scalar_expression_n in the argument list may be evaluated twice: once as a search condition and again
as a return value for that search condition.
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Using a nondeterministic function, such as RANDOM, in a scalar_expression_n may have unexpected
results, because if the first calculation of scalar_expression_n is not NULL, the second calculation of that
scalar_expression_n, which is returned as the value of the COALESCE expression, might be NULL.

You can use a scalar subquery in a COALESCE expression. However, if you use a non-scalar subquery
(a subquery that returns more than one row), a runtime error is returned.

Default Title
The default title for a COALESCE expression appears as:

   <CASE expression>

Restrictions on the Data Types in a COALESCE Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a COALESCE expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types because
Teradata Database does not perform implicit type conversion on UDTs in a COALESCE
expression.

Examples

Example: Querying for a Phone Number

The following example returns the home phone number of the named individual (if present), or office
phone if HomePhone is null, or MessageService if present and both home and office phone values are
null. Returns NULL if all three values are null.

   SELECT Name, COALESCE (HomePhone, OfficePhone, MessageService) 
   FROM PhoneDir;

Example: Using COALESCE with an Arithmetic Operator

The following example uses COALESCE with an arithmetic operator.

   SELECT COALESCE(Boxes,0) * 100
   FROM Shipments;
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Example: Using COALESCE with an Comparison Operator

The following example uses COALESCE with a comparison operator.

   SELECT Name
   FROM Directory
   WHERE Organization <> COALESCE (Level1, Level2, Level3);

Related Topics
For more information, see:

• For additional information, such as the rules for evaluation and result data type, see CASE.

NULLIF Expression
Purpose

Returns NULL if its arguments are equal. Otherwise, it returns its first argument, scalar_expression_1.

NULLIF is a shorthand expression for the following full CASE expression:

   CASE 
    WHEN  scalar_expression_1=scalar_expression_2  
    THEN NULL
    ELSE  scalar_expression_1  
   END

Syntax

Syntax Elements

scalar_expression_1

The scalar expression to the left of the = in the expanded CASE expression, as shown in Purpose.

scalar_expression_2

The scalar expression to the right of the = in the expanded CASE expression, as shown in Purpose.
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ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
The scalar_expression_1 argument may be evaluated twice: once as part of the search condition (see the
preceding expanded CASE expression) and again as a return value for the ELSE clause.

Using a nondeterministic function, such as RANDOM, may have unexpected results if the first calculation
of scalar_expression_1 is not equal to scalar_expression_2, in which case the result of the CASE
expression is the value of the second calculation of scalar_expression_1, which may be equal to
scalar_expression_2.

You can use a scalar subquery in a NULLIF expression. However, if you use a non-scalar subquery (a
subquery that returns more than one row), a runtime error is returned.

Default Title
The default title for a NULLIF expression appears as:

   <CASE expression>

Restrictions on the Data Types in a NULLIF Expression
The following restrictions apply to CLOB, BLOB, and UDT types in a NULLIF expression.

Data Type Restrictions

BLOB A BLOB can only appear in the argument list when it is cast to BYTE or VARBYTE.

CLOB A CLOB can only appear in the argument list when it is cast to CHAR or VARCHAR.

UDT Multiple UDTs can appear in the argument list only when they are identical types and have
an ordering definition.

Examples
The following examples show queries on the following table:

   CREATE TABLE Membership
      (FullName CHARACTER(39)
      ,Age SMALLINT
      ,Code CHARACTER(4) );
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Example: Querying with the ANSI-Compliant Form

Here is the ANSI-compliant form of the Teradata SQL NULLIFZERO(Age) function, and is more versatile.

   SELECT FullName, NULLIF (Age,0) FROM Membership;

Example: Blank Spaces

In the following query, blanks indicate no value.

   SELECT FullName, NULLIF (Code, '    ') FROM Membership;

Example: Querying for NULLIF in an Expression with an Arithmetic Operator

The following example uses NULLIF in an expression with an arithmetic operator.

   SELECT NULLIF(Age,0) * 100;

Related Topics
For more information, see:

• For additional information, such as the rules for evaluation and result data type, see CASE.
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Module 5: CASE Expressions 

Upon completion of this module, you should be able to: 

 Return alternate values using the CASE expression.

 Use special variations of the CASE expression:

 NULLIF

 COALESCE
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The CASE expression allows for conditional processing of returned rows. It provides some IF-
THEN-ELSE logic on top of the normally set-based SQL. 

 

There are two general categories of CASE expressions: 

 Valued CASE expressions 

 Searched CASE expressions 

 

Valued case statements have simpler syntax, but they are limited. Searched case statements 
have more complex syntax, but more flexibility.  

 

In this course, we will look at valued case statements first. 
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A valued CASE expression looks like this: 
 

CASE value-expr WHEN expr1  THEN result1 

                WHEN expr2  THEN result2 

                 : 

                ELSE resultn  

END 

 
 
Value-expr is either a column or an expression involving columns. For each row, Teradata 
database will compare value-expr with exprn values until there is a match: 

1. If value-expr equals expr1, output result1. If they are not equal, go to step 2. 

2. If value-expr equals expr2, output result2. If they are not equal, go to step 3. 

3. If value-expr equals expr3, output result3. If they are not equal, go to step 4... 

In this way, Teradata database will test all WHEN clauses until we get a match. 

 

If there is no match, then we will use the ELSE condition and output resultn. 
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Example 
 
What fraction of the total salary of all employees is the sum of salaries from department 401? 
 

SELECT SUM(CASE department_number  

                WHEN 401 THEN salary_amount 

                ELSE 0 

           END) / SUM(salary_amount) 

FROM employee; 

 

(Sum(<CASE  expression>)/Sum(salary_amount)) 

0.22 
 

 
Things to Notice: 

 The case statement says that if the department number is 401, then sum the salary amount. 
If it is anything else, then sum a 0. This will get only the sum of salaries from department 
401. 

 To get the fraction of the total salary, we have a denominator that simply sums all the salary 
amounts. 

 The default output title is lengthy. You can use the AS clause to give it a better name. 

SELECT SUM(CASE department_number  

                WHEN 401 THEN salary_amount 

                ELSE 0 

           END) / SUM(salary_amount) AS sal_ratio 

FROM employee; 
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Here is another example of a valued case statement. From a performance standpoint, this might 
be better to answer with a filter instead of a CASE statement, but this will still give you the 
correct answer. 
 

Example 
 
Get the total of salaries for departments 401 and 501. 
 

SELECT SUM(CASE department_number  

                WHEN 401 THEN salary_amount 

                WHEN 501 THEN salary_amount 

                ELSE 0 

           END) AS total_sals_401_501 

FROM employee; 

 

total_sals_401_501 

445700.00 
 

 
Things to Notice: 

 The case statement says that if the department number is 401, then sum the salary amount. 
If it is anything else, then sum a 0. This will get only the sum of salaries from department 
401. 

 To get the fraction of the total salary, we have a denominator that simply sums all the salary 
amounts. 

 The default output title is lengthy. You can use the AS clause to give it a better name. 

 
  

Teradata Vantage Analytics Certification: Learning Resource



 

 
 

 
 
The searched case syntax is more complex, but offers more functionality than the valued CASE 
statement. A searched CASE expression looks like this: 
 

CASE WHEN condition1  THEN value-expr1 

     WHEN condition2  THEN value-expr2 

                 : 

     ELSE value-exprn 

END 

 

For each row, Teradata database will evaluate the conditions in order until there is a hit. If there 
are no conditions met, then we will use the ELSE condition and output value-exprn. This is 
similar to the valued CASE expression. 

However, instead of a simple evaluation for equality like a valued CASE expression, the 
conditions within a searched CASE expression allow you much greater flexibility: 

 Each condition may involve equality or non-equality operators. 

 Each condition may involve multiple columns. 

 Condition1 and condition2 may involve different columns. 
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In this example, you can see the flexibility provided by the searched case expression. 
 

Example 
 
Place each employee in a salary category: under $30K, under $40K, under $50K, and anything 
above $50K. 

 

SELECT last_name, 

       CASE WHEN salary_amount < 30000 THEN 'Under $30K' 

            WHEN salary_amount < 40000 THEN 'Under $40K' 

            WHEN salary_amount < 50000 THEN 'Under $50K' 

            ELSE '> = $50K' 

       END 

FROM employee 

ORDER BY salary_amount; 

 

last_name salary_category 

Crane Under $30K 

Phillips Under $30K 

: : 

Lombardo Under $40K 

Ryan Under $40K 

: : 

Brown Under $50K 

Brown Under $50K 

: : 

Daly > = $50K 

Wilson > = $50K 

: : 
 

 
Things to Notice: 

We are not restricted to an equality condition; in this case we use a less than (<) comparison. 
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Example 
 
Calculate the fraction of the total salaries represented by departments 401 and 501. Allow for a 
10% salary increase for employees in department 501. 
 

SELECT SUM (CASE WHEN department_number = 401 THEN salary_amount 

                 WHEN department_number = 501 THEN salary_amount * 1.1 

                 ELSE 0 

            END)  /  

       SUM (CASE WHEN department_number = 501 THEN salary_amount * 1.1 

                 ELSE salary_amount 

            END ) AS sal_ratio 

FROM employee; 

 

sal_ratio 

0.415 
 
 
Things to Notice: 

The numerator CASE calculates the sum of salaries for departments 401 and 501, including a 
10% increase for 501 employees. 

The denominator CASE calculates the sum of all salaries for all departments including a 10% 
increase for 501 employees. 
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Example 
 
Find the people who qualify for early retirement and which plan they qualify for. 
 

Plan Age Years Service 

Gold Over 60 Over 20 

Silver Over 55 Over 15 

Bronze Over 50 Over 10 
 

 
SELECT  CAST(last_name AS CHAR(15)) 

   ,(CURRENT_DATE - hire_date)/365.25 AS On_The_Job 

   ,(CURRENT_DATE - Birthdate)/365.25 AS Age 

   ,CASE WHEN Age > 60 AND On_The_Job > 20 THEN 'Gold Plan' 

         WHEN Age > 55 AND On_The_Job > 15 THEN 'Silver Plan' 

         ELSE 'Bronze Plan' 

    END  AS Plan 

FROM employee 

WHERE Age > 50 AND On_The_Job > 10 

ORDER BY 4 DESC;  

 

Results will vary depending on when the query is executed. 
 
Things to Notice: 

A complex searched CASE expression may involve tests on multiple columns under multiple 
conditions. The WHERE clause limits the number of rows to be returned, while the CASE 
statement determines the disposition of the qualifying rows. 
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NULLIF returns NULL if its arguments are equal. Otherwise, it returns its first argument, 
scalar_expression_1. 

 

NULLIF ( scalar_expression1, scalar_expression2 ) 

 

 

 

NULLIF is a special expression that is shorthand for the following full CASE expression: 
 

CASE WHEN scalar_expression_1 = scalar_expression_2 THEN NULL 

     ELSE scalar_expression_1 

END 
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We will use the below CALL_EMPLOYEE table in the next few examples. Note especially the 
labor_hours column, which has 3 values (one of which is 0) and 3 nulls. 

call_number employee_number call_status_code assigned_dat
e 

assigned_tim
e 

finished_date finished_

time

5 1004 5 1161216 1025 

4 1010 1 1161215 1250 

1 1004 1 1161215 0905 1161216 1625 

6 1004 2 1161216 1110 

3 1001 16 1161215 1215 

2 1001 2 1161215 0930 1161216 1375 
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NULLIF can transform a zero (0) into a null. It is the ANSI standard substitute for Teradata 
database's NULLIFZERO function. 

Example 

SELECT call_number 

,labor_hours  (TITLE 'ACTUAL HOURS') 

,NULLIF (labor_hours, 0) (TITLE 'NULLIF ZERO HOURS') 

FROM   call_employee 

ORDER BY labor_hours; 

call_number ACTUAL HOURS NULLIF ZERO HOURS 

4 null null 

5 null null 

6 null null 

3 .0 null 

2 4.0 4.0 

1 8.5 8.5 

Things to Notice 

Call_number 3 has zero labor_hours. 

The third column shows 0 transformed to null through use of NULLIF function. 
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A common use for NULLIF is in a denominator or divisor. Dividing by zero will abort a query and 
produce an error message, but dividing by a null will simply result in a null. 

Example 

Find the ratio of hourly billing rate to hourly cost rate for all "analyst" jobs. 

Without NULLIF: 

SELECT description 

, hourly_billing_rate/hourly_cost_rate 

AS "Billing-Cost Ratio" 

FROM   job 

WHERE  description like '%analyst%' ; 

Error Message: Division by zero in an expression involving 

job.hourly_cost_rate.

With NULLIF: 

SELECT description 

, hourly_billing_rate / 

NULLIF(hourly_cost_rate, 0) 

AS "Billing-Cost Ratio" 

FROM   job 

WHERE   description like '%analyst%' ; 

description Billing-Cost Ratio 

Software Analyst 1.29 

System Support Analyst null 

System Analyst 1.14 

Applying the NULLIF function to the denominator produces a null result. This avoids the error 
and allows a report to be generated. 
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COALESCE returns returns the value of the first non-null argument in the scalar_expression list. 
If all of its arguments evaluate to null, it returns NULL. 
 

COALESCE ( scalar_expression_1, scalar_expression_2, ... , 

scalar_expression_n ) 

 
 
COALESCE is a special expression that is shorthand for the following full CASE expression: 
 

CASE WHEN scalar_expression_1 IS NOT NULL THEN scalar_expression_1 

... 

     WHEN scalar_expression_n IS NOT NULL THEN scalar_expression_n 

     ELSE NULL 

END 

 

 

Example 
 
Show office phone number if present, else show home phone.   

 

SELECT name 

      ,COALESCE (office_phone, home_phone) 

FROM   phone_table; 
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COALESCE can be used to convert a possible NULL value to zero. COALESCE is the ANSI 
standard alternative for the Teradata database ZEROIFNULL function. 

Example 

Get the number of students in each course. If num_students is null, return a zero. 

SELECT course_name 

,COALESCE (num_students, 0) (TITLE '# Students') 

FROM   class_schedule; 

course_name # Students 

Teradata SQL 17 

Physical DB Design 0 
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COALESCE can also be used to convert possible NULL value to a string literal 'NULL VALUE'. 
With COALESCE, you can change a null into whatever you want. 

Example 

SELECT course_name 

,COALESCE (num_students, 'NULL VALUE') (TITLE '# Students') 

FROM   class_schedule; 

course_name # Students 

Teradata SQL 17 

Physical DB Design NULL VALUE 
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The default is to ignore nulls in aggregations. NULLIF and COALESCE allow you to change 
that rule. In the example below (based on the call_employee table we saw earlier), you can see 
how you can manipulate the same data to get very different results with a simple aggregation. 
Which should you use? That depends on the meaning of the data, and what you are trying to 
show. 

Example 

SELECT AVG (labor_hours) (TITLE 'Default AVG') 

, AVG (NULLIF ( labor_hours, 0))   (TITLE 'NullIfZero AVG') 

, AVG (COALESCE (labor_hours, 0))  (TITLE 'ZeroIfNull AVG') 

, COUNT (labor_hours) (TITLE 'Default COUNT') 

, COUNT (NULLIF (labor_hours, 0))  (TITLE 'NullIfZero COUNT') 

, COUNT (COALESCE (labor_hours, 0))(TITLE 'ZeroIfNull COUNT') 

FROM   call_employee; 

call_number labor_hours 

5 

4 

1 8.5 

6 

3 .0 

2 4.0 

Columns from CALL_EMPLOYEE 

Default AVG NullIfZero AVG ZeroIfNull AVG Default COUNT NullIfZero COUNT ZeroIfNull COUNT

4.2 6.2 2.1 3 2 6 
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If you have not set up your lab server connection, click on the Lab Setup button at the bottom of 
the page to get instructions. You will need these instructions to log on to the Teradata database. 
If you experience problems connecting to the lab server, contact 
Training.Support@Teradata.com. 

For this set of lab exercises you may need information from the Database Info document. Prior 
to doing these labs, it will be helpful to reset your default database to the CustomerService 
database (i.e. DATABASE CustomerService;).  

Click on the Next button at the bottom of the page to see the answers. 

1.) Calculate the fraction of the total company budget represented by departments 401 and 403. 

2.) Calculate the fraction of the total company budget represented by departments 401 and 403 
after department 403 has been given a 5% budget increase.  

3.) Create a budget report from the department table. Show the total, average, minimum and 
maximum budget amounts. Title the columns "Total", Avg", "Min" and "Max". Do the query 
twice:  

a.) once treating NULL values as zero,  
b.) once excluding NULL values in aggregates. 

Compare the results. 

4.) Accounting wants to find out which way of slanting the statistics is most beneficial to the 
company. Do a departmental salary list of the total salaries for each department, and the 
average departmental salary three times:  

 without any changes (treating NULLs as null and zero values as zero)

 treating NULL values as zero

 treating zero values as NULL

Also list the count of rows that are going into each averaging function. Sequence the report by 
department.  

Title your columns as follows: Dept, Tot #, Tot Sal, Avg Sal, ZIN #, ZIN Avg, NIZ #, NIZ Avg 

Are there differences in these computations? Why or why not?  
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Solution 1 

SELECT SUM(CASE department_number WHEN 401 THEN budget_amount 

WHEN 403 THEN budget_amount 

ELSE 0 

END) / SUM(budget_amount)  AS "401/403 Bgt Ratio" 

FROM department; 

401/403 Bgt Ratio 

----------------- 

.49 

Solution 2 

SELECT SUM(CASE WHEN department_number = 401 THEN budget_amount 

WHEN department_number = 403 THEN budget_amount * 1.05 

ELSE 0 

END) / 

SUM(CASE WHEN department_number = 403 THEN budget_amount * 1.05 

ELSE budget_amount 

END )  AS Dept_401_403_Bgt_Ratio 

FROM department; 

Dept_401_403_Bgt_Ratio  

---------------------- 

.4949  

Solution 3 

This solution is for option a) treating NULL values as zero 

SELECT  SUM (COALESCE (budget_amount,0))(DEC(9,2)) AS "Total" 

,AVG (COALESCE (budget_amount,0))(DEC(9,2)) AS "Avg" 

,MIN (COALESCE (budget_amount,0))(DEC(9,2)) AS "Min" 

,MAX (COALESCE (budget_amount,0))(DEC(9,2)) AS "Max" 

FROM department; 

  Total Avg Min Max 

----------  ---------  ---------  --------- 

3915700.00  435077.78  .00 982300.00  

This solution is for option b) not including NULL values in aggregates. 

SELECT  SUM(budget_amount) AS "Total" 

,AVG(budget_amount) AS "Avg" 

,MIN(budget_amount) AS "Min" 

,MAX(budget_amount) AS "Max" 

FROM department; 

  Total Avg Min Max 

----------  ---------  ---------  --------- 

3915700.00  489462.50  226000.00  982300.00 
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Solution 4 

SELECT  department_number AS "Dept" 

,COUNT(salary_amount)   AS "Tot #" 

,SUM(salary_amount) AS "Tot Sal" 

,AVG(salary_amount) AS "Avg Sal" 

,COUNT(COALESCE(salary_amount,0)) AS "ZIN #" 

,AVG(COALESCE(salary_amount,0))   AS "ZIN Avg" 

,COUNT(NULLIF(salary_amount,0))   AS "NIZ #" 

,AVG(NULLIF(salary_amount,0)) AS "NIZ Avg" 

FROM employee 

GROUP BY 1 

ORDER BY 1; 

Dept   Tot #   Tot Sal Avg Sal ZIN #   ZIN Avg NIZ #   NIZ Avg 

----   -----   ---------   ---------   -----   ---------   -----   ---------- 

100 1 100000.00   100000.00   1 100000.00   1 100000.00 

201 2 73450.00 36725.00 2 36725.00 2 36725.00 

301    3 116400.00   38800.00 3 38800.00 3 38800.00 

302 1 56500.00 56500.00 1 56500.00 1 56500.00 

401 7 245575.00   35082.14 7 35082.14 7 35082.14 

402 2 77000.00 38500.00 2 38500.00 2 38500.00 

403 6 233000.00   38833.33 6 38833.33 6 38833.33 

501 4 200125.00   50031.25 4 50031.25 4 50031.25 
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1

1.10 - Given a scenario 

including the need to connect 

to an external data source, 

identify the SQL code snippet 

that should be used.
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Explaining the Query

• Query initiated from IDW

• Local query on IDW run to select 

qualifying rows; sales_quantity

aggregated

• Remote query on 1700 run to select 

qualifying rows; sales_quantity

aggregated

• Qualifying rows returned from the 

1700 and placed in spool on IDW

• IDW merges both data sets 

• IDW applies ordering

SELECT sales_date, SUM(sales_quantity) AS 

total_sales

FROM samples.sales_fact

GROUP BY 1

UNION ALL

SELECT *

FROM FOREIGN TABLE (

SELECT sales_date, SUM(sales_quantity) 

AS total_sales

FROM samples.sales_fact_history

GROUP BY 1)@ td1700 old_sales

ORDER BY 1;

Query Result:  1,336 rows 

Rows transferred: 1,002

Elapsed time: ~4 sec

1,336 rows 

14 Million

~30 sec

© 2014 Teradata
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QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

CREATE FOREIGN SERVER hdp USING

LINK(’TD2P')

DO IMPORT WITH TD_SYSFNLIB.QGINITIATORIMPORT ,

DO EXPORT WITH TD_SYSFNLIB.QGINITIATOREXPORT ;

Remaining name value 

pairs obtained from QGM 

from link name

QG 2.0 Foreign Server Definition

Teradata query joining current data with archive data in Presto/Hadoop

SELECT * FROM websales_current UNION ALL SELECT * FROM websales_archive@hdp;

Defined Using 

Foreign Server

- The link configured in the QGM will be used to create the foreign server object in 
Teradata, this object enables the @foreign_server name remote queries on Teradata

- Contrast the old FS with the new FS – simplicity.

© 2014 Teradata



4

QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

Remaining name value 

pairs obtained from QGM 

from link name
connector.name=qginitiator

qginitiator.linkName=P2TD

qginitiator.version=active

QG 2.0 Presto Catalog Properties

Presto query joining current data in Teradata with archive data in Presto/Hadoop

SELECT * FROM td.sales.websales_current UNION ALL SELECT * FROM

hive.sales.websales_archive;

Defined Using 

Catalog Properties

- If your use case requires that the query to initiate from Presto, then create a link in 
the QGM (P2TD) then use it to create a catalog (name: td) for Teradata, the catalog is 
referenced in a remote query as in this example

© 2014 Teradata
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QueryGrid 2.0

• Define: Foreign Server, Catalog Properties, Storage Handlers

Remaining name value 

pairs obtained from QGM 

from link name
CREATE TABLE websales_current
ROW FORMAT SERDE 'com.teradata.querygrid.qgc.hive.QGSerDe’

STORED BY 'com.teradata.querygrid.qgc.hive.QGStorageHandler’

TBLPROPERTIES ("link"=”H2TD",

"table"=" sales.websales_current ");

QG 2.0 Hive Storage Handler Definition

Hive query joining current data in Teradata with archive data in Hive/Hadoop

SELECT * FROM websales_current UNION ALL SELECT * FROM websales_archive;

Defined Using 

Storage Handlers

- If your use case requires that the query to initiate from Hive, then create a link in 
the QGM (H2TD) then use it to create a storage handler for every table you want to 
access remotely, the storage handler is referenced in a remote query as in this 
example

© 2014 Teradata
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Thank you.

©2018 Teradata

Thank you.

©2018 Teradata
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tablename
column name







100 'Smith' 'Mary'

100 'Smith' 'Mary '

100 'smith' 'Mary'

100 'Smith' 'mary'

(No duplicate rows allowed)

(Duplicate rows allowed)

(Answers in the student manual.)

If both character columns are not case sensitive, which rows would be duplicates?



Answer: all but the second row.

If both character columns are case sensitive, which rows would be duplicates?
Answer: only the second row.



(blue indicate defaults)

tablename

n

n
n





(defaulted assignment)















Find employees whose salaries are greater than their department average.







Show the department name for those having a salary larger than their department average.

department_name last_name salary_amount AvgSal
------------------------------ -------------------- ------------- ------------
customer support                Brown                      43100.00      35545.83
customer support                Trader                     37850.00      35545.83
customer support                Rogers                     46000.00      35545.83
customer support                Johnson                    36300.00      35545.83
education                       Villegas                   49700.00      38700.00
education                       Brown                      43700.00      38700.00
marketing sales                 Wilson                     53625.00      50031.25
marketing sales                 Ratzlaff 54000.00      50031.25
marketing sales                 Runyon                     66000.00      50031.25
research and development        Stein                      29450.00      29350.00



(projection)





department_number last_name salary_amount AvgSal
----------------- -------------------- ------------- ------------

?  Rogers                     56500.00      43316.67
301  Stein                      29450.00      29350.00
401  Trader                     37850.00      35545.83
401  Brown                      43100.00      35545.83
401  Johnson                    36300.00      35545.83
401  Rogers                     46000.00      35545.83
403  Villegas                   49700.00      38700.00
403  Brown                      43700.00      38700.00
501  Wilson                     53625.00      50031.25
501  Runyon                     66000.00      50031.25
501  Ratzlaff 54000.00      50031.25











(are available to all queries during the session)

Tables (not taught in this course)
(like volatile tables)

(e.g., a DBA creates the definition)
(like volatile tables)

(i.e., the DBA created table)



(projection)



(end transaction).  





Table Name    Table Id
------------- ------------
vt_deptsal1   30C0BC140000
vt_deptsal2   30C0BD140000





deptno       avgsal       maxsal       minsal       sumsal  empcnt
------ ----------- ----------- ----------- ----------- ------

301     29350.00     29450.00     29250.00     58700.00       3
401     35545.83     46000.00     24500.00    213275.00       7
403     38700.00     49700.00     31000.00    193500.00       6
402     52500.00     52500.00     52500.00     52500.00       2

?     43316.67     56500.00     34700.00    129950.00       3
501     50031.25     66000.00     26500.00    200125.00       4
999    100000.00    100000.00    100000.00    100000.00       1



deptno       avgsal       maxsal       minsal       sumsal  empcnt
------ ----------- ----------- ----------- ----------- ------

1         2.00         3.00         4.00         5.00       6



deptno       avgsal       maxsal       minsal       sumsal  empcnt
------ ----------- ----------- ----------- ----------- ------

1         2.00         3.00         4.00         5.00       6

deptno       avgsal       maxsal       minsal       sumsal  empcnt
------ ----------- ----------- ----------- ----------- ------

1         2.00         3.00         4.00         5.00       6



The following options are not permitted for volatile tables:

Referential integrity constraints
CHECK constraints
Permanent journaling
Compressed column values
DEFAULT clause
TITLE clause
Named indexes



targettable sourcetable

targettable
column1, column2,  ,   ,   , 

sourcetable









Give everyone in all the support departments a 10% raise.  
(Assume we don't know the department numbers for all of the support departments.)





Remove all of the employees who are assigned to a temporary department.





2.0 Data 

Visualization & 

Presentation 
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Moving Data from Teradata Database to an External Target 

Source: https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/VTx~L6axIqWGMO2RInPtzg 

This chapter describes several methods for using Teradata PT to move data from a a Teradata Database into a non-
Teradata target. It includes the following topics: 

  Data Flow Description 

  Comparing Applicable Operators 

  Using Access Modules to Process Data Before Writing to External Targets 

  Common Data Movement Jobs 

Data Flow Description 

Teradata PT offers several paths for moving data from a Teradata Database into a non-Teradata target, as shown in 
the following composite diagram. 

Figure 36: Moving Data from a Teradata Database into a Non-Teradata Target 

 

Note that many of the blocks in Figure 36 allows you to choose among several operators and access modules. Read 
the following sections to understand how to make the best choices for specific data movement jobs. 

Comparing Applicable Operators 

Once you identify the requirements for moving data from Teradata Database to an external data source, you must 
select the components that the script will use to execute the job. There are three types of components you need to 
consider: 

  A producer operator that reads data from a Teradata Database and places it in the data stream. 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/VTx~L6axIqWGMO2RInPtzg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wVelgdBtBqa29ueks9FM5w
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6tG6Vy25ChU_KzFk_aeSSw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/3vl_gxBDzbT9V2kqeIOyVQ
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/meCPQGl7ccHQL2IH1AUMAw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wVelgdBtBqa29ueks9FM5w
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and 

  A consumer operator that takes data from the data stream and writes it to the data target. 

or 

  A consumer operator that uses an OUTMOD routine or access module to post-process the data before loading 

the data target. 

Producer Operators 

The Teradata PT producer operators in this section read data from a Teradata Database and write it to the data 
stream. 

The Teradata PT job script invokes a producer operator, which employs the user-specified SQL SELECT statement to 
access Teradata Database tables. For further information on using APPLY/SELECT to specify a producer operator, 
see “Coding the APPLY Statement” on page 64 and the section on APPLY in Teradata Parallel Transporter 
Reference. 

The following table briefly describes and compares the function of each Teradata PT operator that can be used as a 
producer when extracting data from a Teradata Database: 

  

Operator Description 

Export 
Operator 

Extracts large volumes of data from a Teradata Database at high 
speed. Function is similar to the standalone Teradata FastExport 
utility. 

Features: 

  Allows use of multiple parallel instances. 

  For a sorted answer set, redistribution of the rows occurs over the 

BYNET. This allows for easy recombination of the rows and data 

blocks when they are sent to the client in sorted order. 

Limitations: 

  Cannot be used to retrieve data in TEXT mode and write it to target 

files in the TEXT or VARTEXT (delimited) format. Use SQL Selector for 

this where possible. 

  A sorted answer set requires that only a single instance of the 

Export operator can be used. Specifying ORDER BY in the SELECT 

statement and multiple Export operator instances results in an error. 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/e4KwIz5NJHGl8xEVhIgabA
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For details, see Teradata Parallel Transporter Reference. 

SQL Selector 
Operator 

Submits a single SQL SELECT statement to the Teradata Database to 
retrieve data from a table. 

Features: 

  Use to retrieve data in TEXT mode and write it to target files in the 

TEXT or VARTEXT (delimited) format. 

  Can retrieve LOB, JSON and XML data from the Teradata Database. 

Limitations: 

  Much slower than Export operator. 

Teradata strongly recommends that you specify XMLSERIALIZE on 
selected XML columns so that the byte-order-mark (BOM) matches 
the XML encoding when using the client UTF-16 character set. 

For details, see Teradata Parallel Transporter Reference. 

Consumer Operators 

The Teradata PT consumer operators in this section read data from the data stream and write it to an external 
target. 

The Teradata PT job script invokes a consumer operator using an APPLY statement. For further information on 
using SELECT to specify a producer operator, see “Coding the APPLY Statement” on page 64 and the section on 
APPLY in Teradata Parallel Transporter Reference. 

The following table briefly describes and compares the function of each Teradata PT operator that can be used as a 
consumer when moving data from Teradata Database to an external data target: 

  

Operator Description 

Operators that Write Data to a non-Teradata Target 

DataConnector Operator 

Writes data to flat files and functions similarly to the 
DataConnector standalone utility. 

Features: 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/e4KwIz5NJHGl8xEVhIgabA
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  Can write directly to an external file or through an 

access module. 

  Writes to files and tables in Hadoop. 

Limitations: 

  Cannot write ZIP and GZIP files to a Hadoop/HDFS 

data source. 

For details, see Teradata Parallel Transporter Reference. 

Operators that Pre-process Data before Writing to a non-Teradata Target 

FastExport OUTMOD 
Adapter Operator 

Uses a FastExport OUTMOD routine to pre-process data 
before writing it to the data target. 

For details, see Teradata Parallel Transporter Reference. 

Using Access Modules to Process Data Before Writing to External Targets 

Access modules are dynamically attached software components of the Teradata standalone load and unload 
utilities. Some access modules are usable with Teradata PT job scripts, and provide the input/output interface 
between operators and various types of external data storage devices. Any operator that uses access modules can 
interface with all available access modules. 

The following access modules can be used as part of a job to move data from Teradata Database to an external 
data target.  

Access 
Module 

Description 

OLE DB 
Provides write access to a flat file or a table in an OLE DB-compliant 
DBMS, such as SQL Server, Oracle or Connix. 

Specifying an Access Module 

Use the AccessModuleName attribute in the DataConnector (consumer) operator to specify the optional use of an 
access module to interface with the target database. The DataConnector operator definition must also specify a 
value for the AccessModuleInitStr attribute, to define the access module initialization string. 

For detailed information on requirements for using access modules with Teradata PT, see Teradata Tools and 
Utilities Access Module Reference. 

For information on using access modules with z/OS, see “Using Access Modules to Read Data from an External 
Data Source” on page 98. 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/hOdiX77oU6_CqHNcRCQK4A
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/hOdiX77oU6_CqHNcRCQK4A
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Using the DataConnector Operator to Write Files and Tables in Hadoop 

In addition to writing flat files and interfacing with access modules, the DataConnector operator also has the ability 
to write to Hadoop files and tables. The following table briefly describes and compares the two interfaces which 
the DataConnector operator can use to move data from the data stream to Hadoop files and tables. 

  

Interface Description 

HDFS API 

Provides access to Hadoop files via the Hadoop Distributed File System 
Application Programming Interface, or HDFS API. The HDFS is a POSIX-
compatible file system with some minor restrictions. It does not support 
updating files and it only supports writing files in truncate mode or 
append mode. The Hadoop Software is written in Java and the HDFS API is 
a Java JNI interface that exposes all the expected standard posix file 
system interfaces for reading and writing HDFS files directly by a C/C++ 
program. The Data Connector Producer and Consumer operators have 
been updated to directly access the HDFS file system using the HDFS API. 
All standard Data Connector file system features are supported. 

"TDCH-
TPT 

Provides access to Hadoop files and tables via the Teradata Connector for 
Hadoop, or TDCH. TDCH utilizes the MapReduce framework's distributed 
nature to transfer large amounts of data in parallel from Hadoop files and 
tables to the DataConnector operator. The TDCH-TPT interface gives TPT 
users the ability to read and write HDFS files, Hive tables, and Hcat tables 
in various Hadoop-specific formats. Because this interface relies on TDCH 
to read and write data, many of the traditional DataConnector attributes 
are unsupported. 

For information, see the section “Processing Hadoop Files and Tables” in Teradata Parallel Transporter Reference. 

Note: GZIP and ZIP files are not supported with Hadoop/HDFS. 

Note: HDFS processing can be activated simply by adding the following attribute to a Data Connector Consumer or 
Producer: 

HadoopHost = 'default’ 

Common Data Movement Jobs 

You can use any valid combination of producer and consumer operators, and where necessary access modules, to 
create a job script for your data movement needs. However, the following list includes examples of some of the 
most common job scenarios. Evaluate the examples and if possible use one of the associated sample job scripts 
before creating your own. 

  Job Example 12: Extracting Rows and Sending Them in Delimited Format 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/ZL8CRTeGqfdxHeDXdJkNgA
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  Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format 

  Job Example 14: Export Data and Process It with an OUTMOD Routine 

  Job Example 15: Export Data and Process It with an Access Module 

  Job Example 16: Extract BLOB/CLOB/JSON Data and Write It to an External File 

  Job Example 17: Extract Rows and Write Them to a Hadoop File 

  Job Example 18: Extract Rows and Write Them to a Hadoop Table 

Job Example 12: Extracting Rows and Sending Them in Delimited Format 

Job Objective 

Extract rows from Teradata Database tables and write them to an external target file as delimited data. 

Data Flow Diagram 

Figure 37 shows a diagram of the job elements for Job Example 10. 

Figure 37: Job Example PTS00016, PTS00017 -- Extracting Rows and Sending Them in Delimited Format 

 

Sample Script 

For the sample script that corresponds to this job, see the following scripts in the sample/userguide directory: 

PTS00016: Extracting Rows and Writing Them in Delimited Format using the Export operator. 

PTS00017: Extracting Rows and Writing Them in Delimited Format using the SQL Selector operator. 

Rationale 

This job uses the: 

  Export operator for exporting data from a Teradata Database table with the schema that matches the table. 

  SQL Selector operator for extracting data from a Teradata Database table in field mode (character format). 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/_8IDLtZ_HtJ_AWAMw46E_Q
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6sNv5GJkGyXCEHJmMJVtUg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wlJ47ZBLLjmyoDB23vHhlA
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/OeTvmxQg5zfKRW4tGFBJLw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/JHIXF1~MG2u6iTt4qJWLvg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/uhQWvScyBnRDg5k~TQNgFw
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/ZL8CRTeGqfdxHeDXdJkNgA
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  DataConnector operator because it is the only operator that can write character data to an external flat file in 

delimited format. 

Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format 

Job Example 13: Extracting Rows and Sending Them in Indicator-mode Format 

Job Objective 

Extract rows from Teradata Database tables using Export operator and write them to an external target as 
indicator-mode data. 

Data Flow Diagram 

Figure 38 shows a diagram of the job elements for Job Example 11. 

Figure 38: Job Example PTS00018 -- Extracting Rows and Sending Them in Binary or Indicator-mode Format 

 

Sample Script 

For the sample script that corresponds to this job, ee the following scripts in the sample/userguide directory: 

PTS00018: Exporting Rows and Writing Them as Binary or Indicator Mode Data. 

Rationale 

This job uses the operators shown for the following reasons: 

  Use Export operator because it can extract large amounts of data from a Teradata Database table at high 

speeds. 

  DataConnector operator because it can write data to an external flat file. 

Job Example 14: Export Data and Process It with an OUTMOD Routine 

Job Objective 

Export data from a Teradata Database table and send it to an OUTMOD for post-processing before loading into an 
external target. This job is applicable to OUTMODs written for the FastExport utility. 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/_8IDLtZ_HtJ_AWAMw46E_Q
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Data Flow Diagram 

Figure 39 shows a diagram of the job elements for Job Example 12. 

Figure 39: Job Example PTS00019 -- Export Data and Process It with an OUTMOD Routine 

 

Sample Script 

For the sample script that corresponds to this job, ee the following scripts in the sample/userguide directory: 

PTS00019: Exporting Data and Processing It with an OUTMOD Routine. 

Rationale 

The job uses: 

  Export operator because it is the fastest way to extract large amounts of data from a Teradata Database. 

Note: The SQL operator extracts data more slowly than the Export operator. Use the SQL Selector operator only if 
the Teradata Database is short on load slots, because the SQL Selector operator does not use Teradata Database 
load slots. 

  FastExport OUTMOD Adapter because it is the only operator that can interface with an OUTMOD routine written 

for the FastExport utility. 

Job Example 15: Export Data and Process It with an Access Module 

Job Objective 

Export rows from a Teradata Database table and send them to an Access Module for processing before loading the 
data into an external target. 

Data Flow Diagram 

Figure 40 shows a diagram of the job elements for Job Example 13. 

Figure 40: Job Example PTS00020 --- Export Data and Process It with an Access Module 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/6sNv5GJkGyXCEHJmMJVtUg
https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/wlJ47ZBLLjmyoDB23vHhlA
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Sample Script 

For the sample script that corresponds to this job, see the following script in the sample/userguide directory: 

PTS00020: Exporting Data and Processing It with an Access Module. 

Rationale 

The job uses: 

  Export operator because it is the fastest at extracting large amounts of data from a Teradata Database. 

Note: The SQL operator extracts data more slowly than the Export operator. Use the SQL Selector operator only if 
the Teradata Database is short on load slots, because the SQL Selector operator does not use Teradata Database 
load slots. 

  DataConnector operator because it is the only consumer operator that can interface with all Teradata PT-

supported access modules. 

Job Example 16: Extract BLOB/CLOB/JSON Data and Write It to an External File 

Job Objective 

Extract rows that include BLOB/CLOB/JSON data from a Teradata Database table and write them to an external flat 
file. 

Data Flow Diagram 

Figure 41 shows a diagram of the elements for Job Example 14. 

Figure 41: Job Example PTS00021, PS00027-- Extract BLOB/CLOB/JSON Data and Write It to an External File 

 

 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/OeTvmxQg5zfKRW4tGFBJLw
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Sample Script 

For the sample script that corresponds to this job, see the following scripts in the sample/userguide directory: 

PTS00021: Extracting BLOB/CLOB Data and Writing It to an External Target. 

PTS00027: Extracting BLOB/CLOB/JSON Data and Writing It to an External Target. 

Rationale 

This job uses the operators shown for the following reasons: 

  Use SQL Selector operator because it is the only operator that can read BLOB/CLOB/JSON data from a Teradata 

Database and write it to separate external data files. One data file stores data for one LOB/JSON column. 

  Use DataConnector operator because it is the only operator that can write LOB/JSON data to an external file. 

Job Example 17: Extract Rows and Write Them to a Hadoop File 

Job Objective 

This Teradata Parallel Transporter sample script loads five rows from a teradata table to flat file in Hadoop. 

Data Flow Diagram 

Figure 42 shows a diagram of the elements for Job Example 17. 

Figure 42: Job Example PTS00031-- Extract Rows and Write Them to a Hadoop File 

 

Sample Script 

For the sample script that corresponds to this job, see the following script in the sample/userguide directory: 

PTS00031: Extract Rows and Write Them to a Hadoop File 

Rationale 

This job uses the operators shown for the following reasons: 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/JHIXF1~MG2u6iTt4qJWLvg
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  Export operator because it is the fastest way to extract large amounts of data from a Teradata Database table. 

  DataConnector operator along with the HDFS Interface because it is the only producer operator that writes data 

to Hadoop HDFS. 

Job Example 18: Extract Rows and Write Them to a Hadoop Table 

Job Objective 

Extract rows from Teradata Database table and write them to a Hadoop table; the Hadoop table's data should be 
stored in the RCFile format. 

Data Flow Diagram 

Figure 43 shows a diagram of the elements for Job Example 18. 

Figure 43: Job Example PTS00032- Extract Rows and Write Them to a Hadoop Table 

 

Sample Script 

For the sample script that corresponds to this job, ee the following script in the sample/userguide directory: 

PTS00032: Extract Rows and Write Them to a Hadoop Table 

Rationale 

This job uses the operators shown for the following reasons: 

  Export operator because it is the fastest way to extract large amounts of data from a Teradata Database table. 

  DataConnector operator along with the TDCH-TPT Interface because it is the only producer operator 
https://docs.teradata.com/reader/b8dd8xEYJnxfsq4uFRrHQQ/uoSjTMZuwcIBx9l5tG0B1Q 
 
 Rules For Call Arguments In ODBC And JDBC in Vantage 
The following additional rules apply to a call argument when the CALL statement is submitted from an ODBC or 
JDBC application: 

https://docs.teradata.com/reader/j9~8T4F8ZcLkW7Ke0mxgZQ/uhQWvScyBnRDg5k~TQNgFw
https://docs.teradata.com/reader/b8dd8xEYJnxfsq4uFRrHQQ/uoSjTMZuwcIBx9l5tG0B1Q
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• An IN or INOUT argument must be one of the following: 
o A value expression. 

A value expression must not contain identifiers prefixed by the COLON character. It must be a 
constant expression. 

o A QUESTION MARK (?) character used as an input placeholder. 

If you specify ?, the value for the corresponding IN or INOUT parameter of the called procedure 
must be set using ODBC- or JDBC-specific calls prior to calling the procedure. 

There is a 1:1 correspondence between the number of ? markers for IN and INOUT arguments and 
the number of data items specified in the StatementInfo parcel in the request message. 
StatementInfo does not contain entries for OUT arguments. 

For example, consider the following SQL procedure definition and CALL statement: 

     CREATE PROCEDURE sp3 ( 
       IN pil     INTEGER, 
       INOUT pio1 INTEGER, 
       OUT po1    INTEGER) 
     BEGIN 
       SELECT j INTO :pio1 
       FROM tb11 
       WHERE i=2; 
       SELECT k INTO :po1 
       FROM tb11 
       WHERE i=2; 
     END; 
 
     CALL sp3 (:?, :?, :?); 

When this call is made, the StatementInfo parcel contains 2 entries: one each for the IN and INOUT 
parameters. 

• An OUT argument must be an OUT call placeholder. 

that writes data to Hadoop tables in the RCFile format. 

 

https://downloads.teradata.com/connectivity/articles/speed-up-your-jdbcodbc-applications 

Speed up your JDBC/ODBC applications 
 

https://downloads.teradata.com/connectivity/articles/speed-up-your-jdbcodbc-applications
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The Teradata JDBC Driver and ODBC Driver allow developers to quickly build applications that interact with the 
Teradata Database. However, many developers are surprised when their fully functioning application suddenly hits 
a performance roadblock when it is deployed to their production environment. And in many of these cases, the 
blame is sometimes unfairly placed onto the JDBC and ODBC drivers. This article will highlight the programming 
techniques available to maximize the performance when interacting with the database and help developers 
choose the right implementation. 

 

Quick and Easy but Slowest Performance 

Many new database developers are more focused on how to create a database connection and pass a SQL 
statement than they are with performance. A typical first implementation looks something like: 

1 

2 

3 

4 

5 

6 

7 

8 

Connection conn = DriverManager.getConnection(url, username, password); 

Statement stmt = conn.createStatement(); 

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(" + custID + ", " + tran_date + ", " + amount + ", " + desc + "')"; 

  

stmt.executeUpdate(sql); 

  

stmt.close(); // Your real code should use try-finally blocks to manage resources. 

conn.close(); // Let's not even get into connection pools! That's another article. 

  

Sure this works for a demo and the beginning programmer is probably pretty happy with the results. But turn on 
some production volume and this will quickly become a performance bottleneck, especially when your application 
is processing many SQL inserts such as when batch loading. This type of database coding is pretty much like driving 
your sports car and staying stuck in first gear! 

 

Drivers Prepare Your Statements 

A much better approach is to use Prepared Statements. These will provide significantly better performance by first 
sending the database the outlines of the SQL statement using variable parameters in place of the actual data. The 
database prepares the execution steps of the SQL statement to optimize performance, and the prepared 
statement can then be used over and over again. This avoids recalculating the execution steps for each individual 
request, which is what happens in the first example. 

1 // These are done once … 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Connection conn = DriverManager.getConnection(url, username, password); 

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(?,?,?,?)"; 

  

PreparedStatement ps = conn.prepareStatement(sql); 

  

// … and these can be repeated many times with different values. 

ps.setInt(1, custID); 

ps.setDate(2, tran_date); 

ps.setBigDecimal(3, amount); 

ps.setString(4, desc); 

  

ps.executeUpdate(); 

  Batch Ready 

Prepared Statement batches take your performance to the next level. In addition to the benefits of reusing the 
Prepared Statement, batching your input values also reduces the number of round trips to the database. A batch 
size of roughly 5,000 to 10,000 works well for most applications. Using batches can be 10 to 40 times faster than 
the previous approach. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

// These are done once. 

Connection conn = DriverManager.getConnection(url, username, password); 

String sql = "insert into Transactions(custID, transaction_date, amount, desc) values(?,?,?,?)"; 

PreparedStatement ps = conn.prepareStatement(sql); 

  

for ( /* Loop through input values */ )  

{ 

    for ( /* Loop through a subset of the input values - the desired batch size */ )  

    { 

        ps.setInt(1, custID); 

        ps.setDate(2, tran_date); 
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12 

13 

14 

15 

16 

17 

18 

19 

        ps.setBigDecimal(3, amount); 

        ps.setString(4, desc); 

        ps.addBatch(); // adds the row of input values to the batch 

    } 

  

    // This is done once per the desired batch size. 

    ps.executeBatch(); // sends all the batched rows to the database 

} 

 Full Speed Ahead 

For loading truly huge amounts of data, JDBC FastLoad can provide even better performance. There are a couple of 
caveats, however. JDBC FastLoad can only insert data into an empty table, and JDBC FastLoad is only 
recommended for loading large amounts of data -- at least 100,000 rows total. 

The nice thing is that your Java code doesn't need to change in order to use JDBC FastLoad. Your application uses 
the exact same Prepared Statement batches as in the previous example. Just add TYPE=FASTLOAD to your 
connection parameters, and the Teradata JDBC Driver will use JDBC FastLoad for particular SQL requests, if it can. 

Note that the recommended batch size for JDBC FastLoad is much higher than for a regular SQL Prepared 
Statement batch, which means you may need to increase your JVM heap size. To get top-notch performance, you 
need to use a batch size of roughly 50,000 to 100,000. Using JDBC FastLoad can be 3 to 10 times faster than the 
previous approach. 

 

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html 

Troubleshooting 

This chapter provides information for troubleshooting problems that can occur when using the Teradata JDBC 
Driver. 

Socket Communication Failure 

Error 804 with SQLState 08S01 and the error message "Socket communication failure for Packet receive" (or 
"Packet transmit") means that a network communication failure occurred. 

[Error 804] [SQLState 08S01] Socket communication failure for Packet receive ... 

[Error 804] [SQLState 08S01] Socket communication failure for Packet transmit ... 

A network communication failure can occur due to a variety of reasons. Here is a list of common causes of 
connectivity problems, in order from most likely to less likely: 

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/frameset.html
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1. The Teradata session was forcibly logged off by Teradata Viewpoint, Teradata Manager, PMON, or some 
other administrator process that checks for session inactivity and aborts idle sessions. This can be checked 
by examining /var/log/messages on the database node, to look for messages that indicate that a session 
was aborted. This is a common problem for JDBC connections in a connection pool, because JDBC 
connections in a connection pool may spend a significant portion of their lifetime being idle. The database 
administrator should not forcibly log off idle Teradata sessions that are pooled JDBC connections, because 
that defeats the purpose of the JDBC connection pool. 

2. Network problem and/or transient network failure. This can include situations such as a laptop switching 
from a wired to a wireless network connection (or vice-versa), or connecting to, or disconnecting from, a 
VPN. 

3. Faulty network hardware, such as a faulty switch, router, or load balancer. 
4. Database restart occurred. This can be checked by examining /var/log/messages on the database node, to 

look for messages that indicate that a database restart occurred. 

Numeric Data Truncation 

Teradata Database V2R6.2 introduced support for the SQL data type BIGINT (64-bit integer) and introduced the 
Large Decimal feature, which expands the maximum precision for the DECIMAL data type to DECIMAL(38). 
Teradata Database V2R6.1 and earlier releases are limited to a maximum precision of DECIMAL(18). 

Maximum precision varies by database release. This affects how numeric data is handled in the Teradata JDBC 
Driver. If Large Decimal is not supported, the maximum precision for BigDecimal is 18. If Large Decimal is 
supported, the maximum precision value is 38. 

The Teradata JDBC Driver modification allows the PreparedStatement.setBigDecimal method to throw a 
DataTruncation exception for BigDecimal values that have precision values greater than the maximum precision. 

When the PreparedStatement setBigDecimal method is used to bind multiple values to a parameter, the Teradata 
JDBC Driver determines the largest number of integral digits bound to the parameter, and then the fractional digits 
for each of the values is rounded as necessary to fit within the database limit of maximum precision for a DECIMAL 
value. The method PreparedStatement.setLong in the Teradata JDBC Driver throws a DataTruncation exception if 
the maximum precision value is greater than 18 and the SQL data type BIGINT is not supported for the current 
database. 

Character Export Width 

Using connection parameter CHARSET=UTF8 with fixed-width CHAR data type result set column values adds 
trailing space padding per the database's Character Export Width behavior. The CHAR(n) data type is a fixed-width 
data type (holding n characters), and the database reserves a fixed number of bytes for the CHAR(n) data type in 
response spools and in network message traffic. 

UTF8 is a variable-width character encoding scheme that requires a varying number of bytes for each character. 
When the UTF8 session character set is used, the database reserves the maximum number of bytes that the 
CHAR(n) data type could occupy in response spools and in network message traffic. When the UTF8 session 
character set is used, the database appends padding characters to the tail end of CHAR(n) values smaller than the 
reserved maximum size, so that the CHAR(n) values all occupy the same fixed number of bytes in response spools 
and in network message traffic. In contrast, when using the UTF16 session character set, no character padding is 
added. 
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The following example illustrates how to work around this drawback by using CAST or TRIM in SQL SELECT 
statements, or in views, to convert fixed-width CHAR data types to VARCHAR. 

• Given a table with fixed-width CHAR columns 

CREATE TABLE MyTable (Column1 CHAR(10), Column2 CHAR(10)) 

• Original query 

SELECT Column1, Column2 FROM MyTable 

• Modified query using CAST and TRIM 

SELECT CAST(Column1 AS VARCHAR(10)), TRIM(TRAILING FROM Column2) FROM 
MyTable 

• View using CAST and TRIM 

CREATE VIEW MyView (C1, C2) AS SELECT CAST(Column1 AS VARCHAR(10)), 
TRIM(TRAILING FROM Column2) FROM MyTable 

Alternatively, connection parameter CHARSET=UTF16 is recommended for applications that require fixed-width 
CHAR data values without trailing space padding. 

Transaction Isolation, Concurrency, and Deadlock 

Create and Drop 

The following error may be seen when creating or dropping a database object, such as a table or stored procedure. 
It will include an error code of 2631 and an SQL state of 40001, which indicates that this is a retryable error: 

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock. 

If this error occurs, the application can choose to wait a short time and then resubmit the failed create or drop 
operation. 

JDBC FastLoad 

The following error may be seen when using JDBC FastLoad and calling a PreparedStatement setter method. It will 
include an error code of 2631 and an SQL state of 40001, which indicates that this is a retryable error: 

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock 

If this error occurs, the application can choose to wait a short time and then call the PreparedStatement setter 
method again. Note that error 2631 may be in a chain of exceptions; it therefore is necessary to walk down the 
chain of exceptions to get to error 2631. 
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Transaction Isolation 

A potential deadlock condition can occur with two separate applications, or a single application using two threads, 
with each thread or application having its own JDBC connection to the database. 

The problem occurs when one connection is inserting data into a table, while the other connection is attempting to 
read data from the same table. 

When using the default transaction isolation level of TRANSACTION_SERIALIZABLE, the following error may be seen 
on the thread or application that is reading from the table, approximately 2 to 5 minutes after the situation occurs. 
It includes an error code of 2631. 

com.teradata.jdbc.jdbc_4.util.JDBCException:[Teradata Database]: Transaction ABORTed due to deadlock. 

If this error occurs, either: 

• Resubmit the failed read operation, or 
• Use a transaction isolation level of TRANSACTION_READ_UNCOMMITTED on the connection 
reading from the table. 

Note:  The transaction level is set using the java.sql.Connection.setTransactionIsolation method. Though 
this prevents the problem from occurring, it has the side effect of allowing dirty, non-repeatable, and 
phantom reads. Whether or not this is acceptable must be determined on an individual application basis. 

Improving Performance 

If the performance of the application seems very slow, here are some recommendations for improvement: 

• Turn off debug parameters. Make sure all debugging is turned off. See Using the Teradata JDBC 
Driver. 
• Use PreparedStatement where possible. This applies whenever the same SQL statement is 
submitted many times, but data values differ for each submission. 
One example would be an INSERT statement that is submitted many times, but with different inserted 
data values each time. Another example would be a SELECT statement that is submitted many times, but 
with different comparison values in WHERE-clause conditions each time. 

If data values are specified as literals in the SQL statement, and the SQL statement is changed with 
different literal data values upon each submission, then the database must parse the SQL statement each 
time before executing it. 

For situations like these, a PreparedStatement should be used instead. The SQL statement must have 
a ? placeholder for each data value that will be changed per submission. 

https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/jdbcug_chapter_2.html#CCHCBFCA
https://teradata-docs.s3.amazonaws.com/doc/connectivity/jdbc/reference/current/jdbcug_chapter_2.html#CCHCBFCA
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The application must prepare the SQL statement once, using the Connection.prepareStatement method. 
For each submission, the application must bind all the data values using the PreparedStatement.setXXX 
methods, and then the application must execute the PreparedStatement. 

The application can repeat the bind and execute steps over and over, with different bound data values 
each time. This technique provides a substantial performance improvement, because the database only 
needs to parse the SQL statement once, and can re-execute the parsed statement over and over. 

• Inserting Small LOB Values. The recommended technique for inserting LOB values is to use a 
PreparedStatement INSERT with ? parameter markers for all column values to be inserted. Use the 
setBinaryStream method for binding BLOB values to the parameter markers corresponding to BLOB 
columns, then use the setAsciiStream or setCharacterStream method for binding CLOB values to the 
parameter markers corresponding to CLOB columns. 
When the setBinaryStream, setAsciiStream, and setCharacterStream methods are used, the Teradata 
JDBC Driver sends LOB data to the database separately from other bound parameter values, so that LOB 
values do not count towards the database limit on total bytes of bound parameter values per inserted 
row. 

To improve the performance of a PreparedStatement INSERT, that is inserting one or more small ( <= 
64000 bytes) LOB values per row, the setString method is used to bind a value to a CLOB column, and the 
setBytes method is used to bind a value to a BLOB column. The SQL INSERT statement must cast 
the ? parameter marker to a CLOB or BLOB, respectively. 

INSERT INTO MyTable(id,clob_col) VALUES(?,CAST(? AS CLOB)) 
prepStmt.setInt(1,id); 
prepStmt.setString(2,"abc"); 

Using the setBytes method with a CAST expression forces the Teradata JDBC Driver to send the bound 
parameter value as a VARBYTE value, so it is limited to 64000 bytes, even though the destination column 
may be a BLOB that can hold values larger than 64000 bytes. 

Using the setString method with a CAST expression forces the Teradata JDBC Driver to send the bound 
parameter value as a VARCHAR value, so it limited to 64000 bytes, even though the destination column 
may be a CLOB that can hold values larger than 64000 bytes. If a Unicode session character set (UTF8 or 
UTF16) is used, and/or if the destination column is designated CHARACTER SET UNICODE, then the 
database will convert the bound parameter value into two-byte Unicode characters. The value after 
conversion is limited to 64000 bytes. 

This technique works only if the total size of all the bound parameter values does not exceed the 
database limit on total bytes for all the bound parameter values for an inserted row. This technique 
should only be used when performance is critical, and it is known in advance that the total size of all the 
bound parameter values, including LOB values, does not exceed 64000 bytes per inserted row. 
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This technique is subject to a further limitation such that the total size of all the bound parameter values 
must not exceed the database limit on total bytes for all the bound parameter values for an inserted row, 
after any necessary character set conversions have been performed by the database. If a Unicode session 
character set (UTF8 or UTF16) is used, and/or if a destination character column is designated CHARACTER 
SET UNICODE, then the database will convert all the bound parameter values that are character data 
types (CHAR, VARCHAR, CLOB) into two-byte Unicode characters. These two-byte Unicode characters are 
counted towards the database limit on total bytes for all the bound parameter values for an inserted 
row. 

• Use executeBatch() where possible. Whenever there are many insert, update, or delete 
statements that can be submitted together, use the executeBatch() method rather that executeUpdate() 
or execute(). However, the total buffer length is limited to approximately 1 MB. Using executeBatch() 
instead of executeUpdate() can improve your performance by more than 50%. 
• Use connection pooling provided by an application server. Connection pooling is a technique 
used for sharing server resources among requesting clients. It allows multiple clients to share a cached 
set of connection objects that provide access to the database. It improves performance by eliminating 
the overhead associated with establishing a new database connection for each request. However, there 
are some restrictions. Since it is not currently possible to reset a database connection, users of 
connection pooling must not change the following session parameters because these changes will be 
inherited by the next user of the connection: 

o Database 

o Collation 

o Character Set 

o Transaction Semantics 

o Dateform 

o Timezone 

o Default Date Format 

• Use multi-threading. Where possible, use multi-threading with multiple sessions for those 
requests that can be processed at the same time. It is important to remember, however, not to have 
multiple concurrent requests on a single session. Teradata does not support this and even though the 
driver will accept this, it blocks until the current request is complete. This may actually degrade 
performance. For improved performance, use concurrent sessions with each session running only one 
request at a time. 
• Use a Transaction isolation level of TRANSACTION_READ_UNCOMMITTED. This feature can 
speed up access to data though it comes at the cost of encountering dirty reads, non-repeatable reads, 
and phantom reads. Whether or not this is suitable should be determined on an individual application 
basis. 
• Use TYPE_SCROLL_INSENSITIVE result sets. These can improve performance when used with 
queries which can return large multiple result sets that do not require all rows to be processed. 
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Beginning with Teradata Database 12.0, when the application requests the ResultSet type to be 
ResultSet.TYPE_SCROLL_INSENSITIVE, the Teradata JDBC Driver is able to quickly and efficiently skip to 
the next result of a multi-statement request by using cursor positioning to position to the last row of the 
current result set. If forward-only result sets are used, the same skipping operation will require the JDBC 
driver to fetch all rows of the current result set first, which can take significantly longer. 

The following methods will create statements that return TYPE_SCROLL_INSENSITIVE result sets: 

Connection.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE, 
ResultSet.CONCUR_READ_ONLY) 
Connection.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE, 
ResultSet.CONCUR_READ_ONLY) 
Connection.prepareCall(sql, ResultSet.TYPE_SCROLL_INSENSITIVE, 
ResultSet.CONCUR_READ_ONLY) 

• Use a single database hostname in DNS. Improve connection time with the following steps. 

o Define a single DNS name with multiple IP addresses for the database, such that each IP address 
corresponds to a database node running a DBS Gateway. Omit the IP addresses of nodes that 
don't normally run a DBS Gateway, such as Hot Standby Nodes in most configurations. Enable 
DNS round-robin for the IP addresses, so that connections are distributed across all the nodes. 

o Specify COP=OFF for Teradata JDBC Driver connections 

This avoids the time-consuming COP discovery process. The Teradata JDBC Driver will attempt to 
connect to the first IP address returned by the DNS lookup, and will use subsequent IP addresses in 
case of a connection failure. Use DNS round-robin to distribute Teradata JDBC Driver connections 
across all available nodes. 

 

https://docs.teradata.com/reader/3AkrVQlhjJMha4KRVJmm1w/Qwm4xSjCLk6tol7XOMnMPA 

Analytic Tools 

Teradata AppCenter 

Teradata AppCenter is a self-service execution platform for creating and running SQL and Basic Teradata Query 
(BTEQ) applications (apps). You can query data and run jobs automatically or on demand based on selected 
schedule options. AppCenter includes privacy settings for both apps and job results. 

This self-service environment enables the easy creation and reuse of analytics. It is composed of numerous pre-
built features that allow data scientists and developers to build, share, and deploy analytics with AppCenter. Non-
technical users can run apps, visually study results, and share insights. The apps are easily accessed and deployed 
on-premises or in the cloud. 

https://docs.teradata.com/reader/3AkrVQlhjJMha4KRVJmm1w/Qwm4xSjCLk6tol7XOMnMPA
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https://docs.teradata.com/reader/B7Lgdw6r3719WUyiCSJcgw/_U8FBA1PgnQMYN0mWs8oNQ 
 
Workload connections of tools through Account Strings Expansion 
 
Considerations for Assigning ASE Variables to Different Workloads 

Each ASE assignment depends on the type of usage being performed by the user ID. This has implications related 
to user ID assignment. 

In general, workloads can be broadly grouped into three categories as follows: 

  Multisession/Multirequest 

This workload can be identified by work typically done by MultiLoad, FastLoad, TPUMP or multisession BTEQ. 
These types of activities are normally used for database maintenance. Each session used handles multiple requests 
over time. The workload for this type of work tends to be more predictable and stable. It runs regularly and 
processes the same way each time it runs. 

  Single Session, nontactical 

This workload is typically initiated through a single session BTEQ, SQL Assistant, MicroStrategy, or other query-
generating tool. Ad hoc users, or single session BTEQ jobs in the batch process can generate this type of activity. 
The single session may generate one or many requests. The requests may be back to back, or there may be hours 
of idle time between them. Typically, the requesting user has very broad and informal response time expectations. 

  Single Session, tactical 

This workload is similar to the Single Session workload category except that there is typically a very clear definition 
of response time and the response time requirements normally range between less than a second to a few 
seconds. 

The following ASE variables are to be used for each of the workload categories listed above along with the 
rationale for selecting the ASE variables. 

  Multisession, Multirequest 

For this workload, usage information need not be captured at the request level. Workloads in this category can 

  Processes the same request over and over again across the multiple sessions it establishes (such as TPUMP and 

multisession BTEQ). 

  Generate multiple internal requests that are not easily correlated to specific user generated activity (as is the 

case with MultiLoad and FastLoad). 

https://docs.teradata.com/reader/B7Lgdw6r3719WUyiCSJcgw/_U8FBA1PgnQMYN0mWs8oNQ
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As a result, capturing usage detail at the request level typically does not provide especially meaningful information. 
Therefore, the recommended standard is to capture usage at the session level using the '&S' ASE variable. The 
account string for User Ids performing this workload category would have the following format: 

Account String Format: $XX$_&S 

Length: 12-15 characters (depending on PG length) 

Capturing session level information for this workload category provides several benefits, including: 

  All usage for a given job can be more easily captured. Furthermore, the job level usage can then be grouped to 

associate all batch processing to an application. 

  All usage for a given job step can be obtained. This can facilitate performance analysis for batch processes. 

  Session usage within a multisession utility can be better analyzed to determine the optimal number of sessions 

to log on to the system. 

  Single Session, nontactical 

For this workload, request level usage detail is desired. This type of activity is typically the most difficult to manage 
and control in a mixed workload, data warehouse environment. They also typically represent the greatest 
opportunity for optimization. Although request level detail requires some minor additional overhead to capture, 
the benefits of gaining additional visibility into the impact of each request outweighs the increased overhead in 
data collection. The account string for user IDs performing this workload category would have the following 
format: 

Format: $XX$_&I 

Length: Up to 128 characters 

Capturing request level information in this manner has numerous benefits, including: 

  Usage associated with each SQL request can be identified. By applying specific metrics such as total CPU used, 

total IO used, CPU skew percent, Disk to CPU ratio, and so forth, problem requests can quickly and easily be 

identified and addressed. 

  Request level usage detail can be correlated to SQL statements in DBQL to greatly simplify performance-tuning 

efforts. DBQL captures the date and time of the request as well as the session and request number of the request. 

  Performance tuning can become much more quantitative and definitive by comparing usage statistics for 

alternative query approaches. Capturing the consumption at the individual request enables this benefit. 

  Usage can be accumulated to the session level to provide same level aggregations and analysis to multisession, 

multirequest processing. As such, the same benefits can also be achieved. 

  Single Session, tactical 
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For this workload, high-speed performance and minimal response time are the primary objectives. Even if the 
Teradata Active EDW is not currently servicing this type of request, it is important to account for this type of work 
within the standard. Typically, this workload tends to be very predictable in nature with queries typically designed 
to be single AMP retrievals. For this workload, capturing information at the request level is unnecessary for two 
reasons. First, the transactions are well defined and repeated over and over again. Second, the additional 
overhead required to record usage for each request would represent a meaningful portion of the overall work 
performed on behalf of the transaction. In other words, the additional overhead could materially impact request 
response time. 

As a result, the account string for this workload can, as one option, target usage detail at the session level. The 
assumption in this case is that applications requiring high-volume, low response time requests will take advantage 
of session pooling to avoid the overhead of continually logging on and logging off. The account string for User Ids 
performing this workload category would have the following format: 

Format: $XX$_&S 

Length: 12-15 characters (depending on PG length) 

Since this is the same ASE strategy as employed for the multisession, multirequest workload, all the same benefits 
would accrue. In addition, as it pertains to this particular workload category, the following benefits could also be 
achieved: 

  Usage by session could assist in determining the optimal number of sessions to establish for the session pool. 

  CPU and/or IO skew by session could help identify possible problems in the data model for the primary index 

retrievals. 

About Using ASE With Client Utilities 

Except for the utilities and variables noted in the table that follows, you can use ASE with any utility that uses a 
standard Teradata Database interface to log on, including: 

  BTEQ 

  FastLoad 

  MultiLoad 

  Teradata Parallel Transporter 

  TPump (except for &T) 

  FastExport 

  Teradata SQL Assistant (formerly known as Queryman) 

  Teradata Studio 
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https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-

4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-

%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-

2c09999bb1e3 

( Section 9) 

POWER BI CONNECTIONS 

DirectQuery vs Live Connection vs Imported Data 

DirectQuery refers to relational data sources. Live Connection refers to Analysis Services sources. Though the 
terms differ, they both represent the same type of functionality – Live Connectivity – where the source data 
remains in the source. 

Imported Data means the source data is replicated, or imported, into a data model stored in Power BI. Data refresh 
operations are required for the data to remain current. 

9.1 Live Connectivity 

Live connectivity is best for the following situations: 

1. The source data is complete and does *not* need to be augmented with additional data sources – for instance, 
traditional data warehousing. 

2. Near real-time (low latency) data is required. 

3. Data is updated frequently in the source (and a secondary data refresh is not desired). 

4. Corporate security standards dictate the data may *not* be replicated into another data source. 

5. Higher data volumes are involved which exceed the 250 MB limit of a Power BI embedded data model. 

6. Row-level security is centralized in an SSAS Tabular model or underlying data source. 

NOTE: On-Prem data connectivity requires the enterprise gateway. 

9.2 Imported data 

Imported data is most suitable for the following situations: 

1. Existing data is to be augmented with additional data sources (such as industry data, demographics, weather, 
etc). This is frequently referred to as data mashups. 

2. Additional calculations are required that do not exist in the data source. 

3. Exploratory reporting scenarios, prototyping activities, and one-time projects. 

https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
https://teradata.sharepoint.com/:w:/r/sites/COMPAS/_layouts/15/doc2.aspx?sourcedoc=%7B18CB7D7E-61E9-4B32-867D-F9B2042C8D92%7D&file=Power%20BI%20Overview%20-%20DA013199.docx&action=default&mobileredirect=true&DefaultItemOpen=1&cid=8faaa9fa-7cf9-48e8-9616-2c09999bb1e3
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4. The data can fit into 250 MB (compressed), the max size for an embedded data model. 

5. It is appropriate for row-level security to be specified for one specific data model in the Power BI Service. From a 
governance standpoint, specifying row-level security for a single model is riskier than utilizing a centralized source. 

NOTE: On-Prem data requires either the personal or enterprise gateway to keep data curre 

 

DirectQuery refers to relational data sources. Live Connection refers to Analysis Services sources. Though the 
terms differ, they both represent the same type of functionality – Live Connectivity – where the source data 
remains in the source. 

Imported Data means the source data is replicated, or imported, into a data model stored in Power BI. Data refresh 
operations are required for the data to remain current. 

9.1 Live Connectivity 

Live connectivity is best for the following situations: 

1. The source data is complete and does *not* need to be augmented with additional data sources – for instance, 
traditional data warehousing. 

2. Near real-time (low latency) data is required. 

3. Data is updated frequently in the source (and a secondary data refresh is not desired). 

4. Corporate security standards dictate the data may *not* be replicated into another data source. 

5. Higher data volumes are involved which exceed the 250 MB limit of a Power BI embedded data model. 

6. Row-level security is centralized in an SSAS Tabular model or underlying data source. 

NOTE: On-Prem data connectivity requires the enterprise gateway. 

9.2 Imported data 

Imported data is most suitable for the following situations: 

1. Existing data is to be augmented with additional data sources (such as industry data, demographics, weather, 
etc). This is frequently referred to as data mashups. 

2. Additional calculations are required that do not exist in the data source. 

3. Exploratory reporting scenarios, prototyping activities, and one-time projects. 

4. The data can fit into 250 MB (compressed), the max size for an embedded data model. 
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5. It is appropriate for row-level security to be specified for one specific data model in the Power BI Service. From a 
governance standpoint, specifying row-level security for a single model is riskier than utilizing a centralized source. 

NOTE: On-Prem data requires either the personal or enterprise gateway to keep data curre 

 

https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-

4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-

%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-

fb81a7efb9e7 

( Slide 7, Slide 8) 

and Teradata Performance Tuning Best Practices (High Level) 

Teradata- Tableau Standard data flow diagrams 

 

Below diagram is a high-level representation of standard data flow in Teradata-Tableau integrated platform: 
 

 
 
Data flow is further broken down into Tableau components: 
 

https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
https://teradata.sharepoint.com/:p:/r/sites/COMPAS/_layouts/15/Doc.aspx?sourcedoc=%7B9E757331-019D-4D9C-A0B4-0E7D51B699EF%7D&file=Tableau%20Teradata%20Best%20Practices%20-%20DA010806.pptx&action=edit&mobileredirect=true&DefaultItemOpen=1&cid=ad1564b2-06d0-45a1-9384-fb81a7efb9e7
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Teradata Performance Tuning Tips For Tableau 

Indexes 

• Validate indexes (eliminate skew due to zeroes or nulls) 

• Create secondary indexes on dimension fields 

Data Compression/ Multi value compression (MVC) on low cardinality columns  

Data Distribution  

Collect Statistics  

Semantic Layer Views 

✓ Embed joins and business logic in views to minimize complexity in report queries, use join indexes, 

✓ De-normalize the physical database design as and when necessary, where the associated costs are 

justified by perceived benefits for the business  

✓ Can be leveraged by multiple BI tools 

Implement Aggregate Join Indexes to provide quicker response time and lessen resource usage for often executed 

user queries that aggregate millions of rows  

Detailed Performance Tuning 

 
This section includes the detail of various performance tuning checkpoints and the best practices to 
implement the tuning. 

Performance Tuning checkpoints in Teradata: 
1. Database Integrity Constraints 
2. Aggregate Join Indexes 
3. Indexing: 

Validate Primary Indexes (Eliminate skew due to zeros / nulls) 
Secondary indexes on Dimensions, Join and Hash Indexes 
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4. Data Compression/ Multi value compression (MVC) on low cardinality columns 
5. Data Distribution 
6. Collect Statistics 
7. Use Query logs to analyze Tableau queries inside database 
8. Use Query Bands captured in tableau queries for further tuning 

 
Performance Tuning checkpoints in Tableau: 

1. Dashboard and Worksheets 
2. Filtering 
3. Summary Tables 
4. Queries 
5. Extracts 
6. Performance Recording 

 
Teradata features supported by Tableau: 

 
Teradata Performance Tuning Best Practices (High Level) 
This section lists some of the best practices (with short description) followed for the purpose of 
optimizing BI queries and operation in Teradata. However, optimization is a scenario-based 
requirement and every separate implementation would require specific tuning appropriate for the 
same. 

 
1. Teradata recommends that a combination of entity and referential integrity constraints be 

used in an Enterprise Data Warehouse environment to support business user analytic 
access 

 
2. Teradata recommends the use of Aggregate Join Indexes to provide quicker response time 

and lessen resource usage for often executed user queries that aggregate millions of rows. 
 

3. Appropriate Indexing: 

Primary Indexes 

o Teradata Database uses the Primary indexes as a distribution index that must be chosen 
based on followed considerations: 

• To maximize one-AMP operations 
• To optimize parallel processing 
• To minimize expensive I/O operations 

o Ideally, Primary Index should be created as a selection of column(s) that most often 
used to access the data and column(s) with stable data value. No more than 64 columns 
can be specified in a primary index definition. 

o As Primary Index can be unique or non-unique, note that then more unique the PI that 
better the distribution of values. 

o Only one primary index can be defined on a table and a single-value Primary Index 
access requires only one AMP and typically and disk I/O. 
  

Secondary Indexes 

o Secondary Indexes provide applications using an alternate access path with the better 
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performance. Secondary Indexes are optional and may be: 

• Unique or non-unique 

• Dynamically created and dropped by the user for optimum performance, 

according to application requirements 

o Do not affect a table distribution and can reduce base table I/O during value and join 

operations 

o Secondary Indexes are recommended on dimensions and master tables to provide 
enhanced performance on drilldowns 

o The query workload should be analyzed regularly. Teradata Index Wizard should be used 
to advise which indexes should be created to benefit query performance and decrease 
overall resource usage 

o The Teradata Index Wizard also identifies indexes that are being underutilized and can 
be dropped so that an optimal number of indexes exist as query workloads change over 
time. 

           NoPI 
 
 
 
 

 
PPI: 

 

o A new type of Teradata table without a Primary Index (PI). This type of table is neither 
hash distributed, nor hash ordered and allows rows to be appended to the end of a 
table as if it were a spool file. 

o Tableau may consider supporting this feature to ensure the quick creation of small 
temporary tables necessary for certain types of analytical queries. 

 

 
o Partitioned Primary Indexes (PPIs) is partitioning and indexing mechanism used in 

physical database design. 

o When using PPIs (single-level or multi-level): 
• Multiple levels of partitioning are allowed (but beware of over partitioning). 
• Rows are still hash distributed among the AMPs on the primary index’s columns 
• Rows are ordered by the first level partitioning, then second, etc. and finally by 

the hash value of the primary index columns. 
• In many cases, better performance occurs when the partitioning column are 

part of the primary index; however, adding columns to the primary index may 
reduce the usefulness of the primary index for access, joins, and aggregations. 

• PPIs are especially helpful for queries based on range access, such as date 
ranges. 

• PPIs are allowed for volatile tables or global temporary tables since V2R6.1, so 
the SQL Engine automatically generates partitioned primary indexes when 
creating temporary tables and provides enough control for performance 
tuning. 

For more information, refer to the Orange Book: Partitioned Primary Index Usage (Single-Level 

and Multilevel Partitioning (541-0003869-E02) 

4. Multi-Value Compression should also be used on low cardinality columns. 
o Multi-value Compression (MVC) should be used on low cardinality columns or where a 

small number of value (255 or less) occur very frequently compared to other values. 
o Algorithmic Compression (ALC) should be used on wide values such as character strings 

where there are usually effective algorithms to compress the data; however, consider 
the trade-offs of less space usage and reduced I/O vs. the CPU overhead of compressing 
decompressing the data. 
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o Block-level compression (BLC) can also be used to reduce space usage and I/O with the 
trade-off of increased CPU overhead to compress and decompress the data 
blocks. Temperature-based BLC can used to reduce the impact of CPU overhead by 
applying the compression automatically to cold data while leaving hot data 
uncompressed (I am not sure which release temperature-based BLC was added so if the 
BP is for a particular releases or set of releases you need to check this). 

Refer to Orange Book “Compression in Teradata 13.10” 541 – 0008669 – A02 
 

5. The data distribution strategy in Teradata is crucial to good performance 

• Teradata is a parallel database system and the data is distributed across a set of AMPs. Each 

AMP performs all database work such as reading, updating, sorting, journaling, locking and 
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indexing. For maximum performance, it is important to design the database to evenly distribute 

the data across AMPs to ensure that all AMPs in the system perform approximately the same 

amount of work. 

Any user tables joined to EDW tables need to be aware of how their data is distributed and how 

that of the EDW tables is used? Large EDW tables joined together either need to have their data 

distributed the same way or join indexes created to meet usage requirements 

A limited amount of de-normalization should be used where it is beneficial to reduce the 

number of joins for performance reasons and to simplify query optimization 

6. The need for collection of statistics and keeping statistics fresh. 

• In most cases, collecting statistics will help improve query performance. With Collected Statistics 

the Teradata optimizer does not allow the user to “override” its decisions through constructs 

like hints or rewritten SQL. The optimizer will select the best plan to access the data. 

• Tips to consider: Do not collect stats if it is not improving your query. This is just adding more 

process without any benefit. Use Explain <sql statement> and compare the plan, the cpu and 

the IO. Note: elapsed time and the time is not a good comparison method. 

 
o You may not need to collect stats of more than 3 or 4 columns together (multi column 

stats). 
o Start with single column stats recommendation from the diagnostic helpstats plus a few 

multicolumn stats that says high confidence, if they are less than 3 or 4 columns. The 
number of columns in the multicolumn stats depends on the size (in bytes) of each 
column. The total should not be greater than 16 bytes, which is usually 4 columns of 
integer data type. 

 

• Remove unwanted and stale statistics. 

• Please refer to the following documentation for Best Practices for Teradata Statistics Collection: 
Orange Books: 

o Automated Statistics Management Teradata 14.10 (541-0009628-A03) 
o Teradata 14.0 Statistics Enhancements 2011-12 (541-0009064-A02) 
o Statistics Extrapolations 2010-09 (541-0008668-A02) 
o Collecting Teradata Statistics 2007-03 (541-0006463-A02) 
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7. Using DBQL to analyze Tableau queries inside database 

• With Teradata Administrator, from the main window, click Tools>Query Logging. 
 
 

 
 
 

 

Extracts (Tableau) 

• Persistent cache of data that is written to disk and reproducible  
• Columnar data store  - a format where the data has been optimized for analytic querying 
• Completely disconnected from the database during querying 
• Refreshable, either by completely regenerating the extract or by incrementally adding rows 

of data to an existing extract 
• Architecture-aware – unlike most in-memory technologies it is not constrained by the 

amount of physical RAM available 
• Portable – extracts are stored as files so can be copied to a local hard drive and used when 

the user is not connected to the corporate network. They can also be used to embed data 
into packaged workbooks that are distributed for use with Tableau Reader;  

Often much faster than the underlying live data connection 

 

Extracts vs. Live Connection(Tableau) 
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• The speed of the Tableau fast data engine is relative. You must consider the source data and the 

processing power you have already given that data, as well as the processing power you have on 

Tableau before you can determine whether the data engine is going to offer an improvement.  

•  For a non-optimized database or file-based data source, the data engine’s processing is much 

faster and will result in a better user experience. But a well optimized database with indexing 

might be just as fast as the Tableau data engine.  

At the other extreme, the Tableau data engine will probably be slower than a big cluster of machines 

like you would find with Data Warehouse appliances such as Teradata. You might create an aggregated 

extract to offload summary-style analysis, but then drill back to the detailed source data (using actions 

or blending) which would remain in the DW 
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Source: https://datavizcatalogue.com/ 

Sankey Diagram 

 
 

Description 

Sankey Diagrams display flows and their quantities in proportion to one another. The width of the arrows 

or lines are used to show their magnitudes, so the bigger the arrow, the larger the quantity of flow. Flow 

arrows or lines can combine together or split through their paths on each stage of a process. Colour can 

be used to divide the diagram into different categories or to show the transition from one state of the 

process to another. 

Typically, Sankey Diagrams are used to visually show the transfer of energy, money or materials, but they 

can be used to show the flow of any isolated system process. 

Anatomy 
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Tree Diagram 

 
 

Description 

Also known as a Organisational chart, Linkage Tree. 

A Tree Diagram is a way of visually representing hierarchy in a tree-like structure. Typically the structure 

of a Tree Diagram consists of elements such as a root node, a member that has no superior/parent. 

Then there are the nodes, which are linked together with line connections called branches that represent 

the relationships and connections between the members. Finally, the leaf nodes (or end-nodes) are 

members who have no children or child nodes. 

Tree Diagrams are often used: 

To show family relations and descent. 

In taxonomy, the practice and science of classification. 

In evolutionary science, to show the origin of species. 

In computer science and mathematics. 

In businesses and organisations for managerial purposes. 

Anatomy 
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Pie Charts 

 
 

Description 

Extensively used in presentations and offices, Pie Charts help show proportions and percentages 

between categories, by dividing a circle into proportional segments. Each arc length represents a 

proportion of each category, while the full circle represents the total sum of all the data, equal to 100%. 

Pie Charts are ideal for giving the reader a quick idea of the proportional distribution of the data. However 

the major downsides to pie charts are: 

They cannot show more than a few values, because as the number of values shown increases, the 
size of each segment/slice becomes smaller. This makes them unsuitable for large amounts of data. 

They take up more space than their alternatives, like a 100% Stacked Bar Chart for example. Mainly 
due to their size and for the usual need for a legend. 

They are not great for making accurate comparisons between groups of Pie Charts. This being that it is 
harder to distinguish the size of items via area when it is for length. 

In spite of that, comparing a given category (one slice) within the total of a single Pie Chart, then it can 

often be more effective. 

Anatomy 
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Chord Diagram  

 
 

Description 

This type of diagram visualises the inter-relationships between entities. The connections between entities 

are used to display that they share something in common. This makes Chord Diagrams ideal for 

comparing the similarities within a dataset or between different groups of data. 

Nodes are arranged along a circle, with the relationships between points connected to each other either 

through the use of arcs or Bézier curves. Values are assigned to each connection, which is represented 

proportionally by the size of each arc. Colour can be used to group the data into different categories, 

which aids in making comparisons and distinguishing groups. 

Over-cluttering becomes an issue with Chord Diagrams when there are too many connections displayed. 

 

Anatomy 
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Scatterplot 

 
 

Description 

Also known as a Scatter Graph, Point Graph, X-Y Plot, Scatter Chart or Scattergram. 

Scatterplots use a collection of points placed using Cartesian Coordinates to display values from two 

variables. By displaying a variable in each axis, you can detect if a relationship or correlation between the 

two variables exists. 

Various types of correlation can be interpreted through the patterns displayed on Scatterplots. These 

are: positive (values increase together), negative (one value decreases as the other increases), null (no 

correlation), linear, exponential and U-shaped. The strength of the correlation can be determined by 

how closely packed the points are to each other on the graph. Points that end up far outside the general 

cluster of points are known as outliers. 

Lines or curves are fitted within the graph to aid in analysis and are drawn as close to all the points as 

possible and to show how all the points were condensed into a single line would look. This is typically 

known as the Line of Best Fit or a Trend Line and can be used to make estimates via interpolation. 

Scatterplots are ideal when you have paired numerical data and you want to see if one variable impacts 

the other. However, do remember that correlation is not causation and another unnoticed variable may be 

influencing results. 
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Scatterplot 

Anatomy 
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Histogram 

 
 

Description 

A Histogram visualises the distribution of data over a continuous interval or certain time period. Each bar 

in a histogram represents the tabulated frequency at each interval/bin. 

Histograms help give an estimate as to where values are concentrated, what the extremes are and 

whether there are any gaps or unusual values. They are also useful for giving a rough view of the 

probability distribution. 

 

Anatomy 
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Box and Whisker Plot 

 
 

Description 

A Box and Whisker Plot (or Box Plot) is a convenient way of visually displaying the data distribution 

through their quartiles. 

The lines extending parallel from the boxes are known as the “whiskers”, which are used to indicate 

variability outside the upper and lower quartiles. Outliers are sometimes plotted as individual dots that are 

in-line with whiskers. Box Plots can be drawn either vertically or horizontally. 

Although Box Plots may seem primitive in comparison to a Histogram or Density Plot, they have the 

advantage of taking up less space, which is useful when comparing distributions between many groups or 

datasets. 

Here are the types of observations one can make from viewing a Box Plot: 

What the key values are, such as: the average, median 25th percentile etc. 

If there are any outliers and what their values are. 

Is the data symmetrical. 

How tightly is the data grouped. 

If the data is skewed and if so, in what direction. 

Two of the most commonly used variation of Box Plot are: variable-width Box Plots and notched Box 

Plots. 
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Box and Whisker Plot 

Anatomy 
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Bar Chart 

 
 

Description 

As known as Bar Graph or Column Graph. 

The classic Bar Chart uses either horizontal or vertical bars (column chart) to show discrete, numerical 

comparisons across categories. One axis of the chart shows the specific categories being compared and 

the other axis represents a discrete value scale. 

Bars Charts are distinguished from Histograms, as they do not display continuous developments over an 

interval. Bar Chart's discrete data is categorical data and therefore answers the question of "how many?" 

in each category. 

One major flaw with Bar Charts is that labelling becomes problematic when there are a large number of 

bars. 

 

Anatomy 
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Area Graph 

 
 

Description 

Area Graphs are Line Graphs but with the area below the line filled in with a certain colour or texture. 

Area Graphs are drawn by first plotting data points on a Cartesian coordinate grid, joining a line between 

the points and finally filling in the space below the completed line. 

Like Line Graphs, Area Graphs are used to display the development of quantitative values over an 

interval or time period. They are most commonly used to show trends, rather than convey specific values. 

Two popular variations of Area Graphs are: grouped and Stacked Area Graphs. Grouped Area Graphs 

start from the same zero axis, while Stacked Area Graphs have each data series start from the point left 

by the previous data series. 

Anatomy 



Teradata Vantage: Analytics Certification Learning Resource  
 

Page 12 of 20 
 

 

 
 
 
 

Heatmap (Matrix) 

 
 

Description 

Heatmaps visualise data through variations in colouring. When applied to a tabular format, Heatmaps are 

useful for cross-examining multivariate data, through placing variables in the rows and columns and 

colouring the cells within the table. Heatmaps are good for showing variance across multiple variables, 

revealing any patterns, displaying whether any variables are similar to each other, and for detecting if any 

correlations exist in-between them. 

Typically, all the rows are one category (labels displayed on the left or right side) and all the columns are 

another category (labels displayed on the top or bottom). The individual rows and columns are divided 

into the subcategories, which all match up with each other in a matrix. The cells contained within the table 

either contain colour-coded categorical data or numerical data, that is based on a colour scale. The data 

contained within a cell is based on the relationship between the two variables in the connecting row and 

column. 
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A legend is required alongside a Heatmap in order for it to be successfully read. Categorical data is 

colour-coded, while numerical data requires a colour scale that blends from one colour to another, in 

order to represent the difference in high and low values. A selection of solid colours can be used to 

represent multiple value ranges (0-10, 11-20, 21-30, etc) or you can use a gradient scale for a single 

range (for example 0 - 100) by blending two or more colours together. 

Because of their reliance on colour to communicate values, Heatmaps are a chart better suited to 

displaying a more generalised view of numerical data, as it’s harder to accurately tell the differences 

between colour shades and to extract specific data points from (unless of course, you include the raw 

data in the cells). 

Heatmaps can also be used to show the changes in data over time if one of the rows or columns are set 

to time intervals. An example of this would be to use a Heatmap to compare the temperature changes 

across the year in multiple cities, to see where’s the hottest or coldest places. So the rows could list the 

cities to compare, the columns contain each month and the cells would contain the temperature values. 

Heatmap (Matrix) 

Anatomy 
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Treemap 
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Description 

Treemaps are an alternative way of visualising the hierarchical structure of a Tree Diagram while also 

displaying quantities for each category via area size. Each category is assigned a rectangle area with 

their subcategory rectangles nested inside of it. 

When a quantity is assigned to a category, its area size is displayed in proportion to that quantity and to 

the other quantities within the same parent category in a part-to-whole relationship. Also, the area size of 

the parent category is the total of its subcategories. If no quantity is assigned to a subcategory, then it's 

area is divided equally amongst the other subcategories within its parent category. 

The way rectangles are divided and ordered into sub-rectangles is dependent on the tiling algorithm used. 

Many tiling algorithms have been developed, but the "squarified algorithm" which keeps each rectangle as 

square as possible is the one commonly used. 

Ben Shneiderman originally developed Treemaps as a way of visualising a vast file directory on a 

computer, without taking up too much space on the screen. This makes Treemaps a more compact and 

space-efficient option for displaying hierarchies, that gives a quick overview of the structure. Treemaps 

are also great at comparing the proportions between categories via their area size. 

The downside to a Treemap is that it doesn't show the hierarchal levels as clearly as other charts that 

visualise hierarchal data (such as a Tree Diagram or Sunburst Diagram). 

 

 

Treemap 
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Anatomy 

 

 

 

 

 

 

Donut Chart 
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Description 

A donut chart is essentially a Pie Chart with an area of the centre cut out. 

Pie Charts are sometimes criticised for focusing readers on the proportional areas of the slices to one 

another and to the chart as a whole. This makes it tricky to see the differences between slices, especially 

when you try to compare multiple Pie Charts together. 

A Donut Chart somewhat remedies this problem by de-emphasizing the use of the area. Instead, readers 

focus more on reading the length of the arcs, rather than comparing the proportions between slices. 

Also, Donut Charts are more space-efficient than Pie Charts because the blank space inside a Donut 

Chart can be used to display information inside it. 

Anatomy 

 

Bubble Chart 
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Description 

A Bubble Chart is a multi-variable graph that is a cross between a Scatterplot and a Proportional Area 

Chart. 

Like a Scatterplot, Bubble Charts use a Cartesian coordinate system to plot points along a grid where the 

X and Y axis are separate variables. However. unlike a Scatterplot, each point is assigned a label or 

category (either displayed alongside or on a legend). Each plotted point then represents a third variable 

by the area of its circle. Colours can also be used to distinguish between categories or used to represent 

an additional data variable. Time can be shown either by having it as a variable on one of the axis or by 

animating the data variables changing over time. 

Bubble Charts are typically used to compare and show the relationships between categorised circles, by 

the use of positioning and proportions. The overall picture of Bubble Charts can be used to analyse 

for patterns/correlations. 

Too many bubbles can make the chart hard to read, so Bubble Charts have a limited data size capacity. 

This can be somewhat remedied by interactivity: clicking or hovering over bubbles to display hidden 

information, having an option to reorganise or filter out grouped categories. 

Like with Proportional Area Charts, the sizes of the circles need to be drawn based on the circle’s area, 

not its radius or diameter. Not only will the size of the circles change exponentially, but this will lead to 

misinterpretations by the human visual system. 

 

Bubble Chart 
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Anatomy 

 

 

 

 

 

 

Sunburst Diagram 
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Description 

As known as a Sunburst Chart, Ring Chart, Multi-level Pie Chart, Belt Chart, Radial Treemap. 

This type of visualisation shows hierarchy through a series of rings, that are sliced for each category 

node. Each ring corresponds to a level in the hierarchy, with the central circle representing the root node 

and the hierarchy moving outwards from it. 

Rings are sliced up and divided based on their hierarchical relationship to the parent slice. The angle of 

each slice is either divided equally under its parent node or can be made proportional to a value. 

Colour can be used to highlight hierarchal groupings or specific categories. 

Anatomy 
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Integrating Custom Visualizations in 

Teradata AppCenter
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© Teradata 2020

• Bar chart 

• Chord 

• Decision tree  

• Hierarchical 
clustering tree

• Line chart

• Pie chart                

• Sankey    

• Sigma

• Statistics Line

• Tree

• Wordcloud

• Wordbubbles

wordcloud

Built-in Teradata AppCenter Visualizations

Bar chart compares at least one set of data points using x and y axes. Clustered bar 
charts are effective for showing multiple data sets. Stacked bar charts helps with 
assessing proportion across a data set.
Chord charts interrelationships between data in a matrix. Ex. affinity of products 
bought together.
Decision tree is a type of flow diagram with endpoint values to assist in decision-
making. Ex loan approval decision
Hierarchical Clustering visualizes data that has a containment relationship. Ex. USA 
CA Sacramento, San Francisco 
Line chart are used to show trends with x and y axes 
Pie chart illustrate break down in an individual dimension and represent proportion 
across categories
Sankey is a specific type of flow diagram in which the width of the arrows is shown 
proportionally to the flow quantity. 
Sigma visualization is appropriate for depicting data networks and how they relate to 
each other 
Statistics line is a type of line chart that support cfilter visualization formats
Tree is a type of flow diagram that supports npath visualization formats
Wordcloud is a visual representation of text data that can show proportion between 

2



values
Wordbubbles Wordcloud is a variation of the wordcloud that uses bubble size to 
represent proportion

2
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End goal : Visualize GDP growth and Inflation of 
countries

3
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Visualization quotes

The purpose of 

visualization is insight, not 

pictures.

– Ben Shneiderman

Computer scientist, a Distinguished University 

Professor in the University of Maryland 

Department of Computer Science.

Numbers have an important 

story to tell. They rely on 

you to give them a clear 

and convincing voice.

– Stephen Few

IT innovator, consultant, and educator with 

over 30 years of experience in the fields of 

business intelligence and information design

The greatest value of a 

picture is when it forces us 

to notice what we never 

expected to see.

– John w Tukey, 

Mathematician best known for development of 

the Fast Fourier Transform algorithm and box 

plot.
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Examples of Custom Visualizations* : Hexbin map

*  Not available as a built-in AppCenter

1. Custom visualizations are visualizations that are freely downloadable from the 
web. 

2. Each visualization is a self-contained HTML page written in Java Script, D3.js, 
HTML5 and CSS.

3. Every visualization expects data to be transformed to the format that the 
visualization expects.

A hexbin map, organizes areas around some specific geometries , in this case squares, 
and these are called bins. The idea is to visualize density as color intensity within each 
bin.

5
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Examples of Custom Visualizations*: Chloropleth 
map

*  Not available as a built-in AppCenter

Choropleth maps use color to highlight differences between areas of map. Values 
depicted are categorical- red or blue. But there could be other chloropleth maps with 
numerical values

6
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Examples of Custom Visualizations* : Stacked Area 
Chart

*  Not available as a built-in AppCenter

Music Timeline of a variety of music genres waxing and waning in popularity until 2010

7
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Examples of Custom Visualizations*:Diverging 
stacked barchart

*  Not available as a built-in AppCenter

We create a diverging stacked bar chart to plot a 5 point Likert scale. There a lots of 
ways to plot a Likert scale but, a diverging stacked bar chart is the best

8
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Examples of Custom Visualizations*: 
temporal line chart 

*  Not available as a built-in AppCenter

@Leto Peel et. al. ICDM 2015 paper "Predicting Sports Scoring Dynamics with Restoration and Anti-persistence"

Inferred skills for each season of NBA (2002-2010) from Leto Peel et. a.l ICDM 2015 
paper "Predicting Sports Scoring Dynamics with Restoration and Anti-persistence". 
Teams that are the overall winners of more than one season are highlighted
Similar map with code is discussed at https://bl.ocks.org/mbostock/3709000

9
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The challenge of integrating a Custom Visualization 
with Teradata AppCenter lies in:

Selecting the 

right 

visualization for 

your data 

Transforming data 

as required by the 

visualization

Where a treemap is required, a bar chart won’t work. 
For example, a grouped horizontal bar chart requires data to be a dictionary of 
dictionaries. Any other structure will not work.

10



11

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6

Steps to integrate a Custom Visualization

Select and 
download your 
visualization

Pull data from 
table in json 
format using 
query service

Package and 
upload the 
updated 
visualization

Update 
visualization to 
accept data from 
json

Run the app
Identify input 
table to source 
data to 
visualization

11
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Steps 1 and 2 :

1. Select and download your custom visualization. 

• Downloaded the visualization to display GDP growth and Inflation rate of countries

2. Identify input table to source data to visualization. 

• Sampled rows from input table :

Obsid CountryName CountryCode Cluster_id GDP growth rate Inflation Rate

204 United States USA 5 2.5072999535297 1.6400434423906

69 United Kingdom GBR 5 1.6597541606755 3.2857142857149

65 France FRA 5 1.7247755947887 1.529639382277

51 Germany DEU 5 4.0124659135177 1.1038085608358

89 India IND 2 10.259963064554 11.992296918768

93 Iceland ISL 5 -4.0987774858702 5.3965047672074

distinct(countrycode) = 175
distinct(cluster_id) = 7 (1,2,3,4,5,7)
select cluster_id,count(*) from medkmeansoutput group by cluster_id order by 
cluster_id;
1,1
2,11
3,39
4,61  // US is in this cluster
5,48
6,5
7,10

12
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Step 3: Pull data from table using query service

“--name=query1 “ helps associate the query with the visualization

13
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…run and browse the json returned by query service

14
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Step 4: Update Visualization to accept data from json

Run query without the “--name=query1“ from AppCenter UI and the json composed by 
the query service on data that he query service pulled from source table will display.

15
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Step 5: Package and upload the updated Visualization

polymer-bundler is a library for packaging project assets for production to minimize 
network round-trips. Web pages that use multiple HTML Imports, external scripts, and 
stylesheets to load dependencies may end up making lots of network round-trips. In 
many cases, this can lead to long initial load times and unnecessary bandwidth usage. 
The polymer-bundler tool follows HTML Imports, external script and stylesheet 
references, inlining these external assets into "bundles", to be used in production. 

16
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Step 6: Run the app

17
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The Custom Visualization is ready
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Misleading Graphs 
 
Bar plots 
 
A truncated graph is a graph (usually seen in bar plots) where the y-axis labels doesn’t start at 
zero. Truncated graphs are typically used to highlight differences between categories, but these 
can lead to misinformation and tend to overexaggerate the differences.  
 
Since the scale changes, these graphs would seem to represent the data differently, thus 
people generally overestimate and often incorrectly interpret the actual differences. 
 
The following two graphs below demonstrate this, the chart on the left shows a bar plot 
starting at 0, while the one on the right starts at a higher number (1700). While they use exactly 
the same data, the chart on the right, shows a huge gap between, Company C, which might be 
interpreted as Company C performing way below as compared to Company A and Company B, 
at about 75% less. But in actuality, Company C is performing only about 30% less than that of 
Company A / B. 
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The Boxplot and Its Pitfalls 

 

Source: https://www.data-to-
viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20t
han%20the%20others. 

 
Code 
 
A boxplot gives a nice summary of one or more numeric variables. A boxplot is composed of several 
elements: 

The line that divides the box into 2 parts represents the median of the data. If the median is 10, it means 
that there are the same number of data points below and above 10. 

• The ends of the box shows the upper (Q3) and lower (Q1) quartiles. If the third quartile is 15, it 
means that 75% of the observation are lower than 15. 

• The difference between Quartiles 1 and 3 is called the interquartile range (IQR) 
• The extreme line shows Q3+1.5xIQR to Q1-1.5xIQR (the highest and lowest value excluding 

outliers). 
• Dots (or other markers) beyond the extreme line shows potntial outliers. 

Here is a diagram showing the boxplot anatomy: 

 

 
A boxplot can summarize the distribution of a numeric variable for several groups. The problem is that 
summarizing also means losing information, and that can be a pitfall. If we consider the boxplot below, it 
is easy to conclude that group C has a higher value than the others. However, we cannot see the 
underlying distribution of dots in each group or their number of observations. 

https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://www.data-to-viz.com/caveat/boxplot.html#:~:text=A%20boxplot%20can%20summarize%20the,higher%20value%20than%20the%20others.
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Interquartile_range
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Code 

 

Let’s see what happens when the boxplot is improved using additional elements. 

Adding jitter

 

If the amount of data you are working with is not too large, adding jitter on top of your boxplot can 
make the graphic more insightful. 

Code
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Here some new patterns appear clearly. Group C has a small sample size compared to the other groups. 
This is definitely something you want to find out before saying that group C has a higher value than the 
others. Moreover, it looks like group B has a bimodal distribution: dots are distributed in 2 groups: 
around y=18 and y=13. 

Switching to violin plot 

 

If you have a large sample size, using jitter is not an option anymore since dots will overlap, making the 
figure uninterpretable. A alternative is the violin plot, which describes the distribution of the data for 
each group: 

CODE 

Here it is very clear that the groups have different distributions. The bimodal distribution of 
group B becomes obvious. Violin plots are a powerful way to display information–they are probably 
under-utilized compared to boxplots. 

Adding the sample size 

 

On the previous chart, the sample size of each group is indicated on the x-axis, below the group name. 
This is a good practice and shows that group C is under-represented. However, it is sometimes better to 
show the data points themselves. Thus, a good alternative is a half violin plot showing the raw data. This 
uses code coming from jbburant and David Robinson. 

CODE 

https://www.data-to-viz.com/violin.html
https://gist.github.com/jbburant/b3bd4961f3f5b03aeb542ed33a8fe062
https://gist.github.com/dgrtwo/eb7750e74997891d7c20#file-geom_flat_violin-r
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Source: https://www.data-to-viz.com/caveat/calculation_error.html 

C A L C U L A T I O N  E R R O R S  
A collection of common dataviz caveats by Data-to-Viz.com 

 
 

 

This is probably the most obvious pitfall example of the collection, but is probably 
the most frequent one as well. Number inconsistencies on a graphic make it 
completely useless. 

Percentages don’t add up to 100% 
 

For example, when displaying percentages on a pie chart, double-check that the 
percents sum to 100%: 

 

 

Source: WTF Visualizations 

 
Here, also note that using an exploded 3D pie chart is probably the worst way to 
convey information ever invented. (Read more about it) 
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Values don’t match visuals 
 

In the following example, the 45% annotation is linked with the biggest part of the 
donut chart; clearly something is incorrect. 

 
 

 

Source: WTF Visualizations 
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Source: https://www.data-to-viz.com/caveat/pie.html 

T H E  I S S U E  W I T H  P I E  C H A R T  
A collection of common dataviz caveats by Data-to-Viz.com 

 
 

 

CODE  

 
 

Bad by definition 
 

A pie chart is a circle divided into sectors that each represent a 
proportion of the whole. It is often used to show percentage, where 
the sum of the sectors equals 100%. 

 
 
The problem is that humans are pretty bad at reading angles. In the 
adjacent pie chart, try to figure out which group is the biggest one 
and try to order them by value. You will probably struggle to do so 
and this is why pie charts must be avoided. 

CODE 
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If you’re still not convinced, let’s try to compare several pie plots. 
Once more, try to understand which group has the highest value in 
these 3 graphics. Also, try to figure out what is the evolution of the 
value among groups. 

CODE 

 

Now, let’s represent exactly the same data using a barplot: 

CODE 
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As you can see on this barplot, there is a heavy difference between 
the three pie plots with a hidden pattern that you definitely don’t 
want to miss when you tell your story. 

And often made even worse 
 

Even if pie charts are bad by definition, it is still possible to make 
them even worse by adding other bad features: 

 3d 
 legend aside 
 percentages that do not sum to 100 
 too many items 
 exploded pie charts 

Alternatives 
 

The barplot is the best alternative to pie plots. If you have many 
values to display, you can also consider a lollipop plot that is a bit 
more elegant in my opinion. Here is an example based on 
the amount of weapons sold by a few countries in the world: 
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CODE 

 

Another possibility would be to create a treemap if your goal is to 
describe what the whole is composed of. 
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Histograms 

Source: https://statistics.laerd.com/statistical-guides/understanding-histograms.php 

What is a histogram? 

A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a 

set of continuous data. This allows the inspection of the data for its underlying distribution (e.g., normal 

distribution), outliers, skewness, etc. An example of a 

histogram, and the raw data it was constructed from, is 

shown below: 

36 25 38 46 55 68 72 55 36 38 

67 45 22 48 91 46 52 61 58 55 

How do you construct a histogram from a continuous variable? 

To construct a histogram from a continuous variable you first need to split the data into intervals, 

called bins. In the example above, age has been split into bins, with each bin representing a 10-year 

period starting at 20 years. Each bin contains the number of occurrences of scores in the data set that 

are contained within that bin. For the above data set, the frequencies in each bin have been tabulated 

along with the scores that contributed to the frequency in each bin (see below): 

Bin Frequency Scores Included in Bin 

20-30 2 25,22 

30-40 4 36,38,36,38 

40-50 4 46,45,48,46 

50-60 5 55,55,52,58,55 

60-70 3 68,67,61 

70-80 1 72 

80-90 0 - 

90-100 1 91 

https://statistics.laerd.com/statistical-guides/understanding-histograms.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php
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Notice that, unlike a bar chart, there are no "gaps" between the bars (although some bars might be 

"absent" reflecting no frequencies). This is because a histogram represents a continuous data set, and as 

such, there are no gaps in the data (although you will have to decide whether you round up or round 

down scores on the boundaries of bins). 

Choosing the correct bin width 

There is no right or wrong answer as to how wide a bin should be, but there are rules of thumb. You 

need to make sure that the bins are not too small or too large. Consider the histogram we produced 

earlier (see above): the following histograms use the same data, but have either much smaller or larger 

bins, as shown below: 

 

We can see from the histogram on the left that the bin width is too small because it shows too much 

individual data and does not allow the underlying pattern (frequency distribution) of the data to be 

easily seen. At the other end of the scale is the diagram on the right, where the bins are too large, and 

again, we are unable to find the underlying trend in the data. 

 
Histograms are based on area, not height of bars 

In a histogram, it is the area of the bar that indicates the frequency of occurrences for each bin. This 

means that the height of the bar does not necessarily indicate how many occurrences of scores there 

were within each individual bin. It is the product of height multiplied by the width of the bin that 

indicates the frequency of occurrences within that bin. One of the reasons that the height of the bars is 
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often incorrectly assessed as indicating frequency and not the area of the bar is due to the fact that a lot 

of histograms often have equally spaced bars (bins), and under these circumstances, the height of the 

bin does reflect the frequency. 

What is the difference between a bar chart and a histogram? 

The major difference is that a histogram is only used to plot the frequency of score occurrences in a 

continuous data set that has been divided into classes, called bins. Bar charts, on the other hand, can be 

used for a great deal of other types of variables including ordinal and nominal data sets. 
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Source: https://blog.datawrapper.de/dualaxis/ 

Why not to use two axes, and what to use 
instead 
The case against dual axis charts 

 

Tl;dr: We believe that charts with two different y-axes make it hard for most 
people to intuitively make right statements about two data series. We recommend 
two alternatives strongly: using two charts instead of one and using indexed 
charts. 

From time to time we get an email asking if it’s possible in our data visualization 
tool Datawrapper to create charts with two different y-axes (also called double Y charts, 
dual axis charts, dual-scale data charts or superimposed charts). It is not – and we 
won’t add it any time soon. We’re sorry if that makes our user’s life harder, but we agree 
with the many chart experts[1] who make cases against dual axis charts. We hope you’ll 
hear us out. 

We will first look at situations when people want to use dual axis charts, then we explain 
their problems, and afterward we’ll look at four alternatives: 

Why people use dual axis charts 

Why do people use dual axis charts? We looked around and found that most people 
used them to show… 

1 …two data series with the same measure, but different magnitudes, e.g. the 
global GDP on one axis and the GDP of Germany on the other one: 
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2 …two data series that show the relative and the absolute values of something, 
e.g. the GDP per capita on one axis and the absolute GDP on the other one: 

 
3 …two data series for totally different values, e.g. the GDP of a country on one axis 
and the life expectancy of that country on the other one: 
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4 …one data series, but the y-axis shows different scales, e.g. the values in 
Fahrenheit on one axis and in Celsius on the other one: 

 

As you can see, dual axis charts are often used to show two different data series with 
a different magnitude (=number range) and/or measure (GDP, life expectancy, 
etc). Often, their goal is to compare two trends with each other. Giving readers the 
possibility to do so makes a lot of sense – but there are some reasons why a dual axis 
chart is not the way to go. In fact, of these four use cases, we think that only the last 
dual axis chart can be used without any doubt, since it only uses the second Y-axis to 
show an alternative scale and not a second data series. 

Let’s have a look at the problems with dual axis charts before thinking about 
alternatives: 

The problems with dual axis charts 

Here’s the problem in a nutshell: The scales of dual axis charts are arbitrary and can 
therefore (deliberately) mislead readers about the relationship between the two 
data series. 

Let’s use some real Worldbank data for the German GDP and the global GDP between 
2004 and 2016 to explain that: 
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This chart has two different y-axes: The left axis shows the global GDP with a range 
from $40 to $80 trillion. The right axis shows the German GDP with a range between 
$2.5 and $4 trillion. The measure (US-Dollar) is the same, but we have a wildly different 
magnitude. A second axis sounds like a good solution – but there are three problems 
we have with them: 

Zero baselines at different heights can mislead 

The proportions of the two scales are often different from each other in dual axis charts. 
If the left axis would go down to zero, the chart would be twice as long. If the right axis 
would go down to zero, the chart would be almost three times as long. This is how both 
axes look like when we extend them to zero: 
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So while the chart looks like the German GDP and the global GDP go up at roughly 
the same rate (at least until 2014), they don’t. The global GDP increased by 80% until 
2014; the GDP of Germany by 40%. 

Most readers are used to line charts with just one scale. So when they see a line chart 
with two scales, their intuition goes into the normal “that’s how I read a line chart”-mode: 
“Oh, two lines, cool, same rate, interesting”. Readers actively need to remind 
themselves that these two lines have less of a relationship than they’re used to seeing 
in a line chart. 

So how small is the relationship between these two lines? Let’s go crazy. Nothing really 
matters, right? We can make all kinds of statements with our two data sets if we 
just tweak the scales a little bit: 
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But that’s a problem we can solve, isn’t it? We can just set the zero baseline to the 
same height. Except: 

Even zero baselines at the same height can mislead 

This is how the chart looks like with the same baseline. (Meaning, if we extended both 
y-axes to zero, they would have the same height.) In the best case, our readers will now 
think: “Seems like the global GDP increased more than the German GDP”. Yes! 
Success! Except, in the worst case, our readers will think: “In the first years, the 
German GDP was higher than the global GDP. And then in 2011, the two GDP’s were 
the same:” 
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Why would anyone think that? Because humans have a tendency to set things in 
relation if they’re close-by, and this relationship becomes a huge part of the meaning 
they see in things. Data points and data series are not an exception to this rule. We 
automatically compare lines and points with each other; and it’s hard to remember that 
different scales are involved. If things look close-by on a chart, it’s hard to 
constantly remember that actually, they are miles apart. 

They’re just hard to read 

“Ha,” you might say, “readers just need to look closer. I stared at this chart for a minute 
and I figured everything out.” Well, good for you. But most of our readers don’t like to 
do math in their heads. (Which is ok: Our job is to do the math for them.) 

A study from 2011 backs up that claim. Petra Isenberg, Anastasia Bezerianos, Pierre 
Dragicevic and Jean-Daniel Fekete showed 15 people four different charts that all 
showed values in different magnitudes, and observed how well these people could read 
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the charts. One of them was a chart with a dual axis, which the researchers call 
“superimposed chart”. That’s what they found out: 

We found across the board that the superimposed chart performed poorly both in 
terms of accuracy and time. Participants’ feedback from the questionnaire was 
also clearly against the superimposed chart and it was ranked lowest by all but 
one participant. Participants called it very confusing and demanding too much 
concentration or reflection to decipher the non-monotonic and discontinuous 
nature of the two scales. – A Study on Dual-Scale Data Charts 

The researchers go on and recommend to avoid dual axis charts altogether. We agree. 
We tried to show here that the danger of dual axis charts is that they’re not intuitive. 
Chart designers have the freedom to manipulate axes as they wish, which can lead to 
first visual impressions which are way off what the data actually says. 

Alternatives 

However, there’s hope! There are alternatives. Here we will present four of them: 
Creating two charts, indexed charts, labeling and connected scatterplots. 

Solution 1: Side-by-side charts 

If the problem is that the two lines create meaning because they’re so close together, 
let’s separate them! The first solution is to create two different charts with our two data 
series, also called side-by-side-charts. The advantage is that – like with a dual axis 
chart – side-by-side charts don’t care how much the numbers differ: We can create 
two different axes for two different charts. The disadvantage is that two charts might 
need more space than one chart. 

 

Solution 2: Indexed charts 
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If we want to keep both data series in one chart, we can create an indexed chart. That’s 
a chart that doesn’t tell us anything about absolute numbers, but shows the relative 
change of our data series over time: By what percentage a variable increased or 
decreased over time. Labeling or tooltips can bring back information about the absolute 
numbers. And one can even show more than two data series in the same chart, as 
happened in this chart by my co-worker Gregor, who compares the growth and decline 
of several cryptocurrencies with each other. 
This approach works only for data series with a similar rate of change, though. Cole 
Nussbaumer Knaflic makes that point really well in one of her articles: If one of data 
series changes by +10000% and the other one by just +5%, the latter line will almost be 
invisible. 

 

Solution 3: Prioritizing & labeling 

The third idea to prevent a dual axis is to just show one line: the more important data 
series of the two. We can then use chart annotations to add information about the data 
we leave out (the other data series). That’s also a recommendation by Cole 
Nussbaumer Knaflic, although she called it “not exactly the eloquent solution I was 
imagining”. Indeed, this solution won’t work well for most data (including ours), but can 
be a great alternative for dual axis charts that present absolute and relative 
numbers of the same measure. For example, the following chart shows the 
unemployment rate in the US, but gives information about the absolute numbers in form 
of annotations: 
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Solution 4: Connected Scatterplot 

Here it gets fancy: A connected scatterplot keeps one variable on the y-axis – but 
instead of time, it places the second variable on the x-axis. Suddenly, time doesn’t 
move from left to right, but wiggles through space. It’s really unintuitive[2], but also lots of 
fun. Stephanie Evergreen recommends it as an alternative to a dual axis chart in one of 
her articles. In our case, a connected scatterplot might be overkill; but we’ve 
seen cases in which they are the best chart type for showing an insight. 

 

 

Of the four alternatives we show here, the first two will be useful in most cases. Let us 
know if we missed anything! We hope we could make our concerns understandable and 
show some ways how you can visualise your data even without a dual axis chart. 
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1. Here are articles by smart people who have opinions about using dual axis charts: 
Dual-Scaled Axes in Graphs Are They Ever the Best Solution? by Stephen Few. 
Looks first at column charts, then at line charts with dual axes and concludes that he 
"cannot think of a situation that warrants them in light of other, better solutions." 
Two Alternatives to Using a Second Y-Axis by Stephanie Evergreen. Explains two 
alternatives to a second Y-axis, two side-by-side graphs and a connected scatterplot. 
Be gone, dual y-axis! by Cole Nussbaumer Knaflic. Shows a case when indexed 
charts as an alternative for dual axis charts fail, and suggests a labeled chart instead. 
Hadley Wickham’s arguments against dual axis charts on StackOverflow. Gives 
four arguments why it’s not possible to create dual axis charts with his charting library 
ggplot2. 
Dual axes time series plots may be ok sometimes after all by 
Peter Ellis. Makes arguments against side-by-side charts, indexed charts, and 
connected scatterplots, and explains Do’s and Don’ts of creating dual axis charts. ↩ 

2. Note that both the dual axis chart and the connected scatterplots are not intuitive, but 
differently so: The dual axis chart promises the reader to be easily decipherable, 
since it looks like the common line-chart that readers have seen so often and learned 
how to read. Quickly glancing at a dual axis chart for a second can plant misleading 
statements in a reader’s mind. Glancing at a connected scatterplot, on the other side, 
just ends in a confused face and the realisation “I need to take my time to understand 
this chart”. It’s not intuitive, but it also doesn’t lead to intuitive (and wrong) insights. ↩ 

 



Visualization Formats and Types Overview
AppCenter supports a variety of built-in visualizations formats and types based on specific table structures
for apps that run once or on schedule and SQL scripts. In addition, you can upload your own visualization
assets using the Custom (Upload) option when creating the app or uploading the script.

Built-In Visualization Formats and Types
AppCenter supports the following built-in visualization formats and types for apps that run once or on
schedule and SQL scripts:

Visualization
Format

Visualization
Types
Supported

Required Table Structure and Example

CFilter • Chord
• Sigma
• Bar
• Pie
• Line
• Statistics

Line

col1_item1 - varchar
col1_item2 - varchar
cntb - int
cnt1 - int
cnt2 - int

Example:

nPath® • Hierarchical
clustering
tree

• Sigma
• Tree
• Sankey

cnt - int
path - varchar

Example:

Sessionize • Bar
• Pie
• Line
• Statistics

Line

x - int
y - int

Example:

Tfidf • Wordcloud
• Wordbubbles

wordcloud

term - varchar
tf_idf - real

Example:

Visualization Formats, Types, and Table
Structures

Teradata® AppCenter User Guide, Release 1.8 37



Visualization
Format

Visualization
Types
Supported

Required Table Structure and Example

Find Named
Entity

• Wordcloud
• Wordbubbles

wordcloud

id - int
ENTITY - varchar
TYPE - varchar

Example:

Forest Drive • Dtree worker_ip - varchar
task_index - integer
tree_num - integer
tree - varchar

Example:

If you select a Bar visualization type with the Default format, AppCenter provides the following options to
customize the resulting chart:

• X-Axis (horizontal) and Y-Axis (vertical) labels
• Show Legend (identify data in visualization)
• Color Scheme (vivid, natural, cool, fire, solar, air, and more)

Visualization Code Example for SQL Scripts
The code for each visualization type must include --name=type, where type can be anything, followed by
the SQL. For example:

--name=bar1
select original_service, complete from appcenter_user.sdabc;

--name=line1
select original_service, complete from appcenter_user.sdabc;

--name=wordcloud1
select original_service as term, complete as tf_idf from appcenter_user.sdabc;

--name=bar2

A: Visualization Formats, Types, and Table Structures

Teradata® AppCenter User Guide, Release 1.8 38



3.0 Statistical 

Techniques 
 



Source: The Basic Practice of Statistics (6th ed.). Diana Mindrila, Ph.D. 

Phoebe Balentyne, M.Ed. 

 

Concepts: 

 Displaying Relationships: Scatterplots

 Interpreting Scatterplots

 Adding Categorical Variables to Scatterplots

 Measuring Linear Association: Correlation

 Facts About Correlation

Objectives: 

 Construct and interpret scatterplots.

 Add categorical variables to scatterplots.

 Calculate and interpret correlation.

 Describe facts about correlation.

References: 

Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th 

ed.). New York, NY: W. H. Freeman and Company.  

Scatterplots and Correlation 

Teradata Vantage Analytics Certification: Learning Resource



Scatterplot 

 The most useful graph for displaying the relationship between two 

quantitative variables is a scatterplot. 

 Many research projects are correlational studies because they investigate 

the relationships that may exist between variables.  Prior to investigating the 

relationship between two quantitative variables, it is always helpful to create 

a graphical representation that includes both of these variables.   Such a 

graphical representation is called a scatterplot. 

 

 

  

A scatterplot shows the relationship between two quantitative 
variables measured for the same individuals. The values of one 
variable appear on the horizontal axis, and the values of the other 
variable appear on the vertical axis. Each individual in the data 
appears as a point on the graph. 



Student	 Student	GPA	 Motivation	

Joe	 2.0	 50	

Lisa	 2.0	 48	
Mary	 2.0	 100	
Sam	 2.0	 12	
Deana	 2.3	 34	
Sarah	 2.6	 30	
Jennifer	 2.6	 78	

Gregory	 3.0	 87	
Thomas	 3.1	 84	
Cindy	 3.2	 75	
Martha	 3.6	 83	
Steve	 3.8	 90	
Jamell	 3.8	 90	
Tammie	 4.0	 98	

	

Scatterplot Example 

 

What is the relationship between students’ achievement motivation and GPA? 

 

 

 

 

 

 

 

  

 

 

 

 

 In this example, the relationship between students’ achievement motivation 

and their GPA is being investigated. 

 The table on the left includes a small group of individuals for whom GPA and 

scores on a motivation scale have been recorded.  GPAs can range from 0 to 4 

and motivation scores in this example range from 0 to 100.  Individuals in 

this table were ordered based on their GPA. 

 Simply looking at the table shows that, in general, as GPA increases, 

motivation scores also increase. 

 However, with a real set of data, which may have hundreds or even 

thousands of individuals, a pattern cannot be detected by simply looking at 

the numbers.  Therefore, a very useful strategy is to represent the two 

variables graphically to illustrate the relationship between them. 

 A graphical representation of individual scores on two variables is called a 

scatterplot. 

 The image on the right is an example of a scatterplot and displays the data 

from the table on the left.  GPA scores are displayed on the horizontal axis 

and motivation scores are displayed on the vertical axis. 

 Each dot on the scatterplot represents one individual from the data set.  The 

location of each point on the graph depends on both the GPA and motivation 

scores.  Individuals with higher GPAs are located further to the right and 

individuals with higher motivation scores are located higher up on the graph. 

 Sam, for example, has a GPA of 2 so his point is located at 2 on the right.  He 

also has a motivation score of 12, so his point is located at 12 going up. 

 Scatterplots are not meant to be used in great detail because there are 

usually hundreds of individuals in a data set. 



 The purpose of a scatterplot is to provide a general illustration of the 

relationship between the two variables. 

 In this example, in general, as GPA increases so does an individual’s 

motivation score. 

 One of the students in this example does not seem to follow the general 

pattern: Mary.  She is one of the students with the lowest GPA, but she has 

the maximum score on the motivation scale.  This makes her an exception or 

an outlier. 

 

  



Interpreting Scatterplots 

 

How to Examine a Scatterplot 

 

 

  

As in any graph of data, look for the overall pattern and for striking 
departures from that pattern. 

• The overall pattern of a scatterplot can be described by the 
direction, form, and strength of the relationship. 

• An important kind of departure is an outlier, an individual 
value that falls outside the overall pattern of the relationship. 



Interpreting Scatterplots: Direction 

 One important component to a scatterplot is the direction of the relationship 

between the two variables. 

 

 

This example compares 

students’ achievement 

motivation and their GPA.  

These two variables have a 

positive association because 

as GPA increases, so does 

motivation. 

 

 

 

This example compares 

students’ GPA and their number 

of absences.  These two 

variables have a negative 

association because, in general, 

as a student’s number of 

absences decreases, their GPA 

increases. 

 

 

  

Two variables have a positive association when above-average 
values of one tend to accompany above-average values of the 
other, and when below-average values also tend to occur together. 

Two variables have a negative association when above-average 
values of one tend to accompany below-average values of the 
other. 



Interpreting Scatterplots: Form 

 Another important component to a scatterplot is the form of the relationship 

between the two variables. 

 

 

 

 

This example illustrates a linear 

relationship.  This means that the 

points on the scatterplot closely 

resemble a straight line.  A 

relationship is linear if one 

variable increases by 

approximately the same rate as the 

other variables changes by one 

unit. 

 

 

 

 This example illustrates a 

relationship that has the form of a 

curve, rather than a straight line.  

This is due to the fact that one 

variable does not increase at a 

constant rate and may even start 

decreasing after a certain point.  

This example describes a 

curvilinear relationship between 

the variable “age” and the variable 

“working memory.”  In this 

example, working memory 

increases throughout childhood, 

remains steady in adulthood, and 

begins decreasing around age 50. 

 

 

 

 

  



Interpreting Scatterplots: Strength 

 Another important component to a scatterplot is the strength of the 

relationship between the two variables.  

 The slope provides information on the strength of the relationship. 

 

 
 

 The strongest linear relationship occurs when the slope is 1.  This means that 

when one variable increases by one, the other variable also increases by the 

same amount.  This line is at a 45 degree angle. 

 The strength of the relationship between two variables is a crucial piece of 

information.  Relying on the interpretation of a scatterplot is too subjective. 

More precise evidence is needed, and this evidence is obtained by computing 

a coefficient that measures the strength of the relationship under 

investigation. 

 

  



Measuring Linear Association 

 A scatterplot displays the strength, direction, and form of the relationship 

between two quantitative variables. 

 A correlation coefficient measures the strength of that relationship. 

 Calculating a Pearson correlation coefficient requires the assumption that the 

relationship between the two variables is linear. 

 There is a rule of thumb for interpreting the strength of a relationship based 

on its r value (use the absolute value of the r value to make all values 

positive): 

 

Absolute Value of r   Strength of Relationship 

r < 0.3     None or very weak 

0.3 < r <0.5    Weak 

0.5 < r < 0.7    Moderate 

r > 0.7     Strong 

 

 The relationship between two variables is generally considered strong when 

their r value is larger than 0.7. 

 

  

The correlation r measures the strength of the linear relationship 
between two quantitative variables. 
 
Pearson r:           

                    
 

• r is always a number between -1 and 1. 
•  r > 0 indicates a positive association. 
•  r < 0 indicates a negative association. 
•  Values of r near 0 indicate a very weak linear 

relationship. 
• The strength of the linear relationship increases as r 

moves away from 0 toward -1 or 1. 
• The extreme values r = -1 and r = 1 occur only in the 

case of a perfect linear relationship. 



Correlations 

 

Example: There is a moderate, positive, linear relationship between GPA and 

achievement motivation. 

 

r = 0.62  

 

 
 

 Based on the criteria listed on the previous page, the value of r in this case (r 

= 0.62) indicates that there is a positive, linear relationship of moderate 

strength between achievement motivation and GPA. 
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Correlation 

 The images below illustrate what the relationships might look like at 

different degrees of strength (for different values of r). 

 
 

 For a correlation coefficient of zero, the points have no direction, the shape is 

almost round, and a line does not fit to the points on the graph. 

 As the correlation coefficient increases, the observations group closer 

together in a linear shape. 

 The line is difficult to detect when the relationship is weak (e.g., r = -0.3), but 

becomes more clear as relationships become stronger (e.g., r = -0.99) 

 

 

  



Correlation Coefficients 

 

The Statistical Significance of Correlation Coefficients: 

 Correlation coefficients have a probability (p-value), which shows the 

probability that the relationship between the two variables is equal to 

zero (null hypotheses; no relationship). 

 Strong correlations have low p-values because the probability that they have 

no relationship is very low. 

 Correlations are typically considered statistically significant if the p-value is 

lower than 0.05 in the social sciences, but the researcher has the liberty to 

decide the p-value for which he or she will consider the relationship to be 

significant. 

 The value of p for which a correlation will be considered statistically 

significant is called the alpha level and must be reported. 

 SPSS notation for p values: Sig. (2 tailed) 

 

In the previous example, r = 0.62 and p-value = 0.03.  The p-value of 0.03 is less than 

the acceptable alpha level of 0.05, meaning the correlation is statistically significant. 

 

Four things must be reported to describe a relationship: 

1) The strength of the relationship given by the correlation coefficient. 

2) The direction of the relationship, which can be positive or negative based on 

the sign of the correlation coefficient. 

3) The shape of the relationship, which must always be linear to computer a 

Pearson correlation coefficient. 

4) Whether or not the relationship is statistically significant, which is based 

on the p-value. 

 

 

  



Facts About Correlation 

 

1) The order of variables in a correlation is not important. 

2) Correlations provide evidence of association, not causation. 

3) r has no units and does not change when the units of measure of x, y, or both 

are changed. 

4) Positive r values indicate positive association between the variables, and 

negative r values indicate negative associations. 

5) The correlation r is always a number between -1 and 1. 

 

 

 

  



Pearson r: Assumptions 

Assumptions: 

 Correlation requires that both variables be quantitative. 

 Correlation describes linear relationships.  Correlation does not describe 

curve relationships between variables, no matter how strong the relationship 

is. 

 

Cautions: 

 Correlation is not resistant. r is strongly affected by outliers. 

 Correlation is not a complete summary of two-variable data. 

 For example: 

 
 The correlation coefficient is based on means and standard deviations, so it is 

not robust to outliers; it is strongly affected by extreme observations.  These 

individuals are sometimes referred to as influential observations because 

they have a strong impact on the correlation coefficient. 

 For instance, in the above example the correlation coefficient is 0.62 on the 

left when the outlier is included in the analysis.  However, when this outlier 

is removed, the correlation coefficient increases significantly to 0.89. 

 This one case, when included in the analysis, reduces a strong relationship to 

a moderate relationship. 

 This case makes such a big difference in this example because the data set 

contains a very small number of individuals.  As a general rule, as the size of 

the sample increases, the influence of extreme observations decreases. 

 When describing the relationship between two variables, correlations are 

just one piece of the puzzle.  This information is necessary, but not sufficient.  

Other analyses should also be conducted to provide more information. 
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Histograms 

Source: https://statistics.laerd.com/statistical-guides/understanding-histograms.php 

What is a histogram? 

A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a 

set of continuous data. This allows the inspection of the data for its underlying distribution (e.g., normal 

distribution), outliers, skewness, etc. An example of a 

histogram, and the raw data it was constructed from, is 

shown below: 

36 25 38 46 55 68 72 55 36 38 

67 45 22 48 91 46 52 61 58 55 

How do you construct a histogram from a continuous variable? 

To construct a histogram from a continuous variable you first need to split the data into intervals, 

called bins. In the example above, age has been split into bins, with each bin representing a 10-year 

period starting at 20 years. Each bin contains the number of occurrences of scores in the data set that 

are contained within that bin. For the above data set, the frequencies in each bin have been tabulated 

along with the scores that contributed to the frequency in each bin (see below): 

Bin Frequency Scores Included in Bin 

20-30 2 25,22 

30-40 4 36,38,36,38 

40-50 4 46,45,48,46 

50-60 5 55,55,52,58,55 

60-70 3 68,67,61 

70-80 1 72 

80-90 0 - 

90-100 1 91 

https://statistics.laerd.com/statistical-guides/understanding-histograms.php
https://statistics.laerd.com/statistical-guides/types-of-variable.php


Teradata Vantage: Analytics Certification Learning Resource 
 

 

Page 2 of 3 
 

Notice that, unlike a bar chart, there are no "gaps" between the bars (although some bars might be 

"absent" reflecting no frequencies). This is because a histogram represents a continuous data set, and as 

such, there are no gaps in the data (although you will have to decide whether you round up or round 

down scores on the boundaries of bins). 

Choosing the correct bin width 

There is no right or wrong answer as to how wide a bin should be, but there are rules of thumb. You 

need to make sure that the bins are not too small or too large. Consider the histogram we produced 

earlier (see above): the following histograms use the same data, but have either much smaller or larger 

bins, as shown below: 

 

We can see from the histogram on the left that the bin width is too small because it shows too much 

individual data and does not allow the underlying pattern (frequency distribution) of the data to be 

easily seen. At the other end of the scale is the diagram on the right, where the bins are too large, and 

again, we are unable to find the underlying trend in the data. 

 
Histograms are based on area, not height of bars 

In a histogram, it is the area of the bar that indicates the frequency of occurrences for each bin. This 

means that the height of the bar does not necessarily indicate how many occurrences of scores there 

were within each individual bin. It is the product of height multiplied by the width of the bin that 

indicates the frequency of occurrences within that bin. One of the reasons that the height of the bars is 
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often incorrectly assessed as indicating frequency and not the area of the bar is due to the fact that a lot 

of histograms often have equally spaced bars (bins), and under these circumstances, the height of the 

bin does reflect the frequency. 

What is the difference between a bar chart and a histogram? 

The major difference is that a histogram is only used to plot the frequency of score occurrences in a 

continuous data set that has been divided into classes, called bins. Bar charts, on the other hand, can be 

used for a great deal of other types of variables including ordinal and nominal data sets. 
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Assumption of Linearity 

Source: http://people.duke.edu/~rnau/testing.htm 

There are four principal assumptions which justify the use of linear regression models for purposes of 
inference or prediction: 

(i) linearity and additivity of the relationship between dependent and independent variables: 

    (a) The expected value of dependent variable is a straight-line function of each independent variable, 
holding the others fixed. 

    (b) The slope of that line does not depend on the values of the other variables. 

    (c)  The effects of different independent variables on the expected value of the dependent variable are 
additive. 

(ii) statistical independence of the errors (in particular, no correlation between consecutive errors in the 
case of time series data) 

(iii) homoscedasticity (constant variance) of the errors 

    (a) versus time (in the case of time series data) 

    (b) versus the predictions 

    (c) versus any independent variable 

(iv) normality of the error distribution. 

If any of these assumptions is violated (i.e., if there are nonlinear relationships between dependent and 
independent variables or the errors exhibit correlation, heteroscedasticity, or non-normality), then the 
forecasts, confidence intervals, and scientific insights yielded by a regression model may be (at best) 
inefficient or (at worst) seriously biased or misleading.   

Violations of linearity or additivity are extremely serious: if you fit a linear model to data which are 
nonlinearly or nonadditively related, your predictions are likely to be seriously in error, especially when 
you extrapolate beyond the range of the sample data. 

How to diagnose: nonlinearity is usually most evident in a plot of observed versus predicted values or a 
plot of residuals versus predicted values, which are a part of standard regression output. The points 
should be symmetrically distributed around a diagonal line in the former plot or around horizontal line in 
the latter plot, with a roughly constant variance.  (The residual-versus-predicted-plot is better than the 
observed-versus-predicted plot for this purpose, because it eliminates the visual distraction of a sloping 
pattern.)  Look carefully for evidence of a "bowed" pattern, indicating that the model makes systematic 
errors whenever it is making unusually large or small predictions. In multiple regression models, 

http://people.duke.edu/~rnau/testing.htm
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nonlinearity or nonadditivity may also be revealed by systematic patterns in plots of the residuals versus 
individual independent variables. 

How to fix: consider applying a nonlinear transformation to the dependent and/or independent 
variables if you can think of a transformation that seems appropriate. For example, if the data are strictly 
positive, the log transformation is an option.  (The logarithm base does not matter--all log functions are 
same up to linear scaling--although the natural log is usually preferred because small changes in the 
natural log are equivalent to percentage changes.  If a log transformation is applied to the dependent 
variable only, this is equivalent to assuming that it grows (or decays) exponentially as a function of the 
independent variables.  If a log transformation is applied to both the dependent variable and the 
independent variables, this is equivalent to assuming that the effects of the independent variables 
are multiplicative rather than additive in their original units. This means that, on the margin, a 
small percentage change in one of the independent variables induces a proportional percentage change 
in the expected value of the dependent variable, other things being equal.   

Another possibility to consider is adding another regressor that is a nonlinear function of one of the other 
variables. For example, if you have regressed Y on X, and the graph of residuals versus predicted values 
suggests a parabolic curve, then it may make sense to regress Y on both X and X^2 (i.e., X-squared). The 
latter transformation is possible even when X and/or Y have negative values, whereas logging is 
not.  Higher-order terms of this kind (cubic, etc.) might also be considered in some cases.  But don’t get 
carried away!  This sort of "polynomial curve fitting" can be a nice way to draw a smooth curve through a 
wavy pattern of points (in fact, it is a trend-line option on scatterplots on Excel), but it is usually a terrible 
way to extrapolate outside the range of the sample data.  

Finally, it may be that you have overlooked some entirely different independent variable that explains or 
corrects for the nonlinear pattern or interactions among variables that you are seeing in your residual 
plots. In that case the shape of the pattern, together with economic or physical reasoning, may suggest 
some likely suspects.  For example, if the strength of the linear relationship between Y and X1 depends on 
the level of some other variable X2, this could perhaps be addressed by creating a new independent 
variable that is the product of X1 and X2.  In the case of time series data, if the trend in Y is believed to 
have changed at a particular point in time, then the addition of a piecewise linear trend variable (one 
whose string of values looks like 0, 0, …, 0, 1, 2, 3, … ) could be used to fit the kink in the data.   Such a 
variable can be considered as the product of a trend variable and a dummy variable.  Again, though, you 
need to beware of overfitting the sample data by throwing in artificially constructed variables that are 
poorly motivated.  At the end of the day you need to be able to interpret the model and explain (or sell) 
it to others.   

 

 

 



The UnivariateStatistics function calculates descriptive statistics for a set of target columns.

UnivariateStatistics Syntax
Version 1.2

SELECT * FROM UnivariateStatistics (
  ON { table | view | (query) } AS InputTable
  [ OUT TABLE MomentsTableName (moments_table_name) ]
  [ OUT TABLE BasicTableName (basic_table_name) ]
  [ OUT TABLE QuantilesTableName (quantiles_table_name) ]
  USING
  [ TargetColumns ('target_column' [,...]) |
    ExcludeColumns ('exclude_column' [,...])
  ]
  [ PartitionColumns ('partition_column' [,...]) ]
  [ StatisticsGroups ('statistics_group' [,...]) ]
) AS alias;

UnivariateStatistics Syntax Elements
MomentsTableName

[Required if you omit StatisticsGroups syntax element or specify 'moments'.] Specify the name
for the output table that contains the moments.

BasicTableName
[Required if you omit StatisticsGroups or specify 'basic'.] Specify the name for the output table
that contains the basic statistics.

QuantilesTableName
[Required if you omit StatisticsGroups or specify 'quartiles'.] Specify the name for the output
table that contains the quantiles.

TargetColumns
[Optional] Specify the names of the InputTable columns for which to compute statistics.

Default: All numerical InputTable columns

ExcludeColumns
[Optional] Specify the names of the InputTable columns to exclude from statistics calculation.

UnivariateStatistics (ML Engine)
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PartitionColumns
[Optional] Specify the names of the InputTable columns on which to partition the input. The
function copies these columns to the output table.

Default behavior: The function treats all rows as a single partition.

StatisticsGroups
[Optional] Specify the group or groups of statistics to calculate:

statistics_group Statistics to Calculate

'moments' • Number of observations
• Sum
• Mean
• Variance
• Standard deviation
• Standard error
• Skewness
• Kurtosis
• Coefficient of variation
• Uncorrected sum of squares
• Corrected sum of squares

'basic' • Number of observations
• Number of NULL values
• Number of positive, negative, and zero values
• Number of unique values
• Mode
• Median
• Mean
• Standard deviation
• Variance
• Range
• Interquartile range
• Harmonic mean
• Geometric mean
• Highest and lowest five values

'quantiles' • Minimum and maximum values
• 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentiles

Default behavior: The function calculates all three groups of statistics.

15: UnivariateStatistics (ML Engine)
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UnivariateStatistics Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

partition_
column

Any [Column appears once for each specified partition_column.]
Defines a partition for statistics calculation.

target_column SMALLINT, INT,
BIGINT, NUMERIC, or
DOUBLE PRECISION

[Column appears once for each target_column, which is either
specified by TargetColumns or omitted from ExcludeColumns.
] Column for which to compute statistics. At least one target_
column must be numeric.

UnivariateStatistics Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports whether function succeeded and saved output files.

MomentsStatistics, BasicStatistics, and QuantileStatistics Schema

The StatisticsGroups syntax element determines which statistics tables the function outputs:

• If you omit StatisticsGroups, the function calculates all statistics and outputs three tables, one for each
statistics_group.

• If you specify StatisticsGroups, the function outputs a table for each specified statistics_group.

For each table to be output, you must specify a name, using the MomentsTableName, BasicTableName,
or QuantilesTableName syntax element.

The tables have the same schema.

Column Data Type Description

partition_
column

Same as in input
table

[Column appears once for each specified partition_column.]
Column copied from input table.Defines a partition for statistics
calculation.

stats VARCHAR Identifies statistic in row; for example, "Coefficient of variation"
or "Corrected sum of squares."

result_value DOUBLE
PRECISION

[Column appears once for each specified target_column.]
Calculated statistic identified by statistics column.

15: UnivariateStatistics (ML Engine)
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UnivariateStatistics Examples

UnivariateStatistics Example: ExcludeColumns, All Statistics
This example excludes columns id and period from the target columns and outputs all three statistics
tables, by default.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE moments;
DROP TABLE basic;  
DROP TABLE quantiles;

SELECT * FROM UnivariateStatistics (
ON finance_data3 AS InputTable
OUT TABLE MomentsTableName(moments)
OUT TABLE BasicTableName(basic)
OUT TABLE QuantilesTableName(quantiles)
USING
ExcludeColumns('id','period')
) AS dt ;

Output

 message
 ------------------------------------------------------------ 
 UnivariateStatistics succeeded. The output tables are saved.

SELECT * FROM moments;

 stats                      expenditure        income  investment 
 -------------------------- ------------------ ------------------ 
----------------- 
 Standard deviation  590.923585337053  698.928750981727  210.746691977944
 Corrected sum of squares   3.17763522173913E7 4.44536273043478E7  
4041689.30434783
 Skewness     0.473364666302052  0.446362736743103 0.422507147168344
 Number of observations  92.0               92.0              92.0
 Kurtosis -1.15712585537242   -1.1624376180194   -1.001282169732
 Variance  349190.683707597  488501.398948877  44414.1681796464
 Uncorrected sum of squares  1.5700013E8  2.13389608E8     2.4530266E7
 Coefficient of variation    0.506502784308876  0.515781476323667 
0.446579502072297

15: UnivariateStatistics (ML Engine)
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 Standard error  61.6080425745307  72.868359489299  21.9718614961239
 Mean     1166.67391304348  1355.08695652174  471.913043478261
 Sum    107334.0  124668.0  43416.0

SELECT * FROM basic ORDER BY 1;

 stats                     expenditure      income           investment
 ------------------------- ---------------- ---------------- ---------------- 
 Bottom 5 (1) 415.0 451.0 179.0
 Bottom 5 (2) 421.0 465.0 180.0
 Bottom 5 (3) 434.0 485.0 185.0
 Bottom 5 (4) 448.0 493.0 192.0
 Bottom 5 (5) 458.0 509.0 202.0
 Geometric mean 1020.53565750432 1176.50711695451 425.089198191843
 Harmonic mean 891.824091552794  1017.9035289329  381.44257427176
 Interquartile range 997.0 1159.0 311.0
 Mean 1166.67391304348 1355.08695652174 471.913043478261
 Median 1013.0 1178.0 494.0
 Mode 574.0 799.0 519.0
 Number of negative values 0.0 0.0 0.0
 Number of NULL values 0.0 0.0 0.0
 Number of positive values 92.0 92.0 92.0
 Number of unique values 91.0 91.0 83.0
 Number of zero values 0.0 0.0 0.0
 Range 1856.0 2200.0 691.0
 Standard deviation 590.923585337053 698.928750981727 210.746691977944
 Top 5 (1) 2271.0 2651.0 870.0
 Top 5 (2) 2250.0 2639.0 860.0
 Top 5 (3) 2237.0 2628.0 853.0
 Top 5 (4) 2235.0 2620.0 852.0
 Top 5 (5) 2225.0 2618.0 844.0
 Variance 349190.683707597 488501.398948877 44414.1681796464

SELECT * FROM quantiles;

 stats   expenditure income investment 
 ------- ----------- ------ ---------- 
 1% 415.0  451.0      179.0
 10% 497.0  548.0      214.0
 25% 653.0  751.0      286.0
 5% 458.0  509.0      202.0
 50% 1013.0 1178.0      494.0
 75% 1650.0 1910.0      597.0
 90% 2102.0 2457.0      830.0
 95% 2206.0 2580.0      833.0
 99% 2250.0 2639.0      860.0
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 Maximum      2271.0 2651.0      870.0
 Minimum 415.0  451.0      179.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

UnivariateStatistics Example: TargetColumns,
PartitionColumns
This example specifies the target columns explicitly and partitions the data.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE moments;
DROP TABLE basic;  
DROP TABLE quantiles;

SELECT * FROM UnivariateStatistics(
    ON finance_data3 AS InputTable
    OUT TABLE MomentsTableName(moments)
    OUT TABLE BasicTableName(basic)
    OUT TABLE QuantilesTableName(quantiles)
    USING
    TargetColumns('expenditure','income','investment')
    PartitionColumns('id')
) AS dt;

Output

 message
 ------------------------------------------------------------ 
 UnivariateStatistics succeeded. The output tables are saved.

SELECT * FROM moments;

 id stats                      expenditure        income  investment 
 -- -------------------------- ------------------ ------------------ 
------------------ 
  2 Coefficient of variation    0.298644349474261  0.296222528540145  
0.255444956277228
  2 Kurtosis -0.816037129460566 -0.858783399504378
0.169604612557607
 1 Corrected sum of squares  5781986.4  7886360.4  666306.0
  1 Standard deviation 385.0403375472   449.682520486142    
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130.70871903117
  3 Corrected sum of squares     724349.666666667   1108844.91666667   
141336.916666667
  3 Standard deviation 256.612489362793   317.496587908175   
113.352594174375
 2 Mean   1355.6     1589.275  556.675
  2 Uncorrected sum of squares 7.9898048E7 1.09675485E8
1.3184093E7
 1 Number of observations  40.0  40.0  40.0
  1 Skewness 2.41487088335036   2.38651478870263   
2.25360944369739
 3 Number of observations  12.0  12.0  12.0
  3 Skewness -0.779317508353147 -0.784652108192004
-0.736147966158991
2 Sum  54224.0  63571.0  22267.0

  2 Standard error 64.0111849200731   74.4367050647558   
22.4837658670451
  1 Variance 148256.061538462   202214.369230769   
17084.7692307692
  1 Kurtosis 4.8015109257614   4.71437243981462   
4.42294797371972
  3 Variance 65849.9696969697   100804.083333333   
12848.8106060606
  3 Kurtosis -1.54284162536314  -1.57575089282068
-1.61592354816352

1 Coefficient of variation    0.539121167106132  0.554342357601259  
0.434248235983952
  2 Standard deviation 404.842280147308   470.779059045639   
142.199821035626
  3 Coefficient of variation    0.125472653913842  0.132987505843069  
0.149328261070645
  1 Uncorrected sum of squares 2.6185252E7 3.4208178E7
4290346.0
 2 Corrected sum of squares  6391993.6  8643683.975  788610.775
  3 Uncorrected sum of squares 5.091683E7 6.9505945E7
7055827.0
 1 Mean  714.2  811.2  301.0
  2 Skewness 0.539127192993609  0.475410247931558  
0.806624515469788
 3 Mean  2045.16666666667  2387.41666666667  759.083333333333
  1 Standard error 60.8802228844601   71.1010494350768   
20.6668631090747
 2 Number of observations  40.0  40.0  40.0
  3 Standard error 74.0776449055143   91.6533702477862    
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32.722075379959
 1 Sum     28568.0  32448.0  12040.0
 3 Sum     24542.0  28649.0  9109.0
  2 Variance 163897.271794872   221632.922435897   
20220.7891025641

SELECT * FROM basic ORDER BY 1;

 id stats                     expenditure      income           investment   
 -- ------------------------- ---------------- ---------------- ---------------- 
  1 Median 602.0 694.0 280.0
  1 Standard deviation 385.0403375472 449.682520486142  130.70871903117
  1 Top 5 (5) 779.0 897.0 322.0
  1 Bottom 5 (1) 415.0 451.0 179.0
  1 Number of zero values 0.0 0.0 0.0
  1 Bottom 5 (5) 458.0 509.0 202.0
  1 Geometric mean 652.322122537438 736.802888310562 282.108617595293
  1 Harmonic mean 614.458471878887 691.093427241673 268.951437475886
  1 Interquartile range 194.0 241.0 75.0
  1 Top 5 (1) 1842.0 2132.0 700.0
  1 Top 5 (3) 1807.0 2070.0 658.0
  1 Bottom 5 (3) 434.0 485.0 185.0
  1 Top 5 (4) 1774.0 2040.0 635.0
  1 Number of NULL values 0.0 0.0 0.0
  1 Top 5 (2) 1831.0 2121.0 675.0
  1 Bottom 5 (2) 421.0 465.0 180.0
  1 Variance 148256.061538462 202214.369230769 17084.7692307692
  1 Mean 714.2 811.2 301.0
  1 Mode 574.0 799.0 280.0
  1 Number of unique values 39.0 39.0 37.0
  1 Range 1427.0 1681.0 521.0
  1 Bottom 5 (4) 448.0 493.0 192.0
  1 Number of negative values 0.0 0.0 0.0
  1 Number of positive values 40.0 40.0 40.0
  2 Bottom 5 (3) 837.0 979.0 364.0
  2 Top 5 (3) 2061.0 2423.0 844.0
  2 Interquartile range 554.0 653.0 76.0
  2 Median 1267.0 1493.0 526.0
  2 Standard deviation 404.842280147308 470.779059045639 142.199821035626
  2 Bottom 5 (5) 881.0 1025.0 375.0
  2 Harmonic mean 1246.1032651127 1460.64283484258  524.31105430778
  2 Top 5 (5) 1994.0 2318.0 816.0
  2 Bottom 5 (1) 798.0 922.0 315.0
  2 Geometric mean 1299.05445462922 1523.24641529642 540.054672867882
  2 Number of zero values 0.0 0.0 0.0
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  2 Top 5 (1) 2121.0 2470.0 853.0
  2 Number of positive values 40.0 40.0 40.0
  2 Number of negative values 0.0 0.0 0.0
  2 Range 1323.0 1548.0 538.0
  2 Top 5 (4) 2056.0 2369.0 830.0
  2 Number of NULL values 0.0 0.0 0.0
  2 Mean 1355.6 1589.275 556.675
  2 Number of unique values 40.0 40.0 36.0
  2 Top 5 (2) 2102.0 2457.0 852.0
  2 Bottom 5 (2) 816.0 949.0 339.0
  2 Mode NULL NULL 519.0
  2 Variance 163897.271794872 221632.922435897 20220.7891025641
  2 Bottom 5 (4) 858.0 988.0 371.0
  3 Number of zero values 0.0 0.0 0.0
  3 Harmonic mean 2012.97784954935 2344.96421517024 741.962569222229
  3 Top 5 (3) 2237.0 2628.0 833.0
  3 Interquartile range 513.0 644.0 220.0
  3 Standard deviation 256.612489362793 317.496587908175 113.352594174375
  3 Bottom 5 (5) 2145.0 2521.0 801.0
  3 Geometric mean 2029.47884297898  2366.7551731771 750.758507052472
  3 Bottom 5 (1) 1650.0 1910.0 597.0
  3 Top 5 (5) 2225.0 2618.0 830.0
  3 Bottom 5 (3) 1722.0 1976.0 611.0
  3 Top 5 (1) 2271.0 2651.0 870.0
  3 Median 2164.0 2545.0 824.0
  3 Variance 65849.9696969697 100804.083333333 12848.8106060606
  3 Number of unique values 12.0 12.0 11.0
  3 Number of negative values 0.0 0.0 0.0
  3 Range 621.0 741.0 273.0
  3 Number of NULL values 0.0 0.0 0.0
  3 Mean 2045.16666666667 2387.41666666667 759.083333333333
  3 Mode NULL NULL 830.0
  3 Bottom 5 (2) 1685.0 1943.0 603.0
  3 Top 5 (2) 2250.0 2639.0 860.0
  3 Number of positive values 12.0 12.0 12.0
  3 Bottom 5 (4) 1752.0 2018.0 619.0
  3 Top 5 (4) 2235.0 2620.0 831.0

SELECT * FROM quantiles ORDER BY 1,2;

 id stats   expenditure income investment 
 -- ------- ----------- ------ ---------- 
  1 1% 415.0  451.0      179.0
  1 10% 448.0  493.0      192.0
  1 25% 510.0  558.0      229.0
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  1 5%            421.0  465.0      180.0
  1 50%           602.0  694.0      280.0
  1 75%           704.0  799.0      304.0
  1 90%           779.0  897.0      322.0
  1 95%          1807.0 2070.0      658.0
  1 99%          1842.0 2132.0      700.0
  1 Maximum      1842.0 2132.0      700.0
  1 Minimum       415.0  451.0      179.0
  2 1%            798.0  922.0      315.0
  2 10%           858.0  988.0      371.0
  2 25%          1013.0 1178.0      494.0
  2 5%            816.0  949.0      339.0
  2 50%          1267.0 1493.0      526.0
  2 75%          1567.0 1831.0      570.0
  2 90%          1994.0 2318.0      816.0
  2 95%          2061.0 2423.0      844.0
  2 99%          2121.0 2470.0      853.0
  2 Maximum      2121.0 2470.0      853.0
  2 Minimum       798.0  922.0      315.0
  3 1%           1650.0 1910.0      597.0
  3 10%          1650.0 1910.0      597.0
  3 25%          1722.0 1976.0      611.0
  3 5%           1650.0 1910.0      597.0
  3 50%          2164.0 2545.0      824.0
  3 75%          2235.0 2620.0      831.0
  3 90%          2250.0 2639.0      860.0
  3 95%          2250.0 2639.0      860.0
  3 99%          2271.0 2651.0      870.0
  3 Maximum      2271.0 2651.0      870.0
  3 Minimum      1650.0 1910.0      597.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

UnivariateStatistics Example: StatisticsGroups ('basic')
This example calculates and outputs only basic statistics.

Input

• finance_data3, as in VARMAX Example: No Exogenous Model

SQL Call

DROP TABLE basic_2; 
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SELECT * FROM UnivariateStatistics(
    ON finance_data3 AS InputTable
    OUT TABLE BasicTableName(basic_2)
    USING
    ExcludeColumns('id','period')
    StatisticsGroups('BASIC')

) AS dt;

Output

 message                                                      
 ------------------------------------------------------------ 
 UnivariateStatistics succeeded. The output tables are saved.

The output table, basic_2, is the same as UnivariateStatistics Example: ExcludeColumns, All Statistics
output table basic.

SELECT * FROM basic_2 ORDER BY 1;

 stats                     expenditure      income           investment       
 ------------------------- ---------------- ---------------- ---------------- 
 Bottom 5 (1)                         415.0            451.0            179.0
 Bottom 5 (2)                         421.0            465.0            180.0
 Bottom 5 (3)                         434.0            485.0            185.0
 Bottom 5 (4)                         448.0            493.0            192.0
 Bottom 5 (5)                         458.0            509.0            202.0
 Geometric mean            1020.53565750432 1176.50711695451 425.089198191843
 Harmonic mean             891.824091552794  1017.9035289329  381.44257427176
 Interquartile range                  997.0           1159.0            311.0
 Mean                      1166.67391304348 1355.08695652174 471.913043478261
 Median                              1013.0           1178.0            494.0
 Mode                                 574.0            799.0            519.0
 Number of negative values              0.0              0.0              0.0
 Number of NULL values                  0.0              0.0              0.0
 Number of positive values             92.0             92.0             92.0
 Number of unique values               91.0             91.0             83.0
 Number of zero values                  0.0              0.0              0.0
 Range                               1856.0           2200.0            691.0
 Standard deviation        590.923585337053 698.928750981727 210.746691977944
 Top 5 (1)                           2271.0           2651.0            870.0
 Top 5 (2)                           2250.0           2639.0            860.0
 Top 5 (3)                           2237.0           2628.0            853.0
 Top 5 (4)                           2235.0           2620.0            852.0
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 Top 5 (5)                           2225.0           2618.0            844.0
 Variance                  349190.683707597 488501.398948877 44414.1681796464

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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Published on STAT 504 (https://onlinecourses.science.psu.edu/stat504)

Home > A Review of the Principles of Statistics > Statistical Inference and Estimation > Hypothesis Testing

Hypothesis Testing
Key Topics:

Basic approach
Null and alternative hypothesis
Decision making and the p-value
Z-test & Nonparametric alternative

Basic approach to hypothesis testing

1. State a model describing the relationship between the explanatory variables and the outcome
variable(s) in the population and the nature of the variability. State all of your assumptions.

2. Specify the null and alternative hypotheses in terms of the parameters of the model.
3. Invent a test statistic that will tend to be different under the null and alternative hypotheses.
4. Using the assumptions of step 1, find the theoretical sampling distribution of the statistic

under the null hypothesis of step 2. Ideally the form of the sampling distribution should be one
of the “standard distributions”(e.g. normal, t, binomial..)

5. Calculate a p-value, as the area under the sampling distribution more extreme than your
statistic. Depends on the form of the alternative hypothesis.

6. Choose your acceptable type 1 error rate (alpha) and apply the decision rule: reject the
null hypothesis if the p-value is less than alpha, otherwise do not reject.

One sample z-test

1. Assume data are independently sampled from a normal distribution with unknown mean μ
and known variance σ2.

2. Specify:
H0: μ = μ0
H0: μ ≤ μ0
H0: μ ≥ μ0

vs. one of those
HA: μ ≠ μ0
HA: μ > μ0
HA: μ < μ0

3. Use a z-statistic:

general form is: (estimate - value we are testing)/(st.dev of the estimate)
z-statistic follows N(0,1) distribution

4. Calculate the p-value:
2 × the area above |z|, area above z,or area below z, or
compare the statistic to a critical value, |z| ≥ zα/2, z ≥ zα, or z ≤ - zα

5. Choose the acceptable level of Alpha = 0.05, we conclude …. ?

−X̄ μ0

σ/ n√

https://online.stat.psu.edu/stat504/
https://online.stat.psu.edu/stat504/
https://online.stat.psu.edu/stat504/node/5/
https://online.stat.psu.edu/stat504/node/16/
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Making the Decision

It is either likely or unlikely that we would collect the evidence we did given the initial assumption.
(Note: “likely” or “unlikely” is measured by calculating a probability!)

If it is likely, then we “do not reject” our initial assumption. There is not enough evidence to do
otherwise.

If it is unlikely, then:

either our initial assumption is correct and we experienced an unusual event or,
our initial assumption is incorrect

In statistics, if it is unlikely, we decide to “reject” our initial assumption.

Example: Criminal Trial Analogy

First, state 2 hypotheses, the null hypothesis (“H0”) and the alternative hypothesis (“HA”)

H0: Defendant is not guilty.
HA: Defendant is guilty.

Usually the H0 is a statement of “no effect”, or “no change”, or “chance only” about a population
parameter.

While the HA , depending on the situation, is that there is a difference, trend, effect, or a relationship
with respect to a population parameter.

It can one-sided and two-sided.
In two-sided we only care there is a difference, but not the direction of it. In one-sided we care
about a particular direction of the relationship. We want to know if the value is strictly larger or
smaller.

Then, collect evidence, such as finger prints, blood spots, hair samples, carpet fibers, shoe prints,
ransom notes, handwriting samples, etc. (In statistics, the data are the evidence.)

Next, you make your initial assumption.

Defendant is innocent until proven guilty.

In statistics, we always assume the null hypothesis is true.

Then, make a decision based on the available evidence.

If there is sufficient evidence (“beyond a reasonable doubt”), reject the null hypothesis.
(Behave as if defendant is guilty.)
If there is not enough evidence, do not reject the null hypothesis. (Behave as if defendant is
not guilty.)

If the observed outcome, e.g., a sample statistic, is surprising under the assumption that the null
hypothesis is true, but more probable if the alternative is true, then this outcome is evidence against
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H0 and in favor of HA.

An observed effect so large that it would rarely occur by chance is called statistically significant (i.e.,
not likely to happen by chance).

Using the p-value to make the decision

The p-value represents how likely we would be to observe such an extreme sample if the null
hypothesis were true. The p-value is a probability computed assuming the null hypothesis is true,
that the test statistic would take a value as extreme or more extreme than that actually observed.
Since it's a probability, it is a number between 0 and 1. The closer the number is to 0 means the
event is “unlikely.” So if p-value is “small,” (typically, less than 0.05), we can then reject the null
hypothesis.

Significance level and p-value

Significance level, α, is a decisive value for p-value. In this context, significant does not mean
“important”, but it means “not likely to happened just by chance”.

α is the maximum probability of rejecting the null hypothesis when the null hypothesis is true. If α =
1 we always reject the null, if α = 0 we never reject the null hypothesis. In articles, journals, etc…
you may read: “The results were significant (p<0.05).” So if p=0.03, it's significant at the level of α =
0.05 but not at the level of α = 0.01. If we reject the H0 at the level of α = 0.05 (which corresponds to
95% CI), we are saying that if H0 is true, the observed phenomenon would happen no more than
5% of the time (that is 1 in 20). If we choose to compare the p-value to α = 0.01, we are insisting on
a stronger evidence!

Very Important Point!

Neither decision of rejecting or not rejecting the H0 entails proving the null hypothesis or the
alternative hypothesis. We merely state there is enough evidence to behave one way or the
other. This is also always true in statistics!

So, what kind of error could we make? No matter what decision we make, there is always a chance
we made an error.

Errors in Criminal Trial:

 Truth
Jury Decision Not Guilty Guilty
Not Guilty OK ERROR

Guilty ERROR OK

Errors in Hypothesis Testing

Type I error (False positive): The null hypothesis is rejected when it is true.
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α is the maximum probability of making a Type I error.

Type II error (False negative): The null hypothesis is not rejected when it is false.

β is the probability of making a Type II error

There is always a chance of making one of these errors. But, a good scientific study will minimize
the chance of doing so!

 Truth
Decision Null Hypothesis Alternative Hypothesis
Null Hypothesis OK TYPE II ERROR

Alternative
Hypothesis TYPE I ERROR OK

 

Power

The power of a statistical test is its probability of rejecting the null hypothesis if the null hypothesis is
false. That is, power is the ability to correctly reject H0 and detect a significant effect. In other words,
power is one minus the type II error risk.

Which error is worse?

Type I = you are innocent, yet accused of cheating on the test.

Type II = you cheated on the test, but you are found innocent.

This depends on the context of the problem too. But in most cases scientists are trying to be
“conservative”; it's worse to make a spurious discovery than to fail to make a good one. Our goal it
to increase the power of the test that is to minimize the length of the CI.

We need to keep in mind:

the effect of the sample size,
the correctness of the underlying assumptions about the population,
statistical vs. practical significance, etc…

(see the handout). To study the tradeoffs between the sample size, α, and Type II error we can use
power and operating characteristic curves.

Height Example

One sample z-test

Assume data are independently sampled from a normal distribution with unknown mean μ and
known variance σ2 = 9. Make an initial assumption that μ = 65.

Power  = 1 − β = P (reject | is false )H0 H0
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Specify the hypothesis: H0: μ = 65 HA: μ ≠ 65

z-statistic: 3.58

z-statistic follow N(0,1) distribution

The p-value, < 0.0001, indicates that, if the average height in the population is 65 inches, it is
unlikely that a sample of 54 students would have an average height of 66.4630.

Alpha = 0.05. Decision: p-value < alpha, thus reject the null hypothesis.

Conclude that the average height is not equal to 65.

What type of error might we have made?

Type I error is claiming that average student height is not 65 inches, when it really is.

Type II error is failing to claim that the average student height is not 65in when it is.

We rejected the null hypothesis, i.e., claimed that the height is not 65, thus making potentially a
Type I error. But sometimes the p-value is too low because of the large sample size, and we may
have statistical significance but not really practical significance! That's why most statisticians are
much more comfortable with using CI than tests.

Height Example

Graphical summary of the z-test
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Based on the CI only, how do you know that you should reject the null hypothesis?

The 95% CI is (65.6628,67.2631) ...

What about practical and statistical significance now? Is there another reason to suspect this
test, and the p-value calculations?

There is a need for a further generalization. What if we can't assume that σ is known? In this case
we would use s (the sample standard deviation) to estimate σ.

If the sample is very large, we can treat σ as known by assuming that σ = s. According to the law of
large numbers, this is not too bad a thing to do. But if the sample is small, the fact that we have to
estimate both the standard deviation and the mean adds extra uncertainty to our inference. In
practice this means that we need a larger multiplier for the standard error.

We need one-sample t-test.

One sample t-test

1. Assume data are independently sampled from a normal distribution with unknown mean μ and
variance σ2. Make an initial assumption, μ0.

2. Specify:
H0: μ = μ0
H0: μ ≤ μ0
H0: μ ≥ μ0

vs. one of those
HA: μ ≠ μ0
HA: μ > μ0
HA: μ < μ0

3. t-statistic:  where s is a sample st.dev.
4. t-statistic follows t-distribution with df = n - 1
5. p-value:
6. Alpha = 0.05, we conclude ….

Testing for the population proportion

Let's go back to our CNN poll. Assume we have a SRS of 1,017 adults.

We are interested in testing the following hypothesis: H0: p = 0.50 vs. p > 0.50

What is the test statistic?

If alpha = 0.05, what do we conclude?

 

We will see more details in the next lesson on proportions, then distributions, and possible tests.

Source URL: https://onlinecourses.science.psu.edu/stat504/node/20

−X̄ μ0
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GLM Stats Model (Outcomes and Significance) 

Source: https://stats.idre.ucla.edu/sas/output/glm/ 

This page shows an example of analysis of variance run through a general linear model (GLM) with 
footnotes explaining the output. The data were collected on 200 high school students, with 
measurements on various tests, including science, math, reading and social studies. The response 
variable is writing test score (write), from which we explore its relationship with gender (female) and 
academic program (prog). The model examined has the main effects of female and program type, as 
well as their interaction. The dataset used in this page can be downloaded from  

 
   Class Level Information 
 
Class         Levels    Values 
female             2    0 1 
prog               3    1 2 3 
 
Number of Observations Read         200 
Number of Observations Used         200 
 
 
Dependent Variable: write  
 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5      4630.36091       926.07218      13.56    <.0001 
Error                      194     13248.51409        68.29131 
Corrected Total            199     17878.87500 
 
R-Square     Coeff Var      Root MSE    write Mean 
0.258985      15.65866      8.263856      52.77500 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
female                       1     1261.853291     1261.853291      18.48    <.0001 
prog                         2     3274.350821     1637.175410      23.97    <.0001 
female*prog                  2      325.958189      162.979094       2.39    0.0946 

 

Class Level Information 

   Class Level Information 
 
Classa        Levelsb   Valuesc 
female             2    0 1 
prog               3    1 2 3 
 

https://stats.idre.ucla.edu/sas/output/glm/
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Number of Observations Readd        200 
Number of Observations Usedd        200 
a. Class – Underneath are the categorical (factor) variables, which were defined as such in 
the class statement. Had the categorical variables not been defined in the class statement and just 
entered in the model statement, the respective variables would be treated as continuous variables, 

which would be inappropriate. 

b. Levels – Underneath are the respective number of levels (categories) of the factor variables defined in 

the class statement. 

c. Values – Underneath are the respective values of the levels for the factor variables defined in 

the class statement. 

d. Number of Observations Read and Number of Observations Used – This is the number of 
observations read and the number of observation used in the analysis. The Number of Observations 
Used may be less than the Number of Observations Read if there are missing values for any variables in 
the equation.  

Model Information 

Dependent Variablee: write   
 
                                        Sum of 
Sourcef                     DFg        Squaresh     Mean Squarei   F Valuej   Pr > Fj 
Model                        5      4630.36091       926.07218      13.56    <.0001 
Error                      194     13248.51409        68.29131 
Corrected Total            199     17878.87500 
 
R-Squarek    Coeff Varl     Root MSEm    write Meann 
0.258985      15.65866      8.263856      52.77500 
 
Sourceo                     DFp    Type III SSq     Mean Squarer   F Values   Pr > Fs 
female                       1     1261.853291     1261.853291      18.48    <.0001 
prog                         2     3274.350821     1637.175410      23.97    <.0001 
female*prog                  2      325.958189      162.979094       2.39    0.0946 
 
e. Dependent Variable – This is the dependent variable in our glm model. 

f. Source – Underneath are the sources of variation of the dependent variable. There are three parts, 
Model, Error, and Corrected Total. With glm, you must think in terms of the variation of the response 
variable (sums of squares), and partitioning this variation. The variation in the response variable, 
denoted by Corrected Total, can be partitioned into two unique parts. The first partition, Model, is the 
variance in the response accounted by our model (female prog female*prog). The second source, Error, 
is the variation not explained by the Model. These two sources, the explained (Model), and unexplained 
(Error), add up to the Corrected Total, SSCorrected Total = SSModel + SSError. 

The term “Corrected Total” is called such, as compared to “Total”, or more correctly, “Uncorrected 
Total,” because the “Corrected Total” adjusts the sums of squares to incorporate information on the 
intercept. Specifically, the Corrected Total is the sum of the squared difference between the response 
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variable and the mean of the response variable, whereas the Uncorrected Total is the sum of the 
squared values of just the response variable. 

g. DF – These are the degrees of freedom associated with the respective sources of variance. As with the 
additive nature of the sums of squares, the degrees of freedom are also additve, DFCorrected Source  = 
DFModel + DFError. The DFCorrected Total has N-1 degrees of freedom, where N is the total sample size. See DF, 
superscript p, for the calculation of the DF for each individual predictor variable, which add up to DFModel. 
Hence, DFError =DFCorrected Total  – DFModel. The DFModel and DFError define the parameters of the F-distribution 

used to test F Value, superscript j. 

h. Sum of Squares – These are the sums of squares that correspond to the three sources of variation. 
SSModel – The Model sum of squares is the squared difference of the predicted value and the grand mean 
summed over all observations. Suppose our model did not explain a significant proportion of variance, 
then the predicted value would be near the grand mean, which would result with a small SSModel, and 
SSError would nearly be equal to SSCorrected Total. SSError – The Error sum of squares is the squared difference 
of the observed value from the predicted value summed over all observations. SSCorrected Total – The 
Corrected Total sum of squares is the squared difference of the observed value from the grand mean 
summed over all observations. 

i. Mean Square – These are the Mean Squares (MS) that correspond to the partitions of the total 
variance. The MS is defined as SS/DF. 

j. F Value and Pr > F – These are the F Value and p-value, respectively, testing the null hypothesis that 
the Model does not explain the variance of our response variable. F Value is computed as MSModel / 
MSError, and under the null hypothesis, F Value follows a central F-distribution with numerator DF = 
DFModel and denominator DF =DFError. The probability of observing an F Value as large as, or larger, than 
13.56 under the null hypothesis is < 0.0001. If we set our alpha level at 0.05, our willingness to accept a 
Type I error, we’d reject the null hypothesis and conclude that our model explains a statistically 

significant proportion of the variance. 

k. R-Square – This is the R-Square value for the model. R-Square defines the proportion of the total 
variance explained by the Model and is calculated as R-Square = SSModel/SSCorrected Total = 
4630.36/17878.88=0.259. 

l. Coeff Var – This is the Coefficient of Variation (CV). The coefficient of variation is defined as the 100 
times root MSE divided by the mean of response variable; CV = 100*8.26/52.775 = 15.659. The CV is a 
dimensionless quantity and allows the comparison of the variation of populations. 

m. Root MSE – This is the root mean square error. It is the square root of the MSError  and defines the 
standard deviation of an observation about the predicted value. 

n. write Mean – This is the grand mean of the response variable. 

o. Source – Underneath are the variables in the model. Our model has female, prog, and the interaction 
of female and prog. The interaction disallows the effect of, say, prog, over the levels of female to be 
additive. Also, our model follows the hierarchical principal, i.e., if an interaction term is in the model 
(female*prog), the lower order terms (female and prog) must be included. Further, when there is a 
significant interaction in the model, the main effects (the lower order terms) are difficult to interpret. If 
the interaction term is not statistically significant, some would advise dropping the term and rerunning 
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the model with just the main effects, so that the main effects would have an unambiguous meaning. The 
traditional anova approach would leave the nonsignificant interaction in the model and interpret the 
main effects in the normal manner. If the interaction term is found statistically significant, one would 
leave the model as is and evaluate the simple main effects. 

p. DF – These are the degrees of freedom for the individual predictor variables in the model. From the 
class level information section, the lower order term DF is given by the number of levels minus one. For 
example, female as two levels, therefore DFfemale = 2-1=1. Also, prog has three levels and DFprog = 3-1=2. 
For the interaction term, DFfemale*prog = DFprog* DFfemale = 1*2 =2. The DF of the predictor variables, along 
with the DFError, define the parameters of the F-distribution used to test the significance of F Value, 
superscript s. 

q. Type III SS – These are the type III sum of squares, which are referred to as partial sum of squares. For 
a particular variable, say female, SSfemale is calculated with respect  to the other variables in the 
model, prog and female*prog. Also, we showed earlier that SSCorrected Total = SSModel + SSError, and we might 
expect that SSModel = SSfemale + SSprog+ SSprog*female; however, this is generally not the case (this is only true 
for a balanced design). 

r. Mean Square – These are the mean squares for the individual predictor variables in the model. They 
are calculated as SS/DF, and along MSError, they are used to calculate F Value, superscript s. 

s. F Value and Pr > F – These are the F Value and p-value, respectively, testing the null hypothesis that 
an individual predictor in the model does not explain a significant proportion of the variance, given the 
other variables are in the model. F Value is computed as MSSource Var / MSError. Under the null hypothesis, F 
Value follows a central F-distribution with numerator DF = DFSource Var, where Source Var is the predictor 
variable of interest, and denominator DF =DFError. Following the point made in Source, superscript o, we 
focus only on the interaction term. female*prog – This is the F Value and p-value testing the interaction 
of female and prog on the response variable, given the other variables are in the model. The probability 
of observing an F Value, as large as, or larger, than 2.39 under the null hypothesis that there is not an 
interaction of female and prog, given the other variables are in the model, is 0.0946. If we set our alpha 
level at 0.05, the probability of a Type I error, we would fail to reject the null hypothesis 
that female and prog do not interact. Based on this finding, some would advise rerunning the model 
without the interaction term, including only the main effects in the model (and the intercept). This 
would in turn permit a valid interpretation of the main effects of female and prog. 

  

 



The GLM and GLML1L2 functions perform linear regression analysis for distribution functions using a user-
specified distribution family and link function. Their output is input to the GLMPredict_MLE and
GLML1L2Predict functions (respectively), which perform generalized linear model prediction on new input
data.

The GLM and GLML1L2 functions differ in these ways:

Function Description
Supported
Distribution
Families

Supported
Regularization
Models

Output Tables

GLM Unbiased ordinary
least square
estimator

See Supported
Family/Link Function
Combinations

None • Model table

GLML1L2 Biased estimator
based on
regularization

Binomial, Gaussian Ridge, LASSO, and
elastic net

• Model table
• [Optional] Factor

table

Regularization

Regularization is a technique for reducing overfitting and thus decreasing the variance of trained models.
GLM functions are fit by minimizing a loss function, such as the sum of squared errors. For example, given
a predictor vector X ϵ p, a response variable Y ϵ , and N observation pairs, you can find model parameters
β0 and β with this formula:

These fits can be regularized by adding a penalty function P(β ) to the loss function being minimized. For
example:

where λ controls the strength of the penalty function.

For logistic regression, the loss function is based on the log likelihood, as follows:

Generalized Linear Model (GLM) Functions
(ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1110



These are three popular penalty functions:

• The sum of the absolute values of the model parameters:

which is the L1 norm of the model parameters. This regularization technique, also called Least Absolute
Shrinkage and Selection Operator (LASSO), was introduced by Robert Tibshirani in 1996. LASSO has
the potential to shrink some parameters to zero; therefore, you can also use it for variable selection.

• The sum of the squared values of the model parameters:

which is the L2 norm of the model parameters. This regularization technique is also called ridge
regression. With ridge regression, parameter values become smaller as λ increases, but never reach
zero.

• Elastic net regularization, which is a linear combination of L1 and L2 normalization:

References

• Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models
via Coordinate Descent. Journal of Statistical Software, 33(1), 1 - 22.doi (GLM regularization paths
article)

• Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. J. (2012), Strong
rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 74: 245–266. doi:10.1111/j.1467-9868.2011.01004.x

GLM
The generalized linear model (GLM) is an extension of the linear regression model that enables the linear
equation to relate to the dependent variables by a link function. The GLM function supports several
distribution families and associated link functions.

You can input the output table to the function GLMPredict_MLE.

The GLM function implementation uses the Fisher Scoring Algorithm, which scales better than the least-
squares algorithm that the glm() function in the R package stats uses. The results of the two algorithms
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usually match closely. However, when the input data is highly skewed or has a large variance, the Fisher
Scoring Algorithm can diverge, and you must use data set knowledge and trial and error to select the
optimal family and link functions.

If the predictors are collinear, Teradata recommends using GLML1L2 with regularization parameters.

For more information about generalized linear models, see:

• Dobson, A.J.; Barnett, A.G. (2008). Introduction to Generalized Linear Models (3rd ed.). Boca Raton,
FL: Chapman and Hall/CRC. ISBN 1-58488-165-8.

• Hardin, James; Hilbe, Joseph (2007). Generalized Linear Models and Extensions (2nd ed.). College
Station: Stata Press. ISBN 1-59718-014-9.

Related Information:

LikelihoodRatioTest (ML Engine)

GLM Syntax

GLM Syntax Elements
OutputTable

Specify the name for the output table of coefficients. This table must not exist.

TargetColumns
[Optional] Specify the name of the column that contains the dependent variable (Y) followed by
the names of the columns that contain the predictor variables (Xi), in this format: 'Y,X1,X2,...,Xp'.

Default behavior: The first column of the InputTable is Y and the remaining InputTable columns
are Xi, except for the column specified by the WeightColumn syntax element.

CategoricalColumns
[Optional] Specify columnname-value pairs, each of which contains the name of a categorical
input column and the category values in that column that the function is to include in the model
that it creates.

columnname_value_pair Description

'columnname:max_
cardinality'

Limits categories in column to max_cardinality to most common
ones and groups others together as 'others'.
For example, 'column_a:3' specifies that for column_a, function
uses 3 most common categories and sets category of rows that
do not belong to those 3 categories to 'others'.

'columnname:(category
[,...])'

Limits categories in column to those that you specify and groups
others together as 'others'.
For example, 'column_a : (red, yellow, blue)' specifies that for
column_a, function uses categories red, yellow, and blue, and
sets category of rows that do not belong to those categories to
'others'.
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columnname_value_pair Description

'columnname' All category values appear in model.

If you specify the TargetColumns syntax element, the columns that you specify in the
CategoricalColumns syntax element must also appear in the TargetColumns syntax element.

For information about columns that you must identify as numeric or categorical, see Identification
of Numeric and Categorical Columns.

Family
[Optional] Specify the distribution exponential family, which is one of the following:

• 'BINOMIAL' (Default)
• 'LOGISTIC' (equivalent to 'BINOMIAL')
• 'POISSON'
• 'GAUSSIAN'
• 'GAMMA'
• 'INVERSE_GAUSSIAN'
• 'NEGATIVE_BINOMIAL'

For Binomial/Logistic and Gaussian applications with high collinearity, Teradata recommends
using GLML1L2 with regularization parameters instead of GLM. GLML1L2 is expected to
provide better performance and accuracy.

LinkFunction
[Optional] Specify the link function.

Default: 'CANONICAL'. The canonical link functions (default link functions) and the link functions
that are allowed for each exponential family are listed in the tables in Supported Family/Link
Function Combinations.

WeightColumn
[Optional] Specify the name of an InputTable column that contains the weights to assign to
responses.

You can use non-NULL weights to indicate that different observations have different dispersions
(with the weights being inversely proportional to the dispersions). Equivalently, when the weights
are positive integers wi, each response yi is the mean of wi unit-weight observations. A binomial
GLM uses prior weights to give the number of trials when the response is the proportion of
successes. A Poisson GLM rarely uses weights.

If the weight is less than the response value, the function throws an exception. Therefore, if the
response value is greater than 1, you must specify a weight that is greater than or equal to the
response value.

Default behavior: All observations have equal weight.

StopThreshold
[Optional] Specify the convergence threshold.
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Default: 0.01

MaxIterNum
[Optional] Specify the maximum number of iterations that the algorithm runs before quitting if
the convergence threshold has not been met. The parameter max_iterations must be a positive
INTEGER value.

Default: 25

Intercept
[Optional] Specify whether the function uses an intercept. For example, in
ß0+ß1*X1+ß2*X2+ ....+ ßpXp, the intercept is ß0.

Default: 'true'

Supported Family/Link Function Combinations
Family
Name

Family
Function
Name

Link Link Function
Expression Used

Binomial
or Logistic

BINOMIAL or
LOGISTIC

logit (default)
probit
cloglog
log
cauchit

log(μ/(1-μ))
Φ-μ

log[-log(1-μ)]
log(μ)
tan(π(μ - 1/2))

When the dependent variable (Y) has
only two possible values (0 and 1).
The algorithm applies the model to the
data, predicts the most likely outcome for
each input, and supplies a logit
(logarithm of odds) for each outcome.

Gamma GAMMA inverse
(default)
identity
log

μ-1

μ
log(μ)

When data is continuous with constant
response variance and appears to be
right-skewed.

Gaussian GAUSSIAN identity
(default)
inverse
log

μ
μ-1

log(μ)

When the data is grouped around a
single mean and can be graphed in a
normal or bell curve distribution.

Inverse
Gaussian

INVERSE_
GAUSSIAN

inverse_mu_
squared
(default)
identity
inverse
log

μ-2

μ
μ-1

log(μ)

When the data is grouped around a
single mean but the graph appears to
have a right-skewed curve distribution.

Poisson POISSON log (default)
identity
square_root

log(μ)
μ
μ1/2

To model count data (nonnegative
integers) and contingency models
(matrixes of the frequency distribution of
variables).
The algorithm assumes that the
dependent variable (Y) has a Poisson
distribution (that is, that Y is segmented
into intervals of, for example, time or
geographic location) and then calculates
the discrete probability of one or more
events occurring within these segments.
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Family
Name

Family
Function
Name

Link Link Function
Expression Used

Negative
Binomial

NEGATIVE_
BINOMIAL

log (default)
identity

log(μ)
μ

To model count data (nonnegative
integers), usually over-dispersed
response variables.

The following table shows the common link functions for the common distribution exponential families. D
identifies the default link for each family.

Link Link Descriptive Binomial
(Logistic) Gamma Gaussian Inverse_

Gaussian Poisson Negative_
Binomial

logit LOGIT D

probit PROBIT *

cloglog COMPLEMENTARY_LOG_
LOG

*

identity IDENTITY * D * * *

inverse INVERSE D * *

log LOG * * * * D D

1/μ2 INVERSE_MU_SQUARED D

sqrt SQUARE_ROOT *

cauchit CAUCHIT *

GLM Input
InputTable Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

The table can have additional columns, but the function ignores them.

Column Data Type Description

dependent_
variable_column

Any numeric SQL data
type

Dependent/response variable. Cannot be NULL. Must be
first in TargetColumns syntax element. If Family is
BINOMIAL or LOGISTIC, each value in this column must
be either 0 or 1.

predictor_
variable_column

Any [Column appears one or more times.] Independent/
predictor variable. Cannot be NULL. Must follow
dependent_variable_column in TargetColumns syntax
element.
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Column Data Type Description

Teradata recommends using Scale function on numeric
predictors before calling function.

categorical_
column

CHARACTER,
VARCHAR, INTEGER,
BYTEINT, DATE, TIME
(without TIME ZONE)

[Column appears only with CategoricalColumns syntax
element.] Categorical variable. Must also appear in
TargetColumns syntax element.

weight_column INTEGER, DOUBLE
PRECISION

[Column appears only with WeightColumn syntax element.
] Weight to assign to response variable.

GLM Onscreen Output
The onscreen output of the GLM function is a table containing information about the regression analysis
of the data, in two sections:

• Information about the model intercept and coefficients
• Information about the regression (number of iterations and number of rows processed) and several

goodness-of-fit measures

Columns

Column Description

predictor Name of predictor or other reported result.
For categorical predictors, the function selects one category as the reference category, and
outputs one row for each other category for the column, in the format predictor.level.
For example, if column color has categories 'red', 'blue', and 'green', and green is the
reference category, the function outputs these rows:
color.red
color.blue

estimate For predictors, estimated value of coefficient.
For other reported results, calculated value.

std_error For predictors, standard deviation of the mean (standard error).
For other reported results, not applicable (value 0).

z_score For predictors, calculated z-score.
For other reported results, calculated value.

p_value For predictors, calculated p-value.
For other reported results, not applicable (value 0).

significance For predictors, indicator of predictor significance. For key to significance codes, see CoxPH
Output.
For other reported results, description of result.
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Rows

The onscreen output includes a row for each estimated parameter of the model and additional information
about the model and the regression.

Estimated Parameters of the Model
Parameter Description

(Intercept) Value of link function (Y) when all predictors are 0.

predictor [Column appears only for numerical predictor.] Predictor name.

predictor.level [Column appears only for categorical predictor.] Predictor name and level. Table has a
row for each level of the predictor except one, which serves as the reference level.

Model and Regression Information
Value Description

ITERATIONS# Number of Fisher Scoring iterations performed on function.

ROWS# Number of rows of data received as input.

Residual deviance Deviance, with degrees of freedom reported in significance column.
Residual deviance is not displayed when Family is GAMMA, NEGATIVE_
BINOMIAL, or INVERSE_GAUSSIAN

Pearson goodness of
fit

Sum of squared Pearson residual.

AIC Akaike information criterion, a measure of relative quality of model for given data
set.

BIC Bayesian information criterion, partly based on likelihood function and closely
related to AIC. BIC is a criterion for model selection among a finite set of models;
the model with the lowest BIC is preferred.

Wald Test Tests goodness of fit.

Dispersion parameter For GAUSSIAN, the value of this parameter is estimated from the data. For all
other families, this parameter value is 1.

The coefficients are also stored in the table output_table for later use.

For the Gamma distribution density, AIC and BIC might have the value NaN when the dispersion
parameter is very small and goodness-of-fit is poor.

GLM Output Table
The output table specified by the OutputTable syntax element stores the estimated coefficients and
statistics, which are used by the functions GLMPredict_MLE and LikelihoodRatioTest (ML Engine).
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Columns

Column Description

attribute Numeric index of predictor.

predictor Predictor name.

category For categorical predictor, its level. For numeric predictor, NULL.

estimate Estimated coefficient.

std_error Standard error of coefficient.

t_score [Column appears only with Family ('GAUSSIAN').] The t_score follows a t(N-p-1)
distribution.

z_score [Column appears only without Family ('GAUSSIAN').] The z-score follows the N(0,1)
distribution.

p_value p-value for z_score. (p-value represents significance of each coefficient.)

significance Indicator of predictor significance. For key to symbols in this column, see CoxPH Output.

family Distribution exponential family, specified by Family syntax element.

Rows

The OutputTable includes a row for each of the following parameters.

Parameter Description

Loglik Log likelihood of model.

(Intercept) Value of link function (Y) when all predictors are 0.

Predictors Predictor name. For categorical predictor, table has a row for each level of the predictor.

Odds Ratio and Confidence Intervals
You can exponentiate the coefficients (the estimate column in the output table coefficient estimates) and
interpret them as odds ratios (ORs). To perform this type of computation, you can run the following SQL
queries on the output of the GLM function.

-- odds ratios only
SELECT predictor, category,
  EXP(estimate) AS odds_ratio
  FROM glm_output;
-- odds ratios and 95% CI
SELECT predictor, category,
  EXP(estimate) AS odds_ratio,
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  EXP(estimate - 1.96 * std_err) AS lower_bound,
  EXP(estimate + 1.96 * std_err) AS upper_bound
FROM glm_output;

Goodness-of-Fit Tests
• Deviance
• Wald Test
• Pearson’s Chi-squared Statistic

Deviance

The deviance for a model M0, based on a data set y, is defined as follows:

In the preceding equation:

denotes the fitted values of the parameters in the model M0.

denotes the fitted parameters for the full model (or saturated model).

Both sets of fitted values are implicitly functions of the observations y. In this case, the full model is a
model with a parameter for every observation so that the data are fitted exactly.

The deviance is used to compare two models—in particular in the case of generalized linear models
where it has a similar role to residual variance from ANOVA in linear models (RSS).

Suppose in the framework of the GLM that there are two nested models, M1 and M2. In particular,
suppose that M1 contains the parameters in M2, and k additional parameters. Then, under the null
hypothesis that M2 is the true model, the difference between the deviances for the two models follows
an approximate chi-squared distribution with k-degrees of freedom. This provides us an alternative way
for computing the log-likelihood ratio of two models.

Deviance is implemented in the GLM function. It computes residual deviance from model deviance and
saturated deviance. The function does not compute null deviance.
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Wald Test

Significance tests can be performed for individual regression coefficients (that is, H0 : βj = 0) by
computing the Wald statistics, which are similar to the partial t-statistics from classical regression:

Under the null hypothesis that βj = 0, the Wald test statistic wj follows approximately a standard normal
distribution (and its square is approximately a chi-square on one-degree of freedom).

This quantity is computed by the GLM function as the Wald Test, as well as the corresponding 'p_value'.
It is in the output table, and also displayed on the screen.

Pearson’s Chi-squared Statistic

The deviance generalizes the sum of squared errors. Another generalization of sum of squared errors
is Pearson’s chi-squared statistic. Given a generalized linear model with responses yi, weights wi, fitted
means μi, variance function v(μ) and dispersion φ = 1, the Pearson goodness-of-fit statistic is

If the fitted model is correct and the observations yi are approximately normal, X2 is approximately

distributed as X2on the residual degrees of freedom for the model. Both the deviance and the generalized
Pearson X2 have exact X2 distributions for Normal-theory linear models (assuming of course that the
model is true), and asymptotic results are available for the other distributions. The deviance has a
general advantage as a measure of discrepancy in that it is additive for nested sets of models if
maximum-likelihood estimates are used, whereas X2 in general is not. However, X2 may sometimes be
preferred because of its more direct interpretation.

The GLM function computes the Pearson’s goodness of fit.

GLM Examples

GLM Example: Logistic Regression Analysis with Intercept

In logistic regression, the dependent variable (Y) has only two possible values (0 and 1, 'yes' and 'no',
or 'true' and 'false'). The algorithm applies the model to the data and predicts the most likely outcome.
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Input

The InputTable, admissions_train, contains data about applicants to an academic program. For each
applicant, attributes in the table include a Masters Degree indicator, a grade point average (on a 4.0
scale), a statistical skills indicator, a programming skills indicator, and an indicator of whether the
applicant was admitted. The Masters Degree, statistical skills, and programming skills indicators are
categorical variables. Masters degree has two categories (yes or no), while the other two have three
categories (Novice, Beginner and Advanced). For admitted status, 1 indicates that the student was
admitted and 0 indicates otherwise.

InputTable: admissions_train
id masters gpa stats programming admitted

1 yes 3.95 Beginner Beginner 0

2 yes 3.76 Beginner Beginner 0

3 no 3.7 Novice Beginner 1

4 yes 3.5 Beginner Novice 1

5 no 3.44 Novice Novice 0

6 yes 3.5 Beginner Advanced 1

7 yes 2.33 Novice Novice 1

8 no 3.6 Beginner Advanced 1

9 no 3.82 Advanced Advanced 1

10 no 3.71 Advanced Advanced 1

11 no 3.13 Advanced Advanced 1

12 no 3.65 Novice Novice 1

13 no 4 Advanced Novice 1

14 yes 3.45 Advanced Advanced 0

15 yes 4 Advanced Advanced 1

16 no 3.7 Advanced Advanced 1

17 no 3.83 Advanced Advanced 1

18 yes 3.81 Advanced Advanced 1

19 yes 1.98 Advanced Advanced 0

20 yes 3.9 Advanced Advanced 1

21 no 3.87 Novice Beginner 1

22 yes 3.46 Novice Beginner 0
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id masters gpa stats programming admitted

23 yes 3.59 Advanced Novice 1

24 no 1.87 Advanced Novice 1

25 no 3.96 Advanced Advanced 1

26 yes 3.57 Advanced Advanced 1

27 yes 3.96 Advanced Advanced 0

28 no 3.93 Advanced Advanced 1

29 yes 4 Novice Beginner 0

30 yes 3.79 Advanced Novice 0

31 yes 3.5 Advanced Beginner 1

32 yes 3.46 Advanced Beginner 0

33 no 3.55 Novice Novice 1

34 yes 3.85 Advanced Beginner 0

35 no 3.68 Novice Beginner 1

36 no 3 Advanced Novice 0

37 no 3.52 Novice Novice 1

38 yes 2.65 Advanced Beginner 1

39 yes 3.75 Advanced Beginner 0

40 yes 3.95 Novice Beginner 0

SQL Call

The response variable (admitted, in this example) must be specified as the first variable listed in the
TargetColumns syntax element, followed by the other predictors.

DROP TABLE glm_admissions_model;

SELECT * FROM GLM (
  ON admissions_train AS InputTable
  OUT TABLE OutputTable (glm_admissions_model)
  USING
  TargetColumns ('admitted','masters', 'gpa', 'stats', 'programming')
  CategoricalColumns ('masters', 'stats', 'programming')
  Family ('LOGISTIC')
  LinkFunction ('LOGIT')
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  WeightColumn ('1')
  StopThreshold (0.01)
  MaxIterNum (25)
  Intercept ('true')
) AS dt;

Output

The output table shows the model statistics.

 predictor               estimate             std_error          z_score              
p_value              significance                            
 ----------------------- -------------------- ------------------ 
-------------------- -------------------- 
--------------------------------------- 
 (Intercept)               1.0775099992752075  2.920759916305542  
0.36891400814056396   0.7121919989585876                                        
 masters.no                  2.21655011177063 1.0199899673461914    
2.173110008239746 0.029771899804472923 *                                      
 gpa                     -0.11393500119447708  0.802573025226593 
-0.14196200668811798   0.8871099948883057                                        
 stats.novice             0.04068480059504509 1.1156699657440186 
0.036466699093580246   0.9709100127220154                                        
 stats.beginner            0.5266180038452148 1.2229000329971313  
0.43063101172447205   0.6667360067367554                                        
 programming.beginner      -1.769760012626648  1.069000005722046  
-1.6555299758911133  0.09781769663095474 .                                      
 programming.novice       -0.9803500175476074 1.1400400400161743  
-0.8599230051040649    0.389831006526947                                        
 ITERATIONS #                             4.0                0.0                  
0.0                  0.0 Number of Fisher Scoring iterations    
 ROWS #                                  40.0                0.0                  
0.0                  0.0 Number of rows                         
 Residual deviance          38.90380096435547                0.0                  
0.0                  0.0 on 33 degrees of freedom               
 Pearson goodness of fit    37.79050064086914                0.0                  
0.0                  0.0 on 33 degrees of freedom               
 AIC                        52.90380096435547                0.0                  
0.0                  0.0 Akaike information criterion           
 BIC                        64.72595977783203                0.0                  
0.0                  0.0 Bayesian information criterion         
 Wald Test                  9.896419525146484                0.0                  
0.0  0.19451963901519775                                        
 Dispersion parameter                     1.0                0.0                  
0.0                  0.0 Taken to be 1 for BINOMIAL and POISSON.
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For categorical variables, the model selects a reference category. This example uses the Advanced
category as a reference for the stats variable.

This query returns the following table:

SELECT * FROM glm_admissions_model;

 attribute predictor   category estimate             std_err            
z_score              p_value              significance family   
 --------- ----------- -------- -------------------- ------------------ 
-------------------- -------------------- ------------ -------- 
        -1 Loglik      NULL      -19.451900482177734               40.0                  
6.0                  0.0 NULL         LOGISTIC
         0 (Intercept) NULL       1.0775099992752075  2.920759916305542  
0.36891400814056396   0.7121919989585876              LOGISTIC
         1 masters     yes                      NULL               NULL                 
NULL                 NULL NULL         LOGISTIC
         2 masters     no           2.21655011177063 1.0199899673461914    
2.173110008239746 0.029771899804472923 *            LOGISTIC
         3 gpa         NULL     -0.11393500119447708  0.802573025226593 
-0.14196200668811798   0.8871099948883057              LOGISTIC
         4 stats       advanced                 NULL               NULL                 
NULL                 NULL NULL         LOGISTIC
         5 stats       novice    0.04068480059504509 1.1156699657440186 
0.036466699093580246   0.9709100127220154              LOGISTIC
         6 stats       beginner   0.5266180038452148 1.2229000329971313  
0.43063101172447205   0.6667360067367554              LOGISTIC
         7 programming advanced                 NULL               NULL                 
NULL                 NULL NULL         LOGISTIC
         8 programming beginner   -1.769760012626648  1.069000005722046  
-1.6555299758911133  0.09781769663095474 .            LOGISTIC
         9 programming novice    -0.9803500175476074 1.1400400400161743  
-0.8599230051040649    0.389831006526947              LOGISTIC

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLM Example: Gaussian Distribution Analysis

For the Gaussian distribution the response variable must be a continuous numerical variable, where the
data is grouped around a single mean and the graph looks like a normal or bell curve distribution. This
example uses default options.
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Input

• InputTable: housing_train, as in DecisionForest Example: TreeType ('classification'), OutOfBag
('false')

SQL Call

The family is GAUSSIAN and the default family link is IDENTITY.

DROP TABLE glm_housing_model;

SELECT * FROM GLM (
  ON housing_train AS InputTable
  OUT TABLE OutputTable (glm_housing_model)
  USING
  TargetColumns ('price', 'lotsize', 'bedrooms', 'bathrms',
                'stories', 'garagepl', 'driveway', 'recroom',
                'fullbase', 'gashw', 'airco', 'prefarea', 'homestyle')
  CategoricalColumns ('driveway', 'recroom', 'fullbase', 'gashw',
                       'airco', 'prefarea', 'homestyle')
  Family ('GAUSSIAN')
  LinkFunction ('IDENTITY')
  WeightColumn ('1')
  StopThreshold (0.01)
  MaxIterNum (25)
  Intercept ('true')
) AS dt;

Output

 predictor               estimate           std_error           t_score             
p_value                significance                            
 ----------------------- ------------------ ------------------- 
------------------- ---------------------- 
--------------------------------------- 
 (Intercept)                 36349.30078125   2733.462158203125  
13.297897338867188                    0.0 ***                                    
 lotsize                 2.0809500217437744 0.26133036613464355   7.962909698486328 
1.2434497875801753E-14 ***                                    
 bedrooms                  782.093017578125   766.8397216796875  
1.0198911428451538     0.3082960247993469                                        
 bathrms                   6772.31005859375  1106.7789306640625   
6.118936538696289   1.963181173181283E-9 ***                                    
 stories                    2445.6201171875   694.1449584960938   
3.523212194442749   4.673068760894239E-4 ***                                    
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 garagepl                1483.0999755859375   623.5965576171875   
2.378300666809082    0.01778467558324337 *                                      
 driveway.no               -2822.6298828125  1481.2474365234375  
-1.905576229095459    0.05730487406253815 .                                      
 recroom.yes              1208.530029296875   1358.570556640625  
0.8895599842071533     0.3741496801376343                                        
 fullbase.yes             3588.300048828125  1167.3746337890625  
3.0738205909729004  0.0022341914009302855 **                                     
 gashw.yes                          5787.25   2405.470458984375  
2.4058704376220703    0.01651271991431713 *                                      
 airco.yes                  6478.7900390625  1152.1597900390625   
5.623169422149658  3.1934060729099656E-8 ***                                    
 prefarea.yes              6465.64013671875  1212.8397216796875   
5.330992698669434  1.5088656368789088E-7 ***                                    
 homestyle.classic         -16550.900390625   1308.585205078125 
-12.647933959960938                    0.0 ***                                    
 homestyle.bungalow          37577.69921875      1850.173828125  
20.310361862182617                    0.0 ***                                    
 ITERATIONS #                           2.0                 0.0                 
0.0                    0.0 Number of Fisher Scoring iterations    
 ROWS #                               492.0                 0.0                 
0.0                    0.0 Number of rows                         
 Residual deviance                 Infinity                 0.0                 
0.0                    0.0 on 478 degrees of freedom              
 Pearson goodness of fit    5.3066899456E10                 0.0                 
0.0                    0.0 on 478 degrees of freedom              
 AIC                               Infinity                 0.0                 
0.0                    0.0 Akaike information criterion           
 BIC                               Infinity                 0.0                 
0.0                    0.0 Bayesian information criterion         
 Wald Test                  23174.041015625                 0.0                 
0.0                    0.0 ***                                    
 Dispersion parameter          1.11018616E8                 0.0                 
0.0                    0.0 Taken to be 1 for BINOMIAL and POISSON.

Many predictors are significant at 95% confidence level (p-value < 0.05).

SELECT * FROM glm_housing_model ORDER BY attribute;

 attribute predictor   category estimate           std_err             
z_score             p_value                significance family   
 --------- ----------- -------- ------------------ ------------------- 
------------------- ---------------------- ------------ -------- 
        -1 Loglik      NULL              -Infinity               492.0                
13.0                    0.0 NULL         GAUSSIAN
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         0 (Intercept) NULL         36349.30078125   2733.462158203125  
13.297897338867188                    0.0 ***          GAUSSIAN
         1 lotsize     NULL     2.0809500217437744 0.26133036613464355   
7.962909698486328 1.2434497875801753E-14 ***          GAUSSIAN
         2 bedrooms    NULL       782.093017578125   766.8397216796875  
1.0198911428451538     0.3082960247993469              GAUSSIAN
         3 bathrms     NULL       6772.31005859375  1106.7789306640625   
6.118936538696289   1.963181173181283E-9 ***          GAUSSIAN
         4 stories     NULL        2445.6201171875   694.1449584960938   
3.523212194442749   4.673068760894239E-4 ***          GAUSSIAN
         5 garagepl    NULL     1483.0999755859375   623.5965576171875   
2.378300666809082    0.01778467558324337 *            GAUSSIAN
         6 driveway    yes                    NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
         7 driveway    no         -2822.6298828125  1481.2474365234375  
-1.905576229095459    0.05730487406253815 .            GAUSSIAN
         8 recroom     no                     NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
         9 recroom     yes       1208.530029296875   1358.570556640625  
0.8895599842071533     0.3741496801376343              GAUSSIAN
        10 fullbase    no                     NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
        11 fullbase    yes       3588.300048828125  1167.3746337890625  
3.0738205909729004  0.0022341914009302855 **           GAUSSIAN
        12 gashw       no                     NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
        13 gashw       yes                 5787.25   2405.470458984375  
2.4058704376220703    0.01651271991431713 *            GAUSSIAN
        14 airco       no                     NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
        15 airco       yes         6478.7900390625  1152.1597900390625   
5.623169422149658  3.1934060729099656E-8 ***          GAUSSIAN
        16 prefarea    no                     NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
        17 prefarea    yes        6465.64013671875  1212.8397216796875   
5.330992698669434  1.5088656368789088E-7 ***          GAUSSIAN
        18 homestyle   eclectic               NULL                NULL                
NULL                   NULL NULL         GAUSSIAN
        19 homestyle   classic    -16550.900390625   1308.585205078125 
-12.647933959960938                    0.0 ***          GAUSSIAN
        20 homestyle   bungalow     37577.69921875      1850.173828125  
20.310361862182617                    0.0 ***          GAUSSIAN
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Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLMPredict_MLE
The GLMPredict_MLE function uses the model output by the function GLM to perform generalized linear
model prediction on new input data.

GLMPredict_MLE Syntax
Version 1.15

SELECT * FROM GLMPredict_MLE (
  ON { table | view | (query) } PARTITION BY ANY
  ON { table | view | (query) } AS Model DIMENSION [ ORDER BY attribute, predictor ]
  [ USING
    [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
    [ Family ('family') ]
    [ LinkFunction ('link') ]
    [ OutputProb ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
    [ Responses ('response' [,...]) ]
  ]
) AS alias;

Related Information:

Comments in Queries
Column Specification Syntax Elements

GLMPredict_MLE Syntax Elements
Accumulate

[Optional] Specify the names of input table columns to copy to the output table.

Family
[Optional] Specify the distribution exponential family.

If you specify this syntax element, you must give it the same value that you used for the Family
syntax element of the function GLM when you created the Model table.

Default: Read from the Model table

LinkFunction
[Optional] Specify the link function. For the canonical link functions (default link functions) and
the link functions allowed for each exponential family, see Supported Family/Link Function
Combinations.
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If you specify this syntax element, you must give it the same value that you used for the
LinkFunction syntax element of the function GLM when you created the Model table.

Default: 'CANONICAL'

OutputProb
[Family must be BINOMIAL or LOGISTIC. Required with Responses, optional otherwise.]
Specify whether to output the probability for each response. If you omit Responses, the function
outputs the probability of the predicted response.

Default: 'false'

Responses
[Optional] Specify the labels for which to output probabilities. A label (response) must be 0 or 1.

Default behavior: The function outputs only the probability of the predicted class.

GLMPredict_MLE Input
Table Description

Input Contains new data.

Model GLM Output Table

Input Table Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

Column Data
Type Description

accumulate_column Any [Column appears once for each specified accumulate_
column.] Column to copy to output table.

dependent_variable_
column

Any Dependent/response variables. Cannot be NULL.

predictor_variable_column Any [Column appears one or more times.] Independent/predictor
variable. Cannot be NULL.
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GLMPredict_MLE Output
Output Table Schema

Column Data Type Description

accumulate_
column

Same as in
input table

[Column appears once for each specified accumulate_column.]
Column copied from input table.

fitted_value DOUBLE
PRECISION

Score of the input data, given by equation g-1(Xβ), where g-1 is the
inverse link function, X the predictors, and β is the vector of
coefficients estimated by the GLM function.
For BINOMIAL classification, a predicted value close to 1 indicates
a high probability of class 1. A predicted value close to 0 indicates
a high probability of class 0. For other values of Family, the scores
are the expected values of dependent/response variable,
conditional on the predictors.

prediction INTEGER [Column appears only with Family ('BINOMIAL') or Family
('LOGISTIC').] Predicted value (0 or 1).

prob DOUBLE
PRECISION

[Column appears only if you specify OutputProb ('true') and omit
Responses.] Probability that observation belongs to predicted class,
calculated as follows:

prediction prob

0 1 - fitted_value

1 fitted_value

prob_0 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 0, which is 1- fitted_
value.

prob_1 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 1, which is fitted_
value.

GLMPredict_MLE Examples

GLMPredict_MLE Example: Logistic Distribution Prediction

Input

• Input: admissions_test, which has admissions information for 20 students
• Model: glm_admissions_model, output by GLM Example: Logistic Regression Analysis with

Intercept
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admissions_test
id masters gpa stats programming admitted

50 yes 3.95 Beginner Beginner 0

51 yes 3.76 Beginner Beginner 0

52 no 3.7 Novice Beginner 1

53 yes 3.5 Beginner Novice 1

54 yes 3.5 Beginner Advanced 1

55 no 3.6 Beginner Advanced 1

56 no 3.82 Advanced Advanced 1

57 no 3.71 Advanced Advanced 1

58 no 3.13 Advanced Advanced 1

59 no 3.65 Novice Novice 1

60 no 4 Advanced Novice 1

61 yes 4 Advanced Advanced 1

62 no 3.7 Advanced Advanced 1

63 no 3.83 Advanced Advanced 1

64 yes 3.81 Advanced Advanced 1

65 yes 3.9 Advanced Advanced 1

66 no 3.87 Novice Beginner 1

67 yes 3.46 Novice Beginner 0

68 no 1.87 Advanced Novice 1

69 no 3.96 Advanced Advanced 1

SQL Call

CREATE MULTISET TABLE glmpredict_admissions AS (
    SELECT * FROM GLMPredict_MLE (
    ON admissions_test PARTITION BY ANY
    ON glm_admissions_model AS Model DIMENSION
    USING
    Accumulate ('id', 'masters', 'gpa', 'stats', 'programming', 'admitted')
    Family ('LOGISTIC')
    LinkFunction ('LOGIT')
    OutputProb ('t')
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  ) AS dt
) WITH DATA;

Output

SELECT * FROM glmpredict_admissions ORDER BY 1;

 id masters gpa  stats    programming admitted fitted_value       prediction 
prob               
 -- ------- ---- -------- ----------- -------- ------------------ ---------- 
------------------ 
 50 yes     3.95 beginner beginner           0 0.3507656829365149          0 
0.6492343170634851
 51 yes     3.76 beginner beginner           0 0.3557112671780229          0 
0.6442887328219771
 52 no       3.7 novice   beginner           1 0.7583079903427496          1 
0.7583079903427496
 53 yes      3.5 beginner novice             1 0.5560152436940663          1 
0.5560152436940663
 54 yes      3.5 beginner advanced           1 0.7694761266019933          1 
0.7694761266019933
 55 no       3.6 beginner advanced           1 0.9680314543695169          1 
0.9680314543695169
 56 no      3.82 advanced advanced           1 0.9457732442937538          1 
0.9457732442937538
 57 no      3.71 advanced advanced           1 0.9464124273756033          1 
0.9464124273756033
 58 no      3.13 advanced advanced           1  0.949666669516694          1  
0.949666669516694
 59 no      3.65 novice   novice             1 0.8741907950304955          1 
0.8741907950304955
 60 no       4.0 advanced novice             1 0.8650601698708184          1 
0.8650601698708184
 61 yes      4.0 advanced advanced           1 0.6506209990774642          1 
0.6506209990774642
 62 no       3.7 advanced advanced           1 0.9464701812067841          1 
0.9464701812067841
 63 no      3.83 advanced advanced           1 0.9457147816580886          1 
0.9457147816580886
 64 yes     3.81 advanced advanced           1 0.6555256147282206          1 
0.6555256147282206
 65 yes      3.9 advanced advanced           1 0.6532064285302687          1 
0.6532064285302687
 66 no      3.87 novice   beginner           1 0.7547403697792542          1 
0.7547403697792542
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 67 yes     3.46 novice   beginner           0 0.2600362186838019          0 
0.7399637813161981
 68 no      1.87 advanced novice             1 0.8909664987530864          1 
0.8909664987530864
 69 no      3.96 advanced advanced           1 0.9449493421287761          1 
0.9449493421287761

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLMPredict_MLE Example: Gaussian Distribution Prediction

The example uses the Gaussian model created in GLM Example: Gaussian Distribution Analysis to
predict house prices. To evaluate the accuracy of the model, the example calculates the root mean
square error (RMSE) between the known actual price from the input table and the price predicted by
the model.

Input

• Input table: housing_test, which contains test data for 54 houses
• Model: glm_housing_model from the output section of GLM Example: Gaussian Distribution

Analysis

housing_test
sn price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea homestyle

13 27000 1700 3 1 2 yes no no no no 0 no Classic

16 37900 3185 2 1 1 yes no no no yes 0 no Classic

25 42000 4960 2 1 1 yes no no no no 0 no Classic

38 67000 5170 3 1 4 yes no no no yes 0 no Eclectic

53 68000 9166 2 1 1 yes no yes no yes 2 no Eclectic

104 132000 3500 4 2 2 yes no no yes no 2 no bungalow

111 43000 5076 3 1 1 no no no no no 0 no Classic

117 93000 3760 3 1 2 yes no no yes no 2 no Eclectic

132 44500 3850 3 1 2 yes no no no no 0 no Classic

140 43000 3750 3 1 2 yes no no no no 0 no Classic

142 40000 2650 3 1 2 yes no yes no no 1 no Classic

157 60000 2953 3 1 2 yes no yes no yes 0 no Eclectic

161 63900 3162 3 1 2 yes no no no yes 1 no Eclectic
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sn price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea homestyle

... ... ... ... ... ... ... ... ... ... ... ... ... ...

SQL Call

The canonical link specifies the default family link, which is "identity" for the Gaussian distribution.

CREATE MULTISET TABLE glmpredict_housing AS (
  SELECT * FROM GLMPredict_MLE (
    ON housing_test PARTITION BY ANY
    ON glm_housing_model AS Model DIMENSION
    USING
    Accumulate ('sn', 'price')
    Family ('GAUSSIAN')
    LinkFunction ('CANONICAL')
  ) AS dt
) WITH DATA;

Output

The fitted_value column gives the predicted home price.

SELECT * FROM glmpredict_housing ORDER BY 1;

 sn  price    fitted_value       
 --- -------- ------------------ 
  13  27000.0  37345.84477329254
  16  37900.0  43687.13245987892
  25  42000.0  40902.02870941162
  38  67000.0  72487.67201280594
  53  68000.0  79238.69493055344
 104 132000.0 111528.00744915009
 111  43000.0 39102.882046699524
 117  93000.0  66936.95215988159
 132  44500.0  41819.88732004166
 140  43000.0  41611.79231786728
 142  40000.0  44394.14731836319
 157  60000.0  66571.26562905312
 161  63900.0  64900.98411035538
 162 130000.0  107759.1224937439
 176  57500.0  73438.73871564865
 177  70000.0  62378.35326194763
 195  33000.0   37197.9376707077
 198  40500.0  47308.08242368698
 224  78500.0  67232.86958527565
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 234  32500.0  35237.16528749466
 237  43000.0  46593.47125959396
 239  26000.0  43377.86666679382
 249  44500.0  37863.84167766571
 251  48500.0  45096.38719415665
 254  60000.0  74665.70030021667
 255  61000.0  60214.16523933411
 260  41000.0  43066.21673202515
 274  64900.0  67232.45221805573
 294  47000.0  38987.55468940735
 301  55000.0   55621.6930809021
 306  64000.0  67339.69788479805
 317  80000.0    65655.120470047
 329 115442.0 123612.01978111267
 339 141000.0 126282.07774448395
 340  62500.0 58474.835211753845
 353  78500.0  67485.69113445282
 355  86900.0  68425.80433177948
 364  72000.0  77422.12543773651
 367 114000.0 128556.01284217834
 377 140000.0 127201.90244436264
 401  92500.0  84040.80987596512
 403  77500.0  79857.25416207314
 408  87500.0  76218.38956928253
 411  90000.0   78179.1003665924
 440  69000.0  80549.23930311203
 441  51900.0 64670.294174194336
 443  65000.0  61704.09422302246
 459  44555.0 42818.367908000946
 463  49000.0  49293.44947862625
 469  55000.0  61779.35452270508
 472  60500.0   63767.0579059124
 527 105000.0 119762.26224088669
 530 108000.0 116119.24969100952
 540  85000.0  73146.08736228943

RMSE

This query returns the following table:

SELECT SQRT(AVG(POWER(glmpredict_housing.price -
glmpredict_housing.fitted_value, 2))) AS RMSE FROM glmpredict_housing;
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 RMSE               
 ------------------ 
 10246.752127962065

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2
The GLML1L2 function differs from the GLM function in these ways:

• GLML1L2 supports the regularization models ridge, LASSO, and elastic net.
• GLML1L2 outputs a model table and, optionally, a factor table (GLM outputs only a model table).

You can input the model table and factor table to the GLML1L2Predict function.

GLML1L2 Syntax
Version 1.17

SELECT * FROM GLML1L2 (
  ON { table | view | (query) } AS InputTable
    [ OUT TABLE FactorTable (factor_table) ]
    USING 
    TargetColumns ('target_column' [,...])
    [ CategoricalColumns (({ 'categorical_column' [,...]) ]
    ResponseColumn ('response_column')
    [ Family ({ 'BINOMIAL' | 'GAUSSIAN' }) ]
    [ Alpha (alpha) ]
    [ RegularizationLambda (lambda) ]
    [ StopThreshold (threshold) ]
    [ MaxIterNum (max_iterations) ]
) AS alias;

GLML1L2 Syntax Elements
FactorTable

[Optional] Specify the name for the FactorTable. The function encodes categorical predictors as
integer values in the FactorTable and copies numeric predictors to the FactorTable unchanged.

You must also specify CategoricalColumns.

You can use factor_table as InputTable for future GLML1L2 function calls, thereby saving the
function from repeating the categorical-to-numerical conversion.
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TargetColumns
Specify the names of the InputTable columns that contain the variables to use as predictors
(independent variables) in the model.

CategoricalColumns
[Optional] Specify the names of the InputTable columns to treat as categorical variables, and
which of their categories to use in the model.

categorical_column_and_
categories Descriptions

'categorical_column:
max_cardinality'

Uses most common categories in categorical_column and
groups other categories into category 'others'.
For example, 'column_a:3' specifies that for column_a, function
uses 3 most common categories and sets category of rows that
do not belong to those 3 categories to 'others'.

'categorical_column:
(category [,...])'

Uses specified categories of categorical_column and groups
other categories into category 'others'.
For example, 'column_a : (red, yellow, blue)' specifies that for
column_a, function uses categories red, yellow, and blue, and
sets category of rows that do not belong to those categories to
'others'.

'categorical_column' Uses all categories in categorical_column.

If you use this syntax element, you must also specify the FactorTable syntax element, and in
the TargetColumns syntax element, you must specify each categorical_column.

For information about columns that you must identify as numeric or categorical, see Identification
of Numeric and Categorical Columns.

Default behavior: The function treats all variables as numerical.

ResponseColumn
Specify the name of the InputTable column that contains the responses.

Family
[Optional] Specify the distribution exponential family.

Default: 'GAUSSIAN'

Alpha
[Optional] Specify the mixing parameter for penalty computation (see the following table). The
alpha must be in [0, 1]. If alpha is in (0,1), it represents α in the elastic net regularization formula
in Generalized Linear Model (GLM) Functions (ML Engine).

alpha Regularization Type Parameter Description

0 Ridge

½
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alpha Regularization Type Parameter Description

(0,1) Elastic net

1 LASSO

Default: 0

RegularizationLambda
[Optional] Specify the parameter that controls the magnitude of the regularization term. The
value lambda must be in the range [0, 100]. The value 0 disables regularization.

Default: 0

StopThreshold
[Optional] Specify the convergence threshold. The threshold must be a nonnegative DOUBLE
PRECISION value.

Default: 1.0e-7

MaxIterNum
[Optional] Specify the maximum number of iterations over the data. The parameter
max_iterations must be a positive INTEGER value in the range [1, 100000].

Default: 10000

GLML1L2 Input
InputTable Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

The table can have additional columns, but the function ignores them.

Column Data Type Description

response_
column

Any numeric SQL
data type

Dependent/response variable.
Tip:
Remove NULL values to optimize function execution time.

target_column Any [Column appears one or more times.] Independent/
predictor variable.
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Column Data Type Description

Tip:
• Remove NULL values to optimize function execution

time.
• Use Scale function on numeric predictors before calling

the function.

categorical_
column

CHARACTER,
VARCHAR, INTEGER,
BYTEINT, DATE, TIME

[Column appears once for each categorical target_column.
] Categorical independent/predictor variable. Variable name
cannot be a Teradata reserved keyword, start with a digit,
or contain any nonalphabetic character except underscore
(_).
Do not enclose variable name in single quotation marks.

GLML1L2 Output
Output Table Schema

The function displays the output table to the screen.

Column Data Type Description

attribute VARCHAR Name of model attribute.

category VARCHAR [Column appears only for categorical predictor.] Category (level)
of predictor.

estimate DOUBLE
PRECISION

Estimate of model coefficient.

information VARCHAR Value of nonnumeric attribute, followed by "p" if predictor is used
in model.

FactorTable Schema

Each row in the factor table corresponds to a row in the input table.

Column Data Type Description

target_column Categorical column: INTEGER
Numeric column: Same as in InputTable

Categorical column: dummy variable
Numeric column: Same as in InputTable.

response_column DOUBLE PRECISION Column copied from InputTable.
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GLML1L2 Examples

GLML1L2 Example: Ridge Regression, Family ('BINOMIAL')

Input

The input table is admission_train, as in GLM Example: Logistic Regression Analysis with Intercept.

SQL Call

Because the response variable is binary (the admitted column has two possible values), the call specifies
Family ('BINOMIAL'). Alpha (0) indicates L2 (ridge regression) regularization.

DROP TABLE admissions_model;
DROP TABLE admissions_factor_table;

CREATE MULTISET TABLE admissions_model AS (
  SELECT * FROM GLML1L2 (
   ON admissions_train AS InputTable
   OUT TABLE FactorTable (admissions_factor_table)
   USING
   TargetColumns ('masters', 'gpa', 'stats', 'programming')
   CategoricalColumns ('masters', 'stats', 'programming') 
   ResponseColumn ('admitted') 
   Family ('BINOMIAL') 
   Alpha (0)
   RegularizationLambda (0.02)
  ) AS dt
) WITH DATA;

Output

SELECT * FROM admissions_model;

 attribute      category estimate              information 
 -------------- -------- --------------------- ----------- 
 AIC            NULL         15.21927981934978 NULL       
 programming    beginner   -1.0259430213730834 p          
 Features #     NULL                       6.0 NULL       
 programming    novice     -0.0820786516340258 p          
 masters        yes        -1.2652530272653697 p          
 Iterations #   NULL                      28.0 NULL       
 Lambda         NULL                      0.02 NULL       
 Alpha          NULL                       0.0 NULL       
 stats          beginner   0.08063465501463249 p          
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 Regularization NULL                      NULL Ridge      
 stats          novice   -0.026716553307241597 p          
 Family         NULL                      NULL Binomial   
 Converged      NULL                      NULL true       
 gpa            NULL       0.38346423433872745 p          
 Rows #         NULL                      40.0 NULL       
 BIC            NULL        27.041435998147332 NULL       
 (Intercept)    NULL        0.3838162407664626 p

select * from admissions_factor_table;

 masters_yes stats_beginner stats_novice programming_beginner programming_novice 
gpa  admitted 
 ----------- -------------- ------------ -------------------- ------------------ 
---- -------- 
           1              0            1                    1                  0 3.95      0.0
           0              0            0                    0                  0 3.83      1.0
           1              0            1                    0                  1 2.33      1.0
           1              0            0                    1                  0 3.85      0.0
           1              0            1                    1                  0 3.46      0.0
           0              0            0                    0                  1  4.0      1.0
           1              0            0                    1                  0 3.75      0.0
           1              0            0                    1                  0 3.46      0.0
           0              0            1                    0                  1 3.52      1.0
           0              0            0                    0                  0 3.13      1.0
           0              0            1                    1                  0 3.68      1.0
           0              0            0                    0                  0 3.82      1.0
           0              0            1                    0                  1 3.65      1.0
           0              0            0                    0                  0 3.93      1.0
           1              0            0                    0                  0 3.96      0.0
           0              0            0                    0                  0  3.7      1.0
           1              1            0                    0                  1  3.5      1.0
           0              0            1                    0                  1 3.55      1.0
           1              0            0                    0                  0 1.98      0.0
           0              0            0                    0                  0 3.71      1.0
           0              0            0                    0                  1  3.0      0.0
           1              0            0                    1                  0 2.65      1.0
           1              0            0                    0                  0  4.0      1.0
           1              0            0                    0                  0 3.57      1.0
           1              0            0                    0                  1 3.79      0.0
           0              0            1                    0                  1 3.44      0.0
           1              0            0                    0                  0 3.45      0.0
           0              0            0                    0                  1 1.87      1.0
           1              0            0                    1                  0  3.5      1.0
           0              0            1                    1                  0  3.7      1.0
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           1              0            1                    1                  0  4.0      0.0
           1              1            0                    1                  0 3.95      0.0
           1              1            0                    0                  0  3.5      1.0
           1              0            0                    0                  0  3.9      1.0
           1              0            0                    0                  1 3.59      1.0
           1              0            0                    0                  0 3.81      1.0
           0              0            1                    1                  0 3.87      1.0
           0              1            0                    0                  0  3.6      1.0
           0              0            0                    0                  0 3.96      1.0
           1              1            0                    1                  0 
3.76      0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2 Example: Factor Table as InputTable

Input

The input table is admissions_factor_table, output by GLML1L2 Example: Ridge Regression, Family
('BINOMIAL'). In admissions_factor_table, categorical predictors were converted to integers.

SQL Call

Because the admissions_factor_table has only integers, this call does not specify CategoricalColumns.

DROP TABLE admissions_model_2;

CREATE MULTISET TABLE admissions_model_2 AS (
  SELECT * FROM GLML1L2 (
    ON admissions_factor_table AS InputTable
    USING
    TargetColumns ('[0:5]')
    ResponseColumn ('admitted') 
    Family ('BINOMIAL') 
    Alpha (0)
    RegularizationLambda (0.02)   
  ) AS dt
) WITH DATA;

Output

SELECT * FROM admissions_model_2;

 attribute            estimate              information 
 -------------------- --------------------- ----------- 
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 AIC                      15.21927981934978 NULL       
 Iterations #                          28.0 NULL       
 Features #                             6.0 NULL       
 Alpha                                  0.0 NULL       
 Lambda                                0.02 NULL       
 stats_novice         -0.026716553307241597 p          
 programming_novice     -0.0820786516340258 p          
 Regularization                        NULL Ridge      
 Family                                NULL Binomial   
 Converged                             NULL true       
 gpa                    0.38346423433872745 p          
 Rows #                                40.0 NULL       
 BIC                     27.041435998147332 NULL       
 (Intercept)             0.3838162407664626 p          
 programming_beginner   -1.0259430213730834 p          
 stats_beginner         0.08063465501463249 p          
 masters_yes            -1.2652530272653697 p

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2 Example: LASSO, Family ('GAUSSIAN')

Input

The input table is housing_train, as in GLM Example: Gaussian Distribution Analysis.

SQL Call

Because the response variable has a Gaussian distribution, the call specifies Family ('GAUSSIAN').
Alpha (1) indicates L1 (LASSO) regularization.

DROP TABLE housing_model;
DROP TABLE housing_factor_table;

CREATE MULTISET TABLE housing_model AS (
  SELECT * FROM GLML1L2 (
    ON housing_train AS InputTable
    OUT TABLE FactorTable (housing_factor_table)
    USING
    TargetColumns 
('lotsize','bedrooms','bathrms','stories','garagepl','driveway',
      'recroom','fullbase','gashw','airco','prefarea','homestyle')
    CategoricalColumns 
('driveway','recroom','fullbase','gashw','airco','prefarea','homestyle') 
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    ResponseColumn ('price') 
    Family ('GAUSSIAN') 
    Alpha (1)
    RegularizationLambda (0.02)
  ) AS dt
) WITH DATA;

Output

SELECT * FROM housing_model;

 attribute      category estimate            information 
 -------------- -------- ------------------- ----------- 
 AIC            NULL      -8.992753699712395 NULL       
 Iterations #   NULL                    53.0 NULL       
 stories        NULL      2445.6699824701327 p          
 bathrms        NULL       6772.387864268141 p          
 homestyle      classic  -54128.100924908955 p          
 Alpha          NULL                     1.0 NULL       
 homestyle      eclectic  -37577.28812836616 p          
 prefarea       yes        6465.606895601109 p          
 Features #     NULL                    13.0 NULL       
 airco          yes        6478.800674992518 p          
 Lambda         NULL                    0.02 NULL       
 fullbase       yes        3588.313479183023 p          
 Family         NULL                    NULL Gaussian   
 recroom        yes       1208.5016271782713 p          
 Converged      NULL                    NULL true       
 bedrooms       NULL       782.1333264902945 p          
 Rows #         NULL                   492.0 NULL       
 gashw          yes        5787.049927907821 p          
 driveway       yes       2822.6466305663917 p          
 Regularization NULL                    NULL Lasso      
 RMSE           NULL      10385.734127243657 NULL       
 lotsize        NULL       2.080984013010899 p          
 BIC            NULL       49.78594833117991 NULL       
 (Intercept)    NULL       71103.48563681456 p          
 garagepl       NULL      1483.1186058015555 p

(housing_factor_table not shown here.)

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2Predict
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The GLML1L2Predict function uses the model output by the GLML1L2 function to perform generalized
linear model prediction on new input data.

GLML1L2Predict Syntax
Version 1.7

SELECT * FROM GLML1L2Predict (
  ON { table | view | (query) } PARTITION BY ANY
  ON { table | view | (query) } AS Model DIMENSION
  USING
  [ OutputProb ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ Responses ('response' [,...]) ]
  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

GLML1L2Predict Syntax Elements
OutputProb

Specify whether to output the calculated probability for each observation.

Default: 'false'

Responses
[Optional with OutputProb ('true'), disallowed otherwise] Specify the labels for which to output
probabilities. A label (response) must be 0 or 1.

Default behavior: The function outputs only the probability of the class "1".

Accumulate
Specify the names of input columns to copy to the output table.

GLML1L2Predict Input
Input Table Schema

Note:
It is important to normalize the input variables before calling this function. For details, see
Normalized Input.

Column Data Type Description

feature_column Any numeric SQL data
type or VARCHAR

Copied from InputTable used in GLML1L2 call that
output Model table.

accumulate_column Any [Column appears once for each specified
accumulate_column.] Column to copy to output table.
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GLML1L2Predict Output
Output Table Schema

The table is a set of predictions for each test point.

Column Data Type Description

accumulate_
column

Same as in input
table

[Column appears once for each specified accumulate_column.]
Column copied from input table.

prediction DOUBLE
PRECISION

Predicted value.

prob DOUBLE
PRECISION

[Column appears only if you specify OutputProb ('true') and omit
Responses.] Probability that observation belongs to class "1".
This value is sigmoid(Xβ + b), where X is set of predictors and β
and b are, respectively, vector of coefficients and intercept
estimated by GLML1L2 function.
Note:
If GLML1L2 call that created model specified Family
('GAUSSIAN'), all values in this column are NULL.

prob_0 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 0. This value is
1 - prob, where prob is value in column prob.

prob_1 DOUBLE
PRECISION

[Only with Responses, one column appears for each response.]
Probability that observation belongs to category 1. This value is
value in column prob.

GLML1L2Predict Examples

GLML1L2Predict Example: Ridge Regression, Family ('BINOMIAL')

Input

The input table is admissions_test, as in GLMPredict_MLE GLMPredict_MLE Example: Logistic
Distribution Prediction.

The model table is admissions_model, output of GLML1L2 Example: Ridge Regression, Family
('BINOMIAL').

SQL Call

SELECT * FROM GLML1L2Predict (
  ON admissions_test PARTITION BY ANY
  ON admissions_model AS Model DIMENSION
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  USING
  OutputProb ('true')
  Accumulate ('id')
) AS dt ORDER BY id;

Output

 id prediction prob                
 -- ---------- ------------------- 
 50        0.0 0.42261164778201094
 51        0.0  0.4049408918235976
 52        1.0  0.6791731064692488
 53        1.0  0.6128348254047428
 54        1.0  0.6321200551583135
 55        1.0  0.8635298008802573
 56        1.0  0.8639684744611825
 57        1.0  0.8589345247253525
 58        1.0  0.8297786450140937
 59        1.0  0.8421968614075399
 60        1.0  0.8624268462528424
 61        1.0  0.6575556307139581
 62        1.0  0.8584692566063056
 63        1.0  0.8644185196041072
 64        1.0      0.640966603964
 65        1.0  0.6488695133874245
 66        1.0   0.693208669498573
 67        0.0 0.35267304201513183
 68        1.0  0.7347418494287773
 69        1.0  0.8701555291596779

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

GLML1L2Predict Example: LASSO, Family ('GAUSSIAN')

Input

• Input table: housing_test, as in GLMPredict_MLE Example: Gaussian Distribution Prediction
• Model: housing_model, output of GLML1L2 Example: LASSO, Family ('GAUSSIAN')

SQL Call

SELECT * FROM GLML1L2Predict (
  ON housing_test PARTITION BY ANY
  ON housing_model AS Model DIMENSION
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  USING
  Accumulate ('sn')
) AS dt ORDER BY sn;

Output

 sn  prediction         
 --- ------------------ 
  13 37345.831973269815
  16  43687.09059862308
  25  40902.03654672491
  38  72487.79993489318
  53  79238.81946777017
 104 111527.51245186775
 111  39102.91738815808
 117  66936.75897612597
 132  41819.94760124324
 140  41611.84919994215
 142  44394.19887061475
 157  66571.23189229079
 161  64900.96267762861
 162 107758.84817140205
 176   73438.6189187027
 177  62378.41894444322
 195 37197.885003565505
 198  47307.96151089168
 224  67232.91218470069
 234  35237.08241678744
 237   46593.6202622758
 239  43377.85857200969
 249 37863.799887728994
 251  45096.43470435488
 254  74665.80555260641
 255 60214.195570911885
 260  43066.25992025624
 274  67232.40606270777
 294  38987.53125475488
 301 55621.583411818116
 306  67339.67883609686
 317  65655.23197768882
 329 123611.91388294056
 339 126281.82379649683
 340  58474.80959843659
 353  67485.79160065402
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 355  68425.99104737997
 364  77422.31599327197
 367 128556.01523545264
 377 127201.67378365475
 401  84040.85339019273
 403  79857.24053097825
 408   76218.4796684783
 411  78179.19706290774
 440   80549.3290271716
 441  64670.20979822652
 443 61703.972586623415
 459   42818.2957274824
 463  49293.44779989387
 469  61779.16835629488
 472  63766.92478426945
 527 119762.09345887038
 530  116119.0226758564
 540  73146.29611369228

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.
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Linear regression
In statistics, linear regression is a linear approach to modeling the relationship between a scalar
response (or dependent variable) and one or more explanatory variables (or independent variables). The
case of one explanatory variable is called simple linear regression. For more than one explanatory
variable, the process is called multiple linear regression.[1] This term is distinct from multivariate
linear regression, where multiple correlated dependent variables are predicted, rather than a single
scalar variable.[2]

In linear regression, the relationships are modeled using linear predictor functions whose unknown
model parameters are estimated from the data. Such models are called linear models.[3] Most
commonly, the conditional mean of the response given the values of the explanatory variables (or
predictors) is assumed to be an affine function of those values; less commonly, the conditional median or
some other quantile is used. Like all forms of regression analysis, linear regression focuses on the
conditional probability distribution of the response given the values of the predictors, rather than on the
joint probability distribution of all of these variables, which is the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to be used
extensively in practical applications.[4] This is because models which depend linearly on their unknown
parameters are easier to fit than models which are non-linearly related to their parameters and because
the statistical properties of the resulting estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the following two broad
categories:

If the goal is prediction, forecasting, or error reduction, linear regression can be used to fit a
predictive model to an observed data set of values of the response and explanatory variables. After
developing such a model, if additional values of the explanatory variables are collected without an
accompanying response value, the fitted model can be used to make a prediction of the response.
If the goal is to explain variation in the response variable that can be attributed to variation in the
explanatory variables, linear regression analysis can be applied to quantify the strength of the
relationship between the response and the explanatory variables, and in particular to determine
whether some explanatory variables may have no linear relationship with the response at all, or to
identify which subsets of explanatory variables may contain redundant information about the
response.

Linear regression models are often fitted using the least squares approach, but they may also be fitted in
other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations
regression), or by minimizing a penalized version of the least squares cost function as in ridge regression
(L2-norm penalty) and lasso (L1-norm penalty). Conversely, the least squares approach can be used to fit
models that are not linear models. Thus, although the terms "least squares" and "linear model" are
closely linked, they are not synonymous.
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Given a data set  of n statistical units, a linear regression model assumes that the
relationship between the dependent variable y and the p-vector of regressors x is linear. This
relationship is modeled through a disturbance term or error variable ε — an unobserved random
variable that adds "noise" to the linear relationship between the dependent variable and regressors. Thus
the model takes the form

where T denotes the transpose, so that xi
Tβ is the inner product between vectors xi and β.

Often these n equations are stacked together and written in matrix notation as
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In linear regression, the
observations (red) are assumed to
be the result of random deviations
(green) from an underlying
relationship (blue) between a
dependent variable (y) and an
independent variable (x).

where

Some remarks on notation and terminology:

 is a vector of observed values  of the variable called the regressand, endogenous
variable, response variable, measured variable, criterion variable, or dependent variable. This
variable is also sometimes known as the predicted variable, but this should not be confused with
predicted values, which are denoted . The decision as to which variable in a data set is modeled as
the dependent variable and which are modeled as the independent variables may be based on a
presumption that the value of one of the variables is caused by, or directly influenced by the other
variables. Alternatively, there may be an operational reason to model one of the variables in terms of
the others, in which case there need be no presumption of causality.

 may be seen as a matrix of row-vectors  or of n-dimensional column-vectors , which are
known as regressors, exogenous variables, explanatory variables, covariates, input variables,
predictor variables, or independent variables (not to be confused with the concept of independent
random variables). The matrix  is sometimes called the design matrix.

Usually a constant is included as one of the regressors. In particular,  for .
The corresponding element of β is called the intercept. Many statistical inference procedures for
linear models require an intercept to be present, so it is often included even if theoretical
considerations suggest that its value should be zero.
Sometimes one of the regressors can be a non-linear function of another regressor or of the
data, as in polynomial regression and segmented regression. The model remains linear as long
as it is linear in the parameter vector β.
The values xij may be viewed as either observed values of random variables Xj or as fixed values
chosen prior to observing the dependent variable. Both interpretations may be appropriate in
different cases, and they generally lead to the same estimation procedures; however different
approaches to asymptotic analysis are used in these two situations.

 is a -dimensional parameter vector, where  is the intercept term (if one is included in the
model—otherwise  is p-dimensional). Its elements are known as effects or regression coefficients
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(although the latter term is sometimes reserved for the estimated effects). Statistical estimation and
inference in linear regression focuses on β. The elements of this parameter vector are interpreted as
the partial derivatives of the dependent variable with respect to the various independent variables.

 is a vector of values . This part of the model is called the error term, disturbance term, or
sometimes noise (in contrast with the "signal" provided by the rest of the model). This variable
captures all other factors which influence the dependent variable y other than the regressors x. The
relationship between the error term and the regressors, for example their correlation, is a crucial
consideration in formulating a linear regression model, as it will determine the appropriate estimation
method.

Fitting a linear model to a given data set usually requires estimating the regression coefficients  such
that the error term  is minimized. For example, it is common to use the sum of squared
errors  as the quality of the fit.

Example. Consider a situation where a small ball is being tossed up in the air and then we measure its
heights of ascent hi at various moments in time ti. Physics tells us that, ignoring the drag, the
relationship can be modeled as

where β1 determines the initial velocity of the ball, β2 is proportional to the standard gravity, and εi is
due to measurement errors. Linear regression can be used to estimate the values of β1 and β2 from the
measured data. This model is non-linear in the time variable, but it is linear in the parameters β1 and β2;
if we take regressors xi = (xi1, xi2)  = (ti, ti

2), the model takes on the standard form

Standard linear regression models with standard estimation techniques make a number of assumptions
about the predictor variables, the response variables and their relationship. Numerous extensions have
been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in
some cases eliminated entirely. Generally these extensions make the estimation procedure more
complex and time-consuming, and may also require more data in order to produce an equally precise
model.

The following are the major assumptions made by standard linear regression models with standard
estimation techniques (e.g. ordinary least squares):

Weak exogeneity. This essentially means that the predictor variables x can be treated as fixed
values, rather than random variables. This means, for example, that the predictor variables are
assumed to be error-free—that is, not contaminated with measurement errors. Although this
assumption is not realistic in many settings, dropping it leads to significantly more difficult errors-in-
variables models.
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https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Standard_gravity
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Errors-in-variables_model


9/18/2020 Linear regression - Wikipedia

https://en.wikipedia.org/wiki/Linear_regression 5/17

Example of a cubic polynomial regression, which is a
type of linear regression.

Linearity. This means that the mean of the
response variable is a linear combination of the
parameters (regression coefficients) and the
predictor variables. Note that this assumption is
much less restrictive than it may at first seem.
Because the predictor variables are treated as
fixed values (see above), linearity is really only a
restriction on the parameters. The predictor
variables themselves can be arbitrarily
transformed, and in fact multiple copies of the
same underlying predictor variable can be added,
each one transformed differently. This technique
is used, for example, in polynomial regression,
which uses linear regression to fit the response
variable as an arbitrary polynomial function (up to
a given rank) of a predictor variable. With this
much flexibility, models such as polynomial
regression often have "too much power", in that
they tend to overfit the data. As a result, some
kind of regularization must typically be used to
prevent unreasonable solutions coming out of the estimation process. Common examples are ridge
regression and lasso regression. Bayesian linear regression can also be used, which by its nature is
more or less immune to the problem of overfitting. (In fact, ridge regression and lasso regression can
both be viewed as special cases of Bayesian linear regression, with particular types of prior
distributions placed on the regression coefficients.)
Constant variance (a.k.a. homoscedasticity). This means that different values of the response
variable have the same variance in their errors, regardless of the values of the predictor variables. In
practice this assumption is invalid (i.e. the errors are heteroscedastic) if the response variable can
vary over a wide scale. In order to check for heterogeneous error variance, or when a pattern of
residuals violates model assumptions of homoscedasticity (error is equally variable around the 'best-
fitting line' for all points of x), it is prudent to look for a "fanning effect" between residual error and
predicted values. This is to say there will be a systematic change in the absolute or squared
residuals when plotted against the predictive variables. Errors will not be evenly distributed across
the regression line. Heteroscedasticity will result in the averaging over of distinguishable variances
around the points to get a single variance that is inaccurately representing all the variances of the
line. In effect, residuals appear clustered and spread apart on their predicted plots for larger and
smaller values for points along the linear regression line, and the mean squared error for the model
will be wrong. Typically, for example, a response variable whose mean is large will have a greater
variance than one whose mean is small. For example, a given person whose income is predicted to
be $100,000 may easily have an actual income of $80,000 or $120,000 (a standard deviation of
around $20,000), while another person with a predicted income of $10,000 is unlikely to have the
same $20,000 standard deviation, which would imply their actual income would vary anywhere
between -$10,000 and $30,000. (In fact, as this shows, in many cases—often the same cases where
the assumption of normally distributed errors fails—the variance or standard deviation should be
predicted to be proportional to the mean, rather than constant.) Simple linear regression estimation
methods give less precise parameter estimates and misleading inferential quantities such as
standard errors when substantial heteroscedasticity is present. However, various estimation
techniques (e.g. weighted least squares and heteroscedasticity-consistent standard errors) can
handle heteroscedasticity in a quite general way. Bayesian linear regression techniques can also be
used when the variance is assumed to be a function of the mean. It is also possible in some cases to
fix the problem by applying a transformation to the response variable (e.g. fit the logarithm of the
response variable using a linear regression model, which implies that the response variable has a
log-normal distribution rather than a normal distribution).
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Independence of errors. This assumes that the errors of the response variables are uncorrelated
with each other. (Actual statistical independence is a stronger condition than mere lack of correlation
and is often not needed, although it can be exploited if it is known to hold.) Some methods (e.g.
generalized least squares) are capable of handling correlated errors, although they typically require
significantly more data unless some sort of regularization is used to bias the model towards
assuming uncorrelated errors. Bayesian linear regression is a general way of handling this issue.
Lack of perfect multicollinearity in the predictors. For standard least squares estimation methods,
the design matrix X must have full column rank p; otherwise, we have a condition known as perfect
multicollinearity in the predictor variables. This can be triggered by having two or more perfectly
correlated predictor variables (e.g. if the same predictor variable is mistakenly given twice, either
without transforming one of the copies or by transforming one of the copies linearly). It can also
happen if there is too little data available compared to the number of parameters to be estimated
(e.g. fewer data points than regression coefficients). In the case of perfect multicollinearity, the
parameter vector β will be non-identifiable—it has no unique solution. At most we will be able to
identify some of the parameters, i.e. narrow down its value to some linear subspace of Rp. See
partial least squares regression. Methods for fitting linear models with multicollinearity have been
developed;[5][6][7][8] some require additional assumptions such as "effect sparsity"—that a large
fraction of the effects are exactly zero.
Note that the more computationally expensive iterated algorithms for parameter estimation, such as
those used in generalized linear models, do not suffer from this problem.

Beyond these assumptions, several other statistical properties of the data strongly influence the
performance of different estimation methods:

The statistical relationship between the error terms and the regressors plays an important role in
determining whether an estimation procedure has desirable sampling properties such as being
unbiased and consistent.
The arrangement, or probability distribution of the predictor variables x has a major influence on the
precision of estimates of β. Sampling and design of experiments are highly developed subfields of
statistics that provide guidance for collecting data in such a way to achieve a precise estimate of β.

A fitted linear regression model can be used to identify the relationship between a single predictor
variable xj and the response variable y when all the other predictor variables in the model are "held
fixed". Specifically, the interpretation of βj is the expected change in y for a one-unit change in xj when
the other covariates are held fixed—that is, the expected value of the partial derivative of y with respect
to xj. This is sometimes called the unique effect of xj on y. In contrast, the marginal effect of xj on y can
be assessed using a correlation coefficient or simple linear regression model relating only xj to y; this
effect is the total derivative of y with respect to xj.

Care must be taken when interpreting regression results, as some of the regressors may not allow for
marginal changes (such as dummy variables, or the intercept term), while others cannot be held fixed
(recall the example from the introduction: it would be impossible to "hold ti fixed" and at the same time
change the value of ti

2).

It is possible that the unique effect can be nearly zero even when the marginal effect is large. This may
imply that some other covariate captures all the information in xj, so that once that variable is in the
model, there is no contribution of xj to the variation in y. Conversely, the unique effect of xj can be large
while its marginal effect is nearly zero. This would happen if the other covariates explained a great deal

Interpretation
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The data sets in the Anscombe's quartet are designed to have
approximately the same linear regression line (as well as nearly identical
means, standard deviations, and correlations) but are graphically very
different. This illustrates the pitfalls of relying solely on a fitted model to
understand the relationship between variables.

of the variation of y, but they mainly
explain variation in a way that is
complementary to what is captured
by xj. In this case, including the other
variables in the model reduces the
part of the variability of y that is
unrelated to xj, thereby
strengthening the apparent
relationship with xj.

The meaning of the expression "held
fixed" may depend on how the values
of the predictor variables arise. If the
experimenter directly sets the values
of the predictor variables according
to a study design, the comparisons of
interest may literally correspond to
comparisons among units whose
predictor variables have been "held
fixed" by the experimenter.
Alternatively, the expression "held
fixed" can refer to a selection that
takes place in the context of data
analysis. In this case, we "hold a
variable fixed" by restricting our attention to the subsets of the data that happen to have a common value
for the given predictor variable. This is the only interpretation of "held fixed" that can be used in an
observational study.

The notion of a "unique effect" is appealing when studying a complex system where multiple interrelated
components influence the response variable. In some cases, it can literally be interpreted as the causal
effect of an intervention that is linked to the value of a predictor variable. However, it has been argued
that in many cases multiple regression analysis fails to clarify the relationships between the predictor
variables and the response variable when the predictors are correlated with each other and are not
assigned following a study design.[9] Commonality analysis may be helpful in disentangling the shared
and unique impacts of correlated independent variables.[10]

Numerous extensions of linear regression have been developed, which allow some or all of the
assumptions underlying the basic model to be relaxed.

The very simplest case of a single scalar predictor variable x and a single scalar response variable y is
known as simple linear regression. The extension to multiple and/or vector-valued predictor variables
(denoted with a capital X) is known as multiple linear regression, also known as multivariable linear
regression. Nearly all real-world regression models involve multiple predictors, and basic descriptions of
linear regression are often phrased in terms of the multiple regression model. Note, however, that in
these cases the response variable y is still a scalar. Another term, multivariate linear regression, refers
to cases where y is a vector, i.e., the same as general linear regression.

Extensions

Simple and multiple linear regression
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Example of simple linear regression, which has one independent
variable

The general linear model considers the
situation when the response variable is not
a scalar (for each observation) but a vector,
yi. Conditional linearity of 

 is still assumed, with a
matrix B replacing the vector β of the
classical linear regression model.
Multivariate analogues of ordinary least
squares (OLS) and generalized least
squares (GLS) have been developed.
"General linear models" are also called
"multivariate linear models". These are not
the same as multivariable linear models
(also called "multiple linear models").

Various models have been created that allow for heteroscedasticity, i.e. the errors for different response
variables may have different variances. For example, weighted least squares is a method for estimating
linear regression models when the response variables may have different error variances, possibly with
correlated errors. (See also Weighted linear least squares, and Generalized least squares.)
Heteroscedasticity-consistent standard errors is an improved method for use with uncorrelated but
potentially heteroscedastic errors.

Generalized linear models (GLMs) are a framework for modeling response variables that are bounded or
discrete. This is used, for example:

when modeling positive quantities (e.g. prices or populations) that vary over a large scale—which are
better described using a skewed distribution such as the log-normal distribution or Poisson
distribution (although GLMs are not used for log-normal data, instead the response variable is simply
transformed using the logarithm function);
when modeling categorical data, such as the choice of a given candidate in an election (which is
better described using a Bernoulli distribution/binomial distribution for binary choices, or a categorical
distribution/multinomial distribution for multi-way choices), where there are a fixed number of choices
that cannot be meaningfully ordered;
when modeling ordinal data, e.g. ratings on a scale from 0 to 5, where the different outcomes can be
ordered but where the quantity itself may not have any absolute meaning (e.g. a rating of 4 may not
be "twice as good" in any objective sense as a rating of 2, but simply indicates that it is better than 2
or 3 but not as good as 5).

Generalized linear models allow for an arbitrary link function, g, that relates the mean of the response
variable(s) to the predictors: . The link function is often related to the distribution of
the response, and in particular it typically has the effect of transforming between the  range of
the linear predictor and the range of the response variable.

General linear models

Heteroscedastic models

Generalized linear models
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Some common examples of GLMs are:

Poisson regression for count data.
Logistic regression and probit regression for binary data.
Multinomial logistic regression and multinomial probit regression for categorical data.
Ordered logit and ordered probit regression for ordinal data.

Single index models allow some degree of nonlinearity in the relationship between x and y, while
preserving the central role of the linear predictor β′x as in the classical linear regression model. Under
certain conditions, simply applying OLS to data from a single-index model will consistently estimate β
up to a proportionality constant.[11]

Hierarchical linear models (or multilevel regression) organizes the data into a hierarchy of regressions,
for example where A is regressed on B, and B is regressed on C. It is often used where the variables of
interest have a natural hierarchical structure such as in educational statistics, where students are nested
in classrooms, classrooms are nested in schools, and schools are nested in some administrative grouping,
such as a school district. The response variable might be a measure of student achievement such as a test
score, and different covariates would be collected at the classroom, school, and school district levels.

Errors-in-variables models (or "measurement error models") extend the traditional linear regression
model to allow the predictor variables X to be observed with error. This error causes standard estimators
of β to become biased. Generally, the form of bias is an attenuation, meaning that the effects are biased
toward zero.

In Dempster–Shafer theory, or a linear belief function in particular, a linear regression model may be
represented as a partially swept matrix, which can be combined with similar matrices representing
observations and other assumed normal distributions and state equations. The combination of swept
or unswept matrices provides an alternative method for estimating linear regression models.

A large number of procedures have been developed for parameter estimation and inference in linear
regression. These methods differ in computational simplicity of algorithms, presence of a closed-form
solution, robustness with respect to heavy-tailed distributions, and theoretical assumptions needed to
validate desirable statistical properties such as consistency and asymptotic efficiency.

Some of the more common estimation techniques for linear regression are summarized below.

Hierarchical linear models

Errors-in-variables

Others

Estimation methods

Least-squares estimation and related techniques
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Francis Galton's 1875 illustration of the correlation between the heights of
adults and their parents. The observation that adult children's heights
tended to deviate less from the mean height than their parents suggested
the concept of "regression toward the mean", giving regression its name.
The "locus of horizontal tangential points" passing through the leftmost
and rightmost points on the ellipse (which is a level curve of the bivariate
normal distribution estimated from the data) is the OLS estimate of the
regression of parents' heights on children's heights, while the "locus of
vertical tangential points" is the OLS estimate of the regression of
children's heights on parent's heights. The major axis of the ellipse is the
TLS estimate.

Let's assume that the independent
variable is 
and the model's parameters are 

, then the
model's prediction would be 

. If  is

extended to 
then  would become a dot product
of the parameter and the
independent variable, i.e. 

. In the

least-squares setting, the optimum
parameter is defined as such that
minimizes the sum of mean squared
loss:

Now putting the independent and dependent variables in matrices  and  respectively, the loss
function can be rewritten as:

As the loss is convex the optimum solution lies at gradient zero. The gradient of the loss function is
(using Denominator layout convention):
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Setting the gradient to zero produces the optimum parameter:

Note: To prove that the  obtained is indeed the local minimum, one needs to differentiate once more to
obtain the Hessian matrix and show that it is positive definite. This is provided by the Gauss–Markov
theorem.

Linear least squares methods include mainly:

Ordinary least squares
Weighted least squares
Generalized least squares

Maximum likelihood estimation can be performed when the distribution of the error terms is known
to belong to a certain parametric family ƒθ of probability distributions.[12] When fθ is a normal
distribution with zero mean and variance θ, the resulting estimate is identical to the OLS estimate.
GLS estimates are maximum likelihood estimates when ε follows a multivariate normal distribution
with a known covariance matrix.
Ridge regression[13][14][15] and other forms of penalized estimation, such as Lasso regression,[5]

deliberately introduce bias into the estimation of β in order to reduce the variability of the estimate.
The resulting estimates generally have lower mean squared error than the OLS estimates,
particularly when multicollinearity is present or when overfitting is a problem. They are generally
used when the goal is to predict the value of the response variable y for values of the predictors x
that have not yet been observed. These methods are not as commonly used when the goal is
inference, since it is difficult to account for the bias.
Least absolute deviation (LAD) regression is a robust estimation technique in that it is less
sensitive to the presence of outliers than OLS (but is less efficient than OLS when no outliers are
present). It is equivalent to maximum likelihood estimation under a Laplace distribution model for
ε.[16]

Adaptive estimation. If we assume that error terms are independent of the regressors, ,
then the optimal estimator is the 2-step MLE, where the first step is used to non-parametrically
estimate the distribution of the error term.[17]

Maximum-likelihood estimation and related techniques

Other estimation techniques
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Comparison of the Theil–Sen
estimator (black) and simple linear
regression (blue) for a set of points
with outliers.

Bayesian linear regression applies the framework of Bayesian
statistics to linear regression. (See also Bayesian multivariate
linear regression.) In particular, the regression coefficients β are
assumed to be random variables with a specified prior
distribution. The prior distribution can bias the solutions for the
regression coefficients, in a way similar to (but more general
than) ridge regression or lasso regression. In addition, the
Bayesian estimation process produces not a single point
estimate for the "best" values of the regression coefficients but
an entire posterior distribution, completely describing the
uncertainty surrounding the quantity. This can be used to
estimate the "best" coefficients using the mean, mode, median,
any quantile (see quantile regression), or any other function of
the posterior distribution.
Quantile regression focuses on the conditional quantiles of y
given X rather than the conditional mean of y given X. Linear
quantile regression models a particular conditional quantile, for
example the conditional median, as a linear function βTx of the
predictors.
Mixed models are widely used to analyze linear regression relationships involving dependent data
when the dependencies have a known structure. Common applications of mixed models include
analysis of data involving repeated measurements, such as longitudinal data, or data obtained from
cluster sampling. They are generally fit as parametric models, using maximum likelihood or Bayesian
estimation. In the case where the errors are modeled as normal random variables, there is a close
connection between mixed models and generalized least squares.[18] Fixed effects estimation is an
alternative approach to analyzing this type of data.
Principal component regression (PCR)[7][8] is used when the number of predictor variables is
large, or when strong correlations exist among the predictor variables. This two-stage procedure first
reduces the predictor variables using principal component analysis then uses the reduced variables
in an OLS regression fit. While it often works well in practice, there is no general theoretical reason
that the most informative linear function of the predictor variables should lie among the dominant
principal components of the multivariate distribution of the predictor variables. The partial least
squares regression is the extension of the PCR method which does not suffer from the mentioned
deficiency.
Least-angle regression[6] is an estimation procedure for linear regression models that was
developed to handle high-dimensional covariate vectors, potentially with more covariates than
observations.
The Theil–Sen estimator is a simple robust estimation technique that chooses the slope of the fit
line to be the median of the slopes of the lines through pairs of sample points. It has similar statistical
efficiency properties to simple linear regression but is much less sensitive to outliers.[19]

Other robust estimation techniques, including the α-trimmed mean approach, and L-, M-, S-, and R-
estimators have been introduced.

Linear regression is widely used in biological, behavioral and social sciences to describe possible
relationships between variables. It ranks as one of the most important tools used in these disciplines.

Applications

Trend line
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A trend line represents a trend, the long-term movement in time series data after other components
have been accounted for. It tells whether a particular data set (say GDP, oil prices or stock prices) have
increased or decreased over the period of time. A trend line could simply be drawn by eye through a set
of data points, but more properly their position and slope is calculated using statistical techniques like
linear regression. Trend lines typically are straight lines, although some variations use higher degree
polynomials depending on the degree of curvature desired in the line.

Trend lines are sometimes used in business analytics to show changes in data over time. This has the
advantage of being simple. Trend lines are often used to argue that a particular action or event (such as
training, or an advertising campaign) caused observed changes at a point in time. This is a simple
technique, and does not require a control group, experimental design, or a sophisticated analysis
technique. However, it suffers from a lack of scientific validity in cases where other potential changes can
affect the data.

Early evidence relating tobacco smoking to mortality and morbidity came from observational studies
employing regression analysis. In order to reduce spurious correlations when analyzing observational
data, researchers usually include several variables in their regression models in addition to the variable
of primary interest. For example, in a regression model in which cigarette smoking is the independent
variable of primary interest and the dependent variable is lifespan measured in years, researchers might
include education and income as additional independent variables, to ensure that any observed effect of
smoking on lifespan is not due to those other socio-economic factors. However, it is never possible to
include all possible confounding variables in an empirical analysis. For example, a hypothetical gene
might increase mortality and also cause people to smoke more. For this reason, randomized controlled
trials are often able to generate more compelling evidence of causal relationships than can be obtained
using regression analyses of observational data. When controlled experiments are not feasible, variants
of regression analysis such as instrumental variables regression may be used to attempt to estimate
causal relationships from observational data.

The capital asset pricing model uses linear regression as well as the concept of beta for analyzing and
quantifying the systematic risk of an investment. This comes directly from the beta coefficient of the
linear regression model that relates the return on the investment to the return on all risky assets.

Linear regression is the predominant empirical tool in economics. For example, it is used to predict
consumption spending,[20] fixed investment spending, inventory investment, purchases of a country's
exports,[21] spending on imports,[21] the demand to hold liquid assets,[22] labor demand,[23] and labor
supply.[23]

Linear regression finds application in a wide range of environmental science applications. In Canada, the
Environmental Effects Monitoring Program uses statistical analyses on fish and benthic surveys to
measure the effects of pulp mill or metal mine effluent on the aquatic ecosystem.[24]

Epidemiology

Finance

Economics

Environmental science
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Linear regression plays an important role in the field of artificial intelligence such as machine learning.
The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due
to its relative simplicity and well-known properties.[25]

Least squares linear regression, as a means of finding a good rough linear fit to a set of points was
performed by Legendre (1805) and Gauss (1809) for the prediction of planetary movement. Quetelet was
responsible for making the procedure well-known and for using it extensively in the social sciences.[26]

Analysis of variance
Blinder–Oaxaca decomposition
Censored regression model
Cross-sectional regression
Curve fitting
Empirical Bayes methods
Errors and residuals
Lack-of-fit sum of squares
Line fitting
Linear classifier
Linear equation
Logistic regression

M-estimator
Multivariate adaptive regression splines
Nonlinear regression
Nonparametric regression
Normal equations
Projection pursuit regression
Segmented linear regression
Stepwise regression
Structural break
Support vector machine
Truncated regression model
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What A Simple Linear Regression Model Is 
and How It Works 

A basic statistical method of finding relationships between 
variables 

BY  

GIGI DEVAULT 

  

Updated January 09, 2020 

Linear regression models are used to show or predict the relationship between 

two variables or factors. The factor that is being predicted (the factor that the 

equation solves for) is called the dependent variable. The factors that are used to 

predict the value of the dependent variable are called the independent variables. 

In linear regression, each observation consists of two values. One value is for the 

dependent variable and one value is for the independent variable. In this simple model, 

a straight line approximates the relationship between the dependent variable and the 

independent variable.1 

When two or more independent variables are used in regression analysis, the model is 

no longer a simple linear one. This is known as multiple regression.2 

Formula For a Simple Linear Regression Model 

The two factors that are involved in simple linear regression analysis are 

designated x and y. The equation that describes how y is related to x is known as 

the regression model. 

The simple linear regression model is represented by: 
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y = β0 +β1x+ε 

The linear regression model contains an error term that is represented by ε. The error 

term is used to account for the variability in y that cannot be explained by the linear 

relationship between x and y. If ε were not present, that would mean that 

knowing x would provide enough information to determine the value of y. 

There also parameters that represent the population being studied. These parameters 

of the model are represented by β0 and β1. 

The simple linear regression equation is graphed as a straight line, where: 

1. β0 is the y-intercept of the regression line. 

2. β1 is the slope. 

3. Ε(y) is the mean or expected value of y for a given value of x. 

A regression line can show a positive linear relationship, a negative linear relationship, 

or no relationship3. 

1. No relationship: The graphed line in a simple linear regression is flat (not sloped). 

There is no relationship between the two variables. 

2. Positive relationship: The regression line slopes upward with the lower end of the line 

at the y-intercept (axis) of the graph and the upper end of the line extending upward into 

the graph field, away from the x-intercept (axis). There is a positive linear relationship 

between the two variables: as the value of one increases, the value of the other also 

increases. 

3. Negative relationship: The regression line slopes downward with the upper end of the 

line at the y-intercept (axis) of the graph and the lower end of the line extending 

downward into the graph field, toward the x-intercept (axis). There is a negative linear 

relationship between the two variables: as the value of one increases, the value of the 

other decreases.4 
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The Estimated Linear Regression Equation 

If the parameters of the population were known, the simple linear regression equation 

(shown below) could be used to compute the mean value of y for a known value of x. 

Ε(y) = β0 +β1x+ε 

In practice, however, parameter values generally are not known so they must be 

estimated by using data from a sample of the population. The population parameters 

are estimated by using sample statistics. The sample statistics are represented 

by β0 and β1. When the sample statistics are substituted for the population parameters, 

the estimated regression equation is formed.3 

The estimated regression equation is: 

(ŷ) = β0 +β1x+ε 

Note: (ŷ) is pronounced y hat. 

The graph of the estimated simple regression equation is called the estimated 

regression line. 

1. β0 is the y-intercept of the regression line. 

2. β1 is the slope. 

3. (ŷ) is the estimated value of y for a given value of x. 

Limits of Simple Linear Regression 

Even the best data does not tell a complete story.  

Regression analysis is commonly used in research to establish that a correlation exists 

between variables. But correlation is not the same as causation: a relationship between 

two variables does not mean one causes the other to happen. Even a line in a simple 

linear regression that fits the data points well may not guarantee a cause-and-effect 

relationship. 
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Using a linear regression model will allow you to discover whether a relationship 

between variables exists at all. To understand exactly what that relationship is, and 

whether one variable causes another, you will need additional research and statistical 

analysis.1 

Article Sources 
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POSTagger (ML Engine)

The POSTagger function creates part-of-speech (POS) tags for the words in the input text. POS tagging is

the first step in the syntactic analysis of a language, and an important preprocessing step in many natural

language-processing applications.

The POSTagger function was developed on the Penn Treebank Project and Chinese Penn Treebank Project

data set. Its POS tags comply with the tags defined by the two projects.

For the parts of speech used, see the following:

Text Language Parts of Speech

English https://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html 

Chinese https://www.sketchengine.co.uk/chinese-penn-treebank-part-of-speech-tagset/ 

POSTagger uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

POSTagger Syntax

Version 2.8 

SELECT * FROM POSTagger (

  ON { table | view | (query) }

  USING

  TextColumn ('text_column')]

  [ InputLanguage ({ 'en' | 'zh_Cn' }) ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

POSTagger Syntax Elements

TextColumn

Specify the name of the input column that contains the text to tag.

InputLanguage

[Optional] Specify the language of the input text: 

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese
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Accumulate

[Optional] Specify the names of the input table columns to copy to the output table.

If you intend to use the POSTagger output table as input to the function TextChunker (ML Engine),

then this syntax element must specify the input table columns that comprise the partition key.

POSTagger Input

Table Description

Input table Contains text to tag.

Model table Determined by InputLanguage syntax element:

InputLanguage Model File

English pos_model_2.0_en_141008.bin 

Simplified

Chinese

pos_model_2.0_zh_cn_141008.bin 

These model files are preinstalled on ML Engine.

Input Table Schema

The table can have additional columns, but the function ignores them. 

Column Data Type Description

accumulate_column Any Column to copy to output table. 

text_column VARCHAR Text to tag. Each row of this column must contain a well-

formatted sentence. To convert English text to formatted

sentences, use SentenceExtractor (ML Engine) function.

POSTagger Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table 

[Column appears once for each specified accumulate_column.] 

Column copied from input table.

word_sn INTEGER Word serial number (position of word in input text).

word VARCHAR Word extracted from input text.

pos_tag VARCHAR POS tag of word.
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POSTagger Example

Input

• Input table: Output table of SentenceExtractor Example 

SQL Call

SELECT * FROM POSTagger (

  ON SentenceExtractor (

    ON paragraphs_input 

    USING

    TextColumn ('paratext')

    Accumulate ('paraid')

  ) 

  USING

  TextColumn ('sentence')

  Accumulate ('sentence','sentence_sn')

) AS dt ORDER BY sentence_sn, word_sn;

Output

 sentence                                                                                                             

 ---------------------------------------------------------------------------------------------------------------------
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextChunker (ML Engine)

The TextChunker function divides text into phrases and assigns each phrase a tag that identifies its type.
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Text chunking (also called shallow parsing) divides text into phrases in such a way that syntactically related

words become members of the same phrase. Phrases do not overlap; that is, a word is a member of only

one chunk.

For example, the sentence "He reckons the current account deficit will narrow to only # 1.8 billion in

September ." can be divided as follows, with brackets delimiting phrases:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in]

[NP September]

After each opening bracket is a tag that identifies the chunk type (NP, VP, and so on). For information

about chunk types, see TextChunker Output.

For more information about text chunking, see:

• Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking.

In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

• Fei Sha and Fernando Pereira, Shallow Parsing with Conditional Random Fields. [2003]

TextChunker uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

TextChunker Syntax

Version 1.6

SELECT * FROM TextChunker (

  ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn

  USING

  WordColumn ('word_column')

  POSColumn ('pos_tag_column')

) AS alias;

The input_table is output table of the POSTagger (ML Engine) function, which contains the columns 

partition_key and word_sn.

TextChunker Syntax Elements

WordColumn
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Specify the name of the input table column that contains the words to chunk into phrases. Typically,

this is the word column of the output table of the POSTagger function (described in POSTagger

Output).

POSColumn

Specify the name of the input table column the part-of-speech (POS) tag of words. Typically, this is

the pos_tag column of the output table of the POSTagger function (described in "POSTagger

Output").

TextChunker Input

Table Description

Input table POSTagger Output table.

When running POSTagger to create this table,

specify in the Accumulate syntax element the

name of the input column that contains the unique

row identifiers.

Model file chunker_default_model.bin, provided with function.

TextChunker Output

Output Table Schema

Column Data Type Description

partition_key VARCHAR Key of partition that

contains text.

chunk_sn INTEGER Sequence number of

phrase in sentence.

chunk VARCHAR Text chunk (syntactically

related words).

chunk_tag VARCHAR Phrase type tag (see

following table).

Phrase Type Tags

Tag Phrase Type

NP noun phrase

VP verb phrase

PP prepositional phrase

ADVP adverb phrase

SBAR subordinated clause

ADJP adjective phrase

PRT particles
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Tag Phrase Type

CONJP conjunction phrase

INTJ interjection

LST list marker

UCP unlike coordinated phrase

O punctuation marks

TextChunker Examples

TextChunker Example: POSTagger Output as Input

Input

• Input table: pos_tmp, created by inputting the table cities to the POSTagger function

cities

paraid paratext

1 I live in Los Angeles.

2 New York is a great city.

3 Chicago is a lot of fun, but the winters are very cold

and windy.

4 Philadelphia and Boston have many historical sites.

This statement creates pos_tmp:

CREATE multiset table pos_tmp AS (

  SELECT * FROM POSTagger (

    ON cities

    USING

    Accumulate ('paraid')

    TextColumn ('paratext')

  ) AS dt1

) WITH DATA;

SQL Call

SELECT * FROM TextChunker (

  ON pos_tmp PARTITION BY paraid ORDER BY paraid, word_sn

  USING

  WordColumn ('word')

  POSColumn ('pos_tag')

) AS dt;
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Output

 partition_key chunk_sn chunk                   chunk_tag 

 ------------- -------- ----------------------- --------- 

             1        1 i                       NP       

             1        2 live                    VP       

             1        3 in                      PP       

             1        4 los angeles             NP       

             1        5 .                       O        

             2        1 new york                NP       

             2        2 is                      VP       

             2        3 a great city            NP       

             2        4 , filled                VP       

             2        5 with                    PP       

             2        6 arts and culture        NP       

             2        7 .                       O        

             3        1 chicago                 NP       

             3        2 is                      VP       

             3        3 a lot                   NP       

             3        4 of                      PP       

             3        5 fun                     NP       

             3        6 ,                       O        

             3        7 but                     O        

             3        8 the winters             NP       

             3        9 are                     VP       

             3       10 very cold and windy     NP       

             3       11 .                       O        

             4        1 philadelphia and boston NP       

             4        2 have                    VP       

             4        3 many historical sites   NP       

             4        4 .                       O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextChunker Example: SentenceExtractor and POSTagger Output as Input

Input

paragraphs_input
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paraid paratopic paratext

1 Decision Trees Decision tree learning uses a

decision tree as a predictive

model which maps observations

about an item to conclusions

about the items target value. It is

one of the predictive modeling

approaches used in statistics,

data mining and machine

learning. Tree models where the

target variable can take a finite

set of values are called

classification trees. In these tree

structures, leaves represent class

labels and branches represent

conjunctions of features that lead

to those class labels. Decision

trees where the target variable

can take continuous values

(typically real numbers) are

called regression trees.

2 Simple Regression In statistics, simple linear

regression is the least squares

estimator of a linear regression

model with a single explanatory

variable. In other words, simple

linear regression fits a straight

line through the set of n points in

such a way that makes the sum

of squared residuals of the model

(that is, vertical distances

between the points of the data

set and the fitted line) as small as

possible.
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paraid paratopic paratext

3 Logistic Regression Logistic regression was

developed by statistician David

Cox in 1958[2][3] (although much

work was done in the single

independent variable case almost

two decades earlier). The binary

logistic model is used to estimate

the probability of a binary

response based on one or more

predictor (or independent)

variables (features). As such it is

not a classification method. It

could be called a qualitative

response/discrete choice model in

the terminology of economics.

4 Cluster analysis Cluster analysis or clustering is

the task of grouping a set of

objects in such a way that objects

in the same group (called a

cluster) are more similar (in some

sense or another) to each other

than to those in other groups

(clusters). It is a main task of

exploratory data mining, and a

common technique for statistical

data analysis, used in many

fields, including machine

learning, pattern recognition,

image analysis, information

retrieval, and bioinformatics.

Cluster analysis itself is not one

specific algorithm, but the

general task to solve. It can be

achieved by various algorithms

that differ significantly in their

notion of what constitutes a

cluster and how to efficiently find

them.
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paraid paratopic paratext

5 Association rule learning Association rule learning is a

method for discovering

interesting relations between

variables in large databases. It is

intended to identify strong rules

discovered in databases using

different measures of

interestingness. Based on the

concept of strong rules, Rakesh

Agrawal et al.[2] introduced

association rules for discovering

regularities between products in

large-scale transaction data

recorded by point-of-sale (POS)

systems in supermarkets. For

example, the rule {onions,

potatoes} => {burger} found in

the sales data of a supermarket

would indicate that if a customer

buys onions and potatoes

together, they are likely to also

buy hamburger meat.

SQL Call

TextChunker requires each sentence to have a unique identifier, and the input to TextChunker must be

partitioned by that identifier.

SELECT * FROM TextChunker (

  ON (

    SELECT * FROM POSTagger (

      ON (

        SELECT paraid*1000+sentence_sn AS sentence_id, sentence FROM SentenceExtractor (

          ON paragraphs_input

          USING

          TextColumn ('paratext')

          Accumulate ('paraid')

        ) AS dt1

      )

      USING

      TextColumn ('sentence')

      Accumulate ('sentence_id')

    ) AS dt2 

  ) PARTITION BY sentence_id ORDER BY word_sn

  USING

  WordColumn('word')
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  POSColumn('pos_tag')

) AS dt;

Output

 partition_key chunk_sn chunk                                                                                         

 ------------- -------- ----------------------------------------------------------------------------------------------

          1001        1 decision tree learning                                                                        

          1001        2 uses                                                                                          

          1001        3 a decision tree                                                                               

          1001        4 as                                                                                            

          1001        5 a predictive model                                                                            

          1001        6 which                                                                                         

          1001        7 maps                                                                                          

          1001        8 observations                                                                                  

          1001        9 about                                                                                         

          1001       10 an item                                                                                       

          1001       11 to                                                                                            

          1001       12 conclusions                                                                                   

          1001       13 about                                                                                         

          1001       14 the items target value                                                                        

          1001       15 .                                                                                             

          1001       16 it                                                                                            

          1001       17 is                                                                                            

          1001       18 one                                                                                           

          1001       19 of                                                                                            

          1001       20 the predictive modelling approaches                                                           

          1001       21 used                                                                                          

          1001       22 in                                                                                            

          1001       23 statistics , data mining and machine learning . tree models                                   

          1001       24 where                                                                                         

          1001       25 the target variable                                                                           

          1001       26 can take                                                                                      

          1001       27 a finite set                                                                                  

          1001       28 of                                                                                            

          1001       29 values                                                                                        

          1001       30 are called                                                                                    

          1001       31 classification trees                                                                          

          1001       32 .                                                                                             

          1001       33 in                                                                                            

          1001       34 these tree structures                                                                         

          1001       35 ,                                                                                             

          1001       36 leaves                                                                                        

          1001       37 represent class labels and branches                                                           

          1001       38 represent                                                                                     

          1001       39 conjunctions                                                                                  

          1001       40 of                                                                                            

          1001       41 features                                                                                      
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          1001       42 that                                                                                          

          1001       43 lead                                                                                          

          1001       44 to                                                                                            

          1001       45 those class labels . decision trees                                                           

          1001       46 where                                                                                         

          1001       47 the target variable                                                                           

          1001       48 can take                                                                                      

          1001       49 continuous values                                                                             

          1001       50 ( typically real numbers                                                                      

          1001       51 )                                                                                             

          1001       52 are called                                                                                    

          1001       53 regression trees                                                                              

          1001       54 .                                                                                             

          2001        1 in                                                                                            

          2001        2 statistics                                                                                    

          2001        3 ,                                                                                             

          2001        4 simple linear regression                                                                      

          2001        5 is                                                                                            

          2001        6 the least squares estimator                                                                   

          2001        7 of                                                                                            

          2001        8 a linear regression model                                                                     

          2001        9 with                                                                                          

          2001       10 a single explanatory variable .                                                               

          2001       11 in                                                                                            

          2001       12 other words                                                                                   

          2001       13 ,                                                                                             

          2001       14 simple linear regression                                                                      

          2001       15 fits                                                                                          

          2001       16 a straight line                                                                               

          2001       17 through                                                                                       

          2001       18 the set                                                                                       

          2001       19 of                                                                                            

          2001       20 n points                                                                                      

          2001       21 in                                                                                            

          2001       22 such a way                                                                                    

          2001       23 that                                                                                          

          2001       24 makes                                                                                         

          2001       25 the sum                                                                                       

          2001       26 of                                                                                            

          2001       27 squared residuals                                                                             

          2001       28 of                                                                                            

          2001       29 the model (                                                                                   

          2001       30 that                                                                                          

          2001       31 is                                                                                            

          2001       32 , vertical distances                                                                          

          2001       33 between                                                                                       

          2001       34 the points                                                                                    

          2001       35 of                                                                                            
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          2001       36 the data                                                                                      

          2001       37 set                                                                                           

          2001       38 and                                                                                           

          2001       39 the fitted line                                                                               

          2001       40 )                                                                                             

          2001       41 as small                                                                                      

          2001       42 as                                                                                            

          2001       43 possible                                                                                      

          2001       44 .                                                                                             

          3001        1 logistic regression                                                                           

          3001        2 was developed                                                                                 

          3001        3 by                                                                                            

          3001        4 statistician david cox                                                                        

          3001        5 in                                                                                            

          3001        6 1958[2][3](although much work                                                                 

          3001        7 was done                                                                                      

          3001        8 in                                                                                            

          3001        9 the single independent variable case                                                          

          3001       10 almost                                                                                        

          3001       11 two decades                                                                                   

          3001       12 earlier)                                                                                      

          3001       13 .                                                                                             

          3001       14 the binary logistic model                                                                     

          3001       15 is used to estimate                                                                           

          3001       16 the probability                                                                               

          3001       17 of                                                                                            

          3001       18 a binary response                                                                             

          3001       19 based                                                                                         

          3001       20 on                                                                                            

          3001       21 one or more predictor ( or independent ) variables ( features) .                              

          3001       22 as                                                                                            

          3001       23 such                                                                                          

          3001       24 it                                                                                            

          3001       25 is                                                                                            

          3001       26 not                                                                                           

          3001       27 a classification method                                                                       

          3001       28 .                                                                                             

          3001       29 it                                                                                            

          3001       30 could be called                                                                               

          3001       31 a qualitative response/discrete choice model                                                  

          3001       32 in                                                                                            

          3001       33 the terminology                                                                               

          3001       34 of                                                                                            

          3001       35 economics                                                                                     

          3001       36 .                                                                                             

          4001        1 cluster analysis or clustering                                                                

          4001        2 is                                                                                            

          4001        3 the task                                                                                      
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          4001        4 of                                                                                            

          4001        5 grouping                                                                                      

          4001        6 a set                                                                                         

          4001        7 of                                                                                            

          4001        8 objects                                                                                       

          4001        9 in                                                                                            

          4001       10 such a way                                                                                    

          4001       11 that                                                                                          

          4001       12 objects                                                                                       

          4001       13 in                                                                                            

          4001       14 the same group                                                                                

          4001       15 ( called                                                                                      

          4001       16 a cluster )                                                                                   

          4001       17 are                                                                                           

          4001       18 more similar                                                                                  

          4001       19 (                                                                                             

          4001       20 in                                                                                            

          4001       21 some sense                                                                                    

          4001       22 or                                                                                            

          4001       23 another )                                                                                     

          4001       24 to                                                                                            

          4001       25 each other                                                                                    

          4001       26 than                                                                                          

          4001       27 to                                                                                            

          4001       28 those                                                                                         

          4001       29 in                                                                                            

          4001       30 other groups                                                                                  

          4001       31 ( clusters)                                                                                   

          4001       32 .                                                                                             

          4001       33 it                                                                                            

          4001       34 is                                                                                            

          4001       35 a main task                                                                                   

          4001       36 of                                                                                            

          4001       37 exploratory data mining                                                                       

          4001       38 ,                                                                                             

          4001       39 and                                                                                           

          4001       40 a common technique                                                                            

          4001       41 for                                                                                           

          4001       42 statistical data analysis                                                                     

          4001       43 , used                                                                                        

          4001       44 in                                                                                            

          4001       45 many fields                                                                                   

          4001       46 ,                                                                                             

          4001       47 including                                                                                     

          4001       48 machine learning                                                                              

          4001       49 ,                                                                                             

          4001       50 pattern recognition , image analysis , information retrieval , and bioinformatics . cluster an

          4001       51 itself                                                                                        
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          4001       52 is                                                                                            

          4001       53 not                                                                                           

          4001       54 one specific algorithm                                                                        

          4001       55 ,                                                                                             

          4001       56 but                                                                                           

          4001       57 the general task                                                                              

          4001       58 to be solved                                                                                  

          4001       59 .                                                                                             

          4001       60 it                                                                                            

          4001       61 can be achieved                                                                               

          4001       62 by                                                                                            

          4001       63 various algorithms                                                                            

          4001       64 that                                                                                          

          4001       65 differ                                                                                        

          4001       66 significantly                                                                                 

          4001       67 in                                                                                            

          4001       68 their notion                                                                                  

          4001       69 of                                                                                            

          4001       70 what                                                                                          

          4001       71 constitutes                                                                                   

          4001       72 a cluster                                                                                     

          4001       73 and                                                                                           

          4001       74 how                                                                                           

          4001       75 to efficiently find                                                                           

          4001       76 them                                                                                          

          4001       77 .                                                                                             

          5001        1 association rule learning                                                                     

          5001        2 is                                                                                            

          5001        3 a method                                                                                      

          5001        4 for                                                                                           

          5001        5 discovering                                                                                   

          5001        6 interesting relations                                                                         

          5001        7 between                                                                                       

          5001        8 variables                                                                                     

          5001        9 in                                                                                            

          5001       10 large databases                                                                               

          5001       11 .                                                                                             

          5001       12 it                                                                                            

          5001       13 is intended to identify                                                                       

          5001       14 strong rules                                                                                  

          5001       15 discovered                                                                                    

          5001       16 in                                                                                            

          5001       17 databases                                                                                     

          5001       18 using                                                                                         

          5001       19 different measures                                                                            

          5001       20 of                                                                                            

          5001       21 interestingness                                                                               

          5001       22 . based                                                                                       
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          5001       23 on                                                                                            

          5001       24 the concept                                                                                   

          5001       25 of                                                                                            

          5001       26 strong rules                                                                                  

          5001       27 ,                                                                                             

          5001       28 rakesh agrawal et al.[2 ] introduced association rules                                        

          5001       29 for                                                                                           

          5001       30 discovering regularities                                                                      

          5001       31 between                                                                                       

          5001       32 products                                                                                      

          5001       33 in                                                                                            

          5001       34 large-scale transaction data                                                                  

          5001       35 recorded                                                                                      

          5001       36 by                                                                                            

          5001       37 point-of-sale ( pos ) systems                                                                 

          5001       38 in                                                                                            

          5001       39 supermarkets                                                                                  

          5001       40 .                                                                                             

          5001       41 for                                                                                           

          5001       42 example                                                                                       

          5001       43 ,                                                                                             

          5001       44 the rule { onions , potatoes}=>{burger                                                        

          5001       45 } found                                                                                       

          5001       46 in                                                                                            

          5001       47 the sales data                                                                                

          5001       48 of                                                                                            

          5001       49 a supermarket                                                                                 

          5001       50 would indicate                                                                                

          5001       51 that                                                                                          

          5001       52 if                                                                                            

          5001       53 a customer                                                                                    

          5001       54 buys                                                                                          

          5001       55 onions                                                                                        

          5001       56 and                                                                                           

          5001       57 potatoes                                                                                      

          5001       58 together                                                                                      

          5001       59 ,                                                                                             

          5001       60 they                                                                                          

          5001       61 are                                                                                           

          5001       62 likely                                                                                        

          5001       63 to also buy                                                                                   

          5001       64 hamburger meat                                                                                

          5001       65 .                                                                                             

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.
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TextParser (ML Engine)

The TextParser function tokenizes an input stream of words, optionally stems them (reduces them to their

root forms), and then outputs them. The function can either output all words in one row or output each

word in its own row with (optionally) the number of times that the word appears.

The TextParser function uses Porter2 as the stemming algorithm.

The TextParser function reads a document into a memory buffer and creates a hash table. The dictionary

for the document must not exceed available memory; however, a million-word dictionary with an average

word length of ten bytes requires only 10 MB of memory.

TextParser uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

TextParser Syntax

Version 1.14 

SELECT * FROM TextParser (

  ON { table | view | (query) } [ PARTITION BY expression [,...] ]

  USING

  TextColumn ('text_column')

  [ ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ Delimiter ('delimiter_regular_expression') ]

  [ OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ Punctuation ('punctuation_regular_expression') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

  [ TokenColName ('token_column') ]

  [ FrequencyColName ('frequency_column') ]

  [ TotalColName ('total_column') ]

  [ RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ PositionColName ('position_column') ]

  [ ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ StemExceptions ('exception_rule_file') ]

  [ StopWordsList ('stop_word_file') ]

) AS alias;

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements
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TextParser Syntax Elements

TextColumn

Specify the name of the input column with contents to tokenize.

ConvertToLowerCase

[Optional] Specify whether to convert input text to lowercase.

The function ignores this syntax element if the StemTokens syntax element has the value 'true'.

Default: 'true'

StemTokens

[Optional] Specify whether to stem the tokens—that is, whether to apply the Porter2 stemming

algorithm to each token to reduce it to its root form. Before stemming, the function converts the

input text to lowercase and applies the RemoveStopWords syntax element.

Default: 'false'

Delimiter

[Optional] Specify a regular expression that represents the word delimiter.

The function uses only specified characters as delimiters. For example, if you specify Delimiter ('-'),

the function uses only the hyphen character as a delimiter.To use the hyphen and the default

delimiters, specify Delimiter ('[- \t\f\r\n]+').

Default: '[ \t\f\r\n]+' 

OutputTotalWords

[Optional] Specify whether to output a column that contains the total number of words in the input

document.

Default: 'false'

Punctuation

[Optional] Specify a regular expression that represents the punctuation characters to remove from

the input text. With StemTokens ('true'), the recommended value is '[\\\[.,?\!:;~()\\\]]+'.

Default: '[.,!?]' 

Accumulate

[Optional] Specify the names of the input columns to copy to the output table.

No accumulate_column can be the same as token_column or total_column.

Default: All input columns

TokenColName

[Optional] Specify the name of the output column that contains the tokens.

Default: 'token'

FrequencyColName

[Optional] Specify the name of the output column that contains the frequency of each token.

The function ignores this syntax element if the OutputByWord syntax element has the value 'false'.

Default: 'frequency'

TotalColName

[Optional] Specify the name of the output column that contains the total number of words in the

input document.

Default: 'total_count'

RemoveStopWords

[Optional] Specify whether to remove stop words from the input text before parsing.

Default: 'false'

PositionColName

[Optional] Specify the name of the output column that contains the position of a word within a

document.
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Default: 'location'

ListPositions

[Optional] Specify whether to output the position of a word in list form.

The function ignores this syntax element if the OutputByWord syntax element has the value 'false'.

Default: 'false' (The function outputs a row for each occurrence of the word.)

OutputByWord

[Optional] Specify whether to output each token of each input document in its own row in the output

table. If you specify 'false', then the function outputs each tokenized input document in one row of

the output table.

Default: 'true'

StemExceptions

[Optional] Specify the location of the file that contains the stemming exceptions. A stemming

exception is a word followed by its stemmed form. The word and its stemmed form are separated by

white space. Each stemming exception is on its own line in the file. For example:

bias bias 

news news 

goods goods 

lying lie 

ugly ugli 

sky sky 

early earli

The words 'lying', 'ugly', and 'early' are to become 'lie', 'ugli', and 'earli', respectively. The other

words are not to change.

Default: No stemming exceptions

StopWordsList

[Optional] Specify the location of the file that contains the stop words (words to ignore when parsing

text). Each stop word is on its own line in the file. For example:

a 

an 

the 

and 

this 

with 

but 

will

Default: No stop words

TextParser Input

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.
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Input Table Schema

Column Data Type Description

text_column VARCHAR Text to parse.

accumulate_column Any [Column appears once for each specified accumulate_column.] 

Column to copy to output table. 

TextParser Output

The output table schema depends on the OutputByWord syntax element.

Output Table Schema, Output_By_Word ('true') (Default)

Column Data Type Description

accumulate_column Same as in

input table 

[Column appears once for each specified 

accumulate_column.] Column copied from input table. 

token_column CLOB Token.

frequency_column INTEGER Frequency of token.

position_column VARCHAR Position of word within document.

Output Table Schema, Output_By_Word ('false')

Column Data Type Description

accumulate_column Same as in

input table 

[Column appears once for each specified 

accumulate_column.] Column copied from input table. 

token_column CLOB Token.

TextParser Examples

TextParser Example: StopWordsList, No StemExceptions

Input

• InputTable: complaints, a log of vehicle complaints.

The category column indicates whether the vehicle was in a crash.

• Stop words file: stopwords.txt, which is preinstalled on ML Engine (shown in TextClassifierTrainer

Example)

complaints
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doc_id text_data category

1 consumer was driving

approximately 45 mph hit a deer

with the front bumper and then

ran into an embankment head-on

passenger's side air bag did

deploy hit windshield and

deployed outward. driver's side

airbag cover opened but did not

inflate it was still folded causing

injuries.

crash

2 when vehicle was involved in a

crash totalling vehicle driver's

side/ passenger's side air bags

did not deploy. vehicle was

making a left turn and was hit by

a ford f350 traveling about 35

mph on the front passenger's

side. driver hit his head-on the

steering wheel. hurt his knee and

received neck and back injuries.

crash

3 consumer has experienced

following problems; 1.) both lower

ball joints wear out excessively;

2.) head gasket leaks; and 3.)

cruise control would shut itself off

while driving without foot

pressing on brake pedal.

no_crash

... ... ...

SQL Call

SELECT * FROM TextParser (

  ON complaints

  USING

  TextColumn ('text_data')

  ConvertToLowerCase ('true')

  StemTokens ('false')

  OutputByWord ('true')

  Punctuation ('\[.,?\!\]')

  RemoveStopWords ('true')

  ListPositions ('true')

  Accumulate ('doc_id', 'category')

  StopWordsList ('stopwords.txt')

) AS dt ORDER BY doc_id,category,token,frequency,location;
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Output

 doc_id category token          frequency location   

 ------ -------- -------------- --------- ---------- 

      1 crash    45                     1 4         

      1 crash    air                    1 22        

      1 crash    airbag                 1 33        

      1 crash    approximately          1 3         

      1 crash    bag                    1 23        

      1 crash    bumper                 1 12        

      1 crash    causing                1 44        

      1 crash    consumer               1 0         

      1 crash    cover                  1 34        

      1 crash    deer                   1 8         

      1 crash    deploy                 1 25        

      1 crash    deployed               1 29        

      1 crash    did                    2 24,37     

      1 crash    driver's               1 31        

      1 crash    driving                1 2         

      1 crash    embankment             1 18        

      1 crash    folded                 1 43        

      1 crash    front                  1 11        

      1 crash    head-on                1 19        

      1 crash    hit                    2 6,26      

      1 crash    inflate                1 39        

      1 crash    injuries               1 45        

      1 crash    it                     1 40        

      1 crash    mph                    1 5         

      1 crash    not                    1 38        

      1 crash    opened                 1 35        

      1 crash    outward                1 30        

      1 crash    passenger's            1 20        

      1 crash    ran                    1 15        

      1 crash    side                   2 21,32     

      1 crash    still                  1 42        

      1 crash    then                   1 14        

      1 crash    windshield             1 27        

      2 crash    35                     1 33        

      2 crash    about                  1 32        

      2 crash    air                    1 13        

      2 crash    back                   1 54        

      2 crash    bags                   1 14        

      2 crash    by                     1 27        

      2 crash    crash                  1 6         

      2 crash    deploy                 1 17        

      2 crash    did                    1 15        

      2 crash    driver                 1 40        
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      2 crash    driver's               1 9         

      2 crash    f350                   1 30        

      2 crash    ford                   1 29        

      2 crash    front                  1 37        

      2 crash    head-on                1 43        

      2 crash    his                    2 42,48     

      2 crash    hit                    2 26,41     

      2 crash    hurt                   1 47        

      2 crash    injuries               1 55        

      2 crash    involved               1 3         

      2 crash    knee                   1 49        

      2 crash    left                   1 22        

      2 crash    making                 1 20        

      2 crash    mph                    1 34        

      2 crash    neck                   1 52        

      2 crash    not                    1 16        

      2 crash    on                     1 35        

      2 crash    passenger's            2 11,38     

      2 crash    received               1 51        

      2 crash    side                   2 12,39     

      2 crash    side/                  1 10        

      2 crash    steering               1 45        

      2 crash    totalling              1 7         

      2 crash    traveling              1 31        

      2 crash    turn                   1 23        

      2 crash    vehicle                3 1,8,18    

      2 crash    wheel                  1 46        

      2 crash    when                   1 0         

      3 no_crash 1)                     1 5         

      3 no_crash 2)                     1 13        

      3 no_crash 3)                     1 18        

      3 no_crash ball                   1 8         

      3 no_crash both                   1 6         

      3 no_crash brake                  1 31        

      3 no_crash consumer               1 0         

      3 no_crash control                1 20        

      3 no_crash cruise                 1 19        

      3 no_crash driving                1 26        

      3 no_crash excessively;           1 12        

      3 no_crash experienced            1 2         

      3 no_crash following              1 3         

      3 no_crash foot                   1 28        

      3 no_crash gasket                 1 15        

      3 no_crash has                    1 1         

      3 no_crash head                   1 14        

      3 no_crash itself                 1 23        

      3 no_crash joints                 1 9         

      3 no_crash leaks;                 1 16        
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      3 no_crash lower                  1 7         

      3 no_crash off                    1 24        

      3 no_crash on                     1 30        

      3 no_crash out                    1 11        

      3 no_crash pedal                  1 32        

      3 no_crash pressing               1 29        

      3 no_crash problems;              1 4         

      3 no_crash shut                   1 22        

      3 no_crash wear                   1 10        

      3 no_crash while                  1 25        

      3 no_crash without                1 27        

      3 no_crash would                  1 21        

      4 no_crash after                  1 6         

      4 no_crash back                   1 18        

      4 no_crash been                   1 40        

      4 no_crash case                   2 1,36      

      4 no_crash completed              1 10        

      4 no_crash consumer               1 15        

      4 no_crash dealer                 2 20,22     

      4 no_crash driveshaft             1 31        

      4 no_crash has                    1 39        

      4 no_crash heard                  1 13        

      4 no_crash hitting                1 33        

      4 no_crash informed               1 26        

      4 no_crash intermittently         1 14        

      4 no_crash manufacturer           1 38        

      4 no_crash noise                  1 11        

      4 no_crash notfied                1 41        

      4 no_crash owner                  1 28        

      4 no_crash recall                 1 5         

      4 no_crash reinspected            1 23        

      4 no_crash repaired               1 3         

      4 no_crash that                   1 29        

      4 no_crash took                   1 16        

      4 no_crash transfer               2 0,35      

      4 no_crash under                  1 4         

      4 no_crash vehicle                2 17,24     

      4 no_crash work                   1 8         

      5 no_crash &                      2 21,27     

      5 no_crash 10mph                  1 8         

      5 no_crash 3                      1 14        

      5 no_crash accurate               1 41        

      5 no_crash almost                 1 33        

      5 no_crash also                   1 36        

      5 no_crash at                     1 19        

      5 no_crash be                     1 12        

      5 no_crash blew                   1 34        

      5 no_crash by                     1 56        
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      5 no_crash checked                1 18        

      5 no_crash dealership             1 20        

      5 no_crash defect                 1 32        

      5 no_crash does                   1 38        

      5 no_crash factory                1 31        

      5 no_crash fail                   1 48        

      5 no_crash had                    1 16        

      5 no_crash if                     1 43        

      5 no_crash increasedit            1 46        

      5 no_crash informed               1 23        

      5 no_crash it's                   1 29        

      5 no_crash just                   1 7         

      5 no_crash keep                   1 40        

      5 no_crash manufacturer           1 57        

      5 no_crash mechanic               1 55        

      5 no_crash not                    1 39        

      5 no_crash over                   1 13        

      5 no_crash referred               1 53        

      5 no_crash rpms                   1 10        

      5 no_crash slip                   1 4         

      5 no_crash speed                  1 44        

      5 no_crash speedometer            1 37        

      5 no_crash speeds                 1 42        

      5 no_crash start                  1 2         

      5 no_crash stuck                  1 26        

      5 no_crash that                   1 28        

      5 no_crash thousand               1 15        

      5 no_crash transmission           2 0,24      

      5 no_crash traveling              1 6         

      5 no_crash up                     1 35        

      5 no_crash vehicle                1 17        

      5 no_crash when                   1 5         

      5 no_crash work                   1 50        

      5 no_crash would                  3 1,11,47   

      6 no_crash also                   1 21        

      6 no_crash belts/speed            1 27        

      6 no_crash burned                 1 7         

      6 no_crash cable                  1 5         

      6 no_crash coil                   1 9         

      6 no_crash controlcable           1 28        

      6 no_crash could                  1 15        

      6 no_crash crash                  1 20        

      6 no_crash dealer                 1 22        

      6 no_crash defective              1 3         

      6 no_crash drive                  1 26        

      6 no_crash due                    1 0         

      6 no_crash further                1 36        

      6 no_crash have                   1 16        
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      6 no_crash ignition               1 4         

      6 no_crash information            1 37        

      6 no_crash performed              1 30        

      6 no_crash please                 1 34        

      6 no_crash provide                1 35        

      6 no_crash r&r                    1 25        

      6 no_crash replaced               1 23        

      6 no_crash resulted               1 17        

      6 no_crash stalled                1 12        

      6 no_crash tune                   1 32        

      6 no_crash unexpectedly           1 13        

      6 no_crash up                     1 33        

      6 no_crash vehicle                2 11,31     

      6 no_crash which                  2 6,14      

      7 no_crash &                      1 16        

      7 no_crash 97v017000              1 28        

      7 no_crash by                     1 25        

      7 no_crash do                     1 22        

      7 no_crash have                   1 12        

      7 no_crash jiggle                 1 14        

      7 no_crash move                   1 20        

      7 no_crash not                    1 8         

      7 no_crash off/on                 1 24        

      7 no_crash on                     1 4         

      7 no_crash properly               1 10        

      7 no_crash recall                 1 27        

      7 no_crash switch                 2 1,15      

      7 no_crash themselves             1 26        

      7 no_crash then                   1 17        

      7 no_crash turn                   1 23        

      7 no_crash turned                 1 3         

      7 no_crash when                   1 0         

      7 no_crash windshield             1 5         

      7 no_crash wipers                 3 6,18,21   

      7 no_crash work                   1 9         

      7 no_crash would                  3 7,11,19   

      8 no_crash consumer               1 0         

      8 no_crash driving                1 2         

      8 no_crash happened               1 13        

      8 no_crash periodcally            1 14        

      8 no_crash rain                   1 5         

      8 no_crash stopped                1 11        

      8 no_crash storm                  1 6         

      8 no_crash when                   1 7         

      8 no_crash windshield             1 9         

      8 no_crash wipers                 1 10        

      9 no_crash *ml                    1 21        

      9 no_crash 66900                  1 1         
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      9 no_crash at                     2 0,16      

      9 no_crash expense                1 18        

      9 no_crash first                  1 11        

      9 no_crash gear                   1 12        

      9 no_crash has                    1 4         

      9 no_crash made                   1 15        

      9 no_crash malfunctioned          1 5         

      9 no_crash miles                  1 2         

      9 no_crash not                    1 8         

      9 no_crash owner's                1 17        

      9 no_crash reimbursement          1 20        

      9 no_crash repairs                1 13        

      9 no_crash shift                  1 9         

      9 no_crash transmission           1 3         

      9 no_crash wants                  1 19        

      9 no_crash were                   1 14        

     10 no_crash 1998                   1 33        

     10 no_crash aware                  1 14        

     10 no_crash been                   1 21        

     10 no_crash by                     1 27        

     10 no_crash corrected              1 22        

     10 no_crash has                    1 19        

     10 no_crash hill                   1 29        

     10 no_crash incline                1 6         

     10 no_crash it                     1 7         

     10 no_crash its                    1 10        

     10 no_crash manufactured           1 31        

     10 no_crash manufacturer           1 12        

     10 no_crash not                    1 20        

     10 no_crash of                     1 15        

     10 no_crash on                     2 4,9       

     10 no_crash own                    1 11        

     10 no_crash owned                  1 26        

     10 no_crash problem                2 17,18     

     10 no_crash recker                 1 30        

     10 no_crash rolled                 1 8         

     10 no_crash sitting                1 3         

     10 no_crash truck                  2 1,24      

     10 no_crash walnut                 1 28        

     10 no_crash when                   1 0         

     11 crash    approximately          1 23        

     11 crash    been                   1 20        

     11 crash    building               1 17        

     11 crash    car                    3 0,7,18    

     11 crash    condition              1 32        

     11 crash    crashed                1 11        

     11 crash    engine                 1 1         

     11 crash    fence                  1 14        
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     11 crash    for                    1 29        

     11 crash    forward                1 9         

     11 crash    had                    1 19        

     11 crash    high                   1 30        

     11 crash    idle                   1 31        

     11 crash    incident               1 28        

     11 crash    lurched                1 8         

     11 crash    one                    1 24        

     11 crash    park                   1 6         

     11 crash    prior                  1 26        

     11 crash    raced                  1 2         

     11 crash    shop                   1 22        

     11 crash    slowing                1 4         

     11 crash    week                   1 25        

     11 crash    while                  1 3         

     12 crash    65                     1 5         

     12 crash    70mph                  1 7         

     12 crash    airbags                1 15        

     12 crash    another                1 2         

     12 crash    at                     1 4         

     12 crash    dealer                 1 17        

     12 crash    deployed               1 16        

     12 crash    driver's               1 10        

     12 crash    ended                  1 1         

     12 crash    has                    1 18        

     12 crash    neither                1 9         

     12 crash    or                     1 12        

     12 crash    passenger's            1 13        

     12 crash    rear                   1 0         

     12 crash    side                   2 11,14     

     12 crash    vehicle                2 3,19      

     13 no_crash around                 1 27        

     13 no_crash coming                 1 25        

     13 no_crash compartment            1 17        

     13 no_crash drivers                1 28        

     13 no_crash ea02-025               1 34        

     13 no_crash engine                 1 16        

     13 no_crash fire                   2 8,24      

     13 no_crash for                    1 4         

     13 no_crash from                   1 26        

     13 no_crash front                  1 30        

     13 no_crash hour                   1 6         

     13 no_crash left                   1 12        

     13 no_crash of                     1 14        

     13 no_crash on                     1 10        

     13 no_crash owner                  1 22        

     13 no_crash owners                 1 18        

     13 no_crash parked                 1 3         
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     13 no_crash referenced             1 32        

     13 no_crash saw                    1 23        

     13 no_crash side                   2 13,29     

     13 no_crash smelled                1 20        

     13 no_crash smoke                  1 21        

     13 no_crash son                    1 19        

     13 no_crash started                1 9         

     13 no_crash vehicle                1 1         

     13 no_crash wheel                  1 31        

     13 no_crash while                  1 0         

     14 no_crash                        1 14        

     14 no_crash 99v029000              1 6         

     14 no_crash after                  1 0         

     14 no_crash airbag                 1 10        

     14 no_crash been                   1 21        

     14 no_crash dealer                 1 16        

     14 no_crash has                    1 20        

     14 no_crash ignition               1 7         

     14 no_crash light                  1 11        

     14 no_crash manufacturer           1 19        

     14 no_crash notified               1 22        

     14 no_crash on                     1 13        

     14 no_crash recall                 1 5         

     14 no_crash repaired               1 3         

     14 no_crash stayed                 1 12        

     14 no_crash switch                 1 8         

     14 no_crash under                  1 4         

     14 no_crash vehicle                1 1         

     15 no_crash 4                      1 27        

     15 no_crash alternator/            1 20        

     15 no_crash battery                1 21        

     15 no_crash become                 1 13        

     15 no_crash cannot                 1 33        

     15 no_crash causing                2 6,37      

     15 no_crash change                 1 19        

     15 no_crash consumer               1 16        

     15 no_crash control                1 1         

     15 no_crash defect                 1 30        

     15 no_crash determine              1 34        

     15 no_crash electrical             1 0         

     15 no_crash engine                 1 11        

     15 no_crash had                    1 17        

     15 no_crash inoperative            1 15        

     15 no_crash module                 2 2,25      

     15 no_crash occurring              1 32        

     15 no_crash out                    1 5         

     15 no_crash problem                1 39        

     15 no_crash replaced               1 26        
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     15 no_crash shortening             1 4         

     15 no_crash stall                  1 10        

     15 no_crash starter                1 23        

     15 no_crash still                  1 31        

     15 no_crash times                  1 28        

     15 no_crash totally                1 14        

     15 no_crash vehicle                1 8         

     15 no_crash what                   1 35        

     16 no_crash 68000                  1 1         

     16 no_crash also                   1 17        

     16 no_crash at                     1 0         

     16 no_crash broke                  1 5         

     16 no_crash caused                 1 18        

     16 no_crash causing                1 10        

     16 no_crash down                   1 23        

     16 no_crash housing                1 8         

     16 no_crash loss                   1 12        

     16 no_crash miles                  1 2         

     16 no_crash of                     1 13        

     16 no_crash off                    1 6         

     16 no_crash power                  2 3,14      

     16 no_crash pump                   1 9         

     16 no_crash shut                   1 22        

     16 no_crash steering               2 4,15      

     16 no_crash total                  1 11        

     16 no_crash vehicle                1 20        

     16 no_crash which                  1 16        

     17 crash    50                     1 14        

     17 crash    80                     1 17        

     17 crash    air                    2 25,37     

     17 crash    airbags                1 4         

     17 crash    another                1 10        

     17 crash    approximately          1 13        

     17 crash    at                     2 12,16     

     17 crash    bags                   2 26,38     

     17 crash    consumer               1 8         

     17 crash    deploy                 3 7,29,41   

     17 crash    determine              1 35        

     17 crash    did                    4 5,27,33,39

     17 crash    driver                 1 30        

     17 crash    dual                   1 3         

     17 crash    head-on                1 22        

     17 crash    hit                    1 19        

     17 crash    impact                 1 24        

     17 crash    injuriesdealer         1 32        

     17 crash    mph                    1 18        

     17 crash    mphand                 1 15        

     17 crash    not                    4 6,28,34,40
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     17 crash    occasions              1 2         

     17 crash    on                     1 0         

     17 crash    rearended              1 9         

     17 crash    sustained              1 31        

     17 crash    truck                  1 21        

     17 crash    two                    1 1         

     17 crash    upon                   1 23        

     17 crash    vehicle                1 11        

     17 crash    why                    1 36        

     18 no_crash leaking                1 2         

     18 no_crash sunroof                1 0         

     18 no_crash yh                     1 3         

     19 no_crash be                     1 9         

     19 no_crash frame                  1 3         

     19 no_crash from                   1 5         

     19 no_crash manufacturer           1 7         

     19 no_crash motor                  1 0         

     19 no_crash notified               1 10        

     19 no_crash separated              1 4         

     19 no_crash vehicle                1 6         

     20 no_crash about                  1 19        

     20 no_crash bearing                1 3         

     20 no_crash brake's                1 17        

     20 no_crash broke                  1 4         

     20 no_crash can't                  1 25        

     20 no_crash causing                1 5         

     20 no_crash consumer               1 15        

     20 no_crash dealer                 1 24        

     20 no_crash determine              1 26        

     20 no_crash down                   1 14        

     20 no_crash four                   1 20        

     20 no_crash front                  1 1         

     20 no_crash had                    1 16        

     20 no_crash left                   1 11        

     20 no_crash problem                1 28        

     20 no_crash pull                   1 8         

     20 no_crash rear                   1 0         

     20 no_crash replaced               1 18        

     20 no_crash slowing                1 13        

     20 no_crash still                  1 23        

     20 no_crash times                  1 21        

     20 no_crash vehicle                1 6         

     20 no_crash wheel                  1 2         

     20 no_crash when                   1 12

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

VA4.1

Page 42 of 103



TextParser Example: StemExceptions, No StopWordsList

Input

• Input table: complaints_mini, which is the first two rows of complaints, the TextParser Example:

StopWordsList, No StemExceptions InputTable

complaints_mini

doc_id text_data category

1 consumer was driving

approximately 45 mph hit a deer

with the front bumper and then

ran into an enbankment head-on

passenger's side air bag did

deploy hit windshield and

deployed outward. driver's side

airbag cover opened but did not

inflate it was still folded causing

injuries.

crash

2 when vehicle was involved in a

crash totalling vehicle driver's

side/ passenger's side air bags

did not deploy. vehicle was

making a left turn and was hit by

a ford f350 traveling about 35

mph on the front passenger's

side. driver hit his head-on the

steering wheel. hurt his knee and

received neck and back injuries.

crash

The stemming exceptions table, stemmingexception.text, contains:

consumer customer

enbankment embankment

SQL Call

SELECT * FROM TextParser (

  ON complaints_mini

  USING

  TextColumn ('text_data')

  ConvertToLowerCase ('true')

  StemTokens ('true')

  OutputByWord ('false')

  Punctuation ('\[.,?\!\]')

  Accumulate ('doc_id', 'category')

  StemExceptions ('stemmingexception.txt')

) AS dt ORDER BY doc_id;
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Output

 doc_id category tokens                                                                                               

 ------ -------- -----------------------------------------------------------------------------------------------------

      1 crash    customer was drive approxim 45 mph hit a deer with the front bumper and then ran into an embankment h

      2 crash    when vehicl was involv in a crash total vehicl driver side/ passeng side air bag did not deploy vehic

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger (ML Engine)

The TextTagger function tags text documents according to user-defined rules that use text-processing and

logical operators. The text in the documents can include Unicode emoticons (also called emojis).

You can run queries with emojis only from the bteq prompt, not using Teradata Studio™.

TextTagger Syntax

Version 1.7

SELECT * FROM TextTagger (

  ON { table | view | (query) } PARTITION BY ANY

  [ ON { table | view | (query) } AS Rules DIMENSION ]

  USING

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ TaggingRules ('rule AS tag' [,...]) ]

  [ Tokenize ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ OutputByTag ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ TagDelimiter ('delimiter') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

TextTagger Syntax Elements

InputLanguage

[Optional] Specify the language of the input text: 

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese
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TaggingRules

[Required if you do not specify a Rules table, disallowed otherwise.] Specify the tag names and

tagging rules. For information about defining tagging rules, see Defining Tagging Rules.

Tokenize

[Optional] Specify whether the function tokenizes the input text before evaluating the rules and

tokenizes the text string parameter in the rule definition when parsing a rule. 

If you specify 'true', then you must also specify the InputLanguage syntax element. The function

uses the value of InputLanguage to create the word tokenizer.

Default: 'false'

OutputByTag

[Optional] Specify whether the function outputs a tuple when a text document matches multiple

tags.

Default: 'false' (One tuple in the output stands for one document and the matched tags are listed in

the output column tag.)

TagDelimiter

[Optional] 

Specify the delimiter, a string, that separates multiple tags in the output column tag if OutputByTag

has the value 'false'. If OutputByTag has the value 'true', specifying this syntax element causes an

error.

Default: ',' (comma)

Accumulate

[Optional] Specify the names of text table columns to copy to the output table.

Do not use the name 'tag' for an accumulate_column, because the function uses that name for the

output table column that contains the tags.

Defining Tagging Rules

You can specify tagging rules with either the TaggingRules syntax element or a Rules table.

Rules for Rule Operations Table

• The operand opn (where n is 1, 2, or 3) can be any of the following: 
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opn Rules for opn

String literal Enclose string literal in double quotation marks

(for example, "Start countdown").

If string literal contains double quotation marks,

precede each double quotation mark with two

backslashes (for example, "\\"Start countdown\

\"").

Do not use the empty string ("").

If an operation has only string literal operands,

matches are case-insensitive and do not

consider overlapping.

Java regular expression (regex"exp") An operation with one or more Java regular

expression operands uses fuzzy matching. Fuzzy

matching evaluates original text input; that is,

matching is case-sensitive and text is not

tokenized.

[superdist operation only] List of string literals

or Java regular expressions

For details, see description of superdist

operation in following table.

• The operands lower and upper are nonnegative integers.

You can omit either lower or upper, but not both. For example, all of the following are valid syntax

for the contain operation:

contain (col, op1, lower, upper)

contain (col, op1, lower,)

contain (col, op1,, upper)

If x is the number of times that op1 appears in col, then the preceding operations have the following

meanings, respectively:

lower <= x <= upper 

lower <= x 

x <= upper 

The meanings of lower, x, and upper depend on the operation.

Rule Operations

This table summarizes the operations that a rule can use. For simplicity, the table shows only the syntax

that specifies both lower and upper.

Syntax Description

equal (col, op1) Returns 'true' if the text in column col and the value of op1 are

equal; 'false' otherwise.
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Syntax Description

contain (col, op1, lower, upper) Returns 'true' if, in column col, the number of times that the value of

op1 appears is in the range [lower, upper]; 'false' otherwise.

dist (col, op1, op2, lower, upper) Returns 'true' if, in column col, the distance between the values of 

op1 and op2 (that is, the number of words between them) is in the

range [lower, upper]; 'false' otherwise.

The distance computation depends on the InputLanguage and

UseTokenizer syntax elements.

By default, InputLanguage is 'en' (English) and UseTokenizer is

'false', and words are delimited by whitespace characters.

If InputLanguage is 'zh_cn' (Simplified Chinese) or 'zh_tw'

(Traditional Chinese) and UseTokenizer is 'true', then the function

performs word segmentation before computing the distance

between words.
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superdist (col, op1, op2, con1, 

op3, con2) 

Returns 'true' if, in column col, the values of op1, op2, and op3

satisfy the context rules con1 and con2; 'false' otherwise.

The rules con1 and con2 specify the context for inclusion and

exclusion, as the following table shows. 

con1 or con2 Value con1 Meaning con2 Meaning

nwn op2 appears n or

fewer words before

or after op1.

op3 does not appear

n or fewer words

before or after op1.

nrn op2 appears n or

fewer words after 

op1.

op3 does not appear

n or fewer words

after op1.

para op2 appears in the

same paragraph as 

op1.

op3 does not appear

in the same

paragraph as op1.

sent op2 appears in the

same sentence as 

op1.

op3 does not appear

in the same

sentence as op1.

The distance computation depends on the InputLanguage and

UseTokenizer syntax elements (for details, see the description of the

dist operation).

A paragraph ends with either "\n" or "\r\n". A sentence ends with

either period (.), question mark (?), or exclamation mark (!). The

function fragments the input into paragraphs or sentences and then

checks the context rule on each piece of text. If one piece satisfies

the rule, then the function tags the whole input.

opn (where n is 1, 2, or 3) can be a list of words. Enclose the list in

double quotation marks and separate the words with semicolons.

For example: "good;bad;neutral"

If opn is a Java regular expression, then exp can be a list. Separate

the items with semicolons. For example:

regex"invest[\w]*;volatil[\w]*;risk"

When a list appears in an inclusion context, the rule is satisfied if at

least one item appears in the context. When a list appears in an

exclusion context, the rule is satisfied if no item appears in the

context.

The operand-context pairs after op1 are optional; that is, the

following are valid syntax:

superdist(col, op1,,,,)

superdist(col, op1, op2, con1,,)

superdist(col, op1,,, op3, con2)

superdist(col, op1, op2, con1, op3, con2)

superdist(col, op1,,,,)

The final syntax in the preceding list returns 'true' if op1 appears in 

col.
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Syntax Description

dict (col,

"[schema/]dictionary",lower, 

upper) 

Returns 'true' if, in column col, the number of items (lines in the

dictionary file) is in the range [lower, upper]; 'false' otherwise.

This operation requires that dictionary file [schema.] dictionary is

installed on ML Engine. Dictionary name, dictionary, is case-

sensitive. If dictionary is in public schema, you can omit schema

name, schema.

operation1 and operation2 Returns 'true' if both operation1 and operation2 return 'true'; 'false'

otherwise.

operation1 or operation2 Returns 'true' if one or both operation1 or operation2 returns 'true';

'false' otherwise.

not operation Returns 'true' if operation returns 'false'; 'false' if operation returns

'true'.

TextTagger Input

Table Description

Input table Contains text to tag.

Rules [Optional] Contains tagging rules. If you omit this

table, specify tagging rules with TaggingRules

syntax element.

InputTable Schema

The table can have additional columns, but the function ignores them unless you specify them in rules.

Column Data Type Description

text_column VARCHAR Text to tag.

accumulate_column Any [Column appears once for each specified 

accumulate_column.] Column to copy to output table. 

Rules Schema

Column Data Type Description

tagname VARCHAR Name of tag.

definition VARCHAR Definition of tag.
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TextTagger Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

InputTable

[Column appears once for each specified accumulate_column.]

Column copied from InputTable. Typically, one 

accumulate_column contains document identifiers.

tag VARCHAR Tuple of tags that match text document. Tag names come from

either TaggingRules syntax element or rules table. If text

document matches no tag, its value in this column is an empty

string.

TextTagger Examples

TextTagger Example: TaggingRules

Input

text_inputs

id title content catalog

1 Chennai Floods Chennai floods have

battered the capital city

of Tamil Nadu and its

adjoining areas. Normal

life came to a standstill

when roads were

submerged in water and

all modes of transport

were severely affected.

In the past, Chennai has

had tsunamis and

earthquakes

Regional

2 Tennis Superstars Roger Federer born on 8

August 1981, is a

greatest tennis player,

who has been

continuously ranked

inside the top 10 since

October 2002 and has

won Wimbledon,

USOpen, Australian and

FrenchOpen titles

mutiple times

sports
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id title content catalog

3 Sports Rivalry The Federer Nadal

rivalry, known by many

as Fedal, is between two

professional tennis

players, Roger Federer of

Switzerland and Rafael

Nadal of Spain. They are

currently engaged in a

storied rivalry, which

many consider to be the

greatest in tennis

history. They have

played 34 times, most

recently in the 2015

Swiss Indoors final, and

Nadal leads their eleven-

year-old rivalry with an

overall record of 231

sports

4 Sports Rivalry The India Pakistan

cricket rivalry is one of

the most intense sports

rivalries in the world. An

India-Pakistan cricket

match has been

estimated to attract up

to one billion viewers,

according to TV ratings

firms and various other

reports. The 2011 World

Cup semifinal between

the two teams attracted

around 988 million

television viewers

sports
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id title content catalog

5 Sports Rivalry An Ashes series is

traditionally of five Tests,

hosted in turn by

England and Australia at

least once every four

years. As of August

2015, England hold the

ashes, having won three

of the five Tests in the

2015 Ashes series.

Overall, Australia has

won 32 series, England

32 and five series have

been drawn.

sports

SQL Call

SELECT * FROM TextTagger (

  ON text_inputs

  USING

  TaggingRules ('contain(content, "floods", 1,) or

          contain(content, "tsunamis", 1,) AS Natural-Disaster',

         'contain(content, "Roger", 1,) and

          contain(content, "Nadal", 1,) AS Tennis-Rivalry',

         'contain(title, "Tennis", 1,) and

          contain(content, "Roger", 1,) AS Tennis-Greats',

         'contain(content, "India", 1,) and

          contain(content, "Pakistan", 1,) AS Cricket-Rivalry',

         'contain(content,"Australia",1,) and

          contain(content, "England", 1,) AS The-Ashes'

  )

  OutputByTag ('true')

  Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag              

 -- ---------------- 

  1 Natural-Disaster

  2 Tennis-Greats   

  3 Tennis-Rivalry  

  4 Cricket-Rivalry 

  5 The-Ashes
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: Rules Table

The Rules table, rule_inputs, defines the same rules as the TaggingRules syntax element in TextTagger

Example: TaggingRules.

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules 

• Rules: rule_inputs

rule_inputs

tagname definition

Cricket-Rivalry contain(content,"India",1,) and

contain(content,"Pakistan",1,)

Natural-Disaster contain(content, "floods",1,) or

contain(content,"tsunamis",1,)

Tennis-Greats contain(title,"Tennis",1,) and

contain(content,"Roger",1,)

Tennis-Rivalry contain(content,"Roger",1,) and

contain(content,"Nadal",1,)

The-Ashes contain(content,"Australia",1,) and

contain(content,"England",1,)

SQL Call

SELECT * FROM TextTagger (

  ON text_inputs PARTITION BY ANY

  ON rule_inputs AS Rules DIMENSION

  USING

  Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag              

 -- ---------------- 

  1 Natural-Disaster

  2 Tennis-Greats   

  3 Tennis-Rivalry  

  4 Cricket-Rivalry 

  5 The-Ashes
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: TaggingRules, Dictionary File

This example uses this dictionary file, keywords.txt:

floods

tsunamis

Roger

Nadal

India

Pakistan

England

Australia

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules 

SQL Call

SELECT * FROM TextTagger (

  ON text_inputs

  USING

  TaggingRules ('dict(content, "keywords.txt", 1,) AND

          equal(titles, "Chennai Floods") AS Natural-Disaster',

         'dict(content, "keywords.txt", 2,) AND

          equal(catalog, "sports") AS Great-Sports-Rivalry '

  )

  Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag                  

 -- -------------------- 

  1 Natural-Disaster    

  2                     

  3 Great-Sports-Rivalry

  4 Great-Sports-Rivalry

  5 Great-Sports-Rivalry

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.
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TextTagger Example: TaggingRules, Superdist

Input

• Input table: text_inputs, as in TextTagger Example: TaggingRules 

SQL Call

SELECT * FROM TextTagger (

  ON text_inputs

  USING

  TaggingRules ('superdist(content, "Chennai", "floods", sent, ,)

          AS Chennai-Flood-Disaster',

         'superdist(content, "Roger", "titles", para, "Nadal", para)

          AS Roger-Champion',

         'superdist(content, "Roger", "Nadal", para, ,)

          AS Tennis-Rivalry',

         'contain(content, regex"[A|a]shes", 2,)

          AS Aus-Eng-Cricket',

         'superdist(content, "Australia", "won", nw5, ,)

          AS Aus-victory'

    )

  Accumulate ('id')

) AS dt ORDER BY id;

Output

 id tag                         

 -- --------------------------- 

  1 Chennai-Flood-Disaster     

  2 Roger-Champion             

  3 Tennis-Rivalry             

  4                            

  5 Aus-Eng-Cricket,Aus-victory

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TextTagger Example: Text, Unicode Emoticons (Emojis)

You can run queries with emojis only from the bteq prompt, not using Teradata Studio™.

Input

============================================

Input

============================================
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 id |      title_1      |                                                                                             

----+-------------------+---------------------------------------------------------------------------------------------

  1 | Chennai Floods    | Chennai floods have battered the capital city of Tamil Nadu and its adjoining areas 

  2 | Tennis Superstars | Roger Federer born on 8 August 1981, is a greatest 01F
44D tennis player, who has been continuousl

  3 | Sports Rivalry    | The Federer Nadal rivalry, known by many as Fedal, is between two professional tennis player

  4 | Sports Rivalry    | The India Pakistan cricket rivalry is one of the most intense 😣 sports rivalries in the worl

  5 | Sports Rivalry    | An Ashes series is traditionally of five Tests, hosted in turn by England and Australia at l

(5 rows)

SQL Call

SELECT * FROM TextTagger(

ON text_inputs_emojis

USING

TaggingRules (

 'contain(contents, "01F
44D", 1,) AS Thumbs',

    'contain(contents, "01F
44D", 1,) or

        contain(contents, "greatest", 1,) AS Fabulous',

    'contain(contents, "greatest", 1,) AS Wonderful',

    'contain(contents, "😩", 1,) AS Weary',

    'contain(title_1, "Tennis", 1,) and

        contain(contents, "Roger", 1,) AS Tennis-Greats',

    'contain(contents, "India", 1,) and

        contain(contents, "Pakistan", 1,) AS Cricket-Rivalry',

    'contain(contents,"Australia",1,) and

        contain(contents, "England", 1,) AS The-Ashes'

 )

    OutputByTag ('true')

    Accumulate ('id')

) AS dt ORDER BY id;

Output

         id tag

----------- ---------------------------------------------------------------

          1 Weary

          2 Wonderful

          2 Fabulous

          2 Tennis-Greats

          2 Thumbs

          3 Wonderful

          3 Fabulous

          4 Cricket-Rivalry

          5 The-Ashes

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.
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TFIDF (ML Engine)

TF-IDF stands for "term frequency-inverse document frequency," a technique for evaluating the importance

of a specific term in a specific document in a document set. Term frequency (tf) is the number of times that

the term appears in the document and inverse document frequency (idf) is the number of times that the

term appears in the document set. The TF-IDF score for a term is tf *idf. A term with a high TF-IDF score is

especially relevant to the specific document.

The TFIDF function can do either of the following:

• Take any document set and output the inverse document frequency (IDF) and term frequency-

inverse document frequency (TF-IDF) scores for each term.

• Use the output of a previous run of the TFIDF function on a training document set to predict TFIDF

scores of an input (test) document set.

You can use the TF-IDF scores as input for many document clustering and classification algorithms,

including:

• Cosine-similarity

• Latent Dirichlet allocation

• K-means clustering

• K-nearest neighbors

You can use the TF-IDF scores derived from a training document set to create a model in a classification

function (for example, SVMSparse (ML Engine)) and then use the resulting TF-IDF scores in a classification

prediction function (for example, SVMSparsePredict_MLE (ML Engine)).

The TFIDF function represents each document as an N-dimensional vector, where N is the number of terms

in the document set (therefore, the document vector is usually very sparse). Each entry in the document

vector is the TF-IDF score of a term.

TFIDF Syntax

TFIDF version 2.3, TF version 1.2

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid     

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  [ ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION ]

  [ ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

      AS DocPerTerm PARTITION BY term

  ]

  [ ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

      AS IDF PARTITION BY term

  ]

) AS alias;
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Large Document Sets

For large documents sets, the DocPerTerm table is required.

For training, this is the syntax for large document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid      

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION

  ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

    AS DocPerTerm PARTITION BY term 

) AS alias ORDER BY docid;

For prediction, this is the syntax for large document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid      

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  [ ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

      AS DocPerTerm PARTITION BY term

  ]

  [ ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

      AS IDF PARTITION BY term

  ]

) AS alias ORDER BY docid;

Small Document Sets

This syntax is acceptable for small document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid 

  ) AS TF PARTITION BY term 

  ON (SELECT COUNT (DISTINCT docid) FROM input_table) AS DocCount DIMENSION

) AS alias ORDER BY docid;

TFIDF Syntax Elements

Formula

[Optional] Specify the formula for calculating the term frequency (tf) of term t in document d: 
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Option Description

'normal' (Default) Normalized frequency:

tf(t,d) = f ((t,d) / sum {w,w ∈d} 

This value is rf divided by number of terms in document.

'bool' Boolean frequency:

tf((t,d) = 1 if t occurs in d; otherwise, tf((t,d) = 0.

'log' Logarithmically-scaled frequency:

tf((t,d) = log(f((t,d)+1) 

where f((t,d) is the number of times t occurs in d (that is, raw frequency, 

rf).

'augment' Augmented frequency, which prevents bias towards longer documents:

tf((t,d) = 0.5 + (0.5 × f ((t,d) / max {f(w,d) : w ∈d }) 

This value is rf divided by maximum raw frequency of any term in

document.

When using the output of a previous run of the TFIDF function on a training document set to predict

TFIDF scores on an input document set, use the same Formula value for the input document set that

you used for the training document set.

TFIDF Input

The TFIDF function always requires as input the output of the TF function. Whether the other TFIDF input

tables are required or optional depend on your reason for running the function.

Table Description

TF TF function input; document set.

DocCount Required if running function to output IDF and TF-

IDF values for each term in document set.

DocPerTerm Optional if running function to output IDF and TF-

IDF values for each term in document set.

If you omit this table, the function creates it by

processing the entire document set, which can

require a large amount of memory. If there is not

enough memory to process the entire document

set, the DocPerTerm table is required.
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Table Description

IDF Required if running function to predict TF-IDF

scores. 

This table is the output of an earlier call to TFIDF,

using the training document set as input to the TF

function, the DocCount table, and optionally, the

DocPerTerm table.

TF Schema

Column Data Type Description

docid Any Document identifier.

term VARCHAR Term.

count INTEGER Number of times that

term appears in

document.

TF Output and TFIDF Input Table Schema

Column Data Type Description

docid Any Document identifier.

term VARCHAR Term.

tf DOUBLE

PRECISION

Term frequency.

count INTEGER Number of times that term appears in document.

DocCount Schema

Column Data Type Description

count BIGINT Number of documents

in document set.

DocPerTerm Schema

Column Data Type Description

term VARCHAR Term.

count BIGINT Number of documents

that contain term.
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TFIDF Output

Output Schema

Column Data Type Description

docid Any Document identifier of document d.

term VARCHAR Term t.

tf DOUBLE

PRECISION

Term frequency of term t in document d, calculated as specified by

Formula syntax element.

idf DOUBLE

PRECISION

Inverse document frequency of term t in document d, calculated by

this formula:

IDF(t) = log (doccount / doccount (t))

where doccount is the number of documents in the document set

and doccount (t) is the number of documents that contain the term t.

tf_idf DOUBLE

PRECISION

TFIDF score of term t in document d, calculated by this formula:

TFIDF(t, d) = TF(t, d) * IDF(t)

TFIDF Examples

TFIDF Example: Tokenized Training Document Set

This example uses the NGramSplitter_MLE function to tokenize a training document set, from which it

creates the input table for the TFIDF function.

NGramSplitter_MLE Input: tfidf_train

docid content

1 Chennai floods have battered the capital city of

Tamil Nadu and its adjoining areas. Normal life

came to a standstill when roads were submerged in

water and all modes of transport were severely

affected. In the past, Chennai has had tsunamis

and earthquakes

2 Roger Federer born on 8 August 1981, is a greatest

tennis player, who has been continuously ranked

inside the top 10 since October 2002 and has won

Wimbledon, USOpen, Australian and FrenchOpen

titles mutiple times
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docid content

3 The Federer Nadal rivalry, known by many as Fedal,

is between two professional tennis players, Roger

Federer of Switzerland and Rafael Nadal of Spain.

They are currently engaged in a storied rivalry,

which many consider to be the greatest in tennis

history. They have played 34 times, most recently

in the 2015 Swiss Indoors final, and Nadal leads

their eleven-year-old rivalry with an overall record

of 23–11

4 The India Pakistan cricket rivalry is one of the most

intense sports rivalries in the world. An India-

Pakistan cricket match has been estimated to

attract up to one billion viewers, according to TV

ratings firms and various other reports. The 2011

World Cup semifinal between the two teams

attracted around 988 million television viewers

5 An Ashes series is traditionally of five Tests, hosted

in turn by England and Australia at least once every

four years. As of August 2015, England hold the

ashes, having won three of the five Tests in the

2015 Ashes series. Overall, Australia has won 32

series, England 32 and five series have been

drawn.

NGramSplitter_MLE SQL Call

This call creates a table of tokenized input, tfidf_token1, from tfidf_train.

CREATE MULTISET TABLE tfidf_token1 AS (

  SELECT * FROM NGramSplitter_MLE (

    ON tfidf_train

    USING

    TextColumn ('content')

    Delimiter (' ')

    Grams ('1')

    Overlapping ('false')

    ConvertToLowerCase ('true')

    Punctuation ('\[.,?\!\]')

    Reset ('\[.,?\!\]')

    OutputTotalGramCount ('false')

    Accumulate ('docid')

  ) AS dt

) WITH DATA;
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SQL Call to Create TFIDF Input Table tfidf_input1

The TFIDF input table must have the tokenized input in the column term.

CREATE MULTISET TABLE tfidf_input1 AS (

  SELECT docid, ngram AS term, frequency AS "count"

  FROM tfidf_token1 AS dt

) WITH DATA;

This query returns the following table:

SELECT * FROM tfidf_input1 ORDER BY 1, 3, 2;

 docid term            count 

 ----- --------------- ----- 

     1 a                   1

     1 adjoining           1

     1 affected            1

     1 all                 1

     1 areas               1

     1 battered            1

     1 came                1

     1 capital             1

     1 city                1

     1 earthquakes         1

     1 floods              1

     1 had                 1

     1 has                 1

     1 have                1

     1 its                 1

     1 life                1

     1 modes               1

     1 nadu                1

     1 normal              1

     1 past                1

     1 roads               1

     1 severely            1

     1 standstill          1

     1 submerged           1

     1 tamil               1

     1 to                  1

     1 transport           1

     1 tsunamis            1

     1 water               1

     1 when                1

     1 chennai             2

     1 in                  2

     1 of                  2

     1 the                 2
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     1 were                2

     1 and                 3

     2 10                  1

     2 1981                1

     2 2002                1

     2 8                   1

     2 a                   1

     2 august              1

     2 australian          1

     2 been                1

     2 born                1

     2 continuously        1

     2 federer             1

     2 frenchopen          1

     2 greatest            1

     2 inside              1

     2 is                  1

     2 mutiple             1

     2 october             1

     2 on                  1

     2 player              1

     2 ranked              1

     2 roger               1

     2 since               1

     2 tennis              1

     2 the                 1

     2 times               1

     2 titles              1

     2 top                 1

     2 usopen              1

     2 who                 1

     2 wimbledon           1

     2 won                 1

     2 and                 2

     2 has                 2

     3 2015                1

     3 23â??11             1

     3 34                  1

     3 a                   1

     3 an                  1

     3 are                 1

     3 as                  1

     3 be                  1

     3 between             1

     3 by                  1

     3 consider            1

     3 currently           1

     3 eleven-year-old     1
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     3 engaged             1

     3 fedal               1

     3 final               1

     3 greatest            1

     3 have                1

     3 history             1

     3 indoors             1

     3 is                  1

     3 known               1

     3 leads               1

     3 most                1

     3 overall             1

     3 played              1

     3 players             1

     3 professional        1

     3 rafael              1

     3 recently            1

     3 record              1

     3 roger               1

     3 spain               1

     3 storied             1

     3 swiss               1

     3 switzerland         1

     3 their               1

     3 times               1

     3 to                  1

     3 two                 1

     3 which               1

     3 with                1

     3 and                 2

     3 federer             2

     3 many                2

     3 tennis              2

     3 they                2

     3 in                  3

     3 nadal               3

     3 of                  3

     3 rivalry             3

     3 the                 3

     4 2011                1

     4 988                 1

     4 according           1

     4 an                  1

     4 and                 1

     4 around              1

     4 attract             1

     4 attracted           1

     4 been                1
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     4 between             1

     4 billion             1

     4 cup                 1

     4 estimated           1

     4 firms               1

     4 has                 1

     4 in                  1

     4 india               1

     4 india-pakistan      1

     4 intense             1

     4 is                  1

     4 match               1

     4 million             1

     4 most                1

     4 of                  1

     4 other               1

     4 pakistan            1

     4 ratings             1

     4 reports             1

     4 rivalries           1

     4 rivalry             1

     4 semifinal           1

     4 sports              1

     4 teams               1

     4 television          1

     4 tv                  1

     4 two                 1

     4 up                  1

     4 various             1

     4 cricket             2

     4 one                 2

     4 viewers             2

     4 world               2

     4 to                  3

     4 the                 5

     5 an                  1

     5 as                  1

     5 at                  1

     5 august              1

     5 been                1

     5 by                  1

     5 drawn               1

     5 every               1

     5 four                1

     5 has                 1

     5 have                1

     5 having              1

     5 hold                1
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     5 hosted              1

     5 is                  1

     5 least               1

     5 once                1

     5 overall             1

     5 three               1

     5 traditionally       1

     5 turn                1

     5 years               1

     5 2015                2

     5 32                  2

     5 and                 2

     5 australia           2

     5 in                  2

     5 tests               2

     5 won                 2

     5 ashes               3

     5 england             3

     5 five                3

     5 of                  3

     5 the                 3

     5 series              4

SQL Call to Create TFIDF Input Table tf1

CREATE MULTISET TABLE tf1 AS (

  SELECT * FROM tf (

    ON tfidf_input1 PARTITION BY docid

  ) AS dt1

) WITH DATA;

TFIDF SQL Call

CREATE MULTISET TABLE tfidf_output1 AS (

  SELECT * FROM TFIDF (

    ON tf1 AS TF PARTITION BY term

    ON (

      SELECT CAST(COUNT(DISTINCT(docid)) AS integer) AS "count"

      FROM tfidf_input1

    ) AS DocCount DIMENSION

  ) AS dt

) WITH DATA;

TFIDF Output

This query returns the following table:

SELECT * FROM tfidf_output1 ORDER BY tfidf DESC;
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 docid term            tf                   idf                 tf_idf                

 ----- --------------- -------------------- ------------------- --------------------- 

     5 series           0.07272727272727272  1.6094379124341003   0.11705002999520729

     5 ashes            0.05454545454545454  1.6094379124341003   0.08778752249640547

     5 england          0.05454545454545454  1.6094379124341003   0.08778752249640547

     5 five             0.05454545454545454  1.6094379124341003   0.08778752249640547

     1 chennai         0.046511627906976744  1.6094379124341003   0.07485757732251629

     1 were            0.046511627906976744  1.6094379124341003   0.07485757732251629

     3 nadal            0.04477611940298507  1.6094379124341003   0.07206438413884031

     4 one             0.037037037037037035  1.6094379124341003   0.05960881157163334

     4 cricket         0.037037037037037035  1.6094379124341003   0.05960881157163334

     4 viewers         0.037037037037037035  1.6094379124341003   0.05960881157163334

     4 world           0.037037037037037035  1.6094379124341003   0.05960881157163334

     5 tests            0.03636363636363636  1.6094379124341003  0.058525014997603646

     5 australia        0.03636363636363636  1.6094379124341003  0.058525014997603646

     5 32               0.03636363636363636  1.6094379124341003  0.058525014997603646

     3 many            0.029850746268656716  1.6094379124341003   0.04804292275922687

     3 they            0.029850746268656716  1.6094379124341003   0.04804292275922687

     2 mutiple          0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 10               0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 inside           0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 on               0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 player           0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 october          0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 frenchopen       0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 since            0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 titles           0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 2002             0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 continuously     0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 australian       0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 usopen           0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 wimbledon        0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 1981             0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 who              0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 ranked           0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 born             0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 8                0.02857142857142857  1.6094379124341003   0.04598394035526001

     2 top              0.02857142857142857  1.6094379124341003   0.04598394035526001

     3 rivalry          0.04477611940298507  0.9162907318741551   0.04102794321824575

     1 earthquakes     0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 submerged       0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 past            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 transport       0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 capital         0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 city            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 battered        0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 roads           0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 areas           0.023255813953488372  1.6094379124341003   0.03742878866125814
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     1 tamil           0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 standstill      0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 nadu            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 life            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 severely        0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 adjoining       0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 all             0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 had             0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 came            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 modes           0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 its             0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 affected        0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 tsunamis        0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 when            0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 floods          0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 normal          0.023255813953488372  1.6094379124341003   0.03742878866125814

     1 water           0.023255813953488372  1.6094379124341003   0.03742878866125814

     5 2015             0.03636363636363636  0.9162907318741551     0.033319662977242

     5 won              0.03636363636363636  0.9162907318741551     0.033319662977242

     4 around          0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 teams           0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 india           0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 television      0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 tv              0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 estimated       0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 other           0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 india-pakistan  0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 various         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 cup             0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 ratings         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 988             0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 attracted       0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 up              0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 rivalries       0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 reports         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 billion         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 attract         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 match           0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 million         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 sports          0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 pakistan        0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 semifinal       0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 intense         0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 firms           0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 2011            0.018518518518518517  1.6094379124341003   0.02980440578581667

     4 according       0.018518518518518517  1.6094379124341003   0.02980440578581667

     5 having           0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 turn             0.01818181818181818  1.6094379124341003  0.029262507498801823
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     5 drawn            0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 four             0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 traditionally    0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 years            0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 hosted           0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 at               0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 hold             0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 every            0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 once             0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 least            0.01818181818181818  1.6094379124341003  0.029262507498801823

     5 three            0.01818181818181818  1.6094379124341003  0.029262507498801823

     4 to               0.05555555555555555  0.5108256237659907  0.028379201320332816

     3 tennis          0.029850746268656716  0.9162907318741551  0.027351962145497167

     3 federer         0.029850746268656716  0.9162907318741551  0.027351962145497167

     2 won              0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 roger            0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 federer          0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 greatest         0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 times            0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 tennis           0.02857142857142857  0.9162907318741551   0.02617973519640443

     2 august           0.02857142857142857  0.9162907318741551   0.02617973519640443

     3 played          0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 spain           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 swiss           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 leads           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 are             0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 with            0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 34              0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 recently        0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 history         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 indoors         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 storied         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 23â??11         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 engaged         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 switzerland     0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 consider        0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 currently       0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 record          0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 which           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 fedal           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 their           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 rafael          0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 be              0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 players         0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 known           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 eleven-year-old 0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 final           0.014925373134328358  1.6094379124341003  0.024021461379613435

     3 professional    0.014925373134328358  1.6094379124341003  0.024021461379613435
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     4 between         0.018518518518518517  0.9162907318741551  0.016968346886558426

     4 two             0.018518518518518517  0.9162907318741551  0.016968346886558426

     4 rivalry         0.018518518518518517  0.9162907318741551  0.016968346886558426

     4 most            0.018518518518518517  0.9162907318741551  0.016968346886558426

     5 overall          0.01818181818181818  0.9162907318741551     0.016659831488621

     5 by               0.01818181818181818  0.9162907318741551     0.016659831488621

     5 as               0.01818181818181818  0.9162907318741551     0.016659831488621

     5 august           0.01818181818181818  0.9162907318741551     0.016659831488621

     2 been             0.02857142857142857  0.5108256237659907  0.014595017821885449

     2 a                0.02857142857142857  0.5108256237659907  0.014595017821885449

     3 greatest        0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 roger           0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 as              0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 overall         0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 most            0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 2015            0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 times           0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 between         0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 two             0.014925373134328358  0.9162907318741551  0.013675981072748583

     3 by              0.014925373134328358  0.9162907318741551  0.013675981072748583

     2 has              0.05714285714285714 0.22314355131420976    0.0127510600750977

     5 of               0.05454545454545454 0.22314355131420976  0.012171466435320532

     1 a               0.023255813953488372  0.5108256237659907  0.011879665668976528

     1 have            0.023255813953488372  0.5108256237659907  0.011879665668976528

     1 to              0.023255813953488372  0.5108256237659907  0.011879665668976528

     1 in              0.046511627906976744 0.22314355131420976  0.010378769828567896

     1 of              0.046511627906976744 0.22314355131420976  0.010378769828567896

     3 in               0.04477611940298507 0.22314355131420976  0.009991502297651183

     3 of               0.04477611940298507 0.22314355131420976  0.009991502297651183

     4 been            0.018518518518518517  0.5108256237659907  0.009459733773444272

     4 an              0.018518518518518517  0.5108256237659907  0.009459733773444272

     5 been             0.01818181818181818  0.5108256237659907  0.009287738613927104

     5 have             0.01818181818181818  0.5108256237659907  0.009287738613927104

     5 an               0.01818181818181818  0.5108256237659907  0.009287738613927104

     5 in               0.03636363636363636 0.22314355131420976  0.008114310956880354

     3 have            0.014925373134328358  0.5108256237659907  0.007624263041283444

     3 to              0.014925373134328358  0.5108256237659907  0.007624263041283444

     3 an              0.014925373134328358  0.5108256237659907  0.007624263041283444

     3 a               0.014925373134328358  0.5108256237659907  0.007624263041283444

     2 is               0.02857142857142857 0.22314355131420976   0.00637553003754885

     1 has             0.023255813953488372 0.22314355131420976  0.005189384914283948

     4 in              0.018518518518518517 0.22314355131420976  0.004132287987300181

     4 has             0.018518518518518517 0.22314355131420976  0.004132287987300181

     4 is              0.018518518518518517 0.22314355131420976  0.004132287987300181

     4 of              0.018518518518518517 0.22314355131420976  0.004132287987300181

     5 has              0.01818181818181818 0.22314355131420976  0.004057155478440177

     5 is               0.01818181818181818 0.22314355131420976  0.004057155478440177

     3 is              0.014925373134328358 0.22314355131420976 0.0033305007658837277
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     4 the              0.09259259259259259                 0.0                   0.0

     4 and             0.018518518518518517                 0.0                   0.0

     2 the              0.02857142857142857                 0.0                   0.0

     2 and              0.05714285714285714                 0.0                   0.0

     3 and             0.029850746268656716                 0.0                   0.0

     3 the              0.04477611940298507                 0.0                   0.0

     5 the              0.05454545454545454                 0.0                   0.0

     5 and              0.03636363636363636                 0.0                   0.0

     1 the             0.046511627906976744                 0.0                   0.0

     1 and              0.06976744186046512                 0.0                   0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

TFIDF Example: Tokenized Test Set

This example uses the IDF values from tfidf_output1, output by TFIDF Example: Tokenized Training

Document Set to predict the TFIDF scores of a test document set.

NGramSplitter_MLE Input: tfidf_test

docid content

6 In Chennai, India, floods have closed roads and

factories, turned off power, shut down the airport

and forced thousands of people out of their homes.

7 Spanish tennis star Rafael Nadal said he was happy

with the improvement in his game after a below-

par year, and looked forward to reigniting his long-

time rivalry with Roger Federer in India.

8 Nadal, the world number five, said he has always

enjoyed playing against Federer and hoped they

would do so for years to come.

NGramSplitter_MLE SQL Call

This call creates a table of tokenized input, tfidf_token1, from tfidf_test.

CREATE MULTISET TABLE tfidf_token1 AS (

  SELECT * FROM NGramSplitter_MLE (

    ON tfidf_test

    USING

    TextColumn ('content')

    Delimiter (' ')

    Grams ('1')

    Overlapping ('false')

    ConvertToLowerCase ('true')

    Punctuation ('\[.,?\!\]')
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    Reset ('\[.,?\!\]')

    OutputTotalGramCount ('false')

    Accumulate ('docid')

  ) AS dt

) WITH DATA;

SQL Call to Create TFIDF Input Table tfidf_input1

CREATE MULTISET TABLE tfidf_input1 AS (

  SELECT docid, ngram AS term, frequency AS "count" FROM tfidf_token1 AS dt

) WITH DATA;

SQL Call to Create TFIDF Input Table tf1

CREATE MULTISET TABLE tf1 AS (

  SELECT * FROM tf (

    ON tfidf_input1 PARTITION BY docid

    USING

    Formula ('normal')

  ) AS dt1

) WITH DATA;

TFIDF SQL Call

CREATE MULTISET TABLE tfidf_output2 AS (

  SELECT * FROM TFIDF (

    ON tf2 AS TF PARTITION BY TERM

ON (SELECT CAST(COUNT(DISTINCT(docid)) AS INTEGER) AS "count"

      FROM tfidf_output1) AS DocCount DIMENSION

  ) AS dt

) WITH DATA;

TFIDF Output

This query returns the following table:

SELECT * FROM tfidf_output2 ORDER BY tf_idf DESC;

 docid term        tf                   idf                tf_idf               

 ----- ----------- -------------------- ------------------ -------------------- 

     6 of                          0.08 1.6094379124341003    0.128755032994728

     7 his                       0.0625 1.6094379124341003  0.10058986952713127

     7 with                      0.0625 1.6094379124341003  0.10058986952713127

     8 so          0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 world       0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 always      0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 enjoyed     0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 they        0.043478260869565216 1.6094379124341003  0.06997556141017827

VA4.1

Page 73 of 103



     8 come        0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 has         0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 playing     0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 hoped       0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 years       0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 number      0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 against     0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 would       0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 five        0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 do          0.043478260869565216 1.6094379124341003  0.06997556141017827

     8 for         0.043478260869565216 1.6094379124341003  0.06997556141017827

     6 chennai                     0.04 1.6094379124341003    0.064377516497364

     6 down                        0.04 1.6094379124341003    0.064377516497364

     6 turned                      0.04 1.6094379124341003    0.064377516497364

     6 factories                   0.04 1.6094379124341003    0.064377516497364

     6 their                       0.04 1.6094379124341003    0.064377516497364

     6 people                      0.04 1.6094379124341003    0.064377516497364

     6 have                        0.04 1.6094379124341003    0.064377516497364

     6 off                         0.04 1.6094379124341003    0.064377516497364

     6 airport                     0.04 1.6094379124341003    0.064377516497364

     6 thousands                   0.04 1.6094379124341003    0.064377516497364

     6 forced                      0.04 1.6094379124341003    0.064377516497364

     6 out                         0.04 1.6094379124341003    0.064377516497364

     6 roads                       0.04 1.6094379124341003    0.064377516497364

     6 shut                        0.04 1.6094379124341003    0.064377516497364

     6 power                       0.04 1.6094379124341003    0.064377516497364

     6 closed                      0.04 1.6094379124341003    0.064377516497364

     6 floods                      0.04 1.6094379124341003    0.064377516497364

     6 homes                       0.04 1.6094379124341003    0.064377516497364

     7 in                        0.0625 0.9162907318741551 0.057268170742134694

     7 star                     0.03125 1.6094379124341003 0.050294934763565634

     7 after                    0.03125 1.6094379124341003 0.050294934763565634

     7 long-time                0.03125 1.6094379124341003 0.050294934763565634

     7 improvement              0.03125 1.6094379124341003 0.050294934763565634

     7 was                      0.03125 1.6094379124341003 0.050294934763565634

     7 looked                   0.03125 1.6094379124341003 0.050294934763565634

     7 reigniting               0.03125 1.6094379124341003 0.050294934763565634

     7 rafael                   0.03125 1.6094379124341003 0.050294934763565634

     7 spanish                  0.03125 1.6094379124341003 0.050294934763565634

     7 forward                  0.03125 1.6094379124341003 0.050294934763565634

     7 year                     0.03125 1.6094379124341003 0.050294934763565634

     7 rivalry                  0.03125 1.6094379124341003 0.050294934763565634

     7 happy                    0.03125 1.6094379124341003 0.050294934763565634

     7 tennis                   0.03125 1.6094379124341003 0.050294934763565634

     7 a                        0.03125 1.6094379124341003 0.050294934763565634

     7 below-par                0.03125 1.6094379124341003 0.050294934763565634

     7 game                     0.03125 1.6094379124341003 0.050294934763565634

     7 roger                    0.03125 1.6094379124341003 0.050294934763565634
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     6 and                         0.08 0.5108256237659907  0.04086604990127926

     8 to          0.043478260869565216 0.9162907318741551 0.039838727472789354

     8 he          0.043478260869565216 0.9162907318741551 0.039838727472789354

     8 nadal       0.043478260869565216 0.9162907318741551 0.039838727472789354

     8 said        0.043478260869565216 0.9162907318741551 0.039838727472789354

     8 federer     0.043478260869565216 0.9162907318741551 0.039838727472789354

     6 india                       0.04 0.9162907318741551  0.03665162927496621

     6 in                          0.04 0.9162907318741551  0.03665162927496621

     7 nadal                    0.03125 0.9162907318741551 0.028634085371067347

     7 to                       0.03125 0.9162907318741551 0.028634085371067347

     7 india                    0.03125 0.9162907318741551 0.028634085371067347

     7 he                       0.03125 0.9162907318741551 0.028634085371067347

     7 federer                  0.03125 0.9162907318741551 0.028634085371067347

     7 said                     0.03125 0.9162907318741551 0.028634085371067347

     8 the         0.043478260869565216 0.5108256237659907 0.022209809728956118

     8 and         0.043478260869565216 0.5108256237659907 0.022209809728956118

     6 the                         0.04 0.5108256237659907  0.02043302495063963

     7 and                      0.03125 0.5108256237659907  0.01596330074268721

     7 the                      0.03125 0.5108256237659907  0.01596330074268721

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Recognition (NER) Functions (ML Engine)

Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple

news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle" in

the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine

provides two sets of NER functions: 

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional Chinese

NER Functions (Maximum Entropy Model

Implementation) 

English

NER Functions (CRF Model Implementation)

Function Description

NERTrainer (ML Engine) Takes training data and outputs CRF model (binary

file).
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Function Description

NERExtractor (ML Engine) Takes input documents and extracts specified

entities, using one or more CRF models and, if

appropriate, rules (regular expressions) or a

dictionary.

Uses models to extract names of persons,

locations, and organizations; rules to extract

entities that conform to rules (such as phone

numbers, times, and dates); and dictionary to

extract known entities.

NEREvaluator (ML Engine) Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related information

Related information

NER Functions (Maximum Entropy Model Implementation)

NERTrainer (ML Engine)

The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified in

the function NERExtractor (ML Engine) and NEREvaluator (ML Engine).

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NERTrainer Syntax

Version 1.8 

SELECT * FROM NERTrainer (

  ON { table | view | (query) } PARTITION BY 1

  USING

  ModelFileName (model_file)

  TextColumn ('text_column')

  [ ExtractorJAR ('jar_file') ]

  FeatureTemplate ('template_file')

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ MaxIterNum (max_iteration_times) ]

  [ Eta (eta_threshhold_value) ]

  [ MinOccurNum (threshhold_value) ]

) AS alias;
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NERTrainer Syntax Elements

ModelFileName

Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn

Specify the name of the input table column that contains the text to analyze.

ExtractorJAR

[Optional] Specify the name of the JAR file that contains the Java classes that extract features. You

must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support existing

JAR files—for installation instructions, see Teradata Vantage™ User Guide, B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate

Specify the name of the file that specifies how to create features when training the model.

InputLanguage

[Optional] Specify the language of the input text: 

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

MaxIterNum

[Optional] Specify the maximum number of iterations.

Default: 1000

Eta

[Optional] Specify the tolerance of the termination criterion. Defines the differences of the values of

the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the

function calculates the loss or cost function on the training samples. If the loss function value

change is very small between two sequential epochs, the function considers the training process to

have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1) 

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum

[Optional] Specify the minimum number times that a feature must occur in the input text before the

function uses the feature to construct the model.

Default: 0
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NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them. 

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this

syntax:

<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time

and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)

• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train

id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END>

TAKE OVER AT TOP AFTER INNINGS VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .

5 Their stay on top
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id content

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at <START:LOC>

Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

... ...

SQL Call

SELECT * FROM NERTrainer (

  ON ner_sports_train PARTITION BY 1

  USING

  TextColumn ('content')

  FeatureTemplate ('template_1.txt')

  OutputModelFile ('ner_model.bin')

) AS dt;

Output

 train_result                  

 ----------------------------- 

 Model generated.             

 Training time(s): 3.129      

 File size(KB): 374           

 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NERExtractor (ML Engine)

The NERExtractor function takes input documents and extracts specified entities, using one or more CRF

models (output by the function NERTrainer (ML Engine)) and, if appropriate, rules (regular expressions) or a

dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract

entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract

known entities.
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NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NERExtractor Syntax

Version 1.8 

SELECT * FROM NERExtractor (

  ON input_table PARTITION BY { ANY | key }

  [ ON rules_table AS Rules DIMENSION ]

  [ ON dictionary_table AS Dict DIMENSION ]

  USING

  TextColumn ('text_column')

  [ InputModelFiles ('input_model_file[:jar_file]' [,...]) ]

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ ShowContext ('n') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

InputModelFiles

[Optional] Specify the CRF models (binary files) to use, output by NERTrainer (ML Engine). If you

specified the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then

you must specify the same jar_file in this syntax element. You must install input_model_file and 

jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage

[Optional] Specify the language of the input text: 

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext

[Optional] Specify the number of context words to output (a positive integer). The function outputs

the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate

[Optional] Specify the names of the input table columns to copy to the output table.
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NERExtractor Input

Table Description

Input table Text to analyze.

Tip: To optimize function performance, remove

punctuation marks from text with TextParser (ML

Engine) function.

Rules [Optional] Rules to use when extracting entities

from text.

Dict [Optional] Dictionary to use when extracting

entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them. 

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table. 

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that

represents an entity of this type.

Expression must conform to Java

Regex standard, documented at 

http://docs.oracle.com/javase/

tutorial/essential/regex/

quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.
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NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table 

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.

context VARCHAR [Column appears only with ShowContent syntax element.]

Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.

• Rules: rule_table, which is preinstalled on ML Engine.

• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2

id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583  GENEVA 1996-08-30

584  UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in

an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .
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id content

587  Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he

protested about a Karlsruhe goal

588  Karlsruhe won the August 20 match 3-1 thanks to two late goals .

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592  MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take

part in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had

allowed organisers to hold a men s triple jump as well as the women s long jump on the one

usable runway at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in

the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the

Balkans -- two days after the grand prix final in Milan .

596  Edwards was quoted as saying : What type of character do we show by going to the IAAF

Grand Prix Final in Milan where there is a lot of money to make but refusing to make the trip to

Sarajevo as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599  NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division

side Nice

601  Baratelli

602  Nice have been unable to win any of their four league matches played this season and are

lying a lowly 18th in the table .

Rules: rule_table

type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (

  ON ner_sports_test2 PARTITION BY ANY

  ON rule_table AS Rules DIMENSION

  USING

  TextColumn ('content')

  InputModelFiles ('ner_model.bin')

  ShowContext (2)

  Accumulate ('id')

) AS dt ORDER BY id, sn;
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Output

 id  sn entity              type_ner start_ner end_ner context                                            approach 

 --- -- ------------------- -------- --------- ------- -------------------------------------------------- -------- 

 528  1 sports@espn.com     email            2       2 ... email sports@espn.com to contact               RULE    

 529  1 cricket@espn.com    email            2       2 ... email cricket@espn.com to contact              RULE    

 530  1 tennis@espn.com     email            2       2 ... email tennis@espn.com to contact               RULE    

 531  1 Igor Trandenkov     PER              2       3 ... 1= Igor Trandenkov (Russia) 5.86               CRF     

 532  1 Maksim Tarasov      PER              2       3 ... 3. Maksim Tarasov (Russia) 5.86                CRF     

 533  1 Tim Lobinger        PER              2       3 ... 4. Tim Lobinger (Germany) 5.80                 CRF     

 534  1 Igor Potapovich     PER              2       3 ... 5. Igor Potapovich (Kazakstan) 5.80            CRF     

 535  1 Jean Galfione       PER              2       3 ... 6. Jean Galfione (France) 5.65                 CRF     

 536  1 Pyotr Bochkary      PER              2       3 ... 7. Pyotr Bochkary (Russia) 5.65                CRF     

 537  1 Dmitri Markov       PER              2       3 ... 8. Dmitri Markov (Belarus) 5.65                CRF     

 583  1 GENEVA              LOC              1       1 ... ... GENEVA 1996-08-30 ...                      CRF     

 584  1 Standard Liege      PER              8       9 Belgian club Standard Liege on Friday              CRF     

 587  1 Roberto Bisconti    PER              1       2 ... ... Roberto Bisconti will be                   CRF     

 591  1 HARRISON            PER              3       3 ATHLETICS - HARRISON ... ...                       CRF     

 592  1 MONTE CARLO         PER              1       2 ... ... MONTE CARLO 1996-08-30 ...                 CRF     

 593  1 Kenny Harrison      PER              3       4 Olympic champion Kenny Harrison and world          CRF     

 593  2 Jonathan Edwards    PER              9      10 record holder Jonathan Edwards will both           CRF     

 596  1 What                ORG              7       7 saying : What type of                              CRF     

 598  1 BARATELLI TO        PER              3       4 SOCCER - BARATELLI TO COACH NICE                   CRF     

 599  1 NICE                PER              1       1 ... ... NICE ... ...                               CRF     

 600  1 Dominique Baratelli PER              4       5 international goalkeeper Dominique Baratelli is to CRF     

 600  2 Nice                PER             14      14 division side Nice ... ...                         CRF     

 601  1 Baratelli           PER              1       1 ... ... Baratelli ... ...                          CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NEREvaluator (ML Engine)

The NEREvaluator function evaluates a CRF model (output by the function NERTrainer (ML Engine)).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions

Use.

NEREvaluator Syntax

Version 1.9 

SELECT * FROM NEREvaluator (

  ON { table | view | (query) } PARTITION BY 1

  USING

  TextColumn ('text_column')

  ModelFile ('model_file[:jar_file]')
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  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

) AS alias;

NEREvaluator Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

ModelFile

Specify the CRF model file to evaluate, created and automatically installed by NERTrainer (ML

Engine).

If you specified the ExtractorJAR syntax element in the NERTrainer call that created model_file, then

you must specify the same jar_file in this syntax element. You must install the jar_file on ML Engine

before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.

InputLanguage

[Optional] Specify the language of the input text: 

Option Description

'en' (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.

Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.

Final row value: Average precision

value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.

Final row value: Average recall

value for all entity types.
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Column Data Type Description

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity

type.

Final row value: Average F1 score

for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function in

terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example 

SQL Call

SELECT * FROM NEREvaluator (

  ON ner_sports_test2 PARTITION BY 1

  USING

  TextColumn ('content')

  ModelFile ('ner_model.bin')

) AS dt;

Output

 type_ner precision_ner recall f1_measure 

 -------- ------------- ------ ---------- 

 LOC                  1 0.4444     0.6154

 ORG                  0      0         -1

 PER             0.7222 0.8125     0.7647

 -AVG-           0.7778 0.4884        0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NER Functions (Maximum Entropy Model Implementation)

Function Description

NamedEntityFinderTrainer (ML Engine) Takes training data and outputs a maximum

entropy model (binary file).
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Function Description

NamedEntityFinder (ML Engine) Evaluates input, identifies tokens based on

specified model, and outputs tokens with detailed

information.

Uses model to extract entity types 'PERSON',

'LOCATION', and 'ORGANIZATION' and rules to

extract entity types 'DATE', 'TIME', 'EMAIL' and

'MONEY'. If you specify these entity names, the

function invokes the default model types and

model file names. To extract all entities in one

NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator (ML Engine) Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related information

Related information

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer (ML Engine)

The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.

The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see 

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That

Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7 

SELECT * FROM NamedEntityFinderTrainer (

  ON { table | view | (query) } PARTITION BY 1 [ ORDER BY order_column ]

  USING

  OutputModelFile (output_model_file)

  TextColumn ('text_column')

  EntityType ('entity_type')

  [ IterNum (iterator)]

  [ Cutoff (cutoff)]

) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for each

row.
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NamedEntityFinderTrainer Syntax Elements

OutputModelFile

Specify the name of the data model file to create.

TextColumn

Specify the name of the input table column that contains the text to analyze.

EntityType

Specify the entity type to train (for example, PERSON). The input training documents must contain

the same tag.

IterNum

[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff

[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5

NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this

syntax:

<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML

Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train
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id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END>

TAKE OVER AT TOP AFTER INNINGS VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at

<START:LOCATION> Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION>

England <END> hopeful <START:PER> Mark

Butcher <END> who made 70 as <START:ORG>

Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (

  ON nermem_sports_train PARTITION BY 1

  USING

  EntityType ('LOCATION')

  TextColumn ('content')

  OutputModelFile (location.sports)

) AS dt;

Output

 train_result    

 --------------- 

 model installed

The model table, location.sports, is in binary format.
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

NamedEntityFinder (ML Engine)

The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and

outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.

Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That

Functions Use.

NamedEntityFinder Syntax

Version 1.6 

SELECT * FROM NamedEntityFinder (

  ON { table | view | (query) } PARTITION BY ANY

  [ ON (configure_table) AS ConfigurationTable DIMENSION ]

  USING

  TextColumn ('text_column')

  [ Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 'all' }) ]

  [ ShowContext ('context_words') ]

  [ EntityColName ('entity_column') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.

Models

[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify 'all'.

Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified

model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL), which

appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by

training.

VA4.1

Page 90 of 103



model_type Description

'rule' Rule-based model, a plain text file with one

regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with

one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes 

entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the

ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can specify

Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-organization.bin').

 For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax element, then

the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext

[Optional] Specify the number of context words to output. If context_words is n (which must be a

positive integer), the function outputs the n words that precede the entity, the entity, and the n

words that follow the entity.

Default: 0

EntityColName

[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate

[Optional] Specify the names of input columns to copy to the output table. No accumulate_column

can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create the

table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (

  model_name VARCHAR(50),

  model_type VARCHAR(50),

  model_file VARCHAR(50)

);

Default English-language models are provided with the SQL functions. Before using these models, you

must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-person.bin');

INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-location.bin');

INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-organization.bin');
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INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');

INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');

INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');

INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');

INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');

INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table

nameFind_configure

model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-

location.bin

organization max entropy en-ner-

organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them. 

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table. 

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or

EMAIL).
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Column Data Type Description

model_type VARCHAR One of these model types:

model_type Description

'max entropy' Maximum entropy language

model created by training

'rule' Rule-based model, a plain

text file with one regular

expression on each line

'dictionary' Dictionary-based model, a

plain text file with one word

on each line

'reg exp' Regular expression that

describes entity_type 

model_file VARCHAR Name of model file that describes the entity type. This

column appears if model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This

column appears if model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in

input table 

Column copied from input table. 

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax

element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax

element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax

element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input

id source content

1001 misc contact Alan by email at

sports@espn.com for all sport

info
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id source content

1002 misc contact Mark at

cricket@espn.com for all cricket

info

1003 misc contact Roger at

tennis@espn.com for all tennis

info

1004 wiki The contiguous United States

consists of the 48 adjoining U.S.

states plus Washington, D.C., on

the continent of North America

1005 wiki California's economy is centered

onTechnology,Finance,real estate

services, Government, and

professional, Scientific and

Technical business Services;

together comprising 58% of the

State Government economy

1006 wiki Houston is the largest city in

Texas and the fourth-largest in

the United States, while San

Antonio is the second largest and

seventh largest in the state.

1007 wiki Thomas is a photographer whose

natural landscapes of the West

are also a statement about the

importance of the preservation of

the wildness

SQL Call

SELECT * FROM NamedEntityFinder (

  ON assortedtext_input PARTITION BY ANY

  ON namefind_configure AS ConfigurationTable DIMENSION

  USING

  TextColumn ('content')

  Models ('all')

  Accumulate ('id', 'source')

) AS dt ORDER BY id;

Output

 id   source entity           entity_type  

 ---- ------ ---------------- ------------ 

 1001 misc   sports@espn.com  email       

 1002 misc   cricket@espn.com email       
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 1002 misc   Mark             person      

 1003 misc   Roger            person      

 1003 misc   tennis@espn.com  email       

 1004 wiki   Washington       location    

 1004 wiki   U.S.             location    

 1004 wiki   North America    location    

 1004 wiki   United States    location    

 1005 wiki   State Government organization

 1005 wiki    58%             percentage  

 1006 wiki   San Antonio      location    

 1006 wiki   United States    location    

 1006 wiki   Texas            location    

 1007 wiki   Thomas           person

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Finder Evaluator (ML Engine)

The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a row

and a partition function, respectively. Each function takes a set of evaluating data and creates the

precision, recall, and F-measure values of a specified maximum entropy data model. Neither function

supports regular-expression-based or dictionary-based models.

Related information

Related information

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,

NamedEntityFinderEvaluatorMap version 1.7 

SELECT * FROM NamedEntityFinderEvaluatorReduce (

  ON NamedEntityFinderEvaluatorMap (

    ON { table | view | (query) }

    USING

    TextColumn ('text_column')

    InputModelFile ('input_model_file')

  ) AS alias_1 PARTITION BY 1

) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn

Specify the name of the input table column that contains the text to analyze.
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InputModelFile

Specify name of the model file to evaluate.

NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this

syntax:

<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the

model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news

• model_file: location.sports, output by NamedEntityFinderTrainer Example 

Input Table: nermem_sports_test

id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons

<END> took four for 38 on Friday as <START:ORG>

Leicestershire <END> beat <START:ORG>

Somerset <END> by an innings and 39 runs in two

days to take over at the head of the county

championship .
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id content

6 After bowling <START:ORG> Somerset <END> out

for 83 on the opening morning at

<START:LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had

turned that into a 37-run advantage but off-spinner

<START:PER> Such <END> had scuttled their

hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION>

England <END> hopeful <START:PER> Mark

Butcher <END> who made 70 as <START:ORG>

Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took

six for 82 but <START:PER> Chris Adams <END>

16 They were held up by a gritty 84 from

<START:PER> Paul Johnson <END> but ex-England

fast bowler <START:PER> Martin McCague <END>

took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> :

<START:ORG> Leicestershire <END> beat

<START:ORG> Somerset <END> by an innings and

39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (

  ON NamedEntityFinderEvaluatorMap (

    ON nermem_sports_test

    USING

    InputModelFile ('location.sports')

    TextColumn ('content')

  ) PARTITION BY 1

) AS dt;

Output

 precision_val     recall             f_measure         

 ----------------- ------------------ ----------------- 

 0.847457627118644 0.7936507936507936 0.819672131147541

VA4.1

Page 97 of 103



Download a zip file of all examples and a SQL script file that creates their input tables from the attachment

in the left sidebar.

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,

NamedEntityFinderEvaluatorMap version 1.7 

SELECT * FROM NamedEntityFinderEvaluatorReduce (

  ON NamedEntityFinderEvaluatorMap (

    ON { table | view | (query) }

    USING

    TextColumn ('text_column')

    InputModelFile ('input_model_file')

  ) AS alias_1 PARTITION BY 1

) AS alias_2;

NamedEntityFinder Syntax

Version 1.6 

SELECT * FROM NamedEntityFinder (

  ON { table | view | (query) } PARTITION BY ANY

  [ ON (configure_table) AS ConfigurationTable DIMENSION ]

  USING

  TextColumn ('text_column')

  [ Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 'all' }) ]

  [ ShowContext ('context_words') ]

  [ EntityColName ('entity_column') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

NamedEntityFinderTrainer Syntax

Version 1.7 

SELECT * FROM NamedEntityFinderTrainer (

  ON { table | view | (query) } PARTITION BY 1 [ ORDER BY order_column ]

  USING

  OutputModelFile (output_model_file)

  TextColumn ('text_column')
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  EntityType ('entity_type')

  [ IterNum (iterator)]

  [ Cutoff (cutoff)]

) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for each

row.

NEREvaluator Syntax

Version 1.9 

SELECT * FROM NEREvaluator (

  ON { table | view | (query) } PARTITION BY 1

  USING

  TextColumn ('text_column')

  ModelFile ('model_file[:jar_file]')

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

) AS alias;

NERExtractor Syntax

Version 1.8 

SELECT * FROM NERExtractor (

  ON input_table PARTITION BY { ANY | key }

  [ ON rules_table AS Rules DIMENSION ]

  [ ON dictionary_table AS Dict DIMENSION ]

  USING

  TextColumn ('text_column')

  [ InputModelFiles ('input_model_file[:jar_file]' [,...]) ]

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ ShowContext ('n') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

NERTrainer Syntax

Version 1.8 

SELECT * FROM NERTrainer (

  ON { table | view | (query) } PARTITION BY 1
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  USING

  ModelFileName (model_file)

  TextColumn ('text_column')

  [ ExtractorJAR ('jar_file') ]

  FeatureTemplate ('template_file')

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ MaxIterNum (max_iteration_times) ]

  [ Eta (eta_threshhold_value) ]

  [ MinOccurNum (threshhold_value) ]

) AS alias;

POSTagger Syntax

Version 2.8 

SELECT * FROM POSTagger (

  ON { table | view | (query) }

  USING

  TextColumn ('text_column')]

  [ InputLanguage ({ 'en' | 'zh_Cn' }) ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

Related information

Related information

Column Specification Syntax Elements

TextChunker Syntax

Version 1.6

SELECT * FROM TextChunker (

  ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn

  USING

  WordColumn ('word_column')

  POSColumn ('pos_tag_column')

) AS alias;

The input_table is output table of the POSTagger (ML Engine) function, which contains the columns 

partition_key and word_sn.
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TextParser Syntax

Version 1.14 

SELECT * FROM TextParser (

  ON { table | view | (query) } [ PARTITION BY expression [,...] ]

  USING

  TextColumn ('text_column')

  [ ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ Delimiter ('delimiter_regular_expression') ]

  [ OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ Punctuation ('punctuation_regular_expression') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

  [ TokenColName ('token_column') ]

  [ FrequencyColName ('frequency_column') ]

  [ TotalColName ('total_column') ]

  [ RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ PositionColName ('position_column') ]

  [ ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ StemExceptions ('exception_rule_file') ]

  [ StopWordsList ('stop_word_file') ]

) AS alias;

If you include the PARTITION BY clause, the function treats all rows in the same partition as a single

document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related information

Column Specification Syntax Elements

Regular Expressions in Syntax Elements

TextTagger Syntax

Version 1.7

SELECT * FROM TextTagger (

  ON { table | view | (query) } PARTITION BY ANY

  [ ON { table | view | (query) } AS Rules DIMENSION ]

  USING

  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]

  [ TaggingRules ('rule AS tag' [,...]) ]

  [ Tokenize ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ OutputByTag ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ TagDelimiter ('delimiter') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

) AS alias;

VA4.1

Page 101 of 103



Related information

Related information

Column Specification Syntax Elements

TFIDF Syntax

TFIDF version 2.3, TF version 1.2

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid     

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  [ ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION ]

  [ ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

      AS DocPerTerm PARTITION BY term

  ]

  [ ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

      AS IDF PARTITION BY term

  ]

) AS alias;

Large Document Sets

For large documents sets, the DocPerTerm table is required.

For training, this is the syntax for large document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid      

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  ON (SELECT COUNT (DISTINCT docid) FROM doccount_table) AS DocCount DIMENSION

  ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

    AS DocPerTerm PARTITION BY term 

) AS alias ORDER BY docid;

For prediction, this is the syntax for large document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid      

    [ USING Formula ({ 'normal' | 'bool' | 'log' | 'augment' }) ]

  ) AS TF PARTITION BY term 

  [ ON (SELECT term, COUNT (DISTINCT docid) FROM docperterm_table GROUP BY term)

      AS DocPerTerm PARTITION BY term

  ]
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  [ ON (SELECT DISTINCT (term) AS term, idf FROM tf_idf_output_table)

      AS IDF PARTITION BY term

  ]

) AS alias ORDER BY docid;

Small Document Sets

This syntax is acceptable for small document sets:

SELECT * FROM TFIDF (

  ON TF (

    ON { table | view | (query) } PARTITION BY docid 

  ) AS TF PARTITION BY term 

  ON (SELECT COUNT (DISTINCT docid) FROM input_table) AS DocCount DIMENSION

) AS alias ORDER BY docid;
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The POSTagger function creates part-of-speech (POS) tags for the words in the input text. POS tagging is
the first step in the syntactic analysis of a language, and an important preprocessing step in many natural
language-processing applications.

The POSTagger function was developed on the Penn Treebank Project and Chinese Penn Treebank Project
data set. Its POS tags comply with the tags defined by the two projects.

For the parts of speech used, see the following:

Text Language Parts of Speech

English https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Chinese https://www.sketchengine.co.uk/chinese-penn-treebank-part-of-speech-tagset/

POSTagger uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

POSTagger Syntax
Version 2.8

SELECT * FROM POSTagger (
  ON { table | view | (query) }
  USING
  TextColumn ('text_column')]
  [ InputLanguage ({ 'en' | 'zh_Cn' }) ]
  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

Related Information:

Column Specification Syntax Elements

POSTagger Syntax Elements
TextColumn

Specify the name of the input column that contains the text to tag.

InputLanguage
[Optional] Specify the language of the input text:

POSTagger (ML Engine)

78

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1285



Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

If you intend to use the POSTagger output table as input to the function TextChunker (ML
Engine), then this syntax element must specify the input table columns that comprise the
partition key.

POSTagger Input
Table Description

Input table Contains text to tag.

Model table Determined by InputLanguage syntax element:

InputLanguage Model File

English pos_model_2.0_en_141008.bin

Simplified Chinese pos_model_2.0_zh_cn_141008.bin

These model files are preinstalled on ML Engine.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

accumulate_column Any Column to copy to output table.

text_column VARCHAR Text to tag. Each row of this column must contain a well-formatted
sentence. To convert English text to formatted sentences, use
SentenceExtractor (ML Engine) function.

POSTagger Output
Output Table Schema

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.
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Column Data Type Description

word_sn INTEGER Word serial number (position of word in input text).

word VARCHAR Word extracted from input text.

pos_tag VARCHAR POS tag of word.

POSTagger Example
Input

• Input table: Output table of SentenceExtractor Example

SQL Call

SELECT * FROM POSTagger (
  ON SentenceExtractor (
    ON paragraphs_input 
    USING
    TextColumn ('paratext')
    Accumulate ('paraid')
  ) 
  USING
  TextColumn ('sentence')
  Accumulate ('sentence','sentence_sn')
) AS dt ORDER BY sentence_sn, word_sn;

Output

 
sentence                                                                          
                                                                                  
                                                                                  
                                                                                  
                                                                                  
                                                                                  
                                                                                  
                                                                                  
                                              sentence_sn word_sn word                
pos_tag 
 
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
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---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
---------------------------------------------------------------------------------
----------------------------------------------------- ----------- ------- 
------------------- ------- 
 in statistics, simple linear regression is the least squares estimator of a linear 
regression model with a single explanatory variable. in other words, simple linear 
regression fits a straight line through the set of n points in such a way that 
makes the sum of squared residuals of the model (that is, vertical distances 
between the points of the data set and the fitted line) as small as 
possible.                                                                         
                                                                                  
                                                                                  
                                                                            1       
1 in                  IN     
 logistic regression was developed by statistician david cox in 1958[2][3]
(although much work was done in the single independent variable case almost two 
decades earlier). the binary logistic model is used to estimate the probability of 
a binary response based on one or more predictor (or independent) variables 
(features). as such it is not a classification method. it could be called a 
qualitative response/discrete choice model in the terminology of 
economics.                                                                        
                                                                                  
                                                                                               
1       1 logistic            JJ     
 association rule learning is a method for discovering interesting relations 
between variables in large databases. it is intended to identify strong rules 
discovered in databases using different measures of interestingness. based on the 
concept of strong rules, rakesh agrawal et al.[2] introduced association rules for 
discovering regularities between products in large-scale transaction data recorded 
by point-of-sale (pos) systems in supermarkets. for example, the rule {onions, 
potatoes}=>{burger} found in the sales data of a supermarket would indicate that 
if a customer buys onions and potatoes together, they are likely to also buy 
hamburger meat.                                                          1       
1 association         NN     
 decision tree learning uses a decision tree as a predictive model which maps 
observations about an item to conclusions about the items target value. it is one 
of the predictive modelling approaches used in statistics, data mining and machine 
learning. tree models where the target variable can take a finite set of values 
are called classification trees. in these tree structures, leaves represent class 
labels and branches represent conjunctions of features that lead to those class 
labels. decision trees where the target variable can take continuous values 
(typically real numbers) are called regression 
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trees.                                                                            
                       1       1 decision            NN     
 cluster analysis or clustering is the task of grouping a set of objects in such 
a way that objects in the same group (called a cluster) are more similar (in some 
sense or another) to each other than to those in other groups (clusters). it is a 
main task of exploratory data mining, and a common technique for statistical data 
analysis, used in many fields, including machine learning, pattern recognition, 
image analysis, information retrieval, and bioinformatics. cluster analysis itself 
is not one specific algorithm, but the general task to be solved. it can be 
achieved by various algorithms that differ significantly in their notion of what 
constitutes a cluster and how to efficiently find them.           1       1 
cluster             NN     
 cluster analysis or clustering is the task of grouping a set of objects in such 
a way that objects in the same group (called a cluster) are more similar (in some 
sense or another) to each other than to those in other groups (clusters). it is a 
main task of exploratory data mining, and a common technique for statistical data 
analysis, used in many fields, including machine learning, pattern recognition, 
image analysis, information retrieval, and bioinformatics. cluster analysis itself 
is not one specific algorithm, but the general task to be solved. it can be 
achieved by various algorithms that differ significantly in their notion of what 
constitutes a cluster and how to efficiently find them.           1       2 
analysis            NN     
 logistic regression was developed by statistician david cox in 1958[2][3]
(although much work was done in the single independent variable case almost two 
decades earlier). the binary logistic model is used to estimate the probability of 
a binary response based on one or more predictor (or independent) variables 
(features). as such it is not a classification method. it could be called a 
qualitative response/discrete choice model in the terminology of 
economics.                                                                        
                                                                                  
                                                                                               
1       2 regression          NN     
 decision tree learning uses a decision tree as a predictive model which maps 
observations about an item to conclusions about the items target value. it is one 
of the predictive modelling approaches used in statistics, data mining and machine 
learning. tree models where the target variable can take a finite set of values 
are called classification trees. in these tree structures, leaves represent class 
labels and branches represent conjunctions of features that lead to those class 
labels. decision trees where the target variable can take continuous values 
(typically real numbers) are called regression 
trees.                                                                            
                       1       2 tree                NN     
 association rule learning is a method for discovering interesting relations 
between variables in large databases. it is intended to identify strong rules 
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The TextChunker function divides text into phrases and assigns each phrase a tag that identifies its type.

 

Text chunking (also called shallow parsing) divides text into phrases in such a way that syntactically related
words become members of the same phrase. Phrases do not overlap; that is, a word is a member of only
one chunk.

For example, the sentence "He reckons the current account deficit will narrow to only # 1.8 billion in
September ." can be divided as follows, with brackets delimiting phrases:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in]
[NP September]

After each opening bracket is a tag that identifies the chunk type (NP, VP, and so on). For information about
chunk types, see TextChunker Output.

For more information about text chunking, see:

• Erik F. Tjong Kim Sang and Sabine Buchholz, Introduction to the CoNLL-2000 Shared Task: Chunking.
In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, 2000.

• Fei Sha and Fernando Pereira, Shallow Parsing with Conditional Random Fields. [2003]

TextChunker uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

TextChunker Syntax
Version 1.6

SELECT * FROM TextChunker (
  ON { table | view | (query) } PARTITION BY partition_key ORDER BY word_sn
  USING
  WordColumn ('word_column')
  POSColumn ('pos_tag_column')
) AS alias;

TextChunker (ML Engine)
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The input_table is output table of the POSTagger (ML Engine) function, which contains the columns
partition_key and word_sn.

TextChunker Syntax Elements
WordColumn

Specify the name of the input table column that contains the words to chunk into phrases.
Typically, this is the word column of the output table of the POSTagger function (described in
POSTagger Output).

POSColumn
Specify the name of the input table column the part-of-speech (POS) tag of words. Typically, this
is the pos_tag column of the output table of the POSTagger function (described in "POSTagger
Output").

TextChunker Input
Table Description

Input table POSTagger Output table.
When running POSTagger to create this table, specify in the Accumulate syntax element the
name of the input column that contains the unique row identifiers.

Model file chunker_default_model.bin, provided with function.

TextChunker Output
Output Table Schema

Column Data Type Description

partition_key VARCHAR Key of partition that contains text.

chunk_sn INTEGER Sequence number of phrase in sentence.

chunk VARCHAR Text chunk (syntactically related words).

chunk_tag VARCHAR Phrase type tag (see following table).

Phrase Type Tags

Tag Phrase Type

NP noun phrase

VP verb phrase

PP prepositional phrase
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Tag Phrase Type

ADVP adverb phrase

SBAR subordinated clause

ADJP adjective phrase

PRT particles

CONJP conjunction phrase

INTJ interjection

LST list marker

UCP unlike coordinated phrase

O punctuation marks

TextChunker Examples

TextChunker Example: POSTagger Output as Input
Input

• Input table: pos_tmp, created by inputting the table cities to the POSTagger function

cities
paraid paratext

1 I live in Los Angeles.

2 New York is a great city.

3 Chicago is a lot of fun, but the winters are very cold and windy.

4 Philadelphia and Boston have many historical sites.

This statement creates pos_tmp:

CREATE multiset table pos_tmp AS (
  SELECT * FROM POSTagger (
    ON cities
    USING
    Accumulate ('paraid')
    TextColumn ('paratext')
  ) AS dt1
) WITH DATA;
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SQL Call

SELECT * FROM TextChunker (
  ON pos_tmp PARTITION BY paraid ORDER BY paraid, word_sn
  USING
  WordColumn ('word')
  POSColumn ('pos_tag')
) AS dt;

Output

 partition_key chunk_sn chunk                   chunk_tag 
 ------------- -------- ----------------------- --------- 
             1        1 i                       NP       
             1        2 live                    VP       
             1        3 in                      PP       
             1        4 los angeles             NP       
             1        5 .                       O        
             2        1 new york                NP       
             2        2 is                      VP       
             2        3 a great city            NP       
             2        4 , filled                VP       
             2        5 with                    PP       
             2        6 arts and culture        NP       
             2        7 .                       O        
             3        1 chicago                 NP       
             3        2 is                      VP       
             3        3 a lot                   NP       
             3        4 of                      PP       
             3        5 fun                     NP       
             3        6 ,                       O        
             3        7 but                     O        
             3        8 the winters             NP       
             3        9 are                     VP       
             3       10 very cold and windy     NP       
             3       11 .                       O        
             4        1 philadelphia and boston NP       
             4        2 have                    VP       
             4        3 many historical sites   NP       
             4        4 .                       O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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TextChunker Example: SentenceExtractor and POSTagger
Output as Input
Input

paragraphs_input
paraid paratopic paratext

1 Decision
Trees

Decision tree learning uses a decision tree as a predictive model which maps
observations about an item to conclusions about the items target value. It is one
of the predictive modeling approaches used in statistics, data mining and
machine learning. Tree models where the target variable can take a finite set
of values are called classification trees. In these tree structures, leaves
represent class labels and branches represent conjunctions of features that
lead to those class labels. Decision trees where the target variable can take
continuous values (typically real numbers) are called regression trees.

2 Simple
Regression

In statistics, simple linear regression is the least squares estimator of a linear
regression model with a single explanatory variable. In other words, simple
linear regression fits a straight line through the set of n points in such a way that
makes the sum of squared residuals of the model (that is, vertical distances
between the points of the data set and the fitted line) as small as possible.

3 Logistic
Regression

Logistic regression was developed by statistician David Cox in 1958[2][3]
(although much work was done in the single independent variable case almost
two decades earlier). The binary logistic model is used to estimate the
probability of a binary response based on one or more predictor (or
independent) variables (features). As such it is not a classification method. It
could be called a qualitative response/discrete choice model in the terminology
of economics.

4 Cluster
analysis

Cluster analysis or clustering is the task of grouping a set of objects in such a
way that objects in the same group (called a cluster) are more similar (in some
sense or another) to each other than to those in other groups (clusters). It is a
main task of exploratory data mining, and a common technique for statistical
data analysis, used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, and bioinformatics. Cluster
analysis itself is not one specific algorithm, but the general task to solve. It can
be achieved by various algorithms that differ significantly in their notion of what
constitutes a cluster and how to efficiently find them.

5 Association
rule learning

Association rule learning is a method for discovering interesting relations
between variables in large databases. It is intended to identify strong rules
discovered in databases using different measures of interestingness. Based on
the concept of strong rules, Rakesh Agrawal et al.[2] introduced association
rules for discovering regularities between products in large-scale transaction
data recorded by point-of-sale (POS) systems in supermarkets. For example,
the rule {onions, potatoes} => {burger} found in the sales data of a supermarket
would indicate that if a customer buys onions and potatoes together, they are
likely to also buy hamburger meat.
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SQL Call

TextChunker requires each sentence to have a unique identifier, and the input to TextChunker must be
partitioned by that identifier.

SELECT * FROM TextChunker (
  ON (
    SELECT * FROM POSTagger (
      ON (
        SELECT paraid*1000+sentence_sn AS sentence_id, sentence FROM 
SentenceExtractor (
          ON paragraphs_input
          USING
          TextColumn ('paratext')
          Accumulate ('paraid')
        ) AS dt1
      )
      USING
      TextColumn ('sentence')
      Accumulate ('sentence_id')
    ) AS dt2 
  ) PARTITION BY sentence_id ORDER BY word_sn
  USING
  WordColumn('word')
  POSColumn('pos_tag')
) AS dt;

Output

 partition_key chunk_sn 
chunk                                                                            
                    chunk_tag 
 ------------- -------- 
--------------------------------------------------------------------------------
-------------------- --------- 
          1001        1 decision tree 
learning                                                                               NP       
          1001        2 
uses                                                                             
                    VP       
          1001        3 a decision 
tree                                                                                      
NP       
          1001        4 
as                                                                               
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                    PP       
          1001        5 a predictive 
model                                                                                   NP       
          1001        6 
which                                                                            
                    NP       
          1001        7 
maps                                                                             
                    VP       
          1001        8 
observations                                                                     
                    NP       
          1001        9 
about                                                                            
                    PP       
          1001       10 an 
item                                                                             
                 NP       
          1001       11 
to                                                                               
                    PP       
          1001       12 
conclusions                                                                      
                    NP       
          1001       13 
about                                                                            
                    PP       
          1001       14 the items target 
value                                                                               NP       
          1001       
15 .                                                                             
                       O        
          1001       16 
it                                                                               
                    NP       
          1001       17 
is                                                                               
                    VP       
          1001       18 
one                                                                              
                    NP       
          1001       19 
of                                                                               
                    PP       

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1416



          1001       20 the predictive modelling 
approaches                                                                  NP       
          1001       21 
used                                                                             
                    VP       
          1001       22 
in                                                                               
                    PP       
          1001       23 statistics , data mining and machine learning . tree 
models                                          NP       
          1001       24 
where                                                                            
                    ADVP     
          1001       25 the target 
variable                                                                                  
NP       
          1001       26 can 
take                                                                                             
VP       
          1001       27 a finite 
set                                                                                         
NP       
          1001       28 
of                                                                               
                    PP       
          1001       29 
values                                                                           
                    NP       
          1001       30 are 
called                                                                                           
VP       
          1001       31 classification 
trees                                                                                 NP       
          1001       
32 .                                                                             
                       O        
          1001       33 
in                                                                               
                    PP       
          1001       34 these tree 
structures                                                                                
NP       
          1001       
35 ,                                                                             
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                       O        
          1001       36 
leaves                                                                           
                    VP       
          1001       37 represent class labels and 
branches                                                                  NP       
          1001       38 
represent                                                                        
                    VP       
          1001       39 
conjunctions                                                                     
                    NP       
          1001       40 
of                                                                               
                    PP       
          1001       41 
features                                                                         
                    NP       
          1001       42 
that                                                                             
                    NP       
          1001       43 
lead                                                                             
                    VP       
          1001       44 
to                                                                               
                    PP       
          1001       45 those class labels . decision 
trees                                                                  NP       
          1001       46 
where                                                                            
                    ADVP     
          1001       47 the target 
variable                                                                                  
NP       
          1001       48 can 
take                                                                                             
VP       
          1001       49 continuous 
values                                                                                    
NP       
          1001       50 ( typically real 
numbers                                                                             NP       
          1001       
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51 )                                                                             
                       NP       
          1001       52 are 
called                                                                                           
VP       
          1001       53 regression 
trees                                                                                     
NP       
          1001       
54 .                                                                             
                       O        
          2001        1 
in                                                                               
                    PP       
          2001        2 
statistics                                                                       
                    NP       
          2001        
3 ,                                                                              
                      O        
          2001        4 simple linear 
regression                                                                             NP       
          2001        5 
is                                                                               
                    VP       
          2001        6 the least squares 
estimator                                                                          NP       
          2001        7 
of                                                                               
                    PP       
          2001        8 a linear regression 
model                                                                            NP       
          2001        9 
with                                                                             
                    PP       
          2001       10 a single explanatory 
variable .                                                                      NP       
          2001       11 
in                                                                               
                    PP       
          2001       12 other 
words                                                                                          
NP       
          2001       
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13 ,                                                                             
                       O        
          2001       14 simple linear 
regression                                                                             NP       
          2001       15 
fits                                                                             
                    VP       
          2001       16 a straight 
line                                                                                      
NP       
          2001       17 
through                                                                          
                    PP       
          2001       18 the 
set                                                                                              
NP       
          2001       19 
of                                                                               
                    PP       
          2001       20 n 
points                                                                           
                  NP       
          2001       21 
in                                                                               
                    PP       
          2001       22 such a 
way                                                                                           
NP       
          2001       23 
that                                                                             
                    NP       
          2001       24 
makes                                                                            
                    VP       
          2001       25 the 
sum                                                                                              
NP       
          2001       26 
of                                                                               
                    PP       
          2001       27 squared 
residuals                                                                                    
NP       
          2001       28 
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of                                                                               
                    PP       
          2001       29 the model 
(                                                                                
          NP       
          2001       30 
that                                                                             
                    NP       
          2001       31 
is                                                                               
                    VP       
          2001       32 , vertical 
distances                                                                                 
NP       
          2001       33 
between                                                                          
                    PP       
          2001       34 the 
points                                                                                           
NP       
          2001       35 
of                                                                               
                    PP       
          2001       36 the 
data                                                                                             
NP       
          2001       37 
set                                                                              
                    VP       
          2001       38 
and                                                                              
                    O        
          2001       39 the fitted 
line                                                                                      
NP       
          2001       
40 )                                                                             
                       VP       
          2001       41 as 
small                                                                            
                 ADJP     
          2001       42 
as                                                                               
                    PP       
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          2001       43 
possible                                                                         
                    ADJP     
          2001       
44 .                                                                             
                       O        
          3001        1 logistic 
regression                                                                                  
NP       
          3001        2 was 
developed                                                                        
                VP       
          3001        3 
by                                                                               
                    PP       
          3001        4 statistician david 
cox                                                                               NP       
          3001        5 
in                                                                               
                    PP       
          3001        6 1958[2][3](although much 
work                                                                        NP       
          3001        7 was 
done                                                                                             
VP       
          3001        8 
in                                                                               
                    PP       
          3001        9 the single independent variable 
case                                                                 NP       
          3001       10 
almost                                                                           
                    ADVP     
          3001       11 two 
decades                                                                                          
NP       
          3001       12 
earlier)                                                                         
                    VP       
          3001       
13 .                                                                             
                       O        
          3001       14 the binary logistic 
model                                                                            NP       

81: TextChunker (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1422



          3001       15 is used to 
estimate                                                                                  
VP       
          3001       16 the 
probability                                                                      
                NP       
          3001       17 
of                                                                               
                    PP       
          3001       18 a binary 
response                                                                                    
NP       
          3001       19 
based                                                                            
                    VP       
          3001       20 
on                                                                               
                    PP       
          3001       21 one or more predictor ( or independent ) variables 
( features) .                                     NP       
          3001       22 
as                                                                               
                    PP       
          3001       23 
such                                                                             
                    ADJP     
          3001       24 
it                                                                               
                    NP       
          3001       25 
is                                                                               
                    VP       
          3001       26 
not                                                                              
                    O        
          3001       27 a classification 
method                                                                              NP       
          3001       
28 .                                                                             
                       VP       
          3001       29 
it                                                                               
                    NP       
          3001       30 could be 
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called                                                                                      
VP       
          3001       31 a qualitative response/discrete choice 
model                                                         NP       
          3001       32 
in                                                                               
                    PP       
          3001       33 the 
terminology                                                                      
                NP       
          3001       34 
of                                                                               
                    PP       
          3001       35 
economics                                                                        
                    NP       
          3001       
36 .                                                                             
                       O        
          4001        1 cluster analysis or 
clustering                                                                       NP       
          4001        2 
is                                                                               
                    VP       
          4001        3 the 
task                                                                                             
NP       
          4001        4 
of                                                                               
                    PP       
          4001        5 
grouping                                                                         
                    VP       
          4001        6 a 
set                                                                              
                  NP       
          4001        7 
of                                                                               
                    PP       
          4001        8 
objects                                                                          
                    NP       
          4001        9 
in                                                                               
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                    PP       
          4001       10 such a 
way                                                                                           
NP       
          4001       11 
that                                                                             
                    NP       
          4001       12 
objects                                                                          
                    VP       
          4001       13 
in                                                                               
                    PP       
          4001       14 the same 
group                                                                                       
NP       
          4001       15 
( called                                                                         
                    VP       
          4001       16 a 
cluster )                                                                        
                  NP       
          4001       17 
are                                                                              
                    VP       
          4001       18 more 
similar                                                                                         
ADJP     
          4001       19 
(                                                                                
                    O        
          4001       20 
in                                                                               
                    PP       
          4001       21 some 
sense                                                                                           
NP       
          4001       22 
or                                                                               
                    O        
          4001       23 
another )                                                                        
                    NP       
          4001       24 
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to                                                                               
                    PP       
          4001       25 each 
other                                                                                           
NP       
          4001       26 
than                                                                             
                    PP       
          4001       27 
to                                                                               
                    PP       
          4001       28 
those                                                                            
                    NP       
          4001       29 
in                                                                               
                    PP       
          4001       30 other 
groups                                                                                         
NP       
          4001       31 
( clusters)                                                                      
                    NP       
          4001       
32 .                                                                             
                       O        
          4001       33 
it                                                                               
                    NP       
          4001       34 
is                                                                               
                    VP       
          4001       35 a main 
task                                                                                          
NP       
          4001       36 
of                                                                               
                    PP       
          4001       37 exploratory data 
mining                                                                              NP       
          4001       
38 ,                                                                             
                       O        
          4001       39 
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and                                                                              
                    O        
          4001       40 a common 
technique                                                                                   
NP       
          4001       41 
for                                                                              
                    PP       
          4001       42 statistical data 
analysis                                                                            NP       
          4001       43 , 
used                                                                             
                  VP       
          4001       44 
in                                                                               
                    PP       
          4001       45 many 
fields                                                                                          
NP       
          4001       
46 ,                                                                             
                       O        
          4001       47 
including                                                                        
                    PP       
          4001       48 machine 
learning                                                                                     
NP       
          4001       
49 ,                                                                             
                       O        
          4001       50 pattern recognition , image analysis , information 
retrieval , and bioinformatics . cluster analysis NP       
          4001       51 
itself                                                                           
                    NP       
          4001       52 
is                                                                               
                    VP       
          4001       53 
not                                                                              
                    O        
          4001       54 one specific 
algorithm                                                                               
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NP       
          4001       
55 ,                                                                             
                       O        
          4001       56 
but                                                                              
                    O        
          4001       57 the general 
task                                                                                     
NP       
          4001       58 to be 
solved                                                                                         
VP       
          4001       
59 .                                                                             
                       O        
          4001       60 
it                                                                               
                    NP       
          4001       61 can be 
achieved                                                                                      
VP       
          4001       62 
by                                                                               
                    PP       
          4001       63 various 
algorithms                                                                                   
NP       
          4001       64 
that                                                                             
                    NP       
          4001       65 
differ                                                                           
                    VP       
          4001       66 
significantly                                                                    
                    ADVP     
          4001       67 
in                                                                               
                    PP       
          4001       68 their 
notion                                                                                         
NP       
          4001       69 
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of                                                                               
                    PP       
          4001       70 
what                                                                             
                    NP       
          4001       71 
constitutes                                                                      
                    VP       
          4001       72 a 
cluster                                                                          
                  NP       
          4001       73 
and                                                                              
                    O        
          4001       74 
how                                                                              
                    ADVP     
          4001       75 to efficiently 
find                                                                                  VP       
          4001       76 
them                                                                             
                    NP       
          4001       
77 .                                                                             
                       O        
          5001        1 association rule 
learning                                                                            NP       
          5001        2 
is                                                                               
                    VP       
          5001        3 a 
method                                                                           
                  NP       
          5001        4 
for                                                                              
                    PP       
          5001        5 
discovering                                                                      
                    VP       
          5001        6 interesting 
relations                                                                                
NP       
          5001        7 
between                                                                          
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                    PP       
          5001        8 
variables                                                                        
                    NP       
          5001        9 
in                                                                               
                    PP       
          5001       10 large 
databases                                                                                      
NP       
          5001       
11 .                                                                             
                       O        
          5001       12 
it                                                                               
                    NP       
          5001       13 is intended to 
identify                                                                              VP       
          5001       14 strong 
rules                                                                                         
NP       
          5001       15 
discovered                                                                       
                    VP       
          5001       16 
in                                                                               
                    PP       
          5001       17 
databases                                                                        
                    NP       
          5001       18 
using                                                                            
                    VP       
          5001       19 different 
measures                                                                                   
NP       
          5001       20 
of                                                                               
                    PP       
          5001       21 
interestingness                                                                  
                    NP       
          5001       22 . 
based                                                                            
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                  VP       
          5001       23 
on                                                                               
                    PP       
          5001       24 the 
concept                                                                                          
NP       
          5001       25 
of                                                                               
                    PP       
          5001       26 strong 
rules                                                                                         
NP       
          5001       
27 ,                                                                             
                       O        
          5001       28 rakesh agrawal et al.[2 ] introduced association 
rules                                               NP       
          5001       29 
for                                                                              
                    PP       
          5001       30 discovering 
regularities                                                                             
NP       
          5001       31 
between                                                                          
                    PP       
          5001       32 
products                                                                         
                    NP       
          5001       33 
in                                                                               
                    PP       
          5001       34 large-scale transaction 
data                                                                         NP       
          5001       35 
recorded                                                                         
                    VP       
          5001       36 
by                                                                               
                    PP       
          5001       37 point-of-sale ( pos ) 
systems                                                                        NP       
          5001       38 
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in                                                                               
                    PP       
          5001       39 
supermarkets                                                                     
                    NP       
          5001       
40 .                                                                             
                       O        
          5001       41 
for                                                                              
                    PP       
          5001       42 
example                                                                          
                    NP       
          5001       
43 ,                                                                             
                       O        
          5001       44 the rule { onions , 
potatoes}=>{burger                                                               NP       
          5001       45 } 
found                                                                            
                  VP       
          5001       46 
in                                                                               
                    PP       
          5001       47 the sales 
data                                                                                       
NP       
          5001       48 
of                                                                               
                    PP       
          5001       49 a 
supermarket                                                                      
                  NP       
          5001       50 would 
indicate                                                                                       
VP       
          5001       51 
that                                                                             
                    SBAR     
          5001       52 
if                                                                               
                    SBAR     
          5001       53 a 
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customer                                                                         
                  NP       
          5001       54 
buys                                                                             
                    VP       
          5001       55 
onions                                                                           
                    NP       
          5001       56 
and                                                                              
                    O        
          5001       57 
potatoes                                                                         
                    VP       
          5001       58 
together                                                                         
                    ADVP     
          5001       
59 ,                                                                             
                       O        
          5001       60 
they                                                                             
                    NP       
          5001       61 
are                                                                              
                    VP       
          5001       62 
likely                                                                           
                    ADJP     
          5001       63 to also 
buy                                                                                          
VP       
          5001       64 hamburger 
meat                                                                                       
NP       
          5001       
65 .                                                                             
                       O

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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The TextParser function tokenizes an input stream of words, optionally stems them (reduces them to their
root forms), and then outputs them. The function can either output all words in one row or output each word
in its own row with (optionally) the number of times that the word appears.

The TextParser function uses Porter2 as the stemming algorithm.

The TextParser function reads a document into a memory buffer and creates a hash table. The dictionary
for the document must not exceed available memory; however, a million-word dictionary with an average
word length of ten bytes requires only 10 MB of memory.

TextParser uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That Functions
Use.

TextParser Syntax
Version 1.14

SELECT * FROM TextParser (
  ON { table | view | (query) } [ PARTITION BY expression [,...] ]
  USING
  TextColumn ('text_column')
  [ ConvertToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ StemTokens ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ Delimiter ('delimiter_regular_expression') ]
  [ OutputTotalWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ Punctuation ('punctuation_regular_expression') ]
  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
  [ TokenColName ('token_column') ]
  [ FrequencyColName ('frequency_column') ]
  [ TotalColName ('total_column') ]
  [ RemoveStopWords ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ PositionColName ('position_column') ]
  [ ListPositions ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ OutputByWord ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ StemExceptions ('exception_rule_file') ]
  [ StopWordsList ('stop_word_file') ]
) AS alias;

TextParser (ML Engine)
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If you include the PARTITION BY clause, the function treats all rows in the same partition as a single
document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

TextParser Syntax Elements
TextColumn

Specify the name of the input column with contents to tokenize.

ConvertToLowerCase
[Optional] Specify whether to convert input text to lowercase.

The function ignores this syntax element if the StemTokens syntax element has the value 'true'.

Default: 'true'

StemTokens
[Optional] Specify whether to stem the tokens—that is, whether to apply the Porter2 stemming
algorithm to each token to reduce it to its root form. Before stemming, the function converts the
input text to lowercase and applies the RemoveStopWords syntax element.

Default: 'false'

Delimiter
[Optional] Specify a regular expression that represents the word delimiter.

The function uses only specified characters as delimiters. For example, if you specify Delimiter
('-'), the function uses only the hyphen character as a delimiter.To use the hyphen and the default
delimiters, specify Delimiter ('[- \t\f\r\n]+').

Default: '[ \t\f\r\n]+'

OutputTotalWords
[Optional] Specify whether to output a column that contains the total number of words in the input
document.

Default: 'false'

Punctuation
[Optional] Specify a regular expression that represents the punctuation characters to remove
from the input text. With StemTokens ('true'), the recommended value is '[\\\[.,?\!:;~()\\
\]]+'.

Default: '[.,!?]'

Accumulate
[Optional] Specify the names of the input columns to copy to the output table.

No accumulate_column can be the same as token_column or total_column.
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Default: All input columns

TokenColName
[Optional] Specify the name of the output column that contains the tokens.

Default: 'token'

FrequencyColName
[Optional] Specify the name of the output column that contains the frequency of each token.

The function ignores this syntax element if the OutputByWord syntax element has the value
'false'.

Default: 'frequency'

TotalColName
[Optional] Specify the name of the output column that contains the total number of words in the
input document.

Default: 'total_count'

RemoveStopWords
[Optional] Specify whether to remove stop words from the input text before parsing.

Default: 'false'

PositionColName
[Optional] Specify the name of the output column that contains the position of a word within a
document.

Default: 'location'

ListPositions
[Optional] Specify whether to output the position of a word in list form.

The function ignores this syntax element if the OutputByWord syntax element has the value
'false'.

Default: 'false' (The function outputs a row for each occurrence of the word.)

OutputByWord
[Optional] Specify whether to output each token of each input document in its own row in the
output table. If you specify 'false', then the function outputs each tokenized input document in
one row of the output table.

Default: 'true'

StemExceptions
[Optional] Specify the location of the file that contains the stemming exceptions. A stemming
exception is a word followed by its stemmed form. The word and its stemmed form are separated
by white space. Each stemming exception is on its own line in the file. For example:

bias bias 
news news 
goods goods 
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lying lie 
ugly ugli 
sky sky 
early earli

The words 'lying', 'ugly', and 'early' are to become 'lie', 'ugli', and 'earli', respectively. The other
words are not to change.

Default: No stemming exceptions

StopWordsList
[Optional] Specify the location of the file that contains the stop words (words to ignore when
parsing text). Each stop word is on its own line in the file. For example:

a 
an 
the 
and 
this 
with 
but 
will

Default: No stop words

TextParser Input
If you include the PARTITION BY clause, the function treats all rows in the same partition as a single
document. If you omit the PARTITION BY clause, the function treats each row as a single document.

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to parse.

accumulate_column Any [Column appears once for each specified accumulate_column.]
Column to copy to output table.

TextParser Output
The output table schema depends on the OutputByWord syntax element.

Output Table Schema, Output_By_Word ('true') (Default)

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.
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Column Data Type Description

token_column CLOB Token.

frequency_column INTEGER Frequency of token.

position_column VARCHAR Position of word within document.

Output Table Schema, Output_By_Word ('false')

Column Data Type Description

accumulate_column Same as in input table [Column appears once for each specified accumulate_
column.] Column copied from input table.

token_column CLOB Token.

TextParser Examples

TextParser Example: StopWordsList, No StemExceptions
Input

• InputTable: complaints, a log of vehicle complaints.

The category column indicates whether the vehicle was in a crash.

• Stop words file: stopwords.txt, which is preinstalled on ML Engine (shown in TextClassifierTrainer
Example)

complaints
doc_id text_data category

1 consumer was driving approximately 45 mph hit a deer with the front bumper and
then ran into an embankment head-on passenger's side air bag did deploy hit
windshield and deployed outward. driver's side airbag cover opened but did not
inflate it was still folded causing injuries.

crash

2 when vehicle was involved in a crash totalling vehicle driver's side/ passenger's
side air bags did not deploy. vehicle was making a left turn and was hit by a ford
f350 traveling about 35 mph on the front passenger's side. driver hit his head-on
the steering wheel. hurt his knee and received neck and back injuries.

crash

3 consumer has experienced following problems; 1.) both lower ball joints wear out
excessively; 2.) head gasket leaks; and 3.) cruise control would shut itself off while
driving without foot pressing on brake pedal.

no_crash

... ... ...
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SQL Call

SELECT * FROM TextParser (
  ON complaints
  USING
  TextColumn ('text_data')
  ConvertToLowerCase ('true')
  StemTokens ('false')
  OutputByWord ('true')
  Punctuation ('\[.,?\!\]')
  RemoveStopWords ('true')
  ListPositions ('true')
  Accumulate ('doc_id', 'category')
  StopWordsList ('stopwords.txt')
) AS dt ORDER BY doc_id,category,token,frequency,location;

Output

 doc_id category token          frequency location   
 ------ -------- -------------- --------- ---------- 
      1 crash    45                     1 4         
      1 crash    air                    1 22        
      1 crash    airbag                 1 33        
      1 crash    approximately          1 3         
      1 crash    bag                    1 23        
      1 crash    bumper                 1 12        
      1 crash    causing                1 44        
      1 crash    consumer               1 0         
      1 crash    cover                  1 34        
      1 crash    deer                   1 8         
      1 crash    deploy                 1 25        
      1 crash    deployed               1 29        
      1 crash    did                    2 24,37     
      1 crash    driver's               1 31        
      1 crash    driving                1 2         
      1 crash    embankment             1 18        
      1 crash    folded                 1 43        
      1 crash    front                  1 11        
      1 crash    head-on                1 19        
      1 crash    hit                    2 6,26      
      1 crash    inflate                1 39        
      1 crash    injuries               1 45        
      1 crash    it                     1 40        
      1 crash    mph                    1 5         
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      1 crash    not                    1 38        
      1 crash    opened                 1 35        
      1 crash    outward                1 30        
      1 crash    passenger's            1 20        
      1 crash    ran                    1 15        
      1 crash    side                   2 21,32     
      1 crash    still                  1 42        
      1 crash    then                   1 14        
      1 crash    windshield             1 27        
      2 crash    35                     1 33        
      2 crash    about                  1 32        
      2 crash    air                    1 13        
      2 crash    back                   1 54        
      2 crash    bags                   1 14        
      2 crash    by                     1 27        
      2 crash    crash                  1 6         
      2 crash    deploy                 1 17        
      2 crash    did                    1 15        
      2 crash    driver                 1 40        
      2 crash    driver's               1 9         
      2 crash    f350                   1 30        
      2 crash    ford                   1 29        
      2 crash    front                  1 37        
      2 crash    head-on                1 43        
      2 crash    his                    2 42,48     
      2 crash    hit                    2 26,41     
      2 crash    hurt                   1 47        
      2 crash    injuries               1 55        
      2 crash    involved               1 3         
      2 crash    knee                   1 49        
      2 crash    left                   1 22        
      2 crash    making                 1 20        
      2 crash    mph                    1 34        
      2 crash    neck                   1 52        
      2 crash    not                    1 16        
      2 crash    on                     1 35        
      2 crash    passenger's            2 11,38     
      2 crash    received               1 51        
      2 crash    side                   2 12,39     
      2 crash    side/                  1 10        
      2 crash    steering               1 45        
      2 crash    totalling              1 7         
      2 crash    traveling              1 31        
      2 crash    turn                   1 23        
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      2 crash    vehicle                3 1,8,18    
      2 crash    wheel                  1 46        
      2 crash    when                   1 0         
      3 no_crash 1)                     1 5         
      3 no_crash 2)                     1 13        
      3 no_crash 3)                     1 18        
      3 no_crash ball                   1 8         
      3 no_crash both                   1 6         
      3 no_crash brake                  1 31        
      3 no_crash consumer               1 0         
      3 no_crash control                1 20        
      3 no_crash cruise                 1 19        
      3 no_crash driving                1 26        
      3 no_crash excessively;           1 12        
      3 no_crash experienced            1 2         
      3 no_crash following              1 3         
      3 no_crash foot                   1 28        
      3 no_crash gasket                 1 15        
      3 no_crash has                    1 1         
      3 no_crash head                   1 14        
      3 no_crash itself                 1 23        
      3 no_crash joints                 1 9         
      3 no_crash leaks;                 1 16        
      3 no_crash lower                  1 7         
      3 no_crash off                    1 24        
      3 no_crash on                     1 30        
      3 no_crash out                    1 11        
      3 no_crash pedal                  1 32        
      3 no_crash pressing               1 29        
      3 no_crash problems;              1 4         
      3 no_crash shut                   1 22        
      3 no_crash wear                   1 10        
      3 no_crash while                  1 25        
      3 no_crash without                1 27        
      3 no_crash would                  1 21        
      4 no_crash after                  1 6         
      4 no_crash back                   1 18        
      4 no_crash been                   1 40        
      4 no_crash case                   2 1,36      
      4 no_crash completed              1 10        
      4 no_crash consumer               1 15        
      4 no_crash dealer                 2 20,22     
      4 no_crash driveshaft             1 31        
      4 no_crash has                    1 39        
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Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple
news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle"
in the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine
provides two sets of NER functions:

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional
Chinese

NER Functions (Maximum Entropy Model Implementation) English

NER Functions (CRF Model Implementation)
Function Description

NERTrainer Takes training data and outputs CRF model (binary file).

NERExtractor Takes input documents and extracts specified entities, using one or more CRF models
and, if appropriate, rules (regular expressions) or a dictionary.
Uses models to extract names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and dictionary
to extract known entities.

NEREvaluator Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related Information:

NER Functions (Maximum Entropy Model Implementation)

NERTrainer
The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified
in the function NERExtractor and NEREvaluator.

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERTrainer Syntax

Named Entity Recognition (NER) Functions
(ML Engine)

90
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Version 1.8

SELECT * FROM NERTrainer (
  ON { table | view | (query) } PARTITION BY 1
  USING
  ModelFileName (model_file)
  TextColumn ('text_column')
  [ ExtractorJAR ('jar_file') ]
  FeatureTemplate ('template_file')
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
  [ MaxIterNum (max_iteration_times) ]
  [ Eta (eta_threshhold_value) ]
  [ MinOccurNum (threshhold_value) ]
) AS alias;

NERTrainer Syntax Elements

ModelFileName
Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn
Specify the name of the input table column that contains the text to analyze.

ExtractorJAR
[Optional] Specify the name of the JAR file that contains the Java classes that extract features.
You must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support
existing JAR files—for installation instructions, see Teradata Vantage™ User Guide,
B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate
Specify the name of the file that specifies how to create features when training the model.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese
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MaxIterNum
[Optional] Specify the maximum number of iterations.

Default: 1000

Eta
[Optional] Specify the tolerance of the termination criterion. Defines the differences of the
values of the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the
function calculates the loss or cost function on the training samples. If the loss function value
change is very small between two sequential epochs, the function considers the training
process to have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1)

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum
[Optional] Specify the minimum number times that a feature must occur in the input text before
the function uses the feature to construct the model.

Default: 0

NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).
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Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)
• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:LOC>
Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

... ...

SQL Call

SELECT * FROM NERTrainer (
  ON ner_sports_train PARTITION BY 1
  USING
  TextColumn ('content')
  FeatureTemplate ('template_1.txt')
  OutputModelFile ('ner_model.bin')
) AS dt;
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Output

 train_result                  
 ----------------------------- 
 Model generated.             
 Training time(s): 3.129      
 File size(KB): 374           
 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NERExtractor
The NERExtractor function takes input documents and extracts specified entities, using one or more CRF
models (output by the function NERTrainer) and, if appropriate, rules (regular expressions) or a dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract
known entities.

NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (
  ON input_table PARTITION BY { ANY | key }
  [ ON rules_table AS Rules DIMENSION ]
  [ ON dictionary_table AS Dict DIMENSION ]
  USING
  TextColumn ('text_column')
  [ InputModelFiles ('input_model_file[:jar_file]' [,...]) ]
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
  [ ShowContext ('n') ]
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  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

Related Information:

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFiles
[Optional] Specify the CRF models (binary files) to use, output by NERTrainer. If you specified
the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then
you must specify the same jar_file in this syntax element. You must install input_model_file
and jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext
[Optional] Specify the number of context words to output (a positive integer). The function
outputs the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

NERExtractor Input

Table Description

Input table Text to analyze.
Tip:
To optimize function performance, remove punctuation marks from text with TextParser
(ML Engine) function.

Rules [Optional] Rules to use when extracting entities from text.
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Table Description

Dict [Optional] Dictionary to use when extracting entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table.

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that represents an entity of this type. Expression must
conform to Java Regex standard, documented at http://docs.oracle.com/
javase/tutorial/essential/regex/quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.

NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_
column

Same as in input
table

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.
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Column Data Type Description

context VARCHAR [Column appears only with ShowContent syntax element.
] Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or
DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.
• Rules: rule_table, which is preinstalled on ML Engine.
• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2
id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583  GENEVA 1996-08-30

584  UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in
an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .

587  Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he
protested about a Karlsruhe goal

588  Karlsruhe won the August 20 match 3-1 thanks to two late goals .
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id content

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592  MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take part
in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had allowed
organisers to hold a men s triple jump as well as the women s long jump on the one usable runway
at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in
the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the
Balkans -- two days after the grand prix final in Milan .

596  Edwards was quoted as saying : What type of character do we show by going to the IAAF Grand
Prix Final in Milan where there is a lot of money to make but refusing to make the trip to Sarajevo
as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599  NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division
side Nice

601  Baratelli

602  Nice have been unable to win any of their four league matches played this season and are lying
a lowly 18th in the table .

Rules: rule_table
type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (
  ON ner_sports_test2 PARTITION BY ANY
  ON rule_table AS Rules DIMENSION
  USING
  TextColumn ('content')
  InputModelFiles ('ner_model.bin')
  ShowContext (2)
  Accumulate ('id')
) AS dt ORDER BY id, sn;
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Output

 id  sn entity              type_ner start_ner end_ner 
context                                            approach 
 --- -- ------------------- -------- --------- ------- 
-------------------------------------------------- -------- 
 528  1 sports@espn.com     email            2       2 ... email sports@espn.com 
to contact               RULE    
 529  1 cricket@espn.com    email            2       2 ... email cricket@espn.com 
to contact              RULE    
 530  1 tennis@espn.com     email            2       2 ... email tennis@espn.com 
to contact               RULE    
 531  1 Igor Trandenkov     PER              2       3 ... 1= Igor Trandenkov 
(Russia) 5.86               CRF     
 532  1 Maksim Tarasov      PER              2       3 ... 3. Maksim Tarasov 
(Russia) 5.86                CRF     
 533  1 Tim Lobinger        PER              2       3 ... 4. Tim Lobinger 
(Germany) 5.80                 CRF     
 534  1 Igor Potapovich     PER              2       3 ... 5. Igor Potapovich 
(Kazakstan) 5.80            CRF     
 535  1 Jean Galfione       PER              2       3 ... 6. Jean Galfione 
(France) 5.65                 CRF     
 536  1 Pyotr Bochkary      PER              2       3 ... 7. Pyotr Bochkary 
(Russia) 5.65                CRF     
 537  1 Dmitri Markov       PER              2       3 ... 8. Dmitri Markov 
(Belarus) 5.65                CRF     
 583  1 GENEVA              LOC              1       1 ... ... GENEVA 
1996-08-30 ...                      CRF     
 584  1 Standard Liege      PER              8       9 Belgian club Standard 
Liege on Friday              CRF     
 587  1 Roberto Bisconti    PER              1       2 ... ... Roberto Bisconti 
will be                   CRF     
 591  1 HARRISON            PER              3       3 ATHLETICS - 
HARRISON ... ...                       CRF     
 592  1 MONTE CARLO         PER              1       2 ... ... MONTE CARLO 
1996-08-30 ...                 CRF     
 593  1 Kenny Harrison      PER              3       4 Olympic champion Kenny 
Harrison and world          CRF     
 593  2 Jonathan Edwards    PER              9      10 record holder Jonathan 
Edwards will both           CRF     
 596  1 What                ORG              7       7 saying : What type 
of                              CRF     
 598  1 BARATELLI TO        PER              3       4 SOCCER - BARATELLI TO 
COACH NICE                   CRF     
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 599  1 NICE                PER              1       1 ... ... 
NICE ... ...                               CRF     
 600  1 Dominique Baratelli PER              4       5 international goalkeeper 
Dominique Baratelli is to CRF     
 600  2 Nice                PER             14      14 division side 
Nice ... ...                         CRF     
 601  1 Baratelli           PER              1       1 ... ... 
Baratelli ... ...                          CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NEREvaluator
The NEREvaluator function evaluates a CRF model (output by the function NERTrainer).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (
  ON { table | view | (query) } PARTITION BY 1
  USING
  TextColumn ('text_column')
  ModelFile ('model_file[:jar_file]')
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
) AS alias;

NEREvaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

ModelFile
Specify the CRF model file to evaluate, created and automatically installed by NERTrainer.

If you specified the ExtractorJAR syntax element in the NERTrainer call that created
model_file, then you must specify the same jar_file in this syntax element. You must install the
jar_file on ML Engine before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.
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InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.
Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.
Final row value: Average precision value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.
Final row value: Average recall value for all entity types.

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity type.
Final row value: Average F1 score for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function
in terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example

SQL Call

SELECT * FROM NEREvaluator (
  ON ner_sports_test2 PARTITION BY 1
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  USING
  TextColumn ('content')
  ModelFile ('ner_model.bin')
) AS dt;

Output

 type_ner precision_ner recall f1_measure 
 -------- ------------- ------ ---------- 
 LOC                  1 0.4444     0.6154
 ORG                  0      0         -1
 PER             0.7222 0.8125     0.7647
 -AVG-           0.7778 0.4884        0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NER Functions (Maximum Entropy Model
Implementation)

Function Description

NamedEntityFinderTrainer Takes training data and outputs a maximum entropy model (binary file).

NamedEntityFinder Evaluates input, identifies tokens based on specified model, and outputs
tokens with detailed information.
Uses model to extract entity types 'PERSON', 'LOCATION', and
'ORGANIZATION' and rules to extract entity types 'DATE', 'TIME', 'EMAIL'
and 'MONEY'. If you specify these entity names, the function invokes the
default model types and model file names. To extract all entities in one
NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related Information:

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer
The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.
The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see
https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.
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NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (
  ON { table | view | (query) } PARTITION BY 1 [ ORDER BY order_column ]
  USING
  OutputModelFile (output_model_file)
  TextColumn ('text_column')
  EntityType ('entity_type')
  [ IterNum (iterator)]
  [ Cutoff (cutoff)]
) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for
each row.

NamedEntityFinderTrainer Syntax Elements

OutputModelFile
Specify the name of the data model file to create.

TextColumn
Specify the name of the input table column that contains the text to analyze.

EntityType
Specify the entity type to train (for example, PERSON). The input training documents must
contain the same tag.

IterNum
[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff
[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5
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NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML
Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>
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id content

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (
  ON nermem_sports_train PARTITION BY 1
  USING
  EntityType ('LOCATION')
  TextColumn ('content')
  OutputModelFile (location.sports)
) AS dt;

Output

 train_result    
 --------------- 
 model installed

The model table, location.sports, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NamedEntityFinder
The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and
outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.
Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinder Syntax
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Version 1.6

SELECT * FROM NamedEntityFinder (
  ON { table | view | (query) } PARTITION BY ANY
  [ ON (configure_table) AS ConfigurationTable DIMENSION ]
  USING
  TextColumn ('text_column')
  [ Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 
'all' }) ]
  [ ShowContext ('context_words') ]
  [ EntityColName ('entity_column') ]
  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

Models
[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify
'all'. Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified
model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL),
which appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by training.

'rule' Rule-based model, a plain text file with one regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes
entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the
ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can
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specify Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-
organization.bin').

Note:
For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax
element, then the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext
[Optional] Specify the number of context words to output. If context_words is n (which must be
a positive integer), the function outputs the n words that precede the entity, the entity, and the
n words that follow the entity.

Default: 0

EntityColName
[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate
[Optional] Specify the names of input columns to copy to the output table. No
accumulate_column can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create
the table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (
  model_name VARCHAR(50),
  model_type VARCHAR(50),
  model_file VARCHAR(50)
);

Default English-language models are provided with the SQL functions. Before using these models, you
must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-
person.bin');
INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-
location.bin');
INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-
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organization.bin');
INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');
INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');
INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');
INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');
INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');
INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table nameFind_configure
model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-location.bin

organization max entropy en-ner-organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table.

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or EMAIL).

model_type VARCHAR One of these model types:
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Column Data Type Description

model_type Description

'max entropy' Maximum entropy language model created by training

'rule' Rule-based model, a plain text file with one regular
expression on each line

'dictionary' Dictionary-based model, a plain text file with one word
on each line

'reg exp' Regular expression that describes entity_type

model_file VARCHAR Name of model file that describes the entity type. This column appears if
model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This column appears if
model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in input
table

Column copied from input table.

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax
element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax
element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax
element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input
id source content

1001 misc contact Alan by email at sports@espn.com for all sport info
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id source content

1002 misc contact Mark at cricket@espn.com for all cricket info

1003 misc contact Roger at tennis@espn.com for all tennis info

1004 wiki The contiguous United States consists of the 48 adjoining U.S. states plus
Washington, D.C., on the continent of North America

1005 wiki California's economy is centered onTechnology,Finance,real estate services,
Government, and professional, Scientific and Technical business Services; together
comprising 58% of the State Government economy

1006 wiki Houston is the largest city in Texas and the fourth-largest in the United States, while
San Antonio is the second largest and seventh largest in the state.

1007 wiki Thomas is a photographer whose natural landscapes of the West are also a statement
about the importance of the preservation of the wildness

SQL Call

SELECT * FROM NamedEntityFinder (
  ON assortedtext_input PARTITION BY ANY
  ON namefind_configure AS ConfigurationTable DIMENSION
  USING
  TextColumn ('content')
  Models ('all')
  Accumulate ('id', 'source')
) AS dt ORDER BY id;

Output

 id   source entity           entity_type  
 ---- ------ ---------------- ------------ 
 1001 misc   sports@espn.com  email       
 1002 misc   cricket@espn.com email       
 1002 misc   Mark             person      
 1003 misc   Roger            person      
 1003 misc   tennis@espn.com  email       
 1004 wiki   Washington       location    
 1004 wiki   U.S.             location    
 1004 wiki   North America    location    
 1004 wiki   United States    location    
 1005 wiki   State Government organization
 1005 wiki    58%             percentage  
 1006 wiki   San Antonio      location    
 1006 wiki   United States    location    
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 1006 wiki   Texas            location    
 1007 wiki   Thomas           person

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

Named Entity Finder Evaluator
The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a
row and a partition function, respectively. Each function takes a set of evaluating data and creates the
precision, recall, and F-measure values of a specified maximum entropy data model. Neither function
supports regular-expression-based or dictionary-based models.

Related Information:

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,
NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (
  ON NamedEntityFinderEvaluatorMap (
    ON { table | view | (query) }
    USING
    TextColumn ('text_column')
    InputModelFile ('input_model_file')
  ) AS alias_1 PARTITION BY 1
) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFile
Specify name of the model file to evaluate.
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NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news
• model_file: location.sports, output by NamedEntityFinderTrainer Example

Input Table: nermem_sports_test
id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>
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id content

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took six for 82 but <START:PER> Chris Adams
<END>

16 They were held up by a gritty 84 from <START:PER> Paul Johnson <END> but ex-England fast
bowler <START:PER> Martin McCague <END> took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> : <START:ORG> Leicestershire <END> beat <START:
ORG> Somerset <END> by an innings and 39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (
  ON NamedEntityFinderEvaluatorMap (
    ON nermem_sports_test
    USING
    InputModelFile ('location.sports')
    TextColumn ('content')
  ) PARTITION BY 1
) AS dt;

Output

 precision_val     recall             f_measure         
 ----------------- ------------------ ----------------- 
 0.847457627118644 0.7936507936507936 0.819672131147541

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.
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ACCESSING THIS CUSTOM DOCUMENT BEAR THE ENTIRE RISK OF ANY RELIANCE ON THIS CUSTOM
DOCUMENT, INCLUDING AS TO QUALITY, ACCURACY, AND RESULTS. 

NGrams

The NGrams function tokenizes (splits) an input stream of text and outputs n multigrams (called n -grams)

based on the specified delimiter and reset parameters. NGrams provides more flexibility than standard

tokenization when performing text analysis. Many two-word phrases carry important meaning (for

example, "machine learning") that unigrams (single-word tokens) do not capture. This, combined with

additional analytical techniques, can be useful for performing sentiment analysis, topic identification, and

document classification.

NGrams considers each input row to be one document, and returns a row for each unique n-gram in each

document. NGrams also returns, for each document, the counts of each n-gram and the total number of n-

grams.

For general information about tokenization, see http://en.wikipedia.org/wiki/Lexical_analysis#Tokenizer.

NGrams Syntax

Version 1.8

SELECT * FROM NGrams (

  ON { table | view | (query) }

  USING

  TextColumn ('text_column')

  [ Delimiter ('delimiter_regular_expression') ]

  Grams ({ gram_number |'value_range' }[,...])

  [ OverLapping({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ ToLowerCase ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ Reset ('reset_regular_expression') ]

  [ Punctuation ('punctuation_regular_expression') ]

  [ TotalGramCount ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]

  [ TotalCountColumn ('total_count_column') ]

  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]

  [ NGramColumn ('ngram_column') ]

  [ NumGramsColumn ('numgrams_column') ]

  [ FrequencyColumn ('count_column') ]

) AS alias;

Related information

Column Specification Arguments

Regular Expressions in Arguments

NGrams Arguments

TextColumn

ngrams
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Specify the name of the column that contains the input text. This column must have a SQL string

data type.

Delimiter

[Optional] Specify, with a regular expression, the character or string that separates words in the

input text.

Default: "\\s+" (all whitespace characters—space, tab, newline, carriage return and others)

Grams

Specify the length, in words, of each n-gram (that is, the value of n). A value_range has the syntax 

integer1-integer2, where integer1 <= integer2. The values of n, integer1, and integer2 must be

positive.

OverLapping

[Optional] Specify whether the function allows overlapping n-grams.

Default: 'true' (Each word in each sentence starts an n-gram, if enough words follow it in the same

sentence to form a whole n-gram of the specified size. For information on sentences, see the Reset

argument description.)

ToLowerCase

[Optional] Specify whether the function converts all letters in the input text to lowercase.

Default: 'true'

Reset

[Optional] Specify, with a regular expression, the character or string that ends a sentence. At the

end of a sentence, the function discards any partial n-grams and searches for the next n-gram at the

beginning of the next sentence. An n-gram cannot span sentences.

 The function applies the Reset argument before the Punctuation argument; that is, it splits the input

into sentences before removing punctuation characters.

Default: '[.,?!]' 

Punctuation

[Optional] Specify, with a regular expression, the punctuation characters for the function to remove

before evaluating the input text.

 The function applies the Reset argument before the Punctuation argument; that is, it splits the input

into sentences before removing punctuation characters.

Default: '[`~#^&*()-]' 

TotalGramCount

[Optional] Specify whether the function returns the total number of n-grams in the document (that

is, in the row) for each length n specified in the Grams argument. If you specify 'true', the

TotalCountColumn argument determines the name of the output table column that contains these

totals.

 The total number of n-grams is not necessarily the number of unique n-grams.

Default: 'false'

TotalCountColumn

[Optional] Specify the name of the output table column that appears if the value of the

TotalGramCount argument is 'true'.

Default: 'totalcnt'

Accumulate

[Optional] Specify the names of the input table columns to copy to the output table for each n-gram.

These columns cannot have the same names as those specified by the arguments NGramColumn,

NumGramsColumn, and TotalCountColumn.

Default: All input columns for each n-gram

NGramColumn

ngrams
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[Optional] Specify the name of the output table column that is to contain the created n-grams.

Default: 'ngram'

NumGramsColumn

[Optional] Specify the name of the output table column that is to contain the length of n-gram (in

words).

Default: 'n'

FrequencyColumn

[Optional] Specify the name of the output table column that is to contain the count of each unique 

n-gram (that is, the number of times that each unique n-gram appears in the document).

Default: 'frequency'

NGrams Input

Input Table Schema

Each row of the table has a document to tokenize. The table can have additional columns, but the function

ignores them. 

Column Data Type Description

text_column VARCHAR Document to tokenize.

accumulate_column VARCHAR [Column appears once for each specified 

accumulate_column.] Column to copy to output table. 

NGrams Output

Output Table Schema

The table has a row for each unique n-gram in each input document.

Column Data Type Description

accumulate_column VARCHAR [Column appears once for each specified 

accumulate_column.] Column copied from input

table. 

ngram_column VARCHAR Created n-gram.

numgrams_column INTEGER Length of n-gram in words (value n).

count_column INTEGER Count of each unique n-gram in document.

total_count_column INTEGER [Column appears only with TotalCountColumn

('true').] Total number of n-grams in document for

each length n specified in Grams argument.

NGrams Examples

ngrams
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NGrams Example 1: Overlapping ('true'), TotalGramCount ('true')

Input

• Input Table: paragraphs_input, which has paragraphs about common analytics topics (regression,

decision Trees, and so on)

Input Table: paragraphs_input

paraid paratopic paratext

1 Decision Trees Decision tree learning uses a

decision tree as a predictive

model which maps observations

about an item to conclusions

about the items target value. It is

one of the predictive modelling

approaches used in statistics,

data mining and machine

learning. Tree models where the

target variable can take a finite

set of values are called

classification trees. In these tree

structures, leaves represent class

labels and branches represent

conjunctions of features that lead

to those class labels. Decision

trees where the target variable

can take continuous values

(typically real numbers) are

called regression trees.

2 Simple Regression In statistics, simple linear

regression is the least squares

estimator of a linear regression

model with a single explanatory

variable. In other words, simple

linear regression fits a straight

line through the set of n points in

such a way that makes the sum

of squared residuals of the model

(that is, vertical distances

between the points of the data

set and the fitted line) as small as

possible

... ... ...

ngrams
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SQL Call

SELECT * FROM NGrams (

  ON paragraphs_input

  USING

  TextColumn ('paratext')

  Delimiter (' ')

  Grams ('4-6')

  OverLapping ('true')

  ToLowerCase ('true')

  Reset ('[.,?!]')

  Punctuation ('[`~#^&*()-]')

  TotalGramCount ('true')

  Accumulate ('paraid', 'paratopic')

) AS dt ORDER BY paraid, paratopic, ngram;

Output

paraid paratopic ngram n frequency totalcnt

1 Decision Trees decision tree

learning uses

4 1 73

1 Decision Trees decision tree

learning uses a

5 1 66

1 Decision Trees decision tree

learning uses a

decision

6 1 60

1 Decision Trees tree learning

uses a

4 1 73

1 Decision Trees tree learning

uses a decision

5 1 66

1 Decision Trees tree learning

uses a decision

tree

6 1 60

1 Decision Trees learning uses a

decision

4 1 73

1 Decision Trees learning uses a

decision tree

5 1 66

1 Decision Trees learning uses a

decision tree as

6  60

... ... ... ... ... ...

ngrams
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NGrams Example 2: Overlapping ('false'), TotalGramCount ('false')

Input

• Input Table: paragraphs_input, as in NGrams Example 1: Overlapping ('true'), TotalGramCount

('true') 

SQL Call

SELECT * FROM NGrams (

  ON paragraphs_input

  USING

  TextColumn ('paratext')

  Delimiter (' ')

  Grams ('4-6')

  OverLapping ('false')

  ToLowerCase ('true')

  TotalGramCount ('false')

  Accumulate ('paraid', 'paratopic')

) AS dt ORDER BY paraid, paratopic, ngram;

Output

paraid paratopic ngram n frequency

1 Decision Trees decision tree

learning uses

4 1

1 Decision Trees a decision tree as 4 1

1 Decision Trees a predictive model

which

4 1

1 Decision Trees maps observations

about an

4 1

1 Decision Trees item to conclusions

about

4 1

1 Decision Trees the items target

value

4 1

1 Decision Trees decision tree

learning uses a

5 1

1 Decision Trees decision tree as a

predictive

5 1

1 Decision Trees model which maps

observations about

5 1

1 Decision Trees an item to

conclusions about

5 1

ngrams
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paraid paratopic ngram n frequency

1 Decision Trees decision tree

learning uses a

decision

6 1

1 Decision Trees tree as a predictive

model which

6 1

1 Decision Trees maps observations

about an item to

6 1

1 Decision Trees conclusions about

the items target

value

6 1

... ... ... ... ...

ngrams
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• NGrams
• Background Information (Description, Use 

Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table 
Schema, Output Table Schema)

• Labs
• Review

• SentimentExtractor
• Background Information (Description, 

Use Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input 
Table Schema, Output Table Schema)

• Labs
• Review

Current Topic – SentimentExtractor Background 
Information
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• Sentiment extraction is the process of inferring user sentiment (positive, negative, or 
neutral) from text (typically call center logs, forums, and social media)

• The sentiment extraction functions support English, Simplified Chinese, and 
Traditional Chinese text

• There are three Sentiment Extraction functions. This document will cover only the  
SentimentExtractor function, employing a dictionary model
• SentimentTrainer: Trains model. Takes training documents and outputs maximum 

entropy classification model
• SentimentExtractor: Uses either classification model or dictionary model to 

extract sentiment of each input document or sentence; that is, to output predictions
• SentimentEvaluator: Uses test data to evaluate precision and recall of predictions

SentimentExtractor Description (1 of 3)

Sentiment extraction is the process of inferring user sentiment (positive, negative, or neutral) from text 
(typically call center logs, forums, and social media).

This document will cover the SentimentExtractor function.
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• The SentimentExtractor function extracts the sentiment (positive, negative, or 
neutral) of each input document or sentence, using either a classification model 
output by the function SentimentTrainer or a dictionary model

• The dictionary model consists of WordNet, a lexical database of the English 
language, and these negation words:
• no, not, neither, never, scarcely, hardly, nor, little, nothing, seldom, few

• The function handles negated sentiments as follows:
• -1 if the sentiment is negated (for example, "I am not happy")
• -1 if the sentiment and a negation word are separated by one word (for example, "I 

am not very happy")
• +1 if the sentiment and a negation word are separated by two or more words (for 

example, "I am not saying I am happy")

SentimentExtractor Description (2 of 3)

The SentimentExtractor function extracts the sentiment (positive, negative, or neutral) of each input 
document or sentence, using either a classification model output by the function SentimentTrainer or a 
dictionary model.

This document will cover the dictionary model.
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• Sentiment Extraction is the process of 
deducing user opinion (positive, negative, 
neutral) from textual data

• Useful for analyzing people’s opinions as found 
in forums, social media, and product reviews

• In this module, we will use a Dictionary
approach, which scans through a dictionary file 
on the Machine Learning engine in an effort to 
determine the sentiment of selected text

• Bottom line: Decipher feeling behind users’ 
words and phrases

SentimentExtractor Description (3 of 3)

• Sentiment Extraction is the process of deducing user opinion (positive, negative, neutral) from textual 
data

• Useful for analyzing people’s opinions as found in forums, social media, and product reviews
• In this module, we will use a Dictionary approach, which scans through a dictionary file on the 

Machine Learning engine in an effort to determine the sentiment of selected text
• Bottom line: Decipher feeling behind users’ words and phrases
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The SentimentExtractor function is all about scanning through text-based data in an 
attempt to discover the overall sentiment of the text.
This function could be used by any business in any industry.
Following are some examples:
• A health care insurance company wishes to scan through patient reviews of 

hospitals, clinics, and doctors regarding the quality of their care
• A retailer wishes to monitor online social media sites to discover user sentiment 

about the company, its products, etc.
• A telecommunications company wishes to scrutinize customer-support logs to 

discover which "call types" have a predominantly negative sentiment; i.e., customer 
dissatisfaction

SentimentExtractor Use Cases

The SentimentExtractor function could be useful for any business that wishes to deduce user 
sentiment based upon data in text form.
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• Input Tables: Data is read from a specified input table, views, or query
• SentimentExtractor: There is only one required argument that must be 

specified when the function is invoked:
• TextColumn

• Console or Output table: Data is written to the console or to an output table

SentimentExtractor Workflow

Input Table SentimentExtractor Console or 
Output Table

The SentimentExtractor function will read from a defined table, view, or query, and output the results 
as defined by its arguments. 
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SELECT * FROM SentimentExtractor (
ON { table | view | (query) } [ PARTITION BY ANY ]
[ ON { table | view | (query) } AS dict DIMENSION ]
USING
TextColumn ('text_column')
[ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
[ ModelFile ({ 'dictionary[:dict_file]' | 'classification:model_file' }) ]
[ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
[ AnalysisType ({ 'document' | 'sentence' }) ]
[ Priority ({ 'NONE' |
'NEGATIVE_RECALL' |
'NEGATIVE_PRECISION' |
'POSITIVE_RECALL' |
'POSITIVE_PRECISION'})]
[ OutputType ({ 'ALL' | 'POSITIVE' | 'NEGATIVE' }) ]
) AS alias;

SentimentExtractor Syntax

Here we are displaying the syntax structure for SentimentExtractor. Note that there is only one 
required argument.

TextColumn: Specify the name of the input column that contains text from which to extract sentiments 

Note the following: 
1. As with other Teradata Vantage functions, we are invoking the function through the call SELECT * 

FROM function_name; i.e., in this case, SELECT * FROM NGrams.
2. Our input data can be in the form of a table, view, or query. It follows the ON keyword.
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There in only one required argument for the SentimentExtractor function:
• TextColumn: Specify the name of the input column that contains text 

from which to extract sentiments 

SentimentExtractor Required Arguments

TextColumn is the only required input. It should contain the text from which we wish to deduce 
sentiment.
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The following arguments available to you for the SentimentExtraction function are optional.
• InputLanguage [Optional]: Specify the language of the input text.

• 'en' (Default) English
• 'zh_CN' Simplified Chinese
• 'zh_TW' Traditional Chinese

• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary
• If you omit this argument or specify dictionary without dict_file, then you must specify a 

dictionary table with alias 'dict'. If you specify both dict and dict_file, then whenever their 
words conflict, dict has higher priority. The dict_file must be a text file in which each line 
contains only a sentiment word, a space, and the opinion score of the sentiment word

• If you specify classification model_file, then model_file must be the name of a model file 
created and installed on the ML Engine by the function SentimentTrainer

SentimentExtractor Optional Arguments (1 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the 

default) or each sentence. A value of document refers to each row of input data, whereas a value of 
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options 
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence 

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to 
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments
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• Accumulate [Optional]: Specify the names of the input columns to copy 
to the output table

• AnalysisType [Optional]: Specify the level of analysis, whether to 
analyze each document (the default) or each sentence
• A value of document refers to each row of input data, whereas a value 

of sentence refers to each sentence within each row of input data

SentimentExtractor Optional Arguments (2 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the 

default) or each sentence. A value of document refers to each row of input data, whereas a value of 
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options 
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence 

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to 
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments
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• Priority [Optional]: Specify the highest priority when returning results. Following are 
the options available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with 

lower-confidence sentiment classifications (maximizes number of negative results 
returned)

• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-
confidence sentiment classifications

• 'POSITIVE_RECALL' Give highest priority to positive results, including those with 
lower-confidence sentiment classifications (maximizes number of positive results 
returned)

• 'POSITIVE_PRECISION' Give highest priority to positive

SentimentExtractor Optional Arguments (3 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the 

default) or each sentence. A value of document refers to each row of input data, whereas a value of 
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options 
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence 

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to 
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments
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• OutputType [Optional]: Specify the kind of results to return. Following are the 
options available to you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments

SentimentExtractor Optional Arguments (4 of 4)

The following arguments available to you for the SentimentExtraction function are optional.

• InputLanguage [Optional]: Specify the language of the input text.
• ModelFile [Optional]: Specify the model type and file. The default model type is dictionary.
• Accumulate [Optional]: Specify the names of the input columns to copy to the output table
• AnalysisType [Optional]: Specify the level of analysis, whether to analyze each document (the 

default) or each sentence. A value of document refers to each row of input data, whereas a value of 
sentence refers to each sentence within each row of input data

• Priority [Optional]: Specify the highest priority when returning results. Following are the options 
available to you:

• 'NONE' (Default) Give all results same priority
• 'NEGATIVE_RECALL' Give highest priority to negative results, including those with lower-

confidence sentiment classifications (maximizes number of negative results returned)
• 'NEGATIVE_PRECISION' Give highest priority to negative results with high-confidence 

sentiment classifications
• 'POSITIVE_RECALL' Give highest priority to positive results, including those with lower-

confidence sentiment classifications (maximizes number of positive results returned)
• 'POSITIVE_PRECISION' Give highest priority to positive

• OutputType [Optional]: Specify the kind of results to return. Following are the options available to 
you:

• 'ALL' (Default) Return all results
• 'POSITIVE' Return only results with positive sentiments
• 'NEGATIVE' Return only results with negative sentiments
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SentimentExtractor Input Table Schema (required)
Column Data Type Description

text_column VARCHAR Text from which to extract sentiment

accumulate_column VARCHAR [Column appears once for each specified 
accumulate_column.] Column to copy to output table

Here is the input table schema.
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SentimentExtractor dict Table Schema (optional)

Column Data Type Description

sentiment_word VARCHAR First column, containing the Sentiment word

opinion_score INTEGER Second column, containing opinion score for sentiment word

This table is optional. The table can have additional columns, but the 
function ignores them.

In our lab environment, we are reading dictionary contents from a file.
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SentimentExtractor Output Table Schema
Column Data Type Description

accumulate_column Same as 
input table

[Column appears once for each specified accumulate_column.]
Column copied from input table

out_content VARCHAR [Column appears only for AnalysisType ('SENTENCE').] Displays the 
sentence that receives a sentiment score.

out_polarity VARCHAR Depends on value of out_content:
• If out_content NULL, then Nothing
• If out_content Empty string, then UNKNOWN
• If out_content any other value, then POS (positive), NEG 

(negative), or NEU (neutral)

out_strength INTEGER Strength of output_polarity:
• 0: Neutral
• 1: Higher than 0
• 2: Higher than 1

out_sentiment_words VARCHAR [Column appears only when function uses dictionary model.] 
Sentiment words in document or sentence

Here is the output table schema.
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In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06a – Fundamentals of SentimentExtractor

SELECT *
FROM bb_sentiment0
ORDER BY x_text;

• Here, we are familiarizing ourselves with the 
source input table against which we will run the
SentimentExtractor function

• The next few pages will illustrate how to run a 
SentimentExtractor query against this input 
table—using the TextColumn (required) and 
Accumulate (optional) arguments

• Examples in this document will utilize the 
Dictionary format for extracting sentiment

Input Data
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In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06b – Fundamentals of SentimentExtractor

SELECT * 
FROM SentimentExtractor (
ON bb_sentiment0
USING
TextColumn ('x_text')
Accumulate ('x_text')
) AS dt
ORDER BY x_text;

The SentimentExtractor function is structured like 
other SQL Engine queries.

The query above is using the sole required argument and one optional argument:
• TextColumn (required): Here, we are specifying the name of the column that contains 

the data on which we wish to discover sentiment. By default, each row of data will 
receive its own sentiment score

• Accumulate (optional): Here, we are specifying that we wish to include the x_text 
column in the output

SELECT * FROM function_name 
ON my_table 
USING
argument_a, 
argument_b …
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In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06c – Fundamentals of SentimentExtractor

• Our output contains by default the three columns listed below:
• out_polarity displays the sentiment. POS (positive), NEU (neutral), NEG (negative)
• out_strength displays the strength of out_polarity. Possible values are 0, 1, and 2 

(with 2 being the strongest)
• out_sentiment_words displays each word from the input text that was found in the 

dictionary and scores it accordingly (+1 for positive words and -1 for negative words)
• The x_text column was returned as a result of our optional Accumulate argument

Partial Answer Set
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In this lab, we are familiarizing ourselves with the basic syntax and output of SentimentExtractor.

c
Lab 06d – Fundamentals of SentimentExtractor

• NEG: In each case, the negative 
terms are greater in number than 
the positive terms

• NEU: In each case, the term is 
either neutral itself, or the terms 
cancel one another out

• POS: In each case, the positive 
terms are greater in number than 
the negative terms. Also, note the 
attempt to deduce sentiment 
based upon negation words
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OutputType of ALL will return all three possible out_polarity values. This is the default. 

c
Lab 07a – OutputType All (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('ALL')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the 
optional argument of OutputType ('ALL'). 
If we had left the argument out altogether, 
the query would have behaved the same 
exact way—as this is the default

• A value of 'ALL' causes all rows to be 
included in the output, regardless of their 
out_polarity

Input Data Output
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OutputType of POSITIVE will return only out_polarity values of POS.

c
Lab 07b – OutputType POSITIVE (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('POSITIVE')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the 
optional argument of OutputType 
('POSITIVE')

• A value of 'POSITIVE' causes only rows 
with an out_polarity of POS to be included 
in the output
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OutputType of NEGATIVE will return only out_polarity values of NEG.

c
Lab 07c – OutputType NEGATIVE (Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment1
USING
TextColumn ('x_text')
OutputType ('NEGATIVE')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

• Here, we have explicitly injected the 
optional argument of OutputType 
('NEGATIVE')

• A value of 'NEGATIVE' causes only rows 
with an out_polarity of NEG to be included 
in the output
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When we analyze at the document level, notice that all sentences within the row are evaluated as a 
collective. The entire row receives a single sentiment score.

c
Lab 08a – AnalysisType Document

SELECT * 
FROM SentimentExtractor (
ON bb_sentiment2
USING
TextColumn ('x_text')
AnalysisType ('document')
Accumulate ('x_text')
) AS dt
ORDER BY out_polarity, x_text;

Input Data Output (not showing out_sentiment_words column) 

• Here, we have explicitly injected the optional 
argument of OutputType ('document'). If we 
had left the argument out altogether, the query 
would have behaved the same exact way—as 
this is the default

• A value of 'document' causes each row of data 
to receive a single score, regardless of how 
many sentences are within the row
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When we analyze at the sentence level, notice that each sentence within each row receives its own 
sentiment score, independent of any other sentences that may exist within the same row.

c

• Here, we have explicitly injected the optional 
argument of OutputType (‘sentence')

• A value of 'sentence' causes each sentence 
within each row of data to receive a single score

• Note the auto-creation of the out_content column

Lab 08b – AnalysisType Sentence

SELECT * 
FROM SentimentExtractor (
ON bb_sentiment2
USING
TextColumn ('x_text')
AnalysisType ('sentence')
Accumulate ('x_text')
) AS dt
ORDER BY x_text, 
out_polarity, out_content;

Input Data

Output (not showing out_sentiment_words column) 
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This lab uses a simple data-set to discuss the various Priority values:
• None
• Negative Recall
• Negative Precision
• Positive Recall
• Positive Precision

c
Lab 09a – Priority (Source Data)

SELECT * FROM bb_sentiment ORDER BY x_id;

• Our input data has eleven rows
• We start off with ten instances of the word good in x_id 0, and each subsequent x_id value 

replaces one of the words good with the word bad
• By the time we reach x_id 10, all ten instances of good have been replaced with bad

Input Data Over the next many pages, we will leverage 
different values in the optional Priority
argument to see how this impact the output 
of SentimentExtractor. Values include:

• None
• Negative Recall
• Negative Precision
• Positive Recall
• Positive Precision
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If not specified, the default Priority is None.

c

• A Priority of None gives all results the same priority
• In total, we have five POS, one NEU, and five NEG

• If "good" > "bad", then POS
• If "good" = "bad", then NEU
• If "good" < "bad", then NEG

Lab 09b – Priority (None)

SELECT * 
FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('NONE')
) AS dt
ORDER BY x_id;
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Negative_Recall maximizes the number of negative results.

c
Lab 09c – Priority (Negative_Recall)

SELECT * 
FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('NEGATIVE_RECALL')
) AS dt
ORDER BY x_id;

• A Priority of Negative Recall gives highest priority to negative results, including those with 
lower-confidence sentiment classifications (maximizes number of negative results returned)

• In total, we have four POS, one NEU, and six NEG
• Note that an equal number of "good" and "bad" evaluates to NEG
• Our value of six "good" and four "bad" evaluates to NEU
• When it is a toss-up, NEG wins. When "good" slightly outnumbers "bad", NEU wins
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Negative_Precision attempts to only flag rows as negative if they are predominantly negative.

c

• A Priority of Negative_Precision gives highest priority to negative results with high-
confidence sentiment classifications

• In total, we have five POS, two NEU, and four NEG
• Note that our value of four "good" and six "bad" evaluates to NEU
• Only rows which are predominantly "bad" evaluate to NEG

Lab 09d – Priority (Negative_Precision) 
(Optional)

SELECT * FROM SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority('NEGATIVE_PRECISION')
) AS dt
ORDER BY x_id;
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Positive_Recall maximizes the number of positive results.

c
Lab 09e – Priority (Positive_Recall)

SELECT * FROM
SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority ('POSITIVE_RECALL')
) AS dt
ORDER BY x_id;

• A Priority of Positive_Recall gives highest priority to positive results, including those with 
lower-confidence sentiment classifications (maximizes number of positive results returned).

• In total, we have six POS, one NEU, and four NEG
• Note that an equal number of "good" and "bad" evaluates to POS
• Our value of four "good" and six "bad" evaluates to NEU
• When it is a toss-up, POS wins. When "bad" slightly outnumbers "good", NEU wins

Text Analysis    Slide 2-69



Positive_Precision attempts to only flag rows as negative if they are predominantly positive.

c
Lab 09f – Priority (Positive_Precision) (Optional)

SELECT * FROM
SentimentExtractor (
ON bb_sentiment
USING
TextColumn ('x_text')
Accumulate ('x_id')
Priority('POSITIVE_PRECISION')
) AS dt
ORDER BY x_id;

• A Priority of Positive_Precision gives highest priority to positive results with high-
confidence sentiment classifications

• In total, we have four POS, two NEU, and five NEG
• Note that our value of six "good" and four "bad" evaluates to NEU
• Only rows which are predominantly "good" evaluate to POS
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c
Hackathon: Product Reviews Sentiment

The following exercise is intended to provide you with further practice on using the 
SentimentExtractor function. There is no single "right" or "wrong" answer. The intent 
is for you to become comfortable writing queries that use SentimentExtractor
1. Run a SentimentExtractor query on the bb_sentiment_extract_input table, 

which shows 10 reviews about various products. What is the general sentiment 
expressed in each review?

2. Things to think about follow:
• What is a suitable Priority to specify?
• After reading through the product reviews yourself, do you think that 

SentimentExtrator did a decent job of deducing the general sentiment of each 
product review?

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your 
own SENTIMENT_EXTRACTOR query(ies) so as to become more comfortable with the syntax. 
Following are the contents of our source input data.

id product review

1 camera

we primarily bought this camera for high image quality and excellent video capability without paying the price for a dslr. it has 
excelled in what we expected of it, and consequently represented excellent value for me. all my friends want my camera for 
their vacations. i would recommend this camera to anybody. definitely worth the price. plus, when you buy some accessories, it 
becomes even more powerful.

2 office suite

it is the best office suite i have used to date. it is launched before office 2010 and it is ages ahead of it already. the fact that i 
could comfortable import xls, doc, ppt and modify them, and then export them back to the doc, xls, ppt is terrific. i needed the 
compatibility. it is a very intuitive suite and the drag drop functionality is terrific.

3 camera

this is a nice camera, delivering good quality video images decent photos. light small, using easily obtainable, high quality minidv 
i love it. minor irritations include touchscreen based menu only digital photos can only be transferred via usb, requiring ilink and 
usb if you use ilink.

4 gps
it is a fine gps. outstanding performance, works great. you can even get incredible coordinate accuracy from streets and trips to 
compare.

5 gps
nice graphs and map route info. i would not run outside again without this unique gadget. great job. big display, good backlight, 
really watertight, training assistant. i use in trail running and it worked well through out the race.

6 gps
most of the complaints i have seen in here are from a lack of rtfm. i have never seen so many mistakes do to what i think has to 
be none update of data to the system. i wish i could make all the rating stars be empty.

7 gps
this machine is all screwed up. on my way home from a friends house it told me there is no possible route. i found their website 
support difficult to navigate. i am is so disappointed and just returned it and now looking for another one

8 camera

i hate my camera, and im stuck with it. this camera sucks so bad, even the dealers on ebay have difficulty selling it. horrible 
indoors, does not capture fast action, screwy software, no suprise, and screwy audio/video codec that does not work with 
hardly any app.

9 television

$3k is way too much money to drop onto a piece of crap. poor customer support. after about 1 and a half years and hardly 
using the tv, a big yellow pixilated stain appeared. product is very inferior and subject to several lawsuits. i expressed my 
dissatisfaction with the situation as this is a known issue.

10 camera

i returned my camera to the vendor as i will not tolerate a substandard product that is a known issue especially from vendor 
who will not admit that this needs to be removed from the shelf due to failing parts updated. due to the constant need for 
repair, i would never recommend this product.
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c Hackathon: Product Reviews Sentiment 
(Possible Answer)

SELECT * 
FROM bb_sentiment_extract_input;

SELECT * FROM SentimentExtractor (
ON bb_sentiment_extract_input
USING
TextColumn ('review')
Accumulate ('id', 'product', 'review')
Priority ('None')
) AS dt
ORDER BY product, out_polarity, id;

Input Data

Possible Answer-Set

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your 
own SENTIMENT_EXTRACTOR query(ies) so as to become more comfortable with the syntax.
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Game Time! SentimentExtractor Million $ Question

Click here to start!

This game, containing review questions, reinforces the module objectives for SentimentExtractor.

Text Analysis    Slide 2-74



In this module, you learned how to:

• Describe what the NGrams and SentimentExtractor functions do

• Describe typical use cases for NGrams and SentimentExtractor

• Write NGrams and SentimentExtractor queries

• Interpret the output of NGrams and SentimentExtractor queries

Summary
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Named entity recognition (NER) is a process for finding specified entities in text. For example, a simple
news named-entity recognizer for English might find the person "John J. Smith" and the location "Seattle"
in the text string "John J. Smith lives in Seattle."

NER functions let you specify how to extract named entities when training the data models. ML Engine
provides two sets of NER functions:

Function Set Supported Languages

NER Functions (CRF Model Implementation) English, simplified Chinese, traditional
Chinese

NER Functions (Maximum Entropy Model Implementation) English

NER Functions (CRF Model Implementation)
Function Description

NERTrainer Takes training data and outputs CRF model (binary file).

NERExtractor Takes input documents and extracts specified entities, using one or more CRF models
and, if appropriate, rules (regular expressions) or a dictionary.
Uses models to extract names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and dictionary
to extract known entities.

NEREvaluator Evaluates CRF model.

The CRF model implementation supports English, simplified Chinese, and traditional Chinese text.

Related Information:

NER Functions (Maximum Entropy Model Implementation)

NERTrainer
The NERTrainer function takes training data and outputs a CRF model (a binary file) that can be specified
in the function NERExtractor and NEREvaluator.

NERTrainer uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERTrainer Syntax

Named Entity Recognition (NER) Functions
(ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1577



Version 1.8

SELECT * FROM NERTrainer (
  ON { table | view | (query) } PARTITION BY 1
  USING
  ModelFileName (model_file)
  TextColumn ('text_column')
  [ ExtractorJAR ('jar_file') ]
  FeatureTemplate ('template_file')
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
  [ MaxIterNum (max_iteration_times) ]
  [ Eta (eta_threshhold_value) ]
  [ MinOccurNum (threshhold_value) ]
) AS alias;

NERTrainer Syntax Elements

ModelFileName
Specify the name of the model file that the function creates and installs on ML Engine.

TextColumn
Specify the name of the input table column that contains the text to analyze.

ExtractorJAR
[Optional] Specify the name of the JAR file that contains the Java classes that extract features.
You must install this JAR file on ML Engine before calling the function.

The name jar_file is case-sensitive.

ML Engine does not support the creation of new extractor classes. However, it does support
existing JAR files—for installation instructions, see Teradata Vantage™ User Guide,
B700-4002.

Default behavior: The function uses only the predefined extractor classes.

FeatureTemplate
Specify the name of the file that specifies how to create features when training the model.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

90: Named Entity Recognition (NER) Functions (ML Engine)
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MaxIterNum
[Optional] Specify the maximum number of iterations.

Default: 1000

Eta
[Optional] Specify the tolerance of the termination criterion. Defines the differences of the
values of the loss function between two sequential epochs.

When training a model, the function performs n-times iterations. At the end of each epoch, the
function calculates the loss or cost function on the training samples. If the loss function value
change is very small between two sequential epochs, the function considers the training
process to have converged.

The function defines Eta as:

Eta=(f(n)-f(n-1))/f(n-1)

where f(n) is the loss function value of the nth epoch.

Default: 0.0001

MinOccurNum
[Optional] Specify the minimum number times that a feature must occur in the input text before
the function uses the feature to construct the model.

Default: 0

NERTrainer Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze. Within text, each entity must be identified with this syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NERTrainer Output

The function outputs a message and a CRF model (a binary file installed on ML Engine).

90: Named Entity Recognition (NER) Functions (ML Engine)
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Output Message Schema

Column Data Type Description

train_result VARCHAR Reports training time and file size of model.

NERTrainer Example

Input

• Input table: ner_sports_train, a collection of sports news items (500 rows)
• Feature template file: template_1.txt, which is preinstalled on ML Engine.

ner_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOC> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:LOC>
Grace Road <END>

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

... ...

SQL Call

SELECT * FROM NERTrainer (
  ON ner_sports_train PARTITION BY 1
  USING
  TextColumn ('content')
  FeatureTemplate ('template_1.txt')
  OutputModelFile ('ner_model.bin')
) AS dt;

90: Named Entity Recognition (NER) Functions (ML Engine)
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Output

 train_result                  
 ----------------------------- 
 Model generated.             
 Training time(s): 3.129      
 File size(KB): 374           
 Model successfully installed.

The model file, ner_model.bin, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NERExtractor
The NERExtractor function takes input documents and extracts specified entities, using one or more CRF
models (output by the function NERTrainer) and, if appropriate, rules (regular expressions) or a dictionary.

The function uses models to extract the names of persons, locations, and organizations; rules to extract
entities that conform to rules (such as phone numbers, times, and dates); and a dictionary to extract
known entities.

NERExtractor uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NERExtractor Syntax

Version 1.8

SELECT * FROM NERExtractor (
  ON input_table PARTITION BY { ANY | key }
  [ ON rules_table AS Rules DIMENSION ]
  [ ON dictionary_table AS Dict DIMENSION ]
  USING
  TextColumn ('text_column')
  [ InputModelFiles ('input_model_file[:jar_file]' [,...]) ]
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
  [ ShowContext ('n') ]

90: Named Entity Recognition (NER) Functions (ML Engine)
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  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

Related Information:

Column Specification Syntax Elements

NERExtractor Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFiles
[Optional] Specify the CRF models (binary files) to use, output by NERTrainer. If you specified
the ExtractorJAR syntax element in the NERTrainer call that created input_model_file, then
you must specify the same jar_file in this syntax element. You must install input_model_file
and jar_file in ML Engine before calling the NERExtractor function.

The names input_model_file and jar_file are case-sensitive.

InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

ShowContext
[Optional] Specify the number of context words to output (a positive integer). The function
outputs the n words that precede the entity, the entity, and the n words that follow the entity.

Default: 0

Accumulate
[Optional] Specify the names of the input table columns to copy to the output table.

NERExtractor Input

Table Description

Input table Text to analyze.
Tip:
To optimize function performance, remove punctuation marks from text with TextParser
(ML Engine) function.

Rules [Optional] Rules to use when extracting entities from text.
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Table Description

Dict [Optional] Dictionary to use when extracting entities from text.

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Text to analyze.

accumulate_column Any Column to copy to output table.

Rules Schema

Column Data Type Description

type VARCHAR Entity type.

regex VARCHAR Regular expression that represents an entity of this type. Expression must
conform to Java Regex standard, documented at http://docs.oracle.com/
javase/tutorial/essential/regex/quant.html.

Dict Schema

Column Data Type Description

type VARCHAR Entity type.

dict VARCHAR Dictionary word.

NERExtractor Output

Output Table Schema

Column Data Type Description

accumulate_
column

Same as in input
table

Column copied from input table.

sn INTEGER Serial number of extracted entity.

entity VARCHAR Extracted entity.

type VARCHAR Type of extracted entity.

start INTEGER Start position of extracted entity in input text.

end INTEGER End position of extracted entity in input text.
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Column Data Type Description

context VARCHAR [Column appears only with ShowContent syntax element.
] Context of extracted entity.

approach VARCHAR Method used to identify extracted entity—CRF, RULE, or
DICT.

NERExtractor Example

Input

• Input table: ner_sports_test2, which contains text to analyze.
• Rules: rule_table, which is preinstalled on ML Engine.
• Model: ner_model.bin, output by NERTrainer Example.

Input table: ner_sports_test2
id content

528 email sports@espn.com to contact for all sport info

529 email cricket@espn.com to contact for all cricket info

530 email tennis@espn.com to contact for all tennis info

531 1= Igor Trandenkov (Russia) 5.86

532 3. Maksim Tarasov (Russia) 5.86

533 4. Tim Lobinger (Germany) 5.80

534 5. Igor Potapovich (Kazakstan) 5.80

535 6. Jean Galfione (France) 5.65

536 7. Pyotr Bochkary (Russia) 5.65

537 8. Dmitri Markov (Belarus) 5.65

583  GENEVA 1996-08-30

584  UEFA came down heavily on Belgian club Standard Liege on Friday for disgraceful behaviour in
an Intertoto final match against Karlsruhe of Germany .

585 The Belgian club were fined 25

586 He was sent off for insulting the referee and then urged his team mates to protest .

587  Roberto Bisconti will be sidelined for six Euro ties after pushing the referee in the back as he
protested about a Karlsruhe goal

588  Karlsruhe won the August 20 match 3-1 thanks to two late goals .
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id content

589 They took the tie 3-2 on aggregate and qualified for the UEFA Cup .

591 ATHLETICS - HARRISON

592  MONTE CARLO 1996-08-30

593 Olympic champion Kenny Harrison and world record holder Jonathan Edwards will both take part
in a triple jump competition at the Solidarity Meeting for Sarajevo on September 9 .

594 The International Amateur Athletic Federation said on Friday that a schedule reshuffle had allowed
organisers to hold a men s triple jump as well as the women s long jump on the one usable runway
at the war-devastated Kosevo stadium .

595 Atlanta Games silver medal winner Edwards has called on other leading athletes to take part in
the Sarajevo meeting -- a goodwill gesture towards Bosnia as it recovers from the war in the
Balkans -- two days after the grand prix final in Milan .

596  Edwards was quoted as saying : What type of character do we show by going to the IAAF Grand
Prix Final in Milan where there is a lot of money to make but refusing to make the trip to Sarajevo
as a humanitarian gesture ?

598 SOCCER - BARATELLI TO COACH NICE .

599  NICE

600 Former international goalkeeper Dominique Baratelli is to coach struggling French first division
side Nice

601  Baratelli

602  Nice have been unable to win any of their four league matches played this season and are lying
a lowly 18th in the table .

Rules: rule_table
type regex

email [\w\-]([\.\w])+[\w]+@([\w\-]+\.)+[a-zA-Z]{2,4}

SQL Call

SELECT * FROM NERExtractor (
  ON ner_sports_test2 PARTITION BY ANY
  ON rule_table AS Rules DIMENSION
  USING
  TextColumn ('content')
  InputModelFiles ('ner_model.bin')
  ShowContext (2)
  Accumulate ('id')
) AS dt ORDER BY id, sn;
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Output

 id  sn entity              type_ner start_ner end_ner 
context                                            approach 
 --- -- ------------------- -------- --------- ------- 
-------------------------------------------------- -------- 
 528  1 sports@espn.com     email            2       2 ... email sports@espn.com 
to contact               RULE    
 529  1 cricket@espn.com    email            2       2 ... email cricket@espn.com 
to contact              RULE    
 530  1 tennis@espn.com     email            2       2 ... email tennis@espn.com 
to contact               RULE    
 531  1 Igor Trandenkov     PER              2       3 ... 1= Igor Trandenkov 
(Russia) 5.86               CRF     
 532  1 Maksim Tarasov      PER              2       3 ... 3. Maksim Tarasov 
(Russia) 5.86                CRF     
 533  1 Tim Lobinger        PER              2       3 ... 4. Tim Lobinger 
(Germany) 5.80                 CRF     
 534  1 Igor Potapovich     PER              2       3 ... 5. Igor Potapovich 
(Kazakstan) 5.80            CRF     
 535  1 Jean Galfione       PER              2       3 ... 6. Jean Galfione 
(France) 5.65                 CRF     
 536  1 Pyotr Bochkary      PER              2       3 ... 7. Pyotr Bochkary 
(Russia) 5.65                CRF     
 537  1 Dmitri Markov       PER              2       3 ... 8. Dmitri Markov 
(Belarus) 5.65                CRF     
 583  1 GENEVA              LOC              1       1 ... ... GENEVA 
1996-08-30 ...                      CRF     
 584  1 Standard Liege      PER              8       9 Belgian club Standard 
Liege on Friday              CRF     
 587  1 Roberto Bisconti    PER              1       2 ... ... Roberto Bisconti 
will be                   CRF     
 591  1 HARRISON            PER              3       3 ATHLETICS - 
HARRISON ... ...                       CRF     
 592  1 MONTE CARLO         PER              1       2 ... ... MONTE CARLO 
1996-08-30 ...                 CRF     
 593  1 Kenny Harrison      PER              3       4 Olympic champion Kenny 
Harrison and world          CRF     
 593  2 Jonathan Edwards    PER              9      10 record holder Jonathan 
Edwards will both           CRF     
 596  1 What                ORG              7       7 saying : What type 
of                              CRF     
 598  1 BARATELLI TO        PER              3       4 SOCCER - BARATELLI TO 
COACH NICE                   CRF     
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 599  1 NICE                PER              1       1 ... ... 
NICE ... ...                               CRF     
 600  1 Dominique Baratelli PER              4       5 international goalkeeper 
Dominique Baratelli is to CRF     
 600  2 Nice                PER             14      14 division side 
Nice ... ...                         CRF     
 601  1 Baratelli           PER              1       1 ... ... 
Baratelli ... ...                          CRF

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NEREvaluator
The NEREvaluator function evaluates a CRF model (output by the function NERTrainer).

NEREvaluator uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NEREvaluator Syntax

Version 1.9

SELECT * FROM NEREvaluator (
  ON { table | view | (query) } PARTITION BY 1
  USING
  TextColumn ('text_column')
  ModelFile ('model_file[:jar_file]')
  [ InputLanguage ({ 'en' | 'zh_CN' | 'zh_TW' }) ]
) AS alias;

NEREvaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

ModelFile
Specify the CRF model file to evaluate, created and automatically installed by NERTrainer.

If you specified the ExtractorJAR syntax element in the NERTrainer call that created
model_file, then you must specify the same jar_file in this syntax element. You must install the
jar_file on ML Engine before calling the NERExtractor function.

The names model_file and jar_file are case-sensitive.
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InputLanguage
[Optional] Specify the language of the input text:

Option Description

'en'  (Default) English

'zh_CN' Simplified Chinese

'zh_TW' Traditional Chinese

NEREvaluator Input

The input table has the same schema as the NERExtractor Input table.

NEREvaluator Output

Output Table Schema

Column Data Type Description

type VARCHAR Entity type.
Final row value: -AVG-

precision DOUBLE PRECISION Precision value of the entity type.
Final row value: Average precision value for all entity types.

recall DOUBLE PRECISION Recall value of the entity type.
Final row value: Average recall value for all entity types.

f1_measure DOUBLE PRECISION F1 score (F-measure) of the entity type.
Final row value: Average F1 score for all entity types.

NEREvaluator Example

This function evaluates the efficacy of the model file ner_model.bin, created by the NERTrainer function
in terms of precision, recall, and f1_measure.

Input

• ner_model.bin, output by NERTrainer Example

SQL Call

SELECT * FROM NEREvaluator (
  ON ner_sports_test2 PARTITION BY 1
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  USING
  TextColumn ('content')
  ModelFile ('ner_model.bin')
) AS dt;

Output

 type_ner precision_ner recall f1_measure 
 -------- ------------- ------ ---------- 
 LOC                  1 0.4444     0.6154
 ORG                  0      0         -1
 PER             0.7222 0.8125     0.7647
 -AVG-           0.7778 0.4884        0.6

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NER Functions (Maximum Entropy Model
Implementation)

Function Description

NamedEntityFinderTrainer Takes training data and outputs a maximum entropy model (binary file).

NamedEntityFinder Evaluates input, identifies tokens based on specified model, and outputs
tokens with detailed information.
Uses model to extract entity types 'PERSON', 'LOCATION', and
'ORGANIZATION' and rules to extract entity types 'DATE', 'TIME', 'EMAIL'
and 'MONEY'. If you specify these entity names, the function invokes the
default model types and model file names. To extract all entities in one
NamedEntityFinder call, specify 'ALL'.

Named Entity Finder Evaluator Evaluates maximum entropy model.

The maximum entropy model implementation supports only English text.

Related Information:

NER Functions (CRF Model Implementation)

NamedEntityFinderTrainer
The NamedEntityFinderTrainer function takes training data and outputs a Maximum Entropy data model.
The function is based on OpenNLP, and follows its annotation. For more information on OpenNLP, see
https://opennlp.apache.org/docs/1.8.4/manual/opennlp.html.

The trainer supports only the English language.
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NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinderTrainer Syntax

Version 1.7

SELECT * FROM NamedEntityFinderTrainer (
  ON { table | view | (query) } PARTITION BY 1 [ ORDER BY order_column ]
  USING
  OutputModelFile (output_model_file)
  TextColumn ('text_column')
  EntityType ('entity_type')
  [ IterNum (iterator)]
  [ Cutoff (cutoff)]
) AS alias;

For repeatable results, you must specify ORDER BY and order_column must have a unique value for
each row.

NamedEntityFinderTrainer Syntax Elements

OutputModelFile
Specify the name of the data model file to create.

TextColumn
Specify the name of the input table column that contains the text to analyze.

EntityType
Specify the entity type to train (for example, PERSON). The input training documents must
contain the same tag.

IterNum
[Optional] Specify the iterator number for training (an openNLP training parameter).

Default: 100

Cutoff
[Optional] Specify the cutoff number for training (an openNLP training parameter).

Default: 5
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NamedEntityFinderTrainer Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type>entity<END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderTrainer Output

The function outputs a message and a Max Entropy model (a binary file automatically installed on ML
Engine).

Output Message Schema

Column Data Type Description

train_result VARCHAR Message indicating whether the function ran successfully.

NamedEntityFinderTrainer Example

Input

• Input Table: nermem_sports_train, which has 50 rows of sports news

Input Table: nermem_sports_train
id content

2 CRICKET - <START:ORG> LEICESTERSHIRE <END> TAKE OVER AT TOP AFTER INNINGS
VICTORY .

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

5 Their stay on top

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>
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id content

7 Trailing by 213

8 <START:ORG> Essex <END>

9 <START:PER> Hussain <END>

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

... ...

SQL Call

SELECT * FROM NamedEntityFinderTrainer (
  ON nermem_sports_train PARTITION BY 1
  USING
  EntityType ('LOCATION')
  TextColumn ('content')
  OutputModelFile (location.sports)
) AS dt;

Output

 train_result    
 --------------- 
 model installed

The model table, location.sports, is in binary format.

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

NamedEntityFinder
The NamedEntityFinder function evaluates the input, identifies tokens based on the specified model, and
outputs the tokens with detailed information. The function does not identify sentences; it simply tokenizes.
Token identification is not case-sensitive.

NamedEntityFinder uses files that are preinstalled on ML Engine. For details, see Preinstalled Files That
Functions Use.

NamedEntityFinder Syntax
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Version 1.6

SELECT * FROM NamedEntityFinder (
  ON { table | view | (query) } PARTITION BY ANY
  [ ON (configure_table) AS ConfigurationTable DIMENSION ]
  USING
  TextColumn ('text_column')
  [ Models ('entity_type[:model_type:{model_file|regular_expression}'][,...] | 
'all' }) ]
  [ ShowContext ('context_words') ]
  [ EntityColName ('entity_column') ]
  [ Accumulate ({ 'accumulate_column' | accumulate_column_range }[,...]) ]
) AS alias;

Related Information:

Column Specification Syntax Elements
Regular Expressions in Syntax Elements

NamedEntityFinder Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

Models
[Optional] Required if you do not specify ConfigurationTable, in which case you cannot specify
'all'. Specify the model items to load.

If you specify both ConfigurationTable and this syntax element, the function loads the specified
model items from ConfigurationTable.

The entity_type is the name of an entity type (for example, PERSON, LOCATION, or EMAIL),
which appears in the output table.

model_type Description

'max entropy' Maximum entropy language model output by training.

'rule' Rule-based model, a plain text file with one regular expression on each line.

'dictionary' Dictionary-based model, a plain text file with one word on each line.

'reg exp' Regular expression that describes entity_type.

If model_type is 'reg exp', specify regular_expression (a regular expression that describes
entity_type); otherwise, specify model_file (the name of the model file).

If you specify ConfigurationTable, you can use entity_type as a shortcut. For example, if the
ConfigurationTable has the row 'organization, max entropy, en-ner-organization.bin', you can
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specify Models ('organization') as a shortcut for Models ('organization:max entropy:en-ner-
organization.bin').

Note:
For model_type 'max entropy', if you specify ConfigurationTable and omit this syntax
element, then the JVM of the worker node needs more than 2GB of memory.

Default: 'all' (If you specify ConfigurationTable but omit this syntax element.)

ShowContext
[Optional] Specify the number of context words to output. If context_words is n (which must be
a positive integer), the function outputs the n words that precede the entity, the entity, and the
n words that follow the entity.

Default: 0

EntityColName
[Optional] Specify the name of the output table column that contains the entity names.

Default: 'entity'

Accumulate
[Optional] Specify the names of input columns to copy to the output table. No
accumulate_column can be an entity_column.

Default: All input columns

Creating the Table of Default Models

Before calling the NamedEntityFinder function, you must create the table of default models. To create
the table, use this command:

DROP TABLE nameFind_configure;

CREATE MULTISET TABLE nameFind_configure (
  model_name VARCHAR(50),
  model_type VARCHAR(50),
  model_file VARCHAR(50)
);

Default English-language models are provided with the SQL functions. Before using these models, you
must create a default configure_table, as follows:

INSERT INTO nameFind_configure VALUES ('person','max entropy','en-ner-
person.bin');
INSERT INTO nameFind_configure VALUES ('location','max entropy','en-ner-
location.bin');
INSERT INTO nameFind_configure VALUES ('organization','max entropy','en-ner-
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organization.bin');
INSERT INTO nameFind_configure VALUES ('date','rules','date.rules');
INSERT INTO nameFind_configure VALUES ('time','rules','time.rules');
INSERT INTO nameFind_configure VALUES ('phone','rules','phone.rules');
INSERT INTO nameFind_configure VALUES ('money','rules','money.rules');
INSERT INTO nameFind_configure VALUES ('email','rules','email.rules');
INSERT INTO nameFind_configure VALUES ('percentage','rules','percentage.rules');

Default English-Language Models in Table nameFind_configure
model_name model_type model_file

person max entropy en-ner-person.bin

location max entropy en-ner-location.bin

organization max entropy en-ner-organization.bin

date rules date.rules

time rules time.rules

phone rules phone.rules

money rules money.rules

email rules email.rules

percentage rules percentage.rules

NamedEntityFinder Input

Input Table Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

text_column VARCHAR Contains input text.

accumulate_column Any Column to copy to output table.

ConfigurationTable Schema

This table is optional.

Column Data Type Description

model_name VARCHAR Name of an entity type (for example, PERSON, LOCATION, or EMAIL).

model_type VARCHAR One of these model types:
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Column Data Type Description

model_type Description

'max entropy' Maximum entropy language model created by training

'rule' Rule-based model, a plain text file with one regular
expression on each line

'dictionary' Dictionary-based model, a plain text file with one word
on each line

'reg exp' Regular expression that describes entity_type

model_file VARCHAR Name of model file that describes the entity type. This column appears if
model_type is not 'reg exp'.

reg_exp VARCHAR Regular expression that describes the entity type. This column appears if
model_type is 'reg exp'.

NamedEntityFinder Output

Output Table Schema

Column Data Type Description

accumulate_column Same as in input
table

Column copied from input table.

entity_type VARCHAR Entity type.

entity VARCHAR Entity name.

 entity_start INTEGER [Column appears only with ShowEntityContext syntax
element.] Start position.

 entity_end INTEGER [Column appears only with ShowEntityContext syntax
element.] End position.

 context VARCHAR [Column appears only with ShowEntityContext syntax
element.] Words before and after the entity.

NamedEntityFinder Example

Input

Input Table: assortedtext_input
id source content

1001 misc contact Alan by email at sports@espn.com for all sport info
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id source content

1002 misc contact Mark at cricket@espn.com for all cricket info

1003 misc contact Roger at tennis@espn.com for all tennis info

1004 wiki The contiguous United States consists of the 48 adjoining U.S. states plus
Washington, D.C., on the continent of North America

1005 wiki California's economy is centered onTechnology,Finance,real estate services,
Government, and professional, Scientific and Technical business Services; together
comprising 58% of the State Government economy

1006 wiki Houston is the largest city in Texas and the fourth-largest in the United States, while
San Antonio is the second largest and seventh largest in the state.

1007 wiki Thomas is a photographer whose natural landscapes of the West are also a statement
about the importance of the preservation of the wildness

SQL Call

SELECT * FROM NamedEntityFinder (
  ON assortedtext_input PARTITION BY ANY
  ON namefind_configure AS ConfigurationTable DIMENSION
  USING
  TextColumn ('content')
  Models ('all')
  Accumulate ('id', 'source')
) AS dt ORDER BY id;

Output

 id   source entity           entity_type  
 ---- ------ ---------------- ------------ 
 1001 misc   sports@espn.com  email       
 1002 misc   cricket@espn.com email       
 1002 misc   Mark             person      
 1003 misc   Roger            person      
 1003 misc   tennis@espn.com  email       
 1004 wiki   Washington       location    
 1004 wiki   U.S.             location    
 1004 wiki   North America    location    
 1004 wiki   United States    location    
 1005 wiki   State Government organization
 1005 wiki    58%             percentage  
 1006 wiki   San Antonio      location    
 1006 wiki   United States    location    
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 1006 wiki   Texas            location    
 1007 wiki   Thomas           person

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

Named Entity Finder Evaluator
The NamedEntityFinderEvaluatorMap and NamedEntityFinderEvaluatorReduce functions operate as a
row and a partition function, respectively. Each function takes a set of evaluating data and creates the
precision, recall, and F-measure values of a specified maximum entropy data model. Neither function
supports regular-expression-based or dictionary-based models.

Related Information:

Nondeterministic Results and UniqueID Syntax Element

Named Entity Finder Evaluator Syntax

NamedEntityFinderEvaluatorReduce version 1.5,
NamedEntityFinderEvaluatorMap version 1.7

SELECT * FROM NamedEntityFinderEvaluatorReduce (
  ON NamedEntityFinderEvaluatorMap (
    ON { table | view | (query) }
    USING
    TextColumn ('text_column')
    InputModelFile ('input_model_file')
  ) AS alias_1 PARTITION BY 1
) AS alias_2;

Named Entity Finder Evaluator Syntax Elements

TextColumn
Specify the name of the input table column that contains the text to analyze.

InputModelFile
Specify name of the model file to evaluate.
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NamedEntityFinderEvaluatorMap Input

Input Table Schema

Column Data Type Description

text_column VARCHAR Text to analyze. Within the text, each entity must be identified with this
syntax:
<START:entity_type> entity <END>

For example:

<START:location>Country1<END> has arrived

NamedEntityFinderEvaluatorReduce Output

Output Table Schema

Column Data Type Description

precision_val INTEGER Precision value of the model.

recall DOUBLE PRECISION Recall value of the model.

f_measure DOUBLE PRECISION F-measure (F1 score) of the model.

Named Entity Finder Evaluator Example

Input

• Input Table: nermem_sports_test, which has rows of sports news
• model_file: location.sports, output by NamedEntityFinderTrainer Example

Input Table: nermem_sports_test
id content

3 <START:LOCATION> LONDON <END> 1996-08-30

4 West Indian all-rounder <START:PER> Phil Simmons <END> took four for 38 on Friday as <START:
ORG> Leicestershire <END> beat <START:ORG> Somerset <END> by an innings and 39 runs in
two days to take over at the head of the county championship .

6 After bowling <START:ORG> Somerset <END> out for 83 on the opening morning at <START:
LOCATION> Grace Road <END>

9 <START:PER> Hussain <END>
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id content

10 By the close <START:ORG> Yorkshire <END> had turned that into a 37-run advantage but off-
spinner <START:PER> Such <END> had scuttled their hopes

11 At the <START:LOCATION> Oval <END>

12 He was well backed by <START:LOCATION> England <END> hopeful <START:PER> Mark
Butcher <END> who made 70 as <START:ORG> Surrey <END> closed on 429 for seven

14 Australian <START:PER> Tom Moody <END> took six for 82 but <START:PER> Chris Adams
<END>

16 They were held up by a gritty 84 from <START:PER> Paul Johnson <END> but ex-England fast
bowler <START:PER> Martin McCague <END> took four for 55 .

20 <START:LOCATION> LONDON <END> 1996-08-30

22 <START:LOCATION> Leicester <END> : <START:ORG> Leicestershire <END> beat <START:
ORG> Somerset <END> by an innings and 39 runs .

... ...

SQL Call

SELECT * FROM NamedEntityFinderEvaluatorReduce (
  ON NamedEntityFinderEvaluatorMap (
    ON nermem_sports_test
    USING
    InputModelFile ('location.sports')
    TextColumn ('content')
  ) PARTITION BY 1
) AS dt;

Output

 precision_val     recall             f_measure         
 ----------------- ------------------ ----------------- 
 0.847457627118644 0.7936507936507936 0.819672131147541

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

90: Named Entity Recognition (NER) Functions (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1600
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After completing this module, you will be able to:

• Describe what the nPath function does

• Describe typical use cases for nPath

• Write nPath queries

• Interpret the output of nPath queries

• Run an nPath visualization in Teradata AppCenter

Objectives

For more info go to docs.teradata.com click Teradata Vantage, download: Teradata Vantage Machine 
Learning Engine Analytic Function Reference guide.

https://docs.teradata.com/


3

• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Topics
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• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Background Information



6Description
What is nPath?
- Function designed for time-series sequence analysis of data 
- Links an outcome with a preceding path
Benefits
- Pattern detection can be completed in a single pass over 

the data
- Allows you to understand relationships across rows of data
- Transcends SQL’s ordered-data limitations that require 

either complex, multi-pass SQL or custom UDFs for each 
analysis

Example use cases:
- Web analytics (clickstream, Golden Path)
- Complex Marketing revenue paths 
- Granular product & process analysis (A/B)
- Granular pattern detection (fraud, QA,..)

•Time-series analysis, 
uncovering patterns in 
sequential steps

nPath Website Path Analysis

home

exit

profile

groups

jobs

compa
ny

20
%

7%

11%

13%

32%

Complete Application:

• nPath identifies path patterns and exit points
• The Sessionize function is used prepare the 

input data for nPath analysis.
• In the example above, we are viewing which 

paths users take once they’ve landed on our 
Home page. Note that 32% of Home page 
visits end up in the users’ exiting the website 
altogether.

Presenter
Presentation Notes
nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use nPath to analyze:Web site click data, to identify paths that lead to sales over a specified amountSensor data FROM industrial processes, to identify paths to poor product qualityHealthcare records of individual patients, to identify paths that indicate that patients are atrisk of developing conditions such as heart disease or diabetesFinancial data for individuals, to identify paths that provide information about credit or fraudrisksThe output FROM the nPath function can be input to other ML Engine functions or to a visualization tool such as Teradata AppCenter.
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Some examples of how nPath can be used follow:

• A Retailer wishes to analyze Web site click data, to identify paths that lead to sales 
over a specified amount

• A Manufacturer analyzes sensor data FROM industrial processes, to identify paths 
to poor product quality

• A Healthcare provider analyzes healthcare records of individual patients, to identify 
paths that indicate that patients are at risk of developing conditions such as heart 
disease or diabetes

• A Financial institution reviews financial data for individuals, to identify paths that 
provide information about credit or fraud risks

nPath Use Cases

Presenter
Presentation Notes
nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use nPath to analyze:Web site click data, to identify paths that lead to sales over a specified amountSensor data FROM industrial processes, to identify paths to poor product qualityHealthcare records of individual patients, to identify paths that indicate that patients are atrisk of developing conditions such as heart disease or diabetesFinancial data for individuals, to identify paths that provide information about credit or fraudrisksThe output FROM the nPath function can be input to other ML Engine functions or to a visualization tool such as Teradata AppCenter.



8nPath Workflow

• Input Tables(s): Data is read FROM specified input tables, views, or queries

• nPath: The following arguments are specified when the function is invoked

─ Mode (overlapping or nonoverlapping)
─ Pattern to match
─ Symbols to use
─ [Optional] Filters to apply
─ Results to output

• Output table: Data is written to an output table

Input Table(s) nPath Output Table

Presenter
Presentation Notes
nPath requires at least one input table, view, or query. Rows that meet the condition of your logic are then displayed in the output.



9nPath Syntax
SELECT * FROM nPath [@coprocess]
(ON { table | view | (query) } 
PARTITION BY partition_column
ORDER BY order_column[ ASC | DESC ]
[ ON { table | view | (query) }
[ PARTITION BY partition_column | DIMENSION ] ORDER BY column [ ASC | DESC ]]
USING
Mode ({ OVERLAPPING | NONOVERLAPPING })
Pattern ('pattern')
Symbols ({ col_expr = symbol_predicate AS symbol } [,...])
[ Filter (filter_expression [,...]) ]
Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])
) AS dt;

Presenter
Presentation Notes
Following are important points to realize about the syntax for nPath.As with other Teradata Vantage functions, we are invoking the function through the call SELECT * FROM function_name; i.e., in this case, SELECT * FROM nPath.Our input data can be in the form of a table, view, or query. It follows the ON keyword.We must specify which columns to use for our PARTITION BY and ORDER BY arguments.Following the USING keyword, we are afforded the opportunity of specifying our required and optional arguments specific to the function.The required arguments for nPath follow:Mode: Specify the pattern-matching mode. Possible values include OVERLAPIPNG and NONOVERLAPPING..Pattern: Specify the pattern for which the function searches. Symbols: Specify the symbols that appear in the values of the Pattern and Result arguments..Result: Defines the output columns.The optional arguments for nPath follow:Filter [Optional]: Specify filters to impose on the matched rows. The function combines the filter expressions using the AND operator.
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c
Lab 01 – nPath Simple Query

SELECT * FROM borre_z
ORDER BY ts;

SELECT * FROM nPath@coprocessor
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

Input Data nPath Query

nPath Results

• On the following pages, we will discuss 
the required arguments for nPath

• For each required argument, we will 
discuss the implications of our 
specifications using the simple nPath
query to the right as the foundation

Note: In the query above, the @coprocessor 
tag signifies that we are opting to run the 
query on the Machine Learning Engine.  
Without this tag, the query would run on the 
Advanced SQL Engine. For this module’s labs, 
we will run our queries on the Advanced SQL 
Engine (i.e., without the @coprocessor tag)

Remove '@coprocessor 
and run again using MLE

Presenter
Presentation Notes
The purpose of this lab is merely to get you acquainted with a sample nPath query. nPath can run on either the Advanced SQL Engine or the Machine Learning Engine.
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Here, we specify our input data.

• The FROM keyword is followed by 
nPath (or nPath@coprocessor). 
This invokes the nPath function

• The ON keyword is followed by our 
input data (borre_z)

• We PARTITION BY user_id in this 
example and ORDER BY ts

nPath Input Data (1 of 3)

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Like other Teradata Vantage analytic functions, the function’s name follows the FROM keyword and the input data follows the ON keyword.



12nPath Input Data (2 of 3)
… ON (SELECT * FROM WEBCLICKS)

PARTITION BY user_id, sessionid 
ORDER BY datestamp …

PARTITION BY groups rows with like values together.
ORDER BY then sorts each partition according to our specifications.

(Now, the clicks of each User_Id are sorted in the sequence in which they were made

Partition for User_Id 1 Session_Id 0 Partition for User_Id 1 Session_Id 1 Partition for User_Id 97Session_Id 0

Presenter
Presentation Notes
PARTITION BY groups rows with like values together .ORDER BY then sorts each partition according to our specifications.In the example on the following page, the clicks of each User_Id are sorted in the sequence in which they were made.



13nPath Input Data (3 of 3)

• ON expression
- The input Table, View, or Query

• PARTITION BY expression [,…]
- The attribute(s) by which the rows are 

grouped
- Identifies entity of interest – such as 

user_id, product_id, etc.
• ORDER BY expression [ASC|DESC] [,…]
- The expression by which the rows within 

each partition are ordered
- Typically a date/time field, but can be any 

sequence attribute

SELECT * FROM nPath
(ON (SELECT * FROM savings

WHERE amt > 0) as t1
PARTITION BY cust  
ORDER BY ts
…………….

SELECT * FROM nPath
(ON savings
PARTITION BY cust
ORDER BYts
…………….

Selecting all rows from savings

Selecting a subset of rows from savings

Presenter
Presentation Notes
ON expression: The input Table, View, or QueryPARTITION BY expression [,…]: The attribute(s) by which the rows are grouped. Identifies entity of interest – such as user_id, product_id, etc.ORDER BY expression [ASC|DESC] [,…]: The expression by which the rows within each partition are ordered. Typically a date/time field, but can be any sequence attribute.
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Here, we specify the pattern-matching mode. 
There are two flavors of this:

• OVERLAPPING: Find every occurrence of 
pattern in partition, regardless of whether it 
is part of a previously found match. One row 
can match multiple symbols in a given 
matched pattern

• NONOVERLAPPING: Start next pattern 
search at row that follows last pattern match

nPath Required Arguments: Mode

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

Presenter
Presentation Notes
Mode allows you to specify the pattern-matching mode. The two options follow:OVERLAPPING: Find every occurrence of pattern in partition, regardless of whether it is part of a previously found match. One row can match multiple symbols in a given matched pattern.NONOVERLAPPING: Start next pattern search at row that follows last pattern match.
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Here, we specify the Pattern for which the function searches.

• We compose Pattern with symbols (which we define in the 
Symbols argument), operators, and parentheses. Here, 
we are searching for Symbol X followed by X (which 
means event 'a' followed by event 'a')

• When patterns have multiple operators, the function 
applies them in order of precedence, and applies operators 
of equal precedence FROM left to right. To force the 
function to evaluate a subpattern first, enclose it in 
parentheses

nPath Required Arguments: Pattern

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate(event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Pattern allows you to specify the pattern for which the function searches. You compose pattern with the symbols (which you define in the Symbols argument), operators, and parentheses.When patterns have multiple operators, the function applies them in order of precedence, and applies operators of equal precedence FROM left to right. To force the function to evaluate a subpattern first, enclose it in parentheses.
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Here, we specify the Symbols that appear in the 
values of the Pattern and Result arguments

• The col_expr is an expression whose value is a 
column name, symbol is any valid identifier, and 
symbol_predicate is a SQL predicate (often a 
column name)

• You can think of Symbols as the 'aliases' that you 
will be defining for use in the Pattern and Result
portions of the query 

nPath Required Arguments: Symbols

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Symbols allows you to define the symbols that appear in the values of the Pattern and Result arguments. The col_expr is an expression whose value is a column name, symbol is any valid identifier, and symbol_predicate is a SQL predicate (often a column name).For example, this Symbols argument is for analyzing website visits:Symbols (pagetype = 'homepage' AS H,pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,pagetype = 'checkout' AS CO)The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to identify in patterns. If col_expr represents a column that appears in multiple input tables, you must qualify the ambiguous column name with its table name. For example:Symbols (weblog.pagetype = 'homepage' AS H,weblog.pagetype = 'thankyou' AS T,ads.adname = 'xmaspromo' AS X,ads.adname = 'realtorpromo' AS R)



17

Here, we specify the output columns
• The col_expr is an expression whose value 

is a column name; it specifies the values to 
retrieve FROM the matched rows. The 
function applies aggregate_function to 
these values

• The function evaluates this argument once 
for every matched pattern in the partition 
(that is, it outputs one row for each pattern 
match)

nPath Required Arguments: Result

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Mode (NONOVERLAPPING)
Pattern ('X.X')
Symbols (event = 'a' as X)
Result (Accumulate (event OF X) AS x_pattern)
) AS dt;

nPath Query

Presenter
Presentation Notes
Result allows you to define the output columns. The col_expr is an expression whose value is a column name; it specifies the values to retrieve FROM the matched rows. The function applies aggregate_function to these values. The function evaluates this argument once for every matched pattern in the partition (that is, it outputs one row for each pattern match).
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c Lab 02 – Changing the Order of Required 
Arguments doesn’t make a Difference

• You can change the order of arguments that appear after USING as desired
• For example, you may find it more logical to define Symbols right away
• All of the following queries will return the same answer-set

SELECT * FROM nPath  (
ON bb_borre_z PARTITION BY 
user_id ORDER BY ts
USING
Symbols (event = 'a' as X)
Pattern ('X.X')
Mode (NONOVERLAPPING)
Result (Accumulate (event 
OF X) AS x_pattern)) AS 
dt;

SELECT * FROM nPath  (
ON bb_borre_z PARTITION BY 
user_id ORDER BY ts
USING
Pattern ('X.X')
Mode (NONOVERLAPPING)
Symbols (event = 'a' as X)
Result (Accumulate (event 
OF X) AS x_pattern)) AS
dt;

SELECT * FROM nPath  (
ON bb_borre_z PARTITION BY 
user_id ORDER BY ts
USING
Pattern ('X.X')
Symbols (event = 'a' as X)
Mode (NONOVERLAPPING)
Result (Accumulate (event 
OF X) AS x_pattern)) AS
dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Symbols (event = 'a' as X)
Pattern ('X.X')
Mode (NONOVERLAPPING)
Result (Accumulate (event OF 
X) AS x_pattern)) AS dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Pattern ('X.X')
Mode (NONOVERLAPPING)
Symbols (event = 'a' as X)
Result (Accumulate (event OF 
X) AS x_pattern)) AS dt;

SELECT * FROM nPath
(ON borre_z
PARTITION BY user_id
ORDER BY ts
USING
Pattern ('X.X')
Symbols (event = 'a' as X)
Mode (NONOVERLAPPING)
Result (Accumulate (event OF 
X) AS x_pattern)) AS dt;

Presenter
Presentation Notes
Here, we are showing that the order of arguments after the USING keyword is irrelevant to the answer-set.
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• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Symbols
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c
Lab 03 – Symbols Example 

• Recall that the Symbols argument allows us to define the aliases that we wish to 
use in the Pattern and Results arguments

• The next few pages will walk through some very straightforward examples that 
should illustrate how Symbols work

• For all examples, assume four-row table appearing below
• For all examples, we will be searching for a product of apple followed by banana, 

using whatever Symbols we may have decided to define
• In our dataset, the only pattern match will be rows 1 (apple) and 2 (banana)

SELECT *  
FROM borre_food
ORDER BY event_id;

Presenter
Presentation Notes
This lab covers various examples of defining Symbols.
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c
Lab 03 – Symbols Example

• Here, we are defining Symbols of a
for apple and b for banana

• Our defined Symbols are used in   
the Pattern and Result arguments

SELECT products_accumulate, count (*) 
FROM nPath
(ON borre_food
PARTITION BY user_name
ORDER BY event_id
USING
Mode (NONOVERLAPPING)
Pattern ('a.b')
Symbols(product = 'apple' as a,

product = 'banana' as b)
Result (
ACCUMULATE (product OF ANY (a,b) 
DELIMITER '*')
AS products_accumulate)
) AS dt 
GROUP BY products_accumulate;

Input

Output

Presenter
Presentation Notes
This lab covers various examples of defining Symbols.
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• Hackathon and Review

Current Topic – Mode
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c
Lab 04 – Mode Example (1 of 3)

• Recall that the Mode argument can have a value of NONOVERLAPPING or 
OVERLAPPING

• The next few pages will walk through how the Mode value that you specify will 
impact the answer-set

• For the example, assume a simple input table with two columns and four rows

SHOW TABLE matchup;

SELECT *  
FROM matchup 
ORDER BY c2, c1;

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.
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c
Lab 04 – Mode Example (2 of 3)

In NONOVERLAPPING match mode, nPath begins the next pattern search at the row that 
follows the last row that was part of the previous PATTERN match. In this example, the next 
pattern match starts at row 3

SELECT * FROM nPath
(ON matchup 
PARTITION BY c2 
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.A')
Symbols (c2 = 'A' as A)
Result 
(Accumulate (c2 OF A) AS x_pattern))
AS dt;

After you have a complete Pattern match (TRUE), 
assuming there are more rows in the input table:
If NONOVERLAPPING, start next Pattern match on 
next row after last matched row 

PATTERN(A.A) = Search for A followed by A

Input Output

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.
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c
Lab 04 – Mode Example (3 of 3)

In OVERLAPPING match mode, nPath finds every occurrence of the pattern, regardless of 
whether it might have been part of a previously found match. This means that, in 
OVERLAPPING mode, one row can match multiple symbols in a given matched PATTERN

After you have a complete Pattern match (TRUE), 
assuming there are more rows in the input table:
If OVERLAPPING, go back to the second matched row 
of the previous matched Pattern. Repeat as needed until 
no more matches.  If/when have no more matches, start 
next Pattern match on row after last matched row

PATTERN(A.A) = Search for A followed by A

SELECT * FROM nPath
(ON matchup 
PARTITION BY c2 
ORDER BY c1
USING
Mode (OVERLAPPING)
Pattern ('A.A')
Symbols (c2 = 'A' as A)
Result 
(Accumulate (c2 OF A) AS x_pattern)
) AS dt;

Input Output

Presenter
Presentation Notes
This lab shows examples of how OVERLAPPING and NONOVERLAPPING values for Mode impact the answer-sets that nPath returns.
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• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Pattern and Symbols



27Pattern Operators (1 of 2)
• Use with pattern symbols to customize pattern-matching rules

'.'  : followed by (Use to separate a series of pattern symbols)
'|'  : alternative (The equivalent of an OR)
'?'  : occurs at most once (0-1)
'*' : occurs zero or more times (0-n)
'+' : occurs at least once (1-n)
'^' : pattern must begin with value specified. Also, value specified must be the first row 
within the partition.
'$' : pattern must end with

• Customizing pattern matching rules:
(X){a}: exactly A number of occurrences of X pattern('A.B{3}')
(X){a,}: at least A number of occurrences of X   pattern('A.B{1,}')
(X){a,b}: A to B occurrences of X                         pattern('A.B{1,3}')

Presenter
Presentation Notes
The following pages show various operators that you can use when defining your nPath patterns.



28Pattern Operators (2 of 2)
Operator Description Precedence

A Matches one row that meets the definition of A 1 (highest)

A. Matches one row that meets the definition of A 1

A? Matches 0 or 1 rows that satisfy the definition of A 1

A* Matches 0 or more rows that satisfy the definition of A (greedy 
operator)

1

A+ Matches 1 of more rows that satisfy the definition of A (greedy 
operator)

1

A.B Matches two rows, where the first row meets the definition of A and the 
second row meets the definition of B

2

A|B Matches one row that meets the definition of either A or B 3

The nPath function uses greedy pattern matching. That is, it finds the longest available match when matching 
patterns specified by nongreedy operators
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c
Lab 06 – Walking the Rows on Pattern Given Mode

B
B
C
A
D

T
T
T

Input

B
B
C
A
D

T
T
T

T
Match 1 of 1

Match 1 of 2

T B
B
C
A
D

T
T
T

Match 2 of 2

With nonoverlapping, after 
the first match, we start 
the next pattern on the 
fifth row

With overlapping, 
after the first match, 
we start the next 
pattern on the 
second row

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B+.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (OVERLAPPING)
Pattern ('B+.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Presenter
Presentation Notes
This lab dissects how NONOVERLAPPING and OVERLAPPING values for Mode are logically processed.
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c
Lab 07 – Followed By ( . )

Here, we are searching for B followed by C
followed by A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.C.A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
A dot or period [ . ] signifies followed by.
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c
Lab 08 – OR ( | )

Here, we are searching for any of the following
• B, OR
• C, OR
• A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B|C|A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
A pipe or vertical bar [ | ] signifies OR.
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c
Lab 09 – Followed By Together With OR

Here, we are searching for either of the following:
• B followed by C, OR
• A

Input

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.C|A')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt; Output

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators. 
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c
Lab 10 – Parentheses (1 of 2)

• Here, we are searching for a B, followed by either a C or an A
• Note that absent parentheses, FOLLOWED BY [ . ] takes 

precedence over OR [ | ]
• Be aware of orders of operation and how the presence or 

absence of parentheses may impact your answer-sets

B
B
C
A
D

SELECT * FROM nPath
(ON npathBetween2 
PARTITION BY c2 
ORDER BY c1
USING Mode (NONOVERLAPPING)
Pattern ('B.(C|A)')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Input

Output

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators. Use parentheses when needed/desired to impose the desired order-of-precedence to your Pattern argument.
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c
Lab 10 – Parentheses (2 of 2)

Input
SELECT * FROM nPath
(ON npathBetween
PARTITION BY c2 
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.B|C')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Output

Input Output

No Parentheses

Parentheses
SELECT * FROM nPath
(ON npathBetween
PARTITION BY c2 
ORDER BY c1
USING
Mode (NONOVERLAPPING)
Pattern ('A.(B|C)')
Symbols (c3='A' AS A,c3='B' AS B, c3='C' AS C)
Result (Accumulate(c3 of ANY(B,C,A)) AS Matches)
) AS dt;

Presenter
Presentation Notes
Care must be taken when stringing together patterns with multiple operators. Use parentheses when needed/desired to impose the desired order-of-precedence to your Pattern argument.
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c
Lab 11 – Exploring the ^ Predicate (1 of 3)

SELECT * 
FROM jobs 
ORDER BY emp_id, bgn_dt;

• Recall that the ^ predicate forces the Pattern to begin with whatever you specify. 
Furthermore, it forces the value specified to be in the first row of the partition

• This lab will focus on the input data displayed below
• We will show an example of each of the following for our Pattern:

- Pattern ('sw.next_job')
- Pattern ('^sw.next_job')

Presenter
Presentation Notes
The caret symbol [ ^ ] forces the pattern to begin with whatever you specify. Furthermore, it forces the value specified to be in the first row of the partition.In this lab, we will look at examples of including and excluding the caret symbol FROM our Pattern argument.
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Lab 11 – Without ^ Predicate (2 of 3)

SELECT emp_id, Matches, count(*)
FROM nPath@coprocessor
(ON jobs 
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike '%soft%'
as sw, TRUE as next_job)
Result (
First (emp_id of sw) as emp_id,
Accumulate(job_desc of 
any(sw,next_job)) as Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

• Here, we are not specifying the ^ predicate in our 
Pattern argument

• Given this, we’re searching for any job-path pattern that 
goes FROM ‘%soft%’ to anything else, whatever it is

• Both emp_id values have met our conditions

Output

Input

Presenter
Presentation Notes
Here, we have excluded the caret symbol. Note that both employees meet the condition of our Pattern.
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c

SELECT emp_id, Matches, count(*)
FROM nPath@coprocessor
(ON jobs 
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('^sw.next_job')
Symbols (job_desc ilike '%soft%'
as sw, TRUE as next_job)
Result (
First (emp_id of sw) as emp_id,
Accumulate(job_desc of
any(sw,next_job)) as Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

Lab 11 – With ^ Predicate (3 of 3)
• Here, we are specifying the ^ predicate in our Pattern argument
• Given this, we are searching for any job-path pattern that begins 

the partition with '%soft%', and then goes to anything else, 
whatever it may be

• Only emp_id 1 has the first row of its partition beginning with 
'%soft%', thus the job path of emp_id 1 is returned, but not the 
job path of emp_id 2 (which begins with 'Janitor')

Output

Input

Presenter
Presentation Notes
Here, we have included the caret symbol. Note that only emp_id 1 is returned. Emp_id 2 did not meet the conditions of the Pattern because its partition did not begin with ‘%soft%’. 
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Predicates
True symbol can match any row 

(often for exploratory queries)
% _ %  (any # of char) _ (positional) : 

char comparisons
like   not like case sensitive text comparison
ilike not ilike case insensitive text comparisons
LAG/LEAD to compare current row to preceding row(s) 
=, <, >, <=, >=, <> numeric comparisons

Query:  For users whose first title in the partition did 
not start out like ‘%Soft%', what was their next title? 
Also, count the number of times that that path occurred

SELECT emp_id, Matches, count (*) 
FROM nPath
(ON jobs 
PARTITION BY emp_id
ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING) 
Pattern ('^sw.next_job')
Symbols (job_desc NOT LIKE '%Soft%' AS sw,

TRUE AS next_job)
Result (First (emp_id of sw) AS emp_id,
Accumulate(job_desc of any(sw,next_job)) 
AS Matches)
) AS dt 
GROUP BY emp_id, Matches 
ORDER BY emp_id;

Output

Input

Presenter
Presentation Notes
The following page displays various symbol expressions.
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c Lab 12 – like versus ilike on ML Engine 
(Optional)

SELECT emp_id, Matches, count (*) FROM nPath@coprocessor  
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt USING Mode 
(NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc like 'soft%' as sw, TRUE as next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

like

ilike

Input

SELECT emp_id, Matches, count (*) FROM nPath@coprocessor  
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt USING Mode 
(NONOVERLAPPING)
Pattern ('^sw.next_job')
Symbols (job_desc ilike 'soft%' as sw, TRUE as next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

Output for 'like'

Output for 'ilike'

• On the ML Engine, the like symbol is case-sensitive, 
whereas the ilike symbol is case-insensitive

• Note ‘Software Engineer’ begins with a capital 'S'
• like 'soft%' will return nothing, whereas ilike 'soft%'

will return rows

Presenter
Presentation Notes
Note that on the ML Engine, like is case-sensitive, whereas ilike is not.
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Lab 13 – Using the + Predicate 

• Recall the plus symbol ( + ) signifies occurs at least once (1-n)

• In the examples below, for each emp_id after a match on sw, the 
Pattern ('sw.next_job') will return only the very next job, whereas 
the Pattern ('sw.next_job+') will return all subsequent jobs

Without +
SELECT emp_id, Matches, count (*) FROM
nPath@coprocessor  (ON jobs PARTITION BY emp_id
ORDER BY bgn_dt USING Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike 'soft%' as sw, TRUE as
next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

With +
SELECT emp_id, Matches, count (*) FROM
nPath@coprocessor  (ON jobs PARTITION BY emp_id
ORDER BY bgn_dt USING Mode (NONOVERLAPPING)
Pattern ('sw.next_job+')
Symbols (job_desc ilike 'soft%' as sw, TRUE as
next_job)
Result (First (emp_id of sw) as emp_id,
Accumulate(job_desc of any(sw,next_job)) as Matches
) AS dt GROUP BY emp_id, Matches ORDER BY emp_id;

Input

Output

Presenter
Presentation Notes
The plus symbol [ + ] can be used to find values in a pattern that occur once or many times successively.
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• The True predicate is useful to discover which patterns exist in your data

• Normally, with other predicate values, you are seeking out specific patterns 
that you explicitly define and know that you are interested in

• True is beneficial when you don’t know what you’re looking for and merely 
want to discover which patterns may (or may not) exist in your data

True Predicate

Presenter
Presentation Notes
True is useful to use in exploratory queries, especially in cases in which you wish to discover what patterns exist in the data.
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Lab 14 – True Predicate (1 of 2)

SELECT * FROM bank_web_clicks
WHERE customer_id IN (11603)
ORDER BY customer_id, datestamp;

• Here, we are familiarizing ourselves with 
the bank_web_clicks table

• On the following page, we will use the 
TRUE predicate to discover which web 
paths are the most-commonly travelled

Presenter
Presentation Notes
Here, we are familiarizing ourselves with the underlying input table against which we will run an nPath query that leverages the True predicate.
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Lab 14 – True Predicate (2 of 2)

SELECT path, count(*) AS occurs
FROM nPath 
(ON bank_web_clicks
PARTITION BY customer_id, session_id 
ORDER BY datestamp
USING
Mode (NONOVERLAPPING)
Pattern ('PAGE+')
Symbols (TRUE AS PAGE)
Result (
Accumulate(page OF ANY (PAGE)) as path)
) AS dt
GROUP BY path
HAVING occurs >= 500 
ORDER BY occurs DESC;

Input

Output

'true as <alias> means 'the next row'

Presenter
Presentation Notes
Here, we have used the True predicate to display patterns that exist within our input table.
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• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Results
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• RESULT is the output for each matched PATTERN in the sequence of rows

• nPath generates a row of output that can contain SQL and/or ML aggregates computed 
over the rows within the matched PATTERN

SYNTAX

SELECT emp_id, Matches, count (*)
FROM nPath@coprocessor
(ON jobs PARTITION BY emp_id ORDER BY bgn_dt
USING
Mode (NONOVERLAPPING)
Pattern ('sw.next_job')
Symbols (job_desc ilike '%soft%' AS sw, TRUE AS next_job)
Result (First (emp_id OF sw) AS emp_id,

Accumulate(job_desc OF ANY(sw,next_job)) AS Matches)
) AS dt
GROUP BY emp_id, Matches
ORDER BY emp_id;

Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])

• Here, we are using First and 
Accumulate in our Result argument

• First returns the col_expr value of the 
first matched row

• Accumulate returns, for each 
matched row, the concatenated 
values in col_expr, separated by a 
delimiter. The default delimiter is a 
comma followed by a blank space ( , )

Presenter
Presentation Notes
The Result argument allows you to define the output columns. Following is its syntax:Result ({ aggregate_function (expression OF [ANY] symbol [,...]) AS alias_1 }[,...])The col_expr is an expression whose value is a column name; it specifies the values to retrieve FROM the matched rows. The function applies aggregate_function to these values. The function evaluates this argument once for every matched pattern in the partition (that is, it outputs one row for each pattern match).
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Following are some common Aggregates that you can specify in the Result argument:
• COUNT(* of SYMBOL)
• FIRST(<expr> of SYMBOL)
• LAST(<expr> of SYMBOL)
• SUM(<expr> of SYMBOL)
• AVG(<expr> of SYMBOL)
• MAX(<expr> of SYMBOL)
• MIN(<expr> of SYMBOL)
• ACCUMULATE(<expression> of SYMBOL)
• ANY: e.g., SUM(<expression> of ANY(A,B,C))
• FIRST_NOTNULL (column of symbol): Returns first non-null row that maps to symbol
• LAST_NOTNULL (column of symbol): Returns last non-null row that maps to symbol
• MAX_CHOOSE (qty column, column name): Returns descriptive column of highest qty col
• MIN_CHOOSE (qty column, column name): Returns descriptive column of lowest qty col
• DUPCOUNT: Counts # of times value has appeared preceding this row
• DUPCOUNTCUM: # of Duplicate values have appeared contiguously preceding 

Presenter
Presentation Notes
The following page displays various aggregate functions that you can specify in your Result argument.
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Lab 15 – Result Arguments (1 of 4)

SELECT * FROM web_purchases
ORDER BY user_id, date_time;

• Over the next many pages, we will walk through various Result arguments using the 
web_purchases table, shown below

• Note:
- There are three user_id values
- user_id 1 had two sessions. The other two user_id values had only one session_id each
- user_id 1 bought a guitar, user_id 2 bought strings as well as a guitar, and user_id 3 

bought a capo

Presenter
Presentation Notes
This lab will attempt to walk through a slow build-up of using different aggregate functions in our Result argument.Here, we are viewing the contents of the input table.
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Lab 15 – Result Arguments (2 of 4)

SELECT * FROM nPath
(ON web_purchases
PARTITION BY user_id, session_id 
ORDER BY date_time USING
Mode (NONOVERLAPPING) Pattern ('V+.C+')
Symbols (page = 'view_prod' as V, page = 'checkout' as C)
Result (Accumulate(product of any(V, C)) as Matches)
) AS dt;

Output

• In the example, we are searching 
within each partition for a Pattern of 
one or more instances of 
view_prod, followed by one or 
more instances of checkout

• Our Accumulate argument returns 
any instances of product that meet 
the conditions of our Pattern within 
each partitionInput

Presenter
Presentation Notes
Here, we have opted to return the product values of each qualifying matched pattern.
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Lab 15 – Result Arguments (3 of 4)

SELECT * FROM nPath (ON web_purchases
PARTITION BY user_id, session_id ORDER BY date_time
USING Mode (NONOVERLAPPING) Pattern ('V+.C+') 
Symbols (page = 'view_prod' as V, page='checkout' as C)
Result (
First (user_id of V) as user_id,
First (session_id of V) as session_id,
Accumulate (product of any(V, C)) as Matches)
) AS dt ORDER BY user_id, session_id;

Input Output

• Our First arguments return the very first 
instance of user_id that viewed the specified 
product within the partition

• Our Accumulate argument returns any 
instances of product that meet the conditions 
of our Pattern within the partition

Presenter
Presentation Notes
Here, we have added onto our Result argument the concept of returning the first instance of user_id and session_id that are affiliated with each matched pattern.
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Lab 15 – Result Arguments (4 of 4)

SELECT * FROM nPath
(ON web_purchases
PARTITION BY user_id, session_id
ORDER BY date_time
USING
Mode (NONOVERLAPPING) Pattern ('V+.C+')
Symbols 
(page = 'view_prod' AS V, page='checkout' AS C)
Result (
First (user_id of V) AS user_id,
First (session_id of V) AS session_id,
Accumulate (product of any(V, C)) AS Matches,
Count (distinct product of any(C)) AS cd_Matches,
Sum (cast(prod_price as integer) of any (C)) AS

total_price)
) AS dt ORDER BY user_id, session_id;

Input

• Our Sum argument sums the prod_price of 
qualifying checkout products

• Our Count argument counts the distinct products 
that were present in a checkout

• Our First arguments return the very first instance 
of user_id that viewed the specified product

• Our Accumulate argument returns any instances 
of product that meet the conditions of our Pattern

Output

Presenter
Presentation Notes
And finally, we have added onto our Result argument the concept of summing prod_price values that are affiliated with each matched pattern.
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• Background Information 
• Description
• Use Cases
• Syntax
• Input Data
• Required Arguments
• Optional Arguments
• Input Table Schema

• Symbols
• Mode
• Pattern and Symbols
• Results
• Teradata AppCenter
• Hackathon and Review

Current Topic – Teradata AppCenter



• Using R Studio with Teradata Vantage
• Teradata Vantage architecture
• Install and load dependent packages
• Connect to Teradata Vantage from R Studio
• What is a tibble?

• Transformation Functions
• Scale and scale map, Text parser

• Association Analysis
• Collaborative filtering

• Path and Pattern Analysis
• nPath

• Statistical Functions
• Decision forests, K-means

Current Topic

R Studio and tdplyr    Slide 6-84



• The nPath function scans a set of rows, looking for patterns that you specify
• For each set of input rows that matches the pattern, nPath produces a single output 

row
• The function provides a flexible pattern-matching capability that lets you specify 

complex patterns in the input data and define the values that are output for each 
matched input set

• nPath is useful when your goal is to identify the paths that lead to an outcome
• The output from the nPath function can be input into other Machine Learning Engine 

functions or into a visualization tool such as Teradata AppCenter

nPath Description (1 of 2)

The td_nPath function scans a set of rows, looking for patterns that you specify. For each set of input 
rows that matches the pattern, td_nPath produces a single output row. The function provides a flexible 
pattern-matching capability that lets you specify complex patterns in the input data and define the 
values that are output for each matched input set.
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nPath Description (2 of 2)
What is nPath?
- Function designed for time-series sequence analysis of data 
- Links an outcome with a preceding path
Benefits
- Pattern detection can be completed in a single pass over 

the data
- Allows you to understand relationships across rows of data
- Transcends SQL’s ordered-data limitations that require 

either complex, multi-pass SQL or custom UDFs for each 
analysis

Example use cases:
- Web analytics (clickstream, Golden Path)
- Complex Marketing revenue paths 
- Granular product & process analysis (A/B)
- Granular pattern detection (fraud, QA,..)

•Time-series analysis, 
uncovering patterns in 
sequential steps

nPath Website Path Analysis

homehome

exitexit

profileprofile

groupsgroups

jobsjobs

compa
ny

compa
ny

20
%

7%

11%

13%

32%

Complete Application:

• nPath identifies path patterns and exit points
• The Sessionize function is used prepare the 

input data for nPath analysis.
• In the example above, we are viewing which 

paths users take once they’ve landed on our 
Home page. Note that 32% of Home page 
visits end up in the users’ exiting the website 
altogether.
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Some examples of how nPath can be used follow:

• A retailer wishes to analyze Web site click data, to identify paths that lead to sales 
over a specified amount

• A manufacturer analyzes sensor data from industrial processes, to identify paths to 
poor product quality

• A healthcare provider analyzes healthcare records of individual patients, to identify 
paths that indicate that patients are at risk of developing conditions such as heart 
disease or diabetes

• A financial institution reviews financial data for individuals, to identify paths that 
provide information about credit or fraud risks

nPath Use Cases

nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can 
use nPath to analyze:
• Web site click data, to identify paths that lead to sales over a specified amount
• Sensor data from industrial processes, to identify paths to poor product quality
• Healthcare records of individual patients, to identify paths that indicate that patients are at
• risk of developing conditions such as heart disease or diabetes
• Financial data for individuals, to identify paths that provide information about credit or fraud
• risks

The output from the nPath function can be input to other ML Engine functions or to a visualization tool 
such as Teradata AppCenter.
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nPath Workflow

• Input Tibble: Data is read from specified input tables

• nPath: The following arguments are specified when the function is invoked

─ Mode (overlapping or nonoverlapping)
─ Pattern to match
─ Symbols to use
─ [Optional] Filters to apply
─ Results to output

• Output object: Data is written to an output object

Input Tibble td_nPath Output Object

nPath requires at least one input table, view, or query. Rows that meet the condition of your logic are 
then displayed in the output.
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c
Lab 10 – Bb_borre_z Remote Tibble

bb_borre_z <-tbl(con,
dplyr::sql (“SELECT * FROM bb_borre_z”))

Create a remote tibble named 
bb_borre_z

1. Use the tbl function
2. Reference our con Vantage 

context variable
3. Use the dplyr::sql function 

to query the Vantage table Input Tibble
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• The td_nPath_sqle function scans 
a set of rows, looking for patterns 
that you specify.

• For each set of input rows that 
matches the pattern, nPath 
produces a single output row. 

• The function provides a flexible 
pattern-matching capability that 
lets you specify complex patterns 
in the input data and define the 
values that are output for each 
matched input set.

nPath – Syntax

td_npath_sqle (
data1 = NULL,
mode = NULL,
pattern = NULL,
symbols = NULL,
result = NULL,
filter = NULL,
data2 = NULL,
data3 = NULL,
data1.partition.column = NULL,
data2.partition.column = NULL,
data3.partition.column = NULL,
data1.order.column = NULL,
data2.order.column = NULL,
data3.order.column = NULL)

Following are important points to realize about the syntax for nPath.

The required arguments for nPath follow:
• Mode: Specify the pattern-matching mode. Possible values include OVERLAPIPNG and 

NONOVERLAPPING..
• Pattern: Specify the pattern for which the function searches.
• Symbols: Specify the symbols that appear in the values of the Pattern and Result arguments..
• Result: Defines the output columns.

The optional arguments for nPath follow:
• Filter [Optional]: Specify filters to impose on the matched rows. The function combines the filter 

expressions using the AND operator.
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Here, we specify the pattern-matching mode. There are two flavors of 
this:

• OVERLAPPING: Find every occurrence of pattern in partition, 
regardless of whether it is part of a previously found match. One row 
can match multiple symbols in a given matched pattern

• NONOVERLAPPING: Start next pattern search at row that follows last 
pattern match

nPath Required Arguments: Mode

Mode allows you to specify the pattern-matching mode. The two options follow:

• OVERLAPPING: Find every occurrence of pattern in partition, regardless of whether it is part of a 
previously found match. One row can match multiple symbols in a given matched pattern.

• NONOVERLAPPING: Start next pattern search at row that follows last pattern match.
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Here, we specify the Pattern for which the function searches.

• We compose Pattern with symbols (which we define in the Symbols
argument), operators, and parentheses. Here, we are searching for 
Symbol X followed by X (which means event ‘a’ followed by event ‘a’)

• When patterns have multiple operators, the function applies them in 
order of precedence, and applies operators of equal precedence from 
left to right. To force the function to evaluate a subpattern first, enclose it 
in parentheses

nPath Required Arguments: Pattern

Pattern allows you to specify the pattern for which the function searches. You compose pattern with the 
symbols (which you define in the Symbols argument), operators, and parentheses.

When patterns have multiple operators, the function applies them in order of precedence, and applies 
operators of equal precedence from left to right. To force the function to evaluate a subpattern first, 
enclose it in parentheses.
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Pattern Operators (1 of 2)
• Use with pattern symbols to customize pattern-matching rules

'.'  : followed by (Use to separate a series of pattern symbols)
'|'  : alternative (The equivalent of an OR)
'?'  : occurs at most once (0-1)
'*' : occurs zero or more times (0-n)
'+' : occurs at least once (1-n)
'^' : pattern must begin with value specified. Also, value specified must be the first row 
within the partition.
'$' : pattern must end with

• Customizing pattern matching rules:
(X){a}: exactly A number of occurrences of X pattern('A.B{3}')
(X){a,}: at least A number of occurrences of X   pattern('A.B{1,}')
(X){a,b}: A to B occurrences of X                         pattern('A.B{1,3}')

The following pages show various operators that you can use when defining your nPath patterns.
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Pattern Operators (2 of 2)
Operator Description Precedence

A Matches one row that meets the definition of A 1 (highest)

A. Matches one row that meets the definition of A 1

A? Matches 0 or 1 rows that satisfy the definition of A 1

A* Matches 0 or more rows that satisfy the definition of A (greedy 
operator)

1

A+ Matches 1 of more rows that satisfy the definition of A (greedy 
operator)

1

A.B Matches two rows, where the first row meets the definition of A and the 
second row meets the definition of B

2

A|B Matches one row that meets the definition of either A or B 3

The nPath function uses greedy pattern matching. That is, it finds the longest available match when matching 
patterns specified by nongreedy operators
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Here, we specify the Symbols that appear in the values of the Pattern and Result
parameters
• The col_expr is an expression whose value is a column name, symbol is any valid 

identifier, and symbol_predicate is a SQL predicate (often a column name)
• You can think of Symbols as the “aliases” that you will be defining for use in the 

Pattern and Result portions of the query 
• The symbol is case-insensitive; however, a symbol of one or two uppercase 

letters is easy to identify in patterns. If col_expr represents a column that appears 
in multiple input tables, then you must qualify the ambiguous column name with its 
table name.

nPath Required Argument – Symbols

pattern = “X.X”,
symbols = c("event = 'a' as X"),

Symbols allows you to define the symbols that appear in the values of the Pattern and Result 
arguments. The col_expr is an expression whose value is a column name, symbol is any valid identifier, 
and symbol_predicate is a predicate (often a column name).

For example, this Symbols argument is for analyzing website visits:
Symbols (
pagetype = 'homepage' AS H,
pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,
pagetype = 'checkout' AS CO
)

The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to identify in 
patterns. 

If col_expr represents a column that appears in multiple input tables, you must qualify the ambiguous 
column name with its table name. For example:

Symbols (
weblog.pagetype = 'homepage' AS H,
weblog.pagetype = 'thankyou' AS T,
ads.adname = 'xmaspromo' AS X,
ads.adname = 'realtorpromo' AS R
)
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Here, we specify the output columns
• The col_expr is an expression whose value is a column name; it 

specifies the values to retrieve from the matched rows. The function 
applies aggregate_function to these values

• The function evaluates this argument once for every matched pattern in 
the partition (that is, it outputs one row for each pattern match)

nPath Required Arguments: Result

pattern = “X.X”,
symbols = c("event = 'a' as X"),
result = c("ACCUMULATE (event of X) AS x_pattern")

Result allows you to define the output columns. 

The col_expr is an expression whose value is a column name; it specifies the values to retrieve from 
the matched rows. The function applies aggregate_function to these values. The function evaluates this 
argument once for every matched pattern in the partition (that is, it outputs one row for each pattern 
match).
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c
Lab 11 – Simple nPath Example

npath_out <-td_npath_sqle(
data1 = bb_borre_z,
data1.partition.column = c("user_id"),
data1.order.column = "ts",
mode = "nonoverlapping",
pattern = "X.X",
symbols = c("event = 'a' as X"),
result = c("ACCUMULATE (event of X) AS x_pattern"))

Create an object named bb_borre_z

1. Use the tbl_npath_sqle function
2. Reference our bb_borre_z remote tibble
3. Select user_id as the partition column
4. Order by the ts column
5. Input the remaining required arguments

• On the following pages, we will discuss the required arguments for nPath
• For each required argument, we will discuss the implications of our specifications using the simple 

nPath query to the right as the foundation
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c
Lab 12 – nPath Between Remote Tibble

npath_between <-tbl(con,
dplyr::sql (“SELECT * FROM bb_npathBetween2”))

Create a remote tibble named 
npath_between

1. Use the tbl function
2. Reference our con Vantage 

context variable
3. Use the dplyr::sql function 

to query the Vantage table
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c
Lab 13a – nPath ‘Or’ Pattern

npath_or_out <-td_npath_sqle(
data1 = npath_between,
data1.partition.column = c(“c1”),
data1.order-column = “c1”,
mode = "nonoverlapping”,
pattern = "B|C|A",
symbols = c("c3 = 'A' as A", "c3 = 'B' as B", 

"c3 = 'C' as C)" 
results = c ("ACCUMULATE(c3 of ANY(B,C,A)) 

AS matches"))

Following our regrex and delimitating our pattern with | symbols, we are telling our nPath code that we 
want B or C or A as the output.
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c
Lab 13b – Output

npath_or_out

View the output by typing the following command into the console:

Input Output

Again we can use dplyr to arrange the token by the most-frequently used tokens.
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To more easily create visualization in Teradata AppCenter we can copy
our results from R Studio into a Vantage table

Move Results from R Studio to a Vantage Table

copy_to(con,npath_or_out$result,name = "npath_or_out")

Results from R Studio copied 
to Vantage Data Store
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Teradata AppCenter Example
• Teradata AppCenter is an Web-based application that allows us to build visualization 

applications to be able to view data in various types of chart displays
• It is especially useful for viewing the results of nPath queries
• In the example below, we are viewing the results of an nPath query in a Sankey chart to 

discover the most common paths that lead towards Bill Manager Enrollment
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Introduction to nPath
The nPath function scans a set of rows, looking for patterns that you specify. For each set of input rows
that matches the pattern, nPath produces a single output row. The function provides a flexible pattern-
matching capability that lets you specify complex patterns in the input data and define the values that are
output for each matched input set.

nPath is useful when your goal is to identify the paths that lead to an outcome. For example, you can use
nPath to analyze:

• Web site click data, to identify paths that lead to sales over a specified amount
• Sensor data from industrial processes, to identify paths to poor product quality
• Healthcare records of individual patients, to identify paths that indicate that patients are at risk of

developing conditions such as heart disease or diabetes
• Financial data for individuals, to identify paths that provide information about credit or fraud risks

The output from the nPath function can be input to other ML Engine functions or to a visualization tool

such as Teradata® AppCenter.

nPath® (ML Engine)
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Sankey Diagram of ML Engine nPath Output

An nPath call specifies:

• Mode (overlapping or nonoverlapping)
• Pattern to match
• Symbols to use
• [Optional] Filters to apply
• Results to output

nPath Syntax
Version 1.1

Note:
This function requires "@coprocessor".

SELECT * FROM nPath@coprocessor (
  ON { table | view | (query) } PARTITION BY partition_column ORDER BY order_column [ ASC 
| DESC ][...]
  [ ON { table | view | (query) } 
    [ PARTITION BY partition_column | DIMENSION ] ORDER BY order_column [ ASC | DESC ] 
  ][...]
  USING 
  Mode ({ OVERLAPPING | NONOVERLAPPING })
  Pattern ('pattern')
  Symbols ({ col_expr = symbol_predicate AS symbol } [,...])
  [ Filter (filter_expression [,...]) ]
  Result ({ aggregate_function (col_expr OF symbol) AS alias_1 }[,...])
) AS alias_2;
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The nPath function is not tied to any schema and must not be qualified with a schema name.

Related Information:

Comments in Queries

nPath Syntax Elements
Mode

Specify the pattern-matching mode:

Option Description

OVERLAPPING Find every occurrence of pattern in partition, regardless of whether it is part
of a previously found match. One row can match multiple symbols in a given
matched pattern.

NONOVERLAPPING Start next pattern search at row that follows last pattern match.

Pattern
Specify the pattern for which the function searches. You compose pattern with the symbols (which
you define in the Symbols syntax element), operators, and parentheses.

When patterns have multiple operators, the function applies them in order of precedence, and
applies operators of equal precedence from left to right. To force the function to evaluate a
subpattern first, enclose it in parentheses. For more information, see nPath Patterns.

Symbols
Specify the symbols that appear in the values of the Pattern and Result syntax elements. The
col_expr is an expression whose value is a column name, symbol is any valid identifier, and
symbol_predicate is a SQL predicate (often a column name).

For example, this Symbols syntax element is for analyzing website visits:

Symbols (
  pagetype = 'homepage' AS H,
  pagetype <> 'homepage' AND pagetype <> 'checkout' AS PP,
  pagetype = 'checkout' AS CO
)

The symbol is case-insensitive; however, a symbol of one or two uppercase letters is easy to
identify in patterns.

If col_expr represents a column that appears in multiple input tables, you must qualify the
ambiguous column name with its table name. For example:

Symbols (
  weblog.pagetype = 'homepage' AS H,
  weblog.pagetype = 'thankyou' AS T,
  ads.adname = 'xmaspromo' AS X,
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  ads.adname = 'realtorpromo' AS R
)

For more information about symbols that appear in the Pattern syntax element value, see nPath
Symbols. For more information about symbols that appear in the Result syntax element value,
see nPath Results.

Filter
[Optional] Specify filters to impose on the matched rows. The function combines the filter
expressions using the AND operator.

This is the filter_expression syntax:

symbol_expression comparison_operator symbol_expression

The two symbol expressions must be type-compatible. This is the symbol_expression syntax:

{ FIRST | LAST }(column_with_expression OF [ANY](symbol[,...]))

The column_with_expression cannot contain the operator AND or OR, and all its columns must
come from the same input. If the function has multiple inputs, column_with_expression and
symbol must come from the same input.

The comparison_operator is either <, >, <=, >=, =, or !=.

Whether this syntax element improves or degrades nPath performance depends on several
factors. For details, see nPath Filters.

Result
Specify the output columns. The col_expr is an expression whose value is a column name; it
specifies the values to retrieve from the matched rows. The function applies aggregate_function
to these values. For details, see nPath Results.

The function evaluates this syntax element once for every matched pattern in the partition (that
is, it outputs one row for each pattern match).

nPath Input
The function requires at least one partitioned input table, and can have additional input tables that are
either partitioned or DIMENSION tables.

Note:
If the input to nPath is nondeterministic, the results are nondeterministic. For more information, see
Nondeterministic Results and UniqueID Syntax Element.
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Input Table Schema

Column Data Type Description

partition_column INTEGER or VARCHAR Column by which every partitioned input table is
partitioned.

order_column INTEGER or VARCHAR Column by which every input table is ordered.

input_column INTEGER or VARCHAR Data to search for patterns.

nPath Output
Output Table Schema

Column Data Type Description

partition_column Same as in input table Column by which partitioned input tables are
partitioned.

order_column Same as in input table Column by which input tables are ordered.

result_column Same as result of aggregate_
function

Determined by Result syntax element. For
details, see nPath Results.

nPath Symbols
A symbol identifies a row in the Pattern and Result syntax elements. A symbol can be any valid identifier
(that is, a sequence of characters and digits that begins with a character) but is typically one or two
uppercase letters. Symbols are case-insensitive; that is, 'SU' is identical to 'su', and the system reports an
error if you use both.

For example, suppose that you have this input table:

record city temp rh cloudcover windspeed winddirection rained_next_day

1 Tuscson 81 30 0.0 5 NW 1

2 Tempe 76 40 0.2 15 NE 0

3 Tuscson 70 70 0.4 10 N 0

4 Tusayan 75 50 0.4 5 NW 0

This table has examples of symbol definitions and the rows of the table that they match in
NONOVERLAPPING mode:

Symbol Definition Rows Matched

temp >= 80 AS H 1
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Symbol Definition Rows Matched

winddirection = 'NW' AS NW 1, 4

winddirection = 'NW' OR windspeed >
12 AS W

1, 2, 4

cloudcover != 0.0 AND rh > 35 AS C 2, 3, 4
(An alternative to != is <>.)

'true' AS A 1, 2, 3, 4
This symbol definition matches all rows, for any input table.

city like 'tu%' AS TU None
The like operator is case-sensitive. The % operator matches
any number of characters.

city not like 'tu%' AS TU None

city ilike 'tu%' AS TU 1, 3, 4
The ilike operator is case-insensitive.

city not ilike 'tu%' AS N 2

city ilike 'tu%n' as T 1, 3, 4
The % operator matches any number of characters.

city ilike 'tu___n' as T 1, 3
The underscore (_) operator matches any single character.
The pattern 'tu___n' has three underscores, so it matches
'Tucson' but not 'Tusayan'.

Rows with NULL values do not match any symbol. That is, the function ignores rows with missing values.

LAG and LEAD Expressions in Symbol Predicates
You can create symbol predicates that compare a row to a previous or subsequent row, using a LAG or
LEAD operator.

LAG Expression Syntax

{ current_expr operator LAG (previous_expr, lag_rows [, default]) |
  LAG (previous_expr, lag_rows [, default]) operator current_expr }

current_expr
Name of a column from the current row, or an expression operating on a column from the current
row.

operator
Either >, >=, <, <=, =, or !=.
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previous_expr
Name of a column from a previous row, or an expression operating on a column from a previous
row.

lag_rows
Number of rows to count backward from the current row to reach the previous row. For
example, if lag_rows is 1, the previous row is the immediately preceding row.

default
Value to use for previous_expr when there is no previous row (that is, when the current row is
the first row or there is no row that is lag_rows before the current row).

LAG and LEAD Expression Rules

• A symbol definition can have multiple LAG and LEAD expressions.
• A symbol definition that has a LAG or LEAD expression cannot have an OR operator.
• If a symbol definition has a LAG or LEAD expression and the input is not a table, you must create

an alias of the input query, as in LAG and LEAD Expressions Example: Input Query with Alias.

LAG and LEAD Expressions Example: Input Query with Alias

Input

bank_web_clicks
customer_id session_id page datestamp

529 0 ACCOUNT SUMMARY 2004-03-17 16:35:00

529 0 FAQ 2004-03-17 16:38:00

529 0 ACCOUNT HISTORY 2004-03-17 16:42:00

529 0 FUNDS TRANSFER 2004-03-17 16:45:00

529 0 ONLINE STATEMENT ENROLLMENT 2004-03-17 16:49:00

529 0 PROFILE UPDATE 2004-03-17 16:50:00

529 0 ACCOUNT SUMMARY 2004-03-17 16:51:00

529 0 CUSTOMER SUPPORT 2004-03-17 16:53:00

529 0 VIEW DEPOSIT DETAILS 2004-03-17 16:57:00

529 1 ACCOUNT SUMMARY 2004-03-18 01:16:00

529 1 ACCOUNT SUMMARY 2004-03-18 01:18:00

529 1 FAQ 2004-03-18 01:20:00

... ... ... ...
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SQL Call

SELECT * FROM nPath@coprocessor (
  ON (SELECT customer_id, session_id, datestamp, page FROM bank_web_clicks) AS 
alias1
    PARTITION BY customer_id, session_id
    ORDER BY datestamp
  USING
  Mode (NONOVERLAPPING)
  Pattern ('(DUP|A)*')
  Symbols (
    'true' AS A,
    page = LAG (page,1) AS DUP
  )
  Result (
    FIRST (customer_id OF any (A)) AS customer_id,
    FIRST (session_id OF A) AS session_id,
    FIRST (datestamp OF A) AS first_date,
    LAST (datestamp OF ANY(A,DUP)) AS last_date,
    ACCUMULATE (page OF A) AS page_path,
    ACCUMULATE (page of DUP) AS dup_path)
) AS dt GROUP BY 1;
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Output

customer_id session_id first_date last_date page_path dup_path

529 0 2004-03-17 16:35:00 2004-03-17 16:57:00 [ACCOUNT SUMMARY, FAQ,
ACCOUNT HISTORY, FUNDS
TRANSFER, ONLINE STATEMENT
ENROLLMENT, PROFILE UPDATE,
ACCOUNT SUMMARY, CUSTOMER
SUPPORT, VIEW DEPOSIT DETAILS]

[]

529 1 2004-03-18 01:16:00 2004-03-18 01:28:00 [ACCOUNT SUMMARY, FAQ,
ACCOUNT SUMMARY, FUNDS
TRANSFER, ACCOUNT HISTORY,
VIEW DEPOSIT DETAILS, ACCOUNT
SUMMARY, ACCOUNT HISTORY]

[ACCOUNT
SUMMARY]

529 2 2004-03-18 09:22:00 2004-03-18 09:36:00 [ACCOUNT SUMMARY, ACCOUNT
HISTORY, FUNDS TRANSFER,
ACCOUNT SUMMARY, FAQ]

[ACCOUNT
SUMMARY,
ACCOUNT
SUMMARY, FAQ]

529 3 2004-03-18 22:41:00 2004-03-18 22:55:00 [ACCOUNT SUMMARY, ACCOUNT
HISTORY, ACCOUNT SUMMARY,
ACCOUNT HISTORY, FAQ, ACCOUNT
SUMMARY]

[ACCOUNT
SUMMARY]

529 4 2004-03-19 08:33:00 2004-03-19 08:41:00 [ACCOUNT SUMMARY, FAQ, VIEW
DEPOSIT DETAILS, FAQ]

[]

529 5 2004-03-19 10:06:00 2004-03-19 10:14:00 [ACCOUNT SUMMARY, FUNDS
TRANSFER, VIEW DEPOSIT DETAILS,
ACCOUNT HISTORY]

[VIEW DEPOSIT
DETAILS]

... ... ... ... ... ...

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.
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LAG and LEAD Expressions Example: First and Most Expensive
Purchases

Whenever a user visits the home page and then visits checkout pages and buys increasingly expensive
products, the nPath query returns the first purchase and the most expensive purchase.

Input

The input table is a collection of clickstream data for different products with price information. Columns
userid and sessionid identify the users.

aggregate_clicks
userid sessionid productname pagetype clicktime referrer productprice

1039 1 sneakers home 2009-07-29 20:
17:59

Company1 100

1039 2 books home 2009-04-21 13:
17:59

Company2 300

1039 3 television home 2009-05-23 13:
17:59

Company3 500

1039 4 envelopes home 2009-07-16 11:
17:59

Company4 10

1039 4 envelopes home1 2009-07-16 11:
18:16

Company4 10

1039 4 envelopes page1 2009-07-16 11:
18:18

Company4 10

1039 5 bookcases home 2009-08-19 22:
17:59

Company5 150

1039 5 bookcases home1 2009-08-19 22:
18:02

Company5 150

1039 5 bookcases page1 2009-08-19 22:
18:05

Company5 150

1039 5 bookcases page2 2009-08-22 04:
20:05

Company5 150

1039 5 bookcases checkout 2009-08-24 14:
30:05

Company5 150

1039 5 bookcases page2 2009-08-27 23:
03:05

Company5 150

1040 1 tables home 2009-07-29 20:
17:59

Company5 250
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userid sessionid productname pagetype clicktime referrer productprice

1040 2 Appliances home 2009-04-21 13:
17:59

Company6 1500

1040 3 laptops home 2009-05-23 13:
17:59

Company7 800

1040 4 chairs home 2009-07-16 11:
17:59

Company4 400

1040 4 chairs home1 2009-07-16 11:
18:16

Company4 400

1040 4 chairs page1 2009-07-16 11:
18:18

Company4 400

1040 5 cellphones home 2009-08-19 22:
17:59

Company8 600

1040 5 cellphones home1 2009-08-19 22:
18:02

Company8 600

1040 5 cellphones page1 2009-08-19 22:
18:05

Company8 600

1040 5 cellphones page2 2009-08-22 04:
20:05

Company8 600

1040 5 cellphones checkout 2009-08-24 14:
30:05

Company8 600

1040 5 cellphones page2 2009-08-27 23:
03:05

Company8 600

... ... ... ... ... ... ...

SQL Call

SELECT * FROM nPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid
    ORDER BY clicktime ASC, productname, pagetype, userid
  USING
  Mode (NONOVERLAPPING)
  Pattern ('H+.D*.X*.P1.P2+')
  Symbols (
    'true' AS X,
    pagetype = 'home' AS H,
    pagetype <> 'home' AND pagetype <> 'checkout' AS D,
    pagetype = 'checkout' AS P1,
    pagetype = 'checkout' AND
    productprice > 100 AND
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    productprice > LAG (productprice, 1, 100::REAL) AS P2
  )
  Result (
    FIRST (productname OF P1) AS first_product,
    MAX_CHOOSE (productprice, productname OF P2) AS max_product,
    FIRST (sessionid OF P2) AS sessionid
  )
) AS dt;

Output

first_product max_product sessionid

bookcases cellphones 5

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

nPath Patterns
The value of the Pattern syntax element specifies the sequence of rows for which the function searches.
You compose the pattern definition, pattern, with symbols (which you define in the Symbols syntax
element), operators, and parentheses. In the pattern definition, symbols represent rows. You can combine
symbols with pattern operators to define simple or complex patterns of rows for which to search.

Basic Pattern Operators

The following table lists and describes the basic pattern operators, in decreasing order of precedence. In
the table, A and B are symbols that have been defined in the Symbols syntax element.

Operator Description Precedence

A Matches one row that meets the definition of A . 1 (highest)

A. Matches one row that meets the definition of A . 1

A? Matches 0 or 1 rows that satisfy the definition of A . 1

A* Matches 0 or more rows that satisfy the definition of A  (greedy operator). 1

A+ Matches 1 of more rows that satisfy the definition of A  (greedy operator). 1

A.B Matches two rows, where the first row meets the definition of A  and the second
row meets the definition of B .

2

A|B Matches one row that meets the definition of either A  or B . 3
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The nPath function uses greedy pattern matching. That is, it finds the longest available match when
matching patterns specified by nongreedy operators. For more information, see nPath Greedy Pattern
Matching.

Pattern Operator Precedence

Example Equivalent

A.B+ A.(B+)

A|B* A|(B*)

A.B|C (A.B)|C

Example:

A.(B|C)+.D?.X*.A

The preceding pattern definition matches any set of rows whose first row meets the definition of symbol
A, followed by a non-empty sequence of rows, each of which meets the definition of either symbol B or C,
optionally followed by one row that meets the definition of symbol D, followed by any number of rows that
meet the definition of symbol X, and ending with a row that meets the definition of symbol A.

You can use parentheses to define precedence rules. Parentheses are recommended for clarity, even
where not strictly required.

Start Anchor and End Anchor Pattern Operators

To indicate that a sequence of rows must start or end with a row that matches a certain symbol, use the
start anchor (^) or end anchor ($) operator.

Operator Description

^A Appears only at beginning of pattern. Indicates that set of rows must start with row that meets
definition of A .

A$ Appears only at end of pattern. Indicates that set of rows must end with row that meets definition
of A .

Subpattern Operators

Subpattern operators let you specify how often a subpattern must appear in a match. You can specify a
minimum number, exact number, or range. In the following table, X represents any pattern definition
composed of symbols and any of the previously described pattern operators.

Operator Description

(X){a} Matches exactly a  occurrences of pattern X .

(X){a,} Matches at least a  occurrences of pattern X .
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Operator Description

(X){a,b} Matches at least a  and no more than b  occurrences of pattern X .

nPath Greedy Pattern Matching
The nPath function uses greedy pattern matching, finding the longest available match despite any
nongreedy operators in the pattern.

For example, consider the input table link2:

link2
userid title1 startdate enddate

21 Chief Exec Officer 1994-10-01 2005-02-28

21 Software Engineer 1996-10-01 2001-06-30

21 Software Engineer 1998-10-01 2001-06-30

21 Chief Exec Officer 2005-03-01 2007-03-31

21 Chief Exec Officer 2007-06-01 null

This query returns the following table:

SELECT job_transition_path, count(*) AS count1 FROM nPath@coprocessor (
  ON link2 PARTITION BY userid ORDER BY startdate
  USING
  Mode (NONOVERLAPPING)
  Pattern ('CEO.ENGR.OTHER*')
  Symbols (title1 ilike 'software eng%' AS ENGR,
    true AS OTHER,
    title1 ilike 'Chief Exec Officer' AS CEO)
  Result (accumulate(title1 OF ANY(ENGR,OTHER,CEO))
    AS job_transition_path)
) AS dt GROUP BY 1;

job_transition_path count

[Chief Exec Officer, Software Engineer, Software Engineer, Chief Exec Officer, Chief Exec Officer] 1

In the pattern, CEO matches the first row, ENGR matches the second row, and OTHER* matches the
remaining rows:
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This query returns the following table:

SELECT job_transition_path, count(*) AS count1 FROM nPath@coprocessor (
  ON link2 PARTITION BY userid ORDER BY startdate
  USING
  Mode (NONOVERLAPPING)
  Pattern ('CEO.ENGR.OTHER*.CEO')
  Symbols (title1 ilike 'software eng%' AS ENGR,
    true AS OTHER,
    title1 ilike 'Chief Exec Officer' AS CEO)
  Result (accumulate(title1 of ANY(ENGR,OTHER,CEO))
    AS job_transition_path)
) AS dt GROUP BY 1;

job_transition_path count

[Chief Exec Officer, Software Engineer, Software Engineer, Chief Exec Officer, Chief Exec Officer] 1

In the pattern, CEO matches the first row, ENGR matches the second row, OTHER* matches the next
two rows, and CEO matches the last row:

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Filters
The Filter syntax element specifies filters to impose on the matched rows. Filtering out most matches can
improve performance, but memory fragmentation can degrade it. Memory fragmentation can occur in these
cases:
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• The mode is NONOVERLAPPING and the pattern includes the end anchor operator ($) but not the
start anchor operator (^).

• The mode is OVERLAPPING and the pattern does not include the start anchor operator.
• The first symbol in the pattern can match an infinite number of input rows.
• The data partition is huge.
• The Java Virtual Machine (JVM) is too small.

If nPath runs much slower with the Filter syntax element, increase the size of the JVM. If the problem
persists, alter the pattern.

nPath Filters Example
Using clickstream data from an online store, this example finds the sessions where the user visited the
checkout page within 10 minutes of visiting the home page. Because there is no way to know in advance
how many rows might appear between the home page and the checkout page, the example cannot use
a LAG or LEAD expression. Therefore, it uses the Filter syntax element.

Input

clickstream
userid sessionid clicktime pagetype

1 1 10-10-2012 10:15 home

1 1 10-10-2012 10:16 view

1 1 10-10-2012 10:17 view

1 1 10-10-2012 10:20 checkout

1 1 10-10-2012 10:30 checkout

1 1 10-10-2012 10:35 view

1 1 10-10-2012 10:45 view

2 2 10-10-2012 13:15 home

2 2 10-10-2012 13:16 view

2 2 10-10-2012 13:43 checkout

2 2 10-10-2012 13:35 view

2 2 10-10-2012 13:45 view

SQL Call

SELECT * FROM nPath@coprocessor (
  ON clickstream PARTITION BY userid ORDER BY clicktime
  USING
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  Symbols (pagetype='home' AS home,
    pagetype!='home' AND pagetype!='checkout' AS view,
    pagetype='checkout' AS checkout)
  Pattern ('home.view*.checkout')
  Result (FIRST(userid of ANY(home, checkout, view)) AS userid,
    FIRST (sessionid of ANY(home, checkout, view)) AS sessionid,
    COUNT (* of any(home, checkout, view)) AS cnt,
    FIRST (clicktime of ANY(home)) AS firsthome,
    LAST (clicktime of ANY(checkout)) AS lastcheckout)
  Filter (FIRST (clicktime + '10 minutes' ::interval OF ANY (home)) > 
    FIRST (clicktime of any(checkout))) 
  Mode (NONOVERLAPPING)
) AS dt;

Output

userid sessionid cnt firsthome lastcheckout

1 1 4 2012-10-10 10:15:00 2012-10-10 10:20:00

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Results
The Result syntax element defines the output columns, specifying the values to retrieve from the matched
rows and the aggregate function to apply to these values.

For each pattern, the nPath function can apply one or more aggregate functions to the matched rows and
output the aggregated results.

Supported aggregate functions:

• SQL aggregate functions AVG, COUNT, MAX, MIN, and SUM
• ML Engine nPath sequence aggregate functions described in the following table

In the following table, col_expr is an expression whose value is a column name, symbol is defined by the
Symbols syntax element, and symbol_list has this syntax:

{ symbol | ANY (symbol[,...]) }

Function Description

COUNT (
 { * | [DISTINCT] col_
expr }
 OF symbol_list )

Returns either the number of total number of matched rows (*) or the
number (or distinct number) of col_expr values in the matched rows.
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Function Description

FIRST (
  col_expr OF symbol_list )

Returns the col_expr value of the first matched row.

LAST (
  col_expr OF symbol_list )

Returns the col_expr value of the last matched row.

NTH (
 col_expr, n OF symbol_
list )

Returns the col_expr value of the nth matched row, where n is a
nonzero value of the data type SMALLINT, INTEGER, or BIGINT.
The sign of n determines whether the nth matched row is nth from the
first or last matched row. For example, if n is 1, the nth matched row is
the first matched row, and if n is -1, the nth matched row is the last
matched row.
If n is greater than the number of matched rows, the nth function returns
NULL.

FIRST_NOTNULL (
  col_expr OF symbol_list )

Returns the first non-null col_expr value in the matched rows.

LAST_NOTNULL (
  col_expr OF symbol_list )

Returns the last non-null col_expr value in the matched rows.

MAX_CHOOSE (
  quantifying_col_expr,
  descriptive_col_expr
  OF symbol_list )

Returns the descriptive_col_expr value of the matched row with the
highest-sorted quantifying_col_expr value. For example, MAX_CHOOSE
(product_price, product_name OF B)  returns the product_name
of the most expensive product in the rows that map to B.
The descriptive_col_expr can have any data type. The qualifying_col_
expr must have a sortable datatype (SMALLINT, INTEGER, BIGINT,
DOUBLE PRECISION, DATE, TIME, TIMESTAMP, VARCHAR, or
CHARACTER).

MIN_CHOOSE (
  quantifying_col_expr,
  descriptive_col_expr
  OF symbol_list )

Returns the descriptive_col_expr value of the matched row with the
lowest-sorted qualifying_col_expr value. For example, MIN_CHOOSE
(product_price, product_name OF B)  returns the product_name
of the least expensive product in the rows that map to B.
The descriptive_col_expr can have any data type. The qualifying_col_
expr must have a sortable datatype (SMALLINT, INTEGER, BIGINT,
DOUBLE PRECISION, DATE, TIME, TIMESTAMP, VARCHAR, or
CHARACTER).

DUPCOUNT (
  col_expr OF symbol_list )

Returns the duplicate count for col_expr in the matched rows. That is,
for each matched row, the function returns the number of occurrences
of the current value of col_expr in the immediately preceding matched
row.
When col_expr is also the ORDER BY col_expr, this function returns
the equivalent of ROW_NUMBER()-RANK().

DUPCOUNTCUM (
  col_expr OF symbol_list )

Returns the cumulative duplicate count for col_expr in the matched
rows. That is, for each matched row, the function returns the number
of occurrences of the current value of col_expr in all preceding matched
rows.
When col_expr is also the ORDER BY col_expr, this function returns
the equivalent of ROW_NUMBER()-DENSE_RANK().
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Function Description

ACCUMULATE (
  [ DISTINCT | 
CDISTINCT ]
  col_expr OF symbol_list
  [ DELIMITER 
'delimiter'] )

Returns, for each matched row, the concatenated values in col_expr,
separated by delimiter. The default delimiter is ', ' (a comma followed
by a space).
DISTINCT limits the concatenated values to distinct values.
CDISTINCT limits the concatenated values to consecutive distinct
values.

You can compute an aggregate over more than one symbol. For example, SUM (val OF ANY (A,B))
computes the sum of the values of the attribute val across all rows in the matched segment that map to
A or B.

nPath Results Examples

nPath Results Example: FIRST, LAST_NOTNULL, MAX_CHOOSE,
MIN_CHOOSE

Input

trans1
userid gender ts productname productamt

1 M 2012-01-01 00:00:00 shoes 100

1 M 2012-02-01 00:00:00 books 300

1 M 2012-03-01 00:00:00 television 500

1 M 2012-04-01 00:00:00 envelopes 10

2 2012-01-01 00:00:00 bookcases 150

2 2012-02-01 00:00:00 tables 250

2 F 2012-03-01 00:00:00 appliances 1500

3 F 2012-01-01 00:00:00 chairs 400

3 F 2012-02-01 00:00:00 cellphones 600

3 F 2012-03-01 00:00:00 dvds 50

SQL Call

SELECT * FROM nPath@coprocessor (
  ON trans1 PARTITION BY userid ORDER BY ts
  USING
  Mode (nonoverlapping)
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  Pattern ('A+')
  Symbols (TRUE AS A)
  Result (FIRST(userid OF A) AS Userid,
    LAST_NOTNULL (gender OF A) AS Gender,
    MAX_CHOOSE (productamt, productname OF A) AS Max_prod,
    MIN_CHOOSE (productamt, productname OF A) AS Min_prod)
) AS dt;

Output

userid gender max_prod min_prod

1 M television envelopes

2 F appliances bookcases

3 F cellphones dvds

Download a zip file of all examples and a SQL script file that creates their input tables from the
attachment in the left sidebar.

nPath Results Example: FIRST, ACCUMULATE

Input

clicks
userid sessionid productname pagetype clicktime referrer productprice

1039 1 null home 06:59:13 Company1 100

1039 1 null home 07:00:10 Company3 300

1039 1 television checkout 07:00:12 Company3 500

1039 1 television checkout 07:00:18 Company3 10

1039 1 envelopes checkout 07:01:00 Company4 10

1039 1 null checkout 07:01:10 Company4 10

SQL Call

SELECT * FROM nPath@coprocessor (
  ON clicks PARTITION BY sessionid ORDER BY clicktime
  USING
  Mode ('nonoverlapping')
  Symbols (pagetype='home' AS H, pagetype='checkout' AS C,
           pagetype!='home' AND pagetype!='checkout' AS A)
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  Pattern ('^H+.A*.C+$')
  Result (
    FIRST (sessionid OF ANY (H, A, C)) AS sessionid,
    FIRST (clicktime OF H) AS firsthome,
    FIRST (clicktime OF C) AS firstcheckout,
    ACCUMULATE (productname OF ANY (H,A,C) DELIMITER '*')
      AS products_accumulate,
    ACCUMULATE (CDISTINCT productname OF ANY (H,A,C) DELIMITER '$$')
      AS cde_dup_products,
    ACCUMULATE (DISTINCT productname OF ANY (H,A,C))
      AS de_dup_products
  )
) AS dt;
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Output
sessionid firsthome firstcheckout products_accumulate cde_dup_products de_dup_products

1 06:59:13 07:00:12 [null*null*television*television*envelopes*null] [null$$television$$envelopes$$null] [null, television, envelopes]

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.
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nPath Results Example: FIRST, ACCUMULATE, COUNT, NTH

Input

The input table is clicks, as in nPath Results Example: FIRST, ACCUMULATE.

SQL Call

SELECT * FROM nPath@coprocessor (
  ON clicks PARTITION BY sessionid ORDER BY clicktime
  USING
  Mode ('nonoverlapping')
  Symbols (pagetype='home' AS H, pagetype='checkout' AS C,
           pagetype!='home' AND pagetype!='checkout' AS A)
  Pattern ('^H+.A*.C+$')
  Result (
    FIRST (sessionid OF ANY (H, A, C)) AS sessionid,
    FIRST (clicktime OF H) AS firsthome,
    FIRST (clicktime OF C) AS firstcheckout,
    ACCUMULATE (productname OF ANY (H,A,C))
      AS products_accumulate,
    COUNT (DISTINCT productname OF ANY(H,A,C))
      AS count_distinct_products,
    ACCUMULATE (CDISTINCT productname OF ANY (H,A,C))
      AS consecutive_distinct_products,
    ACCUMULATE (DISTINCT productname OF ANY (H,A,C))
      AS distinct_products,
    NTH (productname, -1 OF ANY(H,A,C)) AS nth
  )
) AS dt;
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Output

sessionid firsthome firstcheckout products_accumulate count_distinct_
products

consecutive_distinct_
products distinct_products nth

1 06:59:13 07:00:12 [null, null, television, television,
envelopes, null]

3 [null, television, envelopes, null] [null, television,
envelopes]

null

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment in the left sidebar.
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nPath Examples

nPath Example: Pages Visited in Each Session
This example accumulates the pages visited in each session.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
    Mode(nonoverlapping)
    Pattern('A*')
    Symbols(true AS A)
    Result(first(sessionid of A) AS sessionid,
           accumulate(pagetype of A) AS path)
) AS dt;

Output

 sessionid 
path                                                                             
                                                          
 --------- 
--------------------------------------------------------------------------------
---------------------------------------------------------- 
         4 [home, home, home, home, home, home, home1, home1, home1, page1, page1, 
page1]                                                            
         2 [home, home, home, home, home, home, home, home, home, home1, page1, 
checkout, checkout, home, home]                                      
         3 [home, home, home, home, home, home, home, home, home1, page1, home, 
home1, page1, home]                                                  
         1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1, 
checkout, home, home, home, home, home, home, home, home, home]  
         5 [home, home, home, home, home1, home1, home1, page1, page1, page1, 
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2]

nPath Example: Sessions Start at Home and Visit Page1
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This example finds the sessions that start at the home page and visit Page1.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
    Mode(nonoverlapping)
    Pattern('^H.A*.P1.A*')
    Symbols(pagetype='home' AS H, pagetype='page1' AS P1, TRUE AS A)
    Result(FIRST(sessionid OF A) AS sessionid,
           accumulate(pagetype OF ANY(H,P1,A)) AS path)
) AS dt;

Output

 sessionid 
path                                                                             
                                                          
 --------- 
--------------------------------------------------------------------------------
---------------------------------------------------------- 
         4 [home, home, home, home, home, home, home1, home1, home1, page1, page1, 
page1]                                                            
         2 [home, home, home, home, home, home, home, home, home, home1, page1, 
checkout, checkout, home, home]                                      
         5 [home, home, home, home, home1, home1, home1, page1, page1, page1, 
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2]
         1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1, 
checkout, home, home, home, home, home, home, home, home, home]  
         3 [home, home, home, home, home, home, home, home, home1, page1, home, 
home1, page1, home]

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Checkout Paths for Purchases Over $200
This example finds the paths to the checkout page for purchases over $200.
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Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
    Mode(nonoverlapping)
    Pattern('A*.C+.A*')
    Symbols(productprice > 200 AND pagetype='checkout' AS C, true AS A)
    Result(first(sessionid of A) AS sessionid,
           accumulate(pagetype OF ANY(A,C)) AS path,
           AVG(productprice OF ANY(A,C)) AS sum)
) AS dt;

Output

 sessionid 
path                                                                             
                                                          sum               
 --------- 
--------------------------------------------------------------------------------
---------------------------------------------------------- ----------------- 
         1 [home, home1, page1, home, home1, page1, home, home, home, home1, page1, 
checkout, home, home, home, home, home, home, home, home, home]   602.8571428571429
         5 [home, home, home, home, home1, home1, home1, page1, page1, page1, 
page2, page2, page2, checkout, checkout, checkout, page2, page2, page2] 
363.1578947368421

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Mode (OVERLAPPING)
Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
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    Mode (overlapping)
    Pattern ('A.A')
    Symbols (TRUE AS A)
    Result (FIRST(sessionid OF A) AS sessionid,
            accumulate(pagetype OF A) AS path)
) AS dt ORDER BY sessionid;

Output

 sessionid path                 
 --------- -------------------- 
         1 [home, home]        
         1 [home, home]        
         1 [home, home]        
         1 [home, home]        
         1 [checkout, home]    
         1 [page1, checkout]   
         1 [home1, page1]      
         1 [home, home1]       
         1 [home, home]        
         1 [home, home]        
         1 [page1, home]       
         1 [home, home1]       
         1 [page1, home]       
         1 [home1, page1]      
         1 [home, home1]       
         1 [home1, page1]      
         1 [home, home]        
         1 [home, home]        
         1 [home, home]        
         1 [home, home]        
         2 [checkout, checkout]
         2 [home1, page1]      
         2 [home, home1]       
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [home, home]        
         2 [page1, checkout]   
         2 [checkout, home]    
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         2 [home, home]        
         3 [home, home1]       
         3 [home1, page1]      
         3 [home, home1]       
         3 [home, home]        
         3 [home, home]        
         3 [home, home]        
         3 [home, home]        
         3 [home, home]        
         3 [home, home]        
         3 [home, home]        
         3 [page1, home]       
         3 [home1, page1]      
         3 [page1, home]       
         4 [home1, page1]      
         4 [home1, home1]      
         4 [home, home1]       
         4 [home, home]        
         4 [home, home]        
         4 [home, home]        
         4 [home, home]        
         4 [home, home]        
         4 [home1, home1]      
         4 [page1, page1]      
         4 [page1, page1]      
         5 [checkout, page2]   
         5 [checkout, checkout]
         5 [page2, checkout]   
         5 [page2, page2]      
         5 [page1, page2]      
         5 [page1, page1]      
         5 [page1, page1]      
         5 [home1, page1]      
         5 [home1, home1]      
         5 [home1, home1]      
         5 [home, home1]       
         5 [home, home]        
         5 [home, home]        
         5 [home, home]        
         5 [page2, page2]      
         5 [checkout, checkout]
         5 [page2, page2]      
         5 [page2, page2]
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Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: First Product with Multiple Referrers
This example finds the first product with multiple referrers in any session.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
    Mode(nonoverlapping)
    Pattern('REFERRER{2,}')
    Symbols(referrer IS NOT NULL AS REFERRER)
    Result (FIRST(sessionid OF REFERRER) AS sessionid,
            FIRST(productname OF REFERRER) AS product)
) AS dt;

Output

 sessionid product    
 --------- ---------- 
         5 appliances
         4 tables    
         2 tables    
         3 bookcases 
         1 envelopes

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Sessions that Checked 3-6 Products
This example finds the data for sessions that checked three to six products.

For sessions where the user checked between three and six products (exclusive), return the names of
the most and least expensive products, the maximum price of the most expensive product, and the
minimum price of the least expensive product.
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Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
    Mode(nonoverlapping)
    Pattern('H+.D*.C{3,6}.D')
    Symbols(pagetype = 'home' AS H, pagetype='checkout' AS C,
            pagetype<>'home' AND pagetype<>'checkout' AS D)
    Result(first(sessionid of C) AS sessionid,
           max_choose(productprice, productname of C) AS most_expensive_product,
           max(productprice of C) AS max_price,
           min_choose(productprice, productname of C) AS least_expensive_product,
           min(productprice of C) AS min_price)
) AS dt;

Output

 sessionid most_expensive_product max_price least_expensive_product min_price 
 --------- ---------------------- --------- ----------------------- --------- 
         5 cellphones                 600.0 bookcases                   150.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Sessions that Checked at Least 3 Products
This example finds the data for sessions that checked at least three products.

Modify the SQL call in nPath Example: Sessions that Checked 3-6 Products to find sessions where the
user checked at least three products by changing the Pattern syntax element.

Input

• aggregate_clicks, as in LAG and LEAD Expressions Example: First and Most Expensive Purchases
(under nPath Symbols)

SQL Call

SELECT * FROM NPath@coprocessor (
  ON aggregate_clicks PARTITION BY sessionid ORDER BY clicktime
  USING
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    Mode(nonoverlapping)
    Pattern('H+.D*.C{3,}.D')
    Symbols(pagetype = 'home' AS H, pagetype='checkout' AS C,
            pagetype<>'home' AND pagetype<>'checkout' AS D)
    Result(first(sessionid of C) AS sessionid,
           max_choose(productprice, productname of C) AS most_expensive_product,
           max(productprice of C) AS max_price,
           min_choose(productprice, productname of C) AS least_expensive_product,
           min(productprice of C) AS min_price)
) AS dt;

Output

 sessionid most_expensive_product max_price least_expensive_product min_price 
 --------- ---------------------- --------- ----------------------- --------- 
         5 cellphones                 600.0 bookcases                   150.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

nPath Example: Multiple Partitioned Input Tables and Dimension
Input Table
An e-commerce store wants to count the advertising impressions that lead to a user clicking an online
advertisement. The example counts the online advertisements that the user viewed and the television
advertisements that the user might have viewed.

Input

impressions
userid ts imp

1 2012-01-01 ad1

1 2012-01-02 ad1

1 2012-01-03 ad1

1 2012-01-04 ad1

1 2012-01-05 ad1

1 2012-01-06 ad1

1 2012-01-07 ad1

2 2012-01-08 ad2

2 2012-01-09 ad2
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userid ts imp

2 2012-01-10 ad2

2 2012-01-11 ad2

... ... ...

clicks2
userid ts click

1 2012-01-01 ad1

2 2012-01-08 ad2

3 2012-01-16 ad3

4 2012-01-23 ad4

5 2012-02-01 ad5

6 2012-02-08 ad6

7 2012-02-14 ad7

8 2012-02-24 ad8

9 2012-03-02 ad9

10 2012-03-10 ad10

11 2012-03-18 ad11

12 2012-03-25 ad12

13 2012-03-30 ad13

14 2012-04-02 ad14

15 2012-04-06 ad15

tv_spots
ts tv_imp

2012-01-01 ad1

2012-01-02 ad2

2012-01-03 ad3

2012-01-04 ad4

2012-01-05 ad5

2012-01-06 ad6
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ts tv_imp

2012-01-07 ad7

2012-01-08 ad8

2012-01-09 ad9

2012-01-10 ad10

2012-01-11 ad11

2012-01-12 ad12

2012-01-13 ad13

2012-01-14 ad14

2012-01-15 ad15

SQL Call

The tables impressions and clicks have a user_id column, but the table tv_spots is only a record of
television advertisements shown, which any user might have seen. Therefore, tv_spots must be a
dimension table.

SELECT * FROM NPath@coprocessor (
  ON impressions PARTITION BY userid ORDER BY ts
  ON clicks2 PARTITION BY userid ORDER BY ts
  ON tv_spots DIMENSION ORDER BY ts
  USING
    Mode('nonoverlapping')
    Symbols(true AS imp, TRUE AS click,TRUE AS tv_imp)
    Pattern('(imp|tv_imp)*.click')
    Result (COUNT(* OF imp) AS imp_cnt, 
            COUNT(* OF tv_imp) AS tv_imp_cnt)
) AS dt;

Output

imp_cnt tv_imp_cnt 
 ------- ---------- 
      23          0
      19          0
      24          0
      22          0
      23          0
      22          0
      19          0
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      23          0
      18          0
      22          0
      20          0
      25          0
      21          0
      22          0
      22          0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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• The Sessionize function maps each click in a session to a unique 
session identifier

• A "session" is defined as a sequence of clicks by one user that are 
separated by at most n seconds

• The function is useful both for sessionization and for detecting web 
crawler (bot) activity

• It is typically used to understand user browsing behavior on a web site

Sessionize Description

The Sessionize function maps each click in a session to a unique session identifier.
A “session” is defined as a sequence of clicks by one user that are separated by at most n seconds.
The function is useful both for sessionization and for detecting web crawler (bot) activity. 
It is typically used to understand user browsing behavior on a web site.

Time Series Analytic Functions    Slide 2-5



• A Retailer wishes to know which pages on its website are visited in the 
most sessions

• A Banking institution wishes to know if there have been any attempted 
bot infiltrations into customer accounts

• A Social-media website wishes to sell advertising space and wants to 
know the number of sessions each user has per day, and the average 
length in time of those sessions

Sessionize Use Case Examples

Sessionize can be used whenever you wish to group time-based events together.
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Sessionize Workflow

timestamp userid …
10:00:00 10 …

00:58:24 76

10:00:24 10

02:30:33 76

10:01:23 10

10:02:40 10

timestamp userid … sessionid
10:00:00 10 … 0

10:00:24 10 0

10:03:00 10 1

10:05:30 10 2

00:59:24 76 0

02:30:33 76 1

The Sessionize function 
outputs a sessionid

column. Note that 
sessionid always begins 

at 0 with each new 
partitionInput Output

• The Sessionize function reads data from an input table, view, or 
query, and then outputs sessionid (per specified arguments)

• For example, if a userid has 2 consecutive clicks within 1 minute 
of each other, consider that the same "session" 

• If > 1 minute, then increment sessionid counter by 1

Userid 10 has three 
'sessions': 0, 1, and 2

Userid 76 has two 
'sessions': 0 and 1

Sessionize requires at least one input table, view, or query. Rows that meet the condition of your logic 
are then output, together with a new column, SESSIONID.
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Sessionize Syntax

SELECT * FROM Sessionize[@coprocessor] 
(ON { table | view | (query) } 
PARTITION BY expression [,...] 
ORDER BY order_column
USING
TimeColumn ('timestamp_column')
TimeOut ('session_timeout')
[ ClickLag ('min_human_click_lag') ]
[ EmitNull ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'})]
) as alias;

Note:  Sessionize can be run in the Adv SQL Engine or the ML Engine

Following are important points to realize about the syntax for Sessionize.

1. As with other Teradata Vantage functions, we are invoking the function through the call SELECT * 
FROM function_name; i.e., in this case, SELECT * FROM Sessionize.

2. Our input data can be in the form of a table, view, or query. It follows the ON keyword.
3. We must specify which columns to use for our PARTITION BY and ORDER BY arguments.
4. Following the USING keyword, we are afforded the opportunity of specifying our required and 

optional arguments specific to the function.

The required arguments for Sessionize follow:
• TimeColumn: Specify the name of the input column that contains the click times. Note: The 

timestamp_column must also be an order_column.
• TimeOut: Specify the number of seconds at which the session times out. If session_timeout

seconds elapse after a click, the next click starts a new session. The data type of session_timeout
is DOUBLE PRECISION.

The optional arguments for Sessionize follow:
• ClickLag [Optional]: Specify the minimum number of seconds between clicks for the session user to 

be considered human. If clicks are more frequent, indicating that the user is a bot, the function 
ignores the session. The min_human_click_lag must be less than session_timout. The data type 
of min_human_click_lag is DOUBLE PRECISION. Default behavior: The function ignores no 
session, regardless of click frequency.

• EmitNull [Optional]: Specify whether to output rows that have NULL values in their SESIONID and 
CLICKLAG columns, even if their timestamp_column has a NULL value. Default: ‘false’.
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• TimeColumn: Specify the name of the input column that contains the 
click times. Note: The timestamp_column must also be an 
order_column

• TimeOut: Specify the number of seconds at which the session times 
out. If session_timeout seconds elapse after a click, the next click 
starts a new session. The data type of session_timeout is DOUBLE 
PRECISION

Sessionize Required Arguments

Other than your input table/view/query, SESSIONIZE has only two required arguments:

• TimeColumn
• TimeOut
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• ClickLag [Optional]: Specify the minimum number of seconds between 
clicks for the session user to be considered human. If clicks are more 
frequent, indicating that the user is a bot, the function ignores the 
session. The min_human_click_lag must be less than session_timout. 
The data type of min_human_click_lag is DOUBLE PRECISION. 
Default behavior: The function ignores no session, regardless of click 
frequency

• EmitNull [Optional]: Specify whether to output rows that have NULL 
values in their session id and rapid fire columns, even if their 
timestamp_column has a NULL value. Default: 'false'

Sessionize Optional Arguments

The following are optional arguments for SESSIONIZE:

• ClickLag
• EmitNull
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Workflow, Syntax, Required Arguments, Optional 
Arguments, Input Table Schema, Output Table Schema)

• Labs
• Review

• Attribution
• Background Information (Description and Use Cases)
• Single-Input Models (Workflow, Syntax, Required 

Arguments, Optional Arguments, Input Table, Schema, 
Output Table Schema, Labs)

• Multiple-Input Models (Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table, Schema, 
Output Table Schema, Labs) - Optional

• Review
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Before We Begin: Open TD Studio File in Project Explorer
Navigate to 'Project Explorer' tab, then drill down to SQL > GLE > Vantage >     
01) TVAW-Basics and double-click on: Mod-02-Sessionize-Attribution.sql file

We'll be running labs from Teradata Studio.  Double-click on the 'Mod-02-Sessionize-Attribution.sql' file 
to get started.
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c
Lab 01a: Sessionize Intro - Input Data

Goal: Sessionize below data to count how many visits each userid had to a website 

Input 
table

SELECT * FROM sessionme;

Here, we are viewing the contents of the sessionme table.
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c
Lab 01b: Sessionize – Teradata Vantage using 
Adv SQL Engine (1 of 2)

SELECT * FROM Sessionize
(ON sessionme
PARTITION BY userid 
ORDER BY clicktime 
USING
TimeColumn ('clicktime')
TimeOut (60)
ClickLag (0.2) 
EmitNull ('false')
) order by userid, clicktime;

Query: Sessionize User's clicks that are within 1 minute of each other

Input tableSessionize query

Here, we are sessionizing our data. Note the values within our arguments after the USING clause.
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c
Lab 01b: Sessionize – Teradata Vantage using 
Adv SQL Engine (2 of 2) - Output

SELECT * FROM Sessionize
(ON sessionme
PARTITION BY userid 
ORDER BY clicktime 
USING
TimeColumn ('clicktime')
TimeOut (60)
ClickLag (0.2) 
EmitNull ('false')
) ORDER BY userid,clicktime;

Output

Note the following:
• userid 333 had two visits, denoted by sessionid values 0 and 1
• userid 578 had one visit, denoted by sessionid value 0

Query: Sessionize User's clicks that are within 1 minute of each other

We have partitioned by user_id and ordered by clicktime.

Any user_id clicks that occur within 60  seconds of one another will be in the same SESSIONID.

The value for SESSIONID restarts at 0 for each change in user_id.
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Here, we are viewing the contents of our input table.

c

• Here, we familiarize ourselves with the bank_web_clicks table
• The next many slides will walk through the data and various examples of using 

the Sessionize syntax against this table

Lab 02a - Understanding the Data (1 of 2)

SELECT * FROM bank_web_clicks
WHERE customer_id IN (8263, 30324, 620)
ORDER BY customer_id ASC, datestamp ASC;

ANSI SQL

Time Series Analytic Functions    Slide 2-16



Note that we have customer IDs, which page they visited, and when they visited it.

c
Lab 02a - Understanding the Data (2 of 2)

`

• For each customer, we know which webpage they visited and when they visited it
• Note that the datestamp column is of data type TIMESTAMP
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• The ON clause contains the input table.
• The PARTITION BY argument specifies that for each distinct instance of customer_id, the 

sessionize function will re-start at a value of 0.
• The ORDER BY argument specifies that for each customer, data will be sessionized according to 

the datestamp value (ascending by default).
• The USING clause defines the TimeColumn (the input column that contains our timestamp data) 

and the user-defined TimeOut value (must be defined in seconds). As long as a user’s clicks occur 
within the same 600 second window, they will be considered as part of the same “session”.

c Lab 02b - Required Arguments and Output 
(1 of 2)

SELECT * FROM Sessionize
(ON bank_web_clicks
PARTITION BY customer_id 
ORDER BY datestamp 
USING
TimeColumn ('datestamp')
TimeOut (600)
) order by customer_id, 

datestamp;

• The ON clause contains the input table

• The PARTITION BY argument specifies for each 
distinct instance of customer_id, the sessionize 
function will re-start at a value of 0

• The ORDER BY argument specifies that for each 
customer, data will be sessionized according to 
the datestamp value (ascending by default)

• The USING clause defines the TimeColumn (the 
input column that contains our timestamp data) 
and the user-defined TimeOut value (must be 
defined in seconds). As long as a user’s clicks 
occur within the same 600 second window, they 
will be considered as part of the same “session”
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Here, we are viewing our sessionized output. Note the creation of the SESSIONID column.

c Lab 02b - Required Arguments and Output 
(2 of 2)

• Here, we are viewing the 
output of our query from the 
previous page

• Note the creation of the 
SESSIONID column

• As long as the clicks of a 
single customer_id occurred 
within 600 seconds of one 
another, they will share the 
same SESSIONID value

d

d

d
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The ON clause can be written to run the function against a sub-set of the input data source.

c Lab 03a - Specifying a Query in the ON Clause 
(1 of 2)

SELECT * FROM Sessionize
(ON (SELECT * FROM bank_web_clicks

WHERE customer_id 
IN (8263, 30324, 620))

PARTITION BY customer_id 
ORDER BY datestamp 
USING
TimeColumn ('datestamp')
TimeOut (120)
) ORDER BY customer_id, datestamp;

• Note that you can also specify a 
query in the ON clause to select 
desired input data, as opposed to 
just putting the name of a table or 
view that  contains the input data 
(as we did in the previous lab)

• When specifying a query, you 
must enclose it within parentheses

• If desired, you could write your 
query to SELECT only certain 
columns
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Here, we are viewing the output of our SESSIONIZE query,

c Lab 03a - Specifying a Query in the ON Clause 
(2 of 2)

For each customer_id, as long as clicks occur within 120 seconds of one 
another, they will be part of the same SESSIONID
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Possible “bot” activity can be detected by using the optional ClickLag argument.

c
Lab 04a - Detecting Bots (1 of 2)

SELECT * FROM Sessionize
(ON (SELECT * FROM bank_web_clicks

WHERE customer_id IN (7172))
PARTITION BY customer_id 
ORDER BY datestamp 
USING
TimeColumn ('datestamp')
TimeOut (60)
ClickLag (0.1)
) ORDER BY customer_id, datestamp;

• We can use the optional argument 
ClickLag to detect possible bot activity

• Just like Timeout, ClickLag is 
expressed in seconds

• Any clicks that occur within 0.1
seconds of one another will be flagged 
accordingly in the output

Query: Customer 7172 can't login to 
their on-line bank account. 

Write query that will SESSIONIZE the 
bank_web_clicks table for 

customer_id = 7172 with a TIMEOUT 
= 60 seconds and robot ClickLag = 

0.10
Does anything look fishy?
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Our ClickLag argument has returned a positive indicator in this example. 

c
Lab 04a - Detecting Bots (2 of 2)

• The CLICKLAG
column receives a 
value of 't' if a click 
occurred within 0.1 
seconds of the 
previous click

• For  SESSIONID
49, it appears that a 
bot was  attempting 
to log into the 
customer's bank 
account before 
being locked out

customer_id page datestamp SESSIONID CLICKLAG
7172 ACCOUNT SUMMARY 2004-03-22 04:46:12.000000 0 f
7172 FUNDS TRANSFER 2004-03-22 04:48:40.000000 1 f
7172 FAQ 2004-03-22 04:50:11.000000 2 f
7172 FUNDS TRANSFER 2004-03-22 04:53:43.000000 3 f
7172 VIEW DEPOSIT DETAILS 2004-03-22 04:57:39.000000 4 f
7172 PROFILE UPDATE 2004-03-22 05:01:33.000000 5 f
… … … … …
7172 FUNDS TRANSFER 2004-03-23 20:33:34.000000 45 f
7172 VIEW DEPOSIT DETAILS 2004-03-23 20:34:46.000000 46 f
7172 VIEW DEPOSIT DETAILS 2004-03-23 20:36:59.000000 47 f
7172 FAQ 2004-03-23 20:38:07.000000 48 f
7172 LOGIN 2014-03-25 04:00:00.000000 49 f
7172 LOGIN 2014-03-25 04:00:00.100000 49 t
7172 LOGIN 2014-03-25 04:00:00.200000 49 t
7172 LOCKOUT 2014-03-25 04:00:00.300000 49 t
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The next many pages will run through a multi-step example of sessionizing data to understand general 
customer behavior on a fictitious website. 

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (1 of 7)

CREATE SET TABLE chips_sessionized AS
(SELECT * FROM Sessionize
(ON (SELECT remote_host, request_time,          

requested_page 
FROM chips_clean) 

PARTITION BY remote_host
ORDER BY request_time asc
USING
TimeColumn ('request_time')
TimeOut (3600)
)
)
WITH DATA;

• It will often be beneficial to land 
your Sessionize results into a 
physical table for further analysis 
and/or to serve as an input into 
other Teradata VANTAGE 
functions, such as nPath

• Here, we are "sessionizing" a 
subset of columns from the 
chips_clean table

• Each "session" is defined as clicks 
made within the same window of 
3,600 seconds (one hour)
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Here, we have sessionized our input data.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (2 of 7)

Source Data Sessionized Data

SELECT * FROM chips_sessionized;
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Here, we are attempting to discover which our most frequently-visited pages are per the number of 
sessions that they were a part of.

Note: The contents of the chips_sessionized table may be slightly different in you lab environment 
compared to what is shown in the slides.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (3 of 7)

Here, we are using our sessionization results to discover which are the most 
popular pages on our website; i.e., those visited in the greatest number of sessions

SELECT requested_page, 
COUNT (DISTINCT remote_host || '_ '
|| sessionid) AS distinct_sessions
FROM chips_sessionized
GROUP BY requested_page
HAVING distinct_sessions >= 700
ORDER BY distinct_sessions DESC;

ANSI SQL
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Here, we have employed logic to determine various metrics about customer navigation of our website:

• How many sessions?
• How many distinct pages visited per session?
• How long in duration is each session?
• What % of sessions contain an actual order?
• Etc.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (4 of 7)

remote_host SESSIONID checkouts payments pages distinct_pages min_request_time max_request_time session_duration
101.222.160.166 0 0 0 2 2 2014-12-31 06:56:51 2014-12-31 06:57:01 0 00:00:10.000000
162.44.245.105 0 3 1 7 5 2015-02-18 19:46:39 2015-02-18 19:55:31 0 00:08:52.000000
157.55.39.62 59 0 0 21 15 2015-02-11 13:37:01 2015-02-11 17:16:27 0 03:39:26.000000
157.55.39.178 9 0 0 1 1 2015-01-03 05:02:09 2015-01-03 05:02:09 0 00:00:00.000000
66.249.69.102 19 0 0 1 1 2015-01-09 17:33:06 2015-01-09 17:33:06 0 00:00:00.000000

Session Data

• Here, we have created a table comprised of one row per remote_host, SESSIONID
• We have populated columns to specify general metrics about each session
• We will use this data to answer questions such as the following:

─ How many pages visited per session?
─ How many distinct pages visited per session?
─ How long in duration is each session?
─ What % of sessions contain an actual order?

You will be running a series of 
CREATE TABLE statements 

within Teradata Studio
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Here, we are viewing aggregated results.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (5 of 7)

Output

Here, we have summarized all session data to display average metrics 
in aggregate

Note:  Your Output may differ than results here
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Here, we have discovered that precious few sessions include an actual purchase. Furthermore, there 
seems to be a problem with regard to “abandoned carts”.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (6 of 7)

• Here, we have written a query to identify the number of sessions that 
included purchases or not

• Note that only a tiny fraction of sessions included a payment
• Note that there is a fundamental problem with "abandoned carts"
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We have concluded the following:
• Few customers make purchases.
• Abandoned carts are a problem.
• People who make purchases tend to be more engaged with the website (visit more pages 

and revisit pages already visited).
• Precious few customers who actually make a purchase do so more than once.

c Lab 05 - Landing Sessionize Results and 
Summarizing Findings (7 of 7)

• Here, we have written a query to display general metrics parsed out by 
whether the session included checkout and/or payment (or not)

• Note the following:
• Few customers make purchases
• Abandoned carts are a problem
• People who make purchases tend to be more engaged with the website (visit 

more pages and revisit pages already visited)
• Precious few customers who actually make a purchase do so more than once
sessions_with_
payment

sessions_with
_checkout

remote
_hosts sessions

avg_sessions_
per_host avg_pages

avg_distinct
_pages avg_session_duration

n n 7739 19953 2.58 3.53 3.14 0 00:14:28.832907
n y 222 233 1.05 8.68 5.74 0 00:09:49.793991
y y 88 92 1.05 11.71 7.46 0 00:11:59.434783
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Current Topic – Sessionize Review
• Sessionize

• Background Information (Description, Use Cases, 
Workflow, Syntax, Required Arguments, Optional 
Arguments, Input Table Schema, Output Table Schema)

• Labs
• Review

• Attribution
• Background Information (Description and Use Cases)
• Single-Input Models (Workflow, Syntax, Required 

Arguments, Optional Arguments, Input Table, Schema, 
Output Table Schema, Labs)

• Multiple-Input Models (Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table, Schema, 
Output Table Schema, Labs) - Optional

• Review
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c
Hackathon: Chips Weblog Sessionize (Optional)

The following exercise is intended to provide you with further practice on using the Sessionize
function. There is no "right" or "wrong" answer. The intent is for you to become comfortable 
writing queries that use Sessionize

1. Run a Sessionize query on the chips_clean table, which shows user activity on a retail 
website. Things to think about follow:

• What is the nature of the underlying data? Data types? Number of rows? What is it 
showing? Etc.

• How should the data be partitioned?
• What is a reasonable amount of time between clicks for activity to be considered as being in 

the same session?
• Was there any potential/likely "bot" activity?

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your 
own SESSIONIZE query(ies) so as to become more comfortable with the syntax.
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c Hackathon: Chips Weblog Sessionize 
(Possible Answer)

-- Eyeball and sessionize to volatile table 

show table chips_clean;

select * from chips_clean
sample randomized allocation 200;

create volatile table x_sessionize as
(SELECT * FROM Sessionize (
ON (select remote_host, request_time, 
requested_page from chips_clean) 
PARTITION BY remote_host
ORDER BY request_time asc
USING
TimeColumn ('request_time')
TimeOut (3600)
EmitNull('false')
ClickLag (0.2) ) ) with data 
on commit preserve rows;

Sessionized Data (subset)

-- How many distinct sessions?
select count (distinct remote_host ||'_'|| 
SESSIONID) as sessions from x_sessionize;

-- Possible bots?
select * from x_sessionize where clicklag = 't';

In this “free-form” exercise, there are no “right” or “wrong” answers. The intent is to get you to write your 
own SESSIONIZE query(ies) so as to become more comfortable with the syntax.
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In this module, you learned how to:

• Describe what the Sessionize function does
• Describe typical use cases for Sessionize
• Write Sessionize queries
• Interpret the output of Sessionize queries

Sessionize Summary
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Characteristics of Time Series Data

• The data that arrives is almost always recorded as a new entry

• Possibility of data being duplicated as there may not be any 

changes

• Data is ephemeral (Discontinuous)

• The data typically arrives in time order

• Should be able to handle high reads & writes

• Time is a primary axis (time-intervals can be either regular or 

irregular)

• Deletes & Updates are Rare

No Edits, No deletes, always inserts

2
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• Available in 16.20

• $TD_GROUP_BY_TIME 

• Use on ANY time component data

• Works with some existing aggregation functions

• Average, Count, Describe, Kurtosis, Maximum, Minimum, Percentile, Rank, Skew, Sum, Std. 
population deviation, Std. sample deviation, Population variance, Sample variance

• Works with all new aggregation functions

• Bottom, Top, First, Last, Delta_T, Median, Mode, Mean absolute deviation

• $TD_TIMECODE_RANGE

• Defines time range

• FILL ()

• Imputes missing values

• NULLS, <Constant>, PREV/PREVIOUS, NEXT

Time Aware - Functions

© 2017 Teradata

$TD_TIMECODE_RANGE - Its data type is period(timestamp(6) with time zone).
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Time Aware Aggregation Functions – GROUP BY TIME

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute 

deviation

These new aggregate functions are only invokable with the 
GROUP BY TIME clause

If not in the list above, then function is not time aware and 
cannot be used with the GROUP BY TIME clause

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic / 
Windowed Aggregate function … not an aggregate function. The ordered analytic 
function can only be invoked using the ordered analytic syntax. (See Function and 
Operators SQL manual)

© 2016 Teradata
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GROUP BY TIME Rules & Restrictions
• GROUP BY TIME and GROUP BY cannot be used together in the same query (this restriction includes GROUP BY 

ROLLUP, GROUP BY CUBE, and so on).

• If GROUP BY TIME is used on a non-PTI table, the USING TIMECODE clause must be included; otherwise, an 

error is reported.

• A supported Time Series function must be used in conjunction with a GROUP BY TIME clause; otherwise, an error 

is reported.

• The timebucket (which serve as the first level of grouping, if specified) are computed based on time zero. For more 

information about how time zero is calculated.

• Grouping is determined first by timebucket, and then by all other fields specified in the GROUP BY TIME clause (if 

any). A timebucket duration is required with the GROUP BY TIME clause. Failure to include it results in an error.

Each GROUP BY TIME operation must have a time interval specified in the GROUP BY TIME clause. For 

example, in the clause GROUP BY TIME(MINUTES(15)) the time interval is 15 minutes.

OR we can have UNBOUNDED by giving GROUP BY TIME(*).

• The HAVING clause is supported for filtering results of aggregates with the GROUP BY TIME clause.

• The QUALIFY and WITH...BY clauses are NOT supported when the GROUP BY TIME clause is present.

• The USING TIMECODE and FILL clauses are optional and may only be used with a GROUP BY TIME clause.

© 2017 Teradata
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• Want to understand average daily 

temperature (DRYBULB_TEMPF) for 

the dates of 2017-01-01 and 2017-

01-31

• The time column in the table is called 

Day_Time

Exercise: Run a GROUP BY TIME analytic (1_1) 

Example:

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, 

AVG(TEMPERATURE) 

FROM BUOYS

WHERE TIMECODE BETWEEN TIMESTAMP '2017-08-11 01:00:00' 

AND TIMESTAMP '2017-08-11 03:00:00'

GROUP BY TIME( MINUTES(30))  

USING TIMECODE(TD_TIMECODE) 

ORDER BY $TD_GROUP_BY_TIME;

SELECT 

<Time Interval Clauses>

, AVG(<Which Column>) 

FROM TIMESERIES.WEATHER

WHERE 

DAY_TIME BETWEEN TIMESTAMP '2017-01-01 00:00:00' 

AND TIMESTAMP '2017-02-01 00:00:00'

GROUP BY TIME (<group definition>) 

USING TIMECODE(<on which timestamp>) 

ORDER BY 1;

© 2017 Teradata
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Time Aware Analytics
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Primary Time Index

• Supports time sensitive decisions

• Either Primary Index or Primary Time Index

• Fast access through:

• Hash distribute by time bucket

• AMP-local processing

• Sequenced data

8
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Primary Time Index (PTI)
High Performance Parallelism with Efficient Storage and Access

High performance parallel distribution

Customizable duration of Time Bucket provides control of distribution

Fast Primary AMP access 

Customizable distribution provides AMP-local processing minimizes data movement 
and speeds query processing

Fully automated; set once

Data is stored in Time Order (not Hash time order)

© 2014 Teradata
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10

• <timecode_dt>

• { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

• What is the level of precision on the TIMESTAMP

• <timezero_date>

• A DATE value specificying the “time zero” associated with table.

• Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

• <timebucket_duration>

• A time duration specified by CAL_YEARS, CAL_MONTHS,CAL_DAYS,WEEKS, DAYS, 

HOURS, MINUTES, SECONDS, MILLISECONDS, MICROSECONDS. 

• <columns_clause,>

• COLUMNS ( <column_list> )

• <sequenced_flag>

• {SEQUENCED <optional_maximum> | NONSEQUENCED }

Primary Time Index Tables Definition
Primary Time Index (timecode_dt, timezero_date, bucket duration, columns, Sequenced_Flag)

Please see orange book for more details.

timecode_dt works in combination with 

timebucket_duration and timezero_date.
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Primary Time Index Tables (PTI)

Storage 

distribution 

choice

Time interval only

PRIMARY TIME INDEX 

(TIMESTAMP(0), 

DATE '2016-02-22', HOURS(2))

Time + column list

PRIMARY TIME INDEX 

(TIMESTAMP(2), 

DATE '1996-04-19', HOURS(2), 

COLUMNS(COUNTRYID,CARID))

Column list only

PRIMARY TIME INDEX 

(TIMESTAMP(6),

DATE '2013-01-01',

COLUMNS(SENSORID))

In-table 

logical ordering

• NON-SEQUENCED PTI table
– Rows are stored in time-ascending order based on the value of the TD_TIMECODE field.

– Table will be Non-sequenced by default, if SEQUENCED/NONSEQUENCED is not specified.

• SEQUENCED PTI table
– Rows are stored in ascending order, first based on the value of the TD_TIMECODE field and then the 

TD_SEQNO field.

– An optional maximum value can be specified for the TD_SEQ number value. The default maximum value 
is 20000.

– Valid range of values for TD_SEQNO is 1 to 2147483647. 

These are the time series table designer options.  Most of it will be easy since they 
should already understand the data layout and the kinds of queries most commonly 
needed.  Most companies will start with Time + column list and Time code only
These choices have a dramatic effect on query performance.  By distributing data 
across nodes and AMPs, we ensure parallelism.  Furthermore, keys are hashed which 
provides the top level index without the cost of maintaining B-trees.  Then, within the 
data blocks, there is in-table ordering which sorts the data into the timestamp order.  
Teradata handles sorting on column lists already so there is no need to organize the 
data this way when stored on disk.

© 2014 Teradata
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Time Series – Fill Clause
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Teradata Time Functions

When a GROUP BY TIME query is executed, 

TD_GETTIMEBUCKET
System function retrieves the TD_TIMEBUCKET column value from a PTI table Because a timebucket is a hash key used to determine how well 

the rows of a PTI table are being distributed across AMPs, avoiding skew.

TD_TIME_BUCKET_NUMBER
The TD_TIME_BUCKET_NUMBER system function calculates the time bucket number. You can use this function with the HASHROW, 

HASHBUCKET, or HASHAMP functions to see how time series rows are distributed across the system.

TD_TIMESERIES_RANGE
The TD_TIMESERIES_RANGE macro finds the valid ranges of the TD_TIMECODE and TD_SEQNO columns in a PTI table.
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Time Series

This section will cover time series.
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2

Time Series data is data that is continuously produced and 

collected over a period of time

Time Series features in Vantage allows the user to capture 

and store Time Series data:

• Time Series data can be stored in tables with a Primary 

Time Index defined on them

• A PTI table is ‘time-series’ aware and provides different 

ways to store and order the time series data

• Optimized for time range queries

• The feature also supports time-aware aggregate 

operations using the GROUP BY TIME clause

• Useful for forecasting, detecting patterns and trends, risk 

reduction, etc.

Time Series

Time Series data is data that is continuously produced and collected over a period of 
time. This kind of data is typically generated by machines such as sensors and other 
applications and devices that make up the Internet Of Things (IOT). Each data point in 
the Time Series data set is associated with a timestamp and an observed value at that 
time. Time Series data can be stored and analyzed to provide capabilities such as 
forecasting, detecting patterns and trends, anomaly detection, risk reduction etc.  

The Teradata Time Series feature introduced in Teradata release 16.20 allows the user 
to capture and store Time Series data and perform useful aggregate operations and 
analytics on the data. Time Series data can be stored in tables with a new construct 
Primary Time Index defined on them. A Primary Time Index table is ‘time-series’ aware 
and provides different ways to store and order the time series data. The feature also 
supports time-aware aggregate operations that can be performed on the data set. This 
is done using the GROUP BY TIME clause and a set of ‘time-aware’ aggregate 
functions. All this can be combined with the existing Teradata database capabilities 
such as a full range of SQL support, rich collection of native and complex data types 
including JSON, AVRO, CSV, XML and wide range of load and extract utilities resulting in 
a powerful, feature-rich Time Series database offering.
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3Time Series Categories

Class I:  The 7/24 infinite time series

• Hydrology: USGS uses river monitoring devices to collect time series data on all major rivers and streams

• Oceanography: There is a world-wide buoy system collecting data on a 7/24 basis

• Building Monitoring systems, Manufacturing Line Monitoring Systems

Class II: Time Series with a “logical overlay”

• Automobile “Trip” – Start-Engine; drive from location A to location B; shut-down engine

• Plane “Flight” – Start-Engine; Take-off; Fly from location A to location B; Land; Shut-down engine

• Cargo Ship “Voyage” – Start Engine; Raise Anchor; Navigate from A to B; Drop Anchor; Shut down engine

Class III: Fixed-size (few thousand entries) Scientific Trace Time Series

• Oil Exploration: Seismic Traces used to determine geographical sub-layers 

• Medicine: Traces associated with an Ultrasound Scan or CAT Scan

• Scientific: Traces associated with the Electron Microscope to investigate crystal or cell structures

There are three categories of Time-series data. 
Class I 

Class I is 7/24 infinite time-series. In this class, data continuously collected, 7 
days a week, 24 hour a day, 365 days a year…nonstop. For example, the United 
States Geological Survey (USGS) has Buoys in major rivers and streams 
collecting on a 7/24 basis and for each Buoy station, you would have a time 
series you keep adding data to the end. This would keep going on and on 
collecting until infinity. 

Class II 
With Class II data, it’s a logical overlay… think about automobile… For a given 
trip, you start the engine and drive from point A to a destination B and then 
turn off the car. Overlay this trip data on the data that is collected for a given 
car for say #113 or air plane # 933… The importance of these trip overlays is for 
analysis where you may want to compare one trip to another trip for this same 
car #113 or compare one air plane type to another plane that does the same 
trip say Chicago to San Diego. 

Class III 
Class III is fixed size…Seismic Traces used to determine geographical sub-layers 
where the receiving electronics are setup for this discrete series. For example, 
data may be collected every millisecond for 6 seconds or 6,000 entries. That is 
the complete series… then this fixed data represents a fixed size of time series 
data to analyze. Other fields may have time-series data just long enough to 
collect an ultra-scan, Cat scan or Microscope reading to be analyzed later. No 
additional data is added to the end.
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• High performance parallel distribution

• Customizable duration of Time Bucket 

provides control of distribution

• Fast Primary AMP access 

• Customizable distribution provides 

AMP-local processing minimizes data 

movement and speeds query 

processing

• Fully automated; set once

AMP 1 AMP 2 AMP 3 AMP 4 AMP 5 AMP 6

2 hours

Time Bucket (customizable)

…

8AM 10AM 12PM 2PM 4PM 6PM

Three Storage Distribution Choices

Time Interval 

only

Time Interval 

and Column List
Column List only

What are the sensor readings 

between 4:30pm and 5:30pm? 
High Performance Parallelism with Efficient Storage and Access

Primary Time Index (PTI)

A PTI table can be defined with 3 different data distribution strategies and 2 different 
ordering methods.  We will discuss the distribution strategies in the next slide.

For ordering strategy, a PTI table can be defined as SEQUENCED or NONSEQUENCED in 
the PRIMARY TIME INDEX clause.  

A PTI table is NONSEQUENCED by default i.e. if the NONSEQUENCED keyword is 
omitted from the PRIMARY TIME INDEX clause, the table will be considered to be non-
sequenced. 
A sequenced PTI table will have the auto-generated TD_SEQNO column. The rows in 
the table are first ordered by TD_TIMECODE and then by the TD_SEQNO value. When 
more than one row has the same TD_TIMECODE value, those rows are ordered by the 
TD_SEQNO value within the same TD_TIMECODE. The user is expected to provide 
integer values for the TD_SEQNO column. 

Having a sequence number field is useful if the incoming data has more than one 
observation/reading at the same timestamp value. For example, consider a PTI table 
that records the sales at a store on a daily basis. The sales are recorded per day – so 
for a date of 2017-04-23, there could be 10 sales data. As the time bucket duration is 
based on DAYS and not timestamp, the time at which a sale is done is not recorded. 
Adding the sequence number can provide an ordering on the sales for each day. 
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Storage 

distribution 

choice

Time interval only 
(hh:mm:ss)

Time + column list
(ID, hh:mm:ss)

Column list only
(ID, cost)

In-table 

logical ordering

Time 

code

only

Time code + 

sequence number

Primary Time Index Distribution Strategy

These are the time series table designer options.  Most of it will be easy since they 
should already understand the data layout and the kinds of queries most commonly 
needed.  Most companies will start with Time + column list and Time code only.
These choices have a dramatic effect on query performance.  By distributing data 
across nodes and AMPs, we ensure parallelism.  Furthermore, keys are hashed which 
provides the top level index without the cost of maintaining B-trees.  Then, within the 
data blocks, there is in-table ordering which sorts the data into the timestamp order.  
Teradata handles sorting on column lists already so there is no need to organize the 
data this way when stored on disk.

The rows of a PTI table are distributed based on the TD_TIMEBUCKET column value 
and/or one or more column values. Choosing a good distribution strategy depends on 
the nature of the time series data and the kind of queries that are expected to be 
used. 

Time interval only - This kind of distribution is suitable for continuous time series data 
coming from a single source. 
Time + column list - This kind of distribution is suitable where there is continuous time 
series data coming from multiple sources. 
Column list only - This kind of distribution is suitable where the time series data is 
short and with or without a logical overlay.  For example a finite time series.

5



6Primary Time Index Tables

Primary Time Index Configuration Parameters:

CREATE [SET|MULTISET] [GLOBAL TEMPORARY | VOLATILE ] TABLE   

series_table_name> [, <table options> ]

(  [ <generated_column_section>,] <column definitions> )   

PRIMARY TIME INDEX <optional_index_name> 

( <timecode_dt> [, <timezero_date>] [,<timebucket_duration>] [,<columns_clause,>] [, <sequenced_flag> ] )

[ <as clause> ] [ <index definitions> ] [ <commit options> ] ;

<timecode_dt>: { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

<timezero_date>:  A DATE value specificying the “time zero” associated with table

Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

<timebucket_duration>: A time duration specified by CAL_YEARS, 

CAL_MONTHS,CAL_DAYS,WEEKS, DAYS, HOURS, MINUTES, 

SECONDS, MILLISECONDS, MICROSECONDS. 

<columns_clause,>: COLUMNS ( <column_list> )

<sequenced_flag>: {SEQUENCED <optional_maximum> | NONSEQUENCED } 

The configuration parameters associated with the PRIMARY TIME INDEX clause are as follows: 

<Timecode_dt>: { DATE | TIMESTAMP(n) [WITH TIME ZONE] } 
This specifies the date-time data type that is used to collect the time series data. The 
TD_TIMECODE column that is generated will have the same data type that is specified here 
and is used to hold the time value associated with the time series data. 

<TimeZero_Date> : DATE 
This specifies the earliest date at which the time series data collection starts. If not specified, 
the default Time Zero date will be set to EPOCH time, January 1st, 1970 @ 00:00:00 hours. 
Ideally, the Time Zero value should be set to a date just prior to when data collection starts in a 
table. For example, if a PTI table is created and starts collecting data as of 2017-03-01, then the 
Time Zero can be set to ‘2017-01-01’. 

<TimeBucket_Duration> : time_unit(n) where time_unit = { CAL_YEARS | CAL_MONTHS | 
CAL_DAYS | WEEKS | DAYS | HOURS | MINUTES | SECONDS | MILLISECONDS | 
MICROSECONDS } 
A time interval specification that breaks up the time series data into discrete groups called 
timebuckets. The time units can also be specified using short-hand notation. The short-hand 
forms are given in Table 1: Short hand forms for time unit durations. 

<Columns_Clause> : COLUMNS(columns_list) 
List of column names that specify the columns to be used to distribute the rows among the 
AMPs. 

<Sequenced_Flag> : SEQUENCED (max_val)| NONSEQUENCED 
Used to specify an ordering sequence on the time series rows. If the sequenced_flag is absent 
or if NONSEQUENCED is specified, the rows are ordered by the TD_TIMECODE column only. If 
SEQUENCED flag is specified, the TD_SEQNO column is added to the table. The user needs to 
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supply the TD_SEQNO column values when inserting rows into the table. 
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7Primary Time Index Tables (cont.)

TD_TIMEBUCKET

• TD_TIMEBUCKET BIGINT NOT NULL GENERATED SYSTEM TIMECOLUMN

• Column is generated when the <timebucket_duration> clause is specified within the PRIMARY TIME INDEX clause

• Values are populated and managed by Teradata

• Hidden column: Cannot be updated, selected or referenced in a query

TD_TIMECODE

• TD_TIMECODE <timecode_dt> NOT NULL GENERATED TIMECOLUMN

• Data type should be TIME, TIMESTAMP or DATE – same as the <timecode_dt> clause within in the PRIMARY TIME 

INDEX clause

• Value must always be provided by the user

TD_SEQNO

• TD_SEQNO INT NOT NULL GENERATED TIMECOLUMN

• Generated when the SEQUENCED clause is specified in the PRIMARY TIME INDEX clause

• Used to order the rows in a PTI table along with the TD_TIMECODE field

• The valid range of TD_SEQNO is between 1 to 2147483647 inclusively

• Default maximum is 20000

Auto-generated columns

The TD_TIMEBUCKET column is present when a <timebucket_duration> is specified 
during table creation. It is a non-null column whose value is populated by Teradata 
with the value calculated for the time bucket for the row. The column cannot be 
updated, referenced or selected directly in a query. 

The TD_TIMECODE column is always present in a PTI table. This column will contain 
the time code value at which the measurement/observation occurs. It is a non-null 
field that is always assigned a value by the user. 

The TD_SEQNO field is present when the PTI table is defined as SEQUENCED. The 
TD_SEQNO value is used to order the rows of the table along with the TD_TIMECODE 
field. It is a non-null, integer field and the value must be supplied by the user. The valid 
range of a TD_SEQNO field is 1 to a maximum of 2147483647. If no maximum value is 
specified in the SEQUENCED(max_val) specification, then the default maximum is 
20000. Note that if the SEQUENCED or NONSEQUENCED flag is not explicitly specified, 
the table will be non-sequenced by default. 
The auto-generated time columns are automatically added to a PTI table definition by 
Teradata. If the user decides to explicitly specify the auto-generated columns in the 
CREATE TABLE statement, then all the columns applicable for the table must be 
specified. For example, if the CREATE TABLE statement issued by the user contains the 
TD_TIMEBUCKET column only and not the other auto-generated time columns –
TD_TIMECODE 
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8Time Aware Aggregation Functions

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute 

deviation

These new aggregate functions are only 

invokable with the GROUP BY TIME clause

If not in the list above, then function is not 

time aware and cannot be used with the 

GROUP BY TIME clause

Note:  Group By Time can be used on any table with a time column even if the table des not have a PTI

Here the different time series functions available as part of 16.20 release.

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic / 
Windowed Aggregate function … not an aggregate function. The ordered analytic 
function can only be invoked using the ordered analytic syntax. (See Function and 
Operators SQL manual)

A set of aggregate functions is provided to support time series data (optionally stored 
in Primary Time Index (PTI) tables). Additionally, some traditional functions support 
time series as well. To operate on time series data, both time series-specific functions 
and traditional functions are invoked in a GROUP BY TIME clause.

You can use the following aggregate functions on time series data in PTI tables by using 
the GROUP BY TIME clause and in non-PTI tables by using the GROUP BY TIME clause 
with the USING TIMECODE option:

• AVERAGE (AVG)
• COUNT
• KURTOSIS
• MAXIMUM (MAX)
• MINIMUM (MIN)
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)
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9Time Aware Aggregate Example

TIMECODE-RANGE GROUP_BY_# BEACON TRAFFIC

‘2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 22 50

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 22 95

‘2017-08-11 09:00:00’, '2017-08-11 09:30:00’ 3 22 114

‘2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 22 37

‚2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 23 80

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 23 65

'2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 23 40

“For each beacon sensor location, show me the total foot traffic 

in a ½ hour increment, over 2 hours”

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00' AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME( MINUTES(30) AND BEACON_ID) USING TIMECODE(Date_Time) 

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

When our user wants to understand traffic over time, it gets a bit more complicated to 
write the query. Typically, there is a lot of time arithmetic involved and it’s 
cumbersome to change once coded.

By using the GROUP BY TIME function, this is all resolved. Users can now easily ask 
their questions and then quickly iterate if a different group is necessary.

Did you see what really happened here? The data scientist just went from days of work 
down to minutes. Organizing the data set manually and applying any kind of analytic 
function is not simply expressing the SQL and attaching functions.  All that data 
preparation we hear so many complaints about just vanished because the database 
solved most everything during ingest and optimized the access.  

This query would be difficult if not for the time series features. Specifically, it would 
end up as multiple nested SQL statements. As the user wants to iterate and change 
the granularity or then join to other tables with different time granularity, it 
becomes much more complex. Having GROUP BY TIME resolves these complexity 
and allows users to do what they need to do: Analytics!
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10Time Series – FILL Clause

FILL SCHEME AGGREGATE RESULT

NULLS Null 

<Constant> A constant value

PREV/PREVIOUS Same as the previous time bucket’s result

NEXT Same as the next time bucket’s result

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00’ 

AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME( MINUTES(30) AND BEACON_ID)  

USING TIMECODE(DATE_TIME)

FILL (NULLS)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

Use the FILL clause to replace missing values with a constant value for time buckets 
with missing values.



11Many SQL Table Designs Include Time

Partitioned 

Primary Index (PPI)

Temporal

Tables

Primary 

Time Index (PTI)

Business • Multi-dimensional 

analytics

• Hierarchical analytics

• Date, character, or 

numeric levels

• Time periods (ranges)

• Historical relevance

• Audit – what was the 

situation when…

• High volume time stamped 

data

• Time aware analytics

• Sorted data

• Unique algorithms

Technology • Multi-level (up to 64)

• Does not effect row 

distribution to the AMPs

• Data is not ordered

• Slowly changing 

dimensions

• Insert, update, delete 

• Normalize and overlap 

functions

• Distribution to AMPs by 

time buckets

• Updates/deletes rare

• Insert late arrival data

• Multivariate payload 

common

All table types can use “GROUP BY TIME” 

PPI organizes data within the AMP.  It does not determine which AMP the data goes to.  
This yields highly effective all AMP operations.  

It also has multi level partitions, which uses different keys within the partition 
to segment further.  This helps with BI tools.  PPI and MLPPI helps get rid of 
OLAP cubes. 

Temporal is a time based table.  
This is about effective management of a time period.  When is a row effective 
within a time period.  And when did the RDBMS know about this row.  
When did I know this happened?  When did I know what? Very useful in audits. 
Nothing here affects row redistribution.   
We are recording when changes happen to a row.  
Normalize and overlap are functions for this. 

PTI
Now its about the buckets.  If I make the primary index time, all the events 
would be on different AMPs.  This would cause massive redistributions.  So the 
buckets collect events on an AMP and collocating records that are grouped in 
the bucket
You actually can do updates and deletes.  But should not be doing many of 
them.  Rarely should you be updating the sensor reading. 
It doesn’t really append, it just creates another partition on another AMP
If data arrives late, data is still stored in the right bucket.  
The common SQL functions –bottom, top, median, variance, etc. – are available 
on all tables. 
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12Analytics in Action

“How Can We Serve our High-Value Customers Better?”

Customer locations (Geospatial)
• Current customers’ addresses and 

distance to our store(s) and competitors

• Beacon data 

Customer interests and product 

availability (Time-based)
• Customers recently and frequently 

searched/browsed products 

• Current product sell rate and inventory at 

our store(s)

Valid promotion periods and 

seasonality (Temporal)
• Store hours

• Current promotion begin/end dates

• Holidays and special events

Business data
• High-value customers

• Sales/order history

“Identify high-value customers 
whose purchase interests match our 

current product promotions and 
currently live near one of our stores. 

Send an e-mail with a special 
discount coupon.” 

https://web.microsoftstream.com/video/3f8dd0d6-694b-4230-9edb-e3ad8cdc166c?list=studio

Let’s look at this 4D Analytics in action using a theoretical example of a retailer with 
existing promotions that wants to attract high-value customers into the store.   

As a strategy, the company wants to identify high-value customers whose purchase 
interests match current product promotions and are physically near the store, then 
send an e-mail with a special discount coupon. To do this, the company can integrate:

1) Current customer location. For example, it may identify potential customers who 
are currently within a 1-mile radius from the store. This is ‘where’ analysis.

2) Particular product interests of the customers based on their recent and frequent 
web searches or browsing data, as well as the real-time or near-real time sell-rate 
and inventory level of products. This usually is time-based analysis.

3) There are particular begin and end dates associated with promotions, and even 
store hours. Also, some product sales may be highly affected by holidays, 
seasonality, or special events going on in the area. This usually is temporal.

4) All of those can be combined with the business data, such as a pre-existing list of 
high-value customers and their sales and order history.

As you can see, integration of the business and operational analytics with the 
analytics capabilities for ‘where’ and ‘when’ can provide powerful insights that can 
create actions and improve business outcomes.
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Time Series

This section will cover time series.
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Time Series data is data that is continuously produced and 

collected over a period of time

Time Series features in Vantage allows the user to capture 

and store Time Series data:

• Time Series data can be stored in tables with a Primary 

Time Index defined on them

• A PTI table is ‘time-series’ aware and provides different 

ways to store and order the time series data

• Optimized for time range queries

• The feature also supports time-aware aggregate 

operations using the GROUP BY TIME clause

• Useful for forecasting, detecting patterns and trends, risk 

reduction, etc.

Time Series

Time Series data is data that is continuously produced and collected over a period of 
time. This kind of data is typically generated by machines such as sensors and other 
applications and devices that make up the Internet Of Things (IOT). Each data point in 
the Time Series data set is associated with a timestamp and an observed value at that 
time. Time Series data can be stored and analyzed to provide capabilities such as 
forecasting, detecting patterns and trends, anomaly detection, risk reduction etc.  

The Teradata Time Series feature introduced in Teradata release 16.20 allows the user 
to capture and store Time Series data and perform useful aggregate operations and 
analytics on the data. Time Series data can be stored in tables with a new construct 
Primary Time Index defined on them. A Primary Time Index table is ‘time-series’ aware 
and provides different ways to store and order the time series data. The feature also 
supports time-aware aggregate operations that can be performed on the data set. This 
is done using the GROUP BY TIME clause and a set of ‘time-aware’ aggregate 
functions. All this can be combined with the existing Teradata database capabilities 
such as a full range of SQL support, rich collection of native and complex data types 
including JSON, AVRO, CSV, XML and wide range of load and extract utilities resulting in 
a powerful, feature-rich Time Series database offering.
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3Time Series Categories

Class I:  The 7/24 infinite time series

• Hydrology: USGS uses river monitoring devices to collect time series data on all major rivers and streams

• Oceanography: There is a world-wide buoy system collecting data on a 7/24 basis

• Building Monitoring systems, Manufacturing Line Monitoring Systems

Class II: Time Series with a “logical overlay”

• Automobile “Trip” – Start-Engine; drive from location A to location B; shut-down engine

• Plane “Flight” – Start-Engine; Take-off; Fly from location A to location B; Land; Shut-down engine

• Cargo Ship “Voyage” – Start Engine; Raise Anchor; Navigate from A to B; Drop Anchor; Shut down engine

Class III: Fixed-size (few thousand entries) Scientific Trace Time Series

• Oil Exploration: Seismic Traces used to determine geographical sub-layers 

• Medicine: Traces associated with an Ultrasound Scan or CAT Scan

• Scientific: Traces associated with the Electron Microscope to investigate crystal or cell structures

There are three categories of Time-series data. 
Class I 

Class I is 7/24 infinite time-series. In this class, data continuously collected, 7 
days a week, 24 hour a day, 365 days a year…nonstop. For example, the United 
States Geological Survey (USGS) has Buoys in major rivers and streams 
collecting on a 7/24 basis and for each Buoy station, you would have a time 
series you keep adding data to the end. This would keep going on and on 
collecting until infinity. 

Class II 
With Class II data, it’s a logical overlay… think about automobile… For a given 
trip, you start the engine and drive from point A to a destination B and then 
turn off the car. Overlay this trip data on the data that is collected for a given 
car for say #113 or air plane # 933… The importance of these trip overlays is for 
analysis where you may want to compare one trip to another trip for this same 
car #113 or compare one air plane type to another plane that does the same 
trip say Chicago to San Diego. 

Class III 
Class III is fixed size…Seismic Traces used to determine geographical sub-layers 
where the receiving electronics are setup for this discrete series. For example, 
data may be collected every millisecond for 6 seconds or 6,000 entries. That is 
the complete series… then this fixed data represents a fixed size of time series 
data to analyze. Other fields may have time-series data just long enough to 
collect an ultra-scan, Cat scan or Microscope reading to be analyzed later. No 
additional data is added to the end.
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• High performance parallel distribution

• Customizable duration of Time Bucket 

provides control of distribution

• Fast Primary AMP access 

• Customizable distribution provides 

AMP-local processing minimizes data 

movement and speeds query 

processing

• Fully automated; set once

AMP 1 AMP 2 AMP 3 AMP 4 AMP 5 AMP 6

2 hours

Time Bucket (customizable)

…

8AM 10AM 12PM 2PM 4PM 6PM

Three Storage Distribution Choices

Time Interval 

only

Time Interval 

and Column List
Column List only

What are the sensor readings 

between 4:30pm and 5:30pm? 
High Performance Parallelism with Efficient Storage and Access

Primary Time Index (PTI)

A PTI table can be defined with 3 different data distribution strategies and 2 different 
ordering methods.  We will discuss the distribution strategies in the next slide.

For ordering strategy, a PTI table can be defined as SEQUENCED or NONSEQUENCED in 
the PRIMARY TIME INDEX clause.  

A PTI table is NONSEQUENCED by default i.e. if the NONSEQUENCED keyword is 
omitted from the PRIMARY TIME INDEX clause, the table will be considered to be non-
sequenced. 
A sequenced PTI table will have the auto-generated TD_SEQNO column. The rows in 
the table are first ordered by TD_TIMECODE and then by the TD_SEQNO value. When 
more than one row has the same TD_TIMECODE value, those rows are ordered by the 
TD_SEQNO value within the same TD_TIMECODE. The user is expected to provide 
integer values for the TD_SEQNO column. 

Having a sequence number field is useful if the incoming data has more than one 
observation/reading at the same timestamp value. For example, consider a PTI table 
that records the sales at a store on a daily basis. The sales are recorded per day – so 
for a date of 2017-04-23, there could be 10 sales data. As the time bucket duration is 
based on DAYS and not timestamp, the time at which a sale is done is not recorded. 
Adding the sequence number can provide an ordering on the sales for each day. 
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Storage 

distribution 

choice

Time interval only 
(hh:mm:ss)

Time + column list
(ID, hh:mm:ss)

Column list only
(ID, cost)

In-table 

logical ordering

Time 

code

only

Time code + 

sequence number

Primary Time Index Distribution Strategy

These are the time series table designer options.  Most of it will be easy since they 
should already understand the data layout and the kinds of queries most commonly 
needed.  Most companies will start with Time + column list and Time code only.
These choices have a dramatic effect on query performance.  By distributing data 
across nodes and AMPs, we ensure parallelism.  Furthermore, keys are hashed which 
provides the top level index without the cost of maintaining B-trees.  Then, within the 
data blocks, there is in-table ordering which sorts the data into the timestamp order.  
Teradata handles sorting on column lists already so there is no need to organize the 
data this way when stored on disk.

The rows of a PTI table are distributed based on the TD_TIMEBUCKET column value 
and/or one or more column values. Choosing a good distribution strategy depends on 
the nature of the time series data and the kind of queries that are expected to be 
used. 

Time interval only - This kind of distribution is suitable for continuous time series data 
coming from a single source. 
Time + column list - This kind of distribution is suitable where there is continuous time 
series data coming from multiple sources. 
Column list only - This kind of distribution is suitable where the time series data is 
short and with or without a logical overlay.  For example a finite time series.
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6Primary Time Index Tables

Primary Time Index Configuration Parameters:

CREATE [SET|MULTISET] [GLOBAL TEMPORARY | VOLATILE ] TABLE   

series_table_name> [, <table options> ]

(  [ <generated_column_section>,] <column definitions> )   

PRIMARY TIME INDEX <optional_index_name> 

( <timecode_dt> [, <timezero_date>] [,<timebucket_duration>] [,<columns_clause,>] [, <sequenced_flag> ] )

[ <as clause> ] [ <index definitions> ] [ <commit options> ] ;

<timecode_dt>: { TIMESTAMP | TIMESTAMP WITH TIME ZONE | DATE }

<timezero_date>:  A DATE value specificying the “time zero” associated with table

Default timezero_date is January 1st, 1970 @ 00:00:00 hours.

<timebucket_duration>: A time duration specified by CAL_YEARS, 

CAL_MONTHS,CAL_DAYS,WEEKS, DAYS, HOURS, MINUTES, 

SECONDS, MILLISECONDS, MICROSECONDS. 

<columns_clause,>: COLUMNS ( <column_list> )

<sequenced_flag>: {SEQUENCED <optional_maximum> | NONSEQUENCED } 

The configuration parameters associated with the PRIMARY TIME INDEX clause are as follows: 

<Timecode_dt>: { DATE | TIMESTAMP(n) [WITH TIME ZONE] } 
This specifies the date-time data type that is used to collect the time series data. The 
TD_TIMECODE column that is generated will have the same data type that is specified here 
and is used to hold the time value associated with the time series data. 

<TimeZero_Date> : DATE 
This specifies the earliest date at which the time series data collection starts. If not specified, 
the default Time Zero date will be set to EPOCH time, January 1st, 1970 @ 00:00:00 hours. 
Ideally, the Time Zero value should be set to a date just prior to when data collection starts in a 
table. For example, if a PTI table is created and starts collecting data as of 2017-03-01, then the 
Time Zero can be set to ‘2017-01-01’. 

<TimeBucket_Duration> : time_unit(n) where time_unit = { CAL_YEARS | CAL_MONTHS | 
CAL_DAYS | WEEKS | DAYS | HOURS | MINUTES | SECONDS | MILLISECONDS | 
MICROSECONDS } 
A time interval specification that breaks up the time series data into discrete groups called 
timebuckets. The time units can also be specified using short-hand notation. The short-hand 
forms are given in Table 1: Short hand forms for time unit durations. 

<Columns_Clause> : COLUMNS(columns_list) 
List of column names that specify the columns to be used to distribute the rows among the 
AMPs. 

<Sequenced_Flag> : SEQUENCED (max_val)| NONSEQUENCED 
Used to specify an ordering sequence on the time series rows. If the sequenced_flag is absent 
or if NONSEQUENCED is specified, the rows are ordered by the TD_TIMECODE column only. If 
SEQUENCED flag is specified, the TD_SEQNO column is added to the table. The user needs to 
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supply the TD_SEQNO column values when inserting rows into the table. 
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7Primary Time Index Tables (cont.)

TD_TIMEBUCKET

• TD_TIMEBUCKET BIGINT NOT NULL GENERATED SYSTEM TIMECOLUMN

• Column is generated when the <timebucket_duration> clause is specified within the PRIMARY TIME INDEX clause

• Values are populated and managed by Teradata

• Hidden column: Cannot be updated, selected or referenced in a query

TD_TIMECODE

• TD_TIMECODE <timecode_dt> NOT NULL GENERATED TIMECOLUMN

• Data type should be TIME, TIMESTAMP or DATE – same as the <timecode_dt> clause within in the PRIMARY TIME 

INDEX clause

• Value must always be provided by the user

TD_SEQNO

• TD_SEQNO INT NOT NULL GENERATED TIMECOLUMN

• Generated when the SEQUENCED clause is specified in the PRIMARY TIME INDEX clause

• Used to order the rows in a PTI table along with the TD_TIMECODE field

• The valid range of TD_SEQNO is between 1 to 2147483647 inclusively

• Default maximum is 20000

Auto-generated columns

The TD_TIMEBUCKET column is present when a <timebucket_duration> is specified 
during table creation. It is a non-null column whose value is populated by Teradata 
with the value calculated for the time bucket for the row. The column cannot be 
updated, referenced or selected directly in a query. 

The TD_TIMECODE column is always present in a PTI table. This column will contain 
the time code value at which the measurement/observation occurs. It is a non-null 
field that is always assigned a value by the user. 

The TD_SEQNO field is present when the PTI table is defined as SEQUENCED. The 
TD_SEQNO value is used to order the rows of the table along with the TD_TIMECODE 
field. It is a non-null, integer field and the value must be supplied by the user. The valid 
range of a TD_SEQNO field is 1 to a maximum of 2147483647. If no maximum value is 
specified in the SEQUENCED(max_val) specification, then the default maximum is 
20000. Note that if the SEQUENCED or NONSEQUENCED flag is not explicitly specified, 
the table will be non-sequenced by default. 
The auto-generated time columns are automatically added to a PTI table definition by 
Teradata. If the user decides to explicitly specify the auto-generated columns in the 
CREATE TABLE statement, then all the columns applicable for the table must be 
specified. For example, if the CREATE TABLE statement issued by the user contains the 
TD_TIMEBUCKET column only and not the other auto-generated time columns –
TD_TIMECODE 
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8Time Aware Aggregation Functions

Existing Aggregate Functions

Average Count

Describe Kurtosis

Maximum Minimum

Percentile Rank

Skew Sum

Std. population

deviation
Std. sample deviation

Population variance
Sample

variance

New Aggregate Functions

Bottom Delta_T

First Last

Median Mode

Top
Mean absolute 

deviation

These new aggregate functions are only 

invokable with the GROUP BY TIME clause

If not in the list above, then function is not 

time aware and cannot be used with the 

GROUP BY TIME clause

Note:  Group By Time can be used on any table with a time column even if the table des not have a PTI

Here the different time series functions available as part of 16.20 release.

Note: there is an existing MEDIAN function out there … but it is an Ordered Analytic / 
Windowed Aggregate function … not an aggregate function. The ordered analytic 
function can only be invoked using the ordered analytic syntax. (See Function and 
Operators SQL manual)

A set of aggregate functions is provided to support time series data (optionally stored 
in Primary Time Index (PTI) tables). Additionally, some traditional functions support 
time series as well. To operate on time series data, both time series-specific functions 
and traditional functions are invoked in a GROUP BY TIME clause.

You can use the following aggregate functions on time series data in PTI tables by using 
the GROUP BY TIME clause and in non-PTI tables by using the GROUP BY TIME clause 
with the USING TIMECODE option:

• AVERAGE (AVG)
• COUNT
• KURTOSIS
• MAXIMUM (MAX)
• MINIMUM (MIN)
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)
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9Time Aware Aggregate Example

TIMECODE-RANGE GROUP_BY_# BEACON TRAFFIC

‘2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 22 50

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 22 95

‘2017-08-11 09:00:00’, '2017-08-11 09:30:00’ 3 22 114

‘2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 22 37

‚2017-08-11 08:00:00’, '2017-08-11 08:30:00’ 1 23 80

‘2017-08-11 08:30:00’, '2017-08-11 09:00:00’ 2 23 65

'2017-08-11 09:30:00’, '2017-08-11 10:00:00’ 4 23 40

“For each beacon sensor location, show me the total foot traffic 

in a ½ hour increment, over 2 hours”

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00' AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME( MINUTES(30) AND BEACON_ID) USING TIMECODE(Date_Time) 

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

When our user wants to understand traffic over time, it gets a bit more complicated to 
write the query. Typically, there is a lot of time arithmetic involved and it’s 
cumbersome to change once coded.

By using the GROUP BY TIME function, this is all resolved. Users can now easily ask 
their questions and then quickly iterate if a different group is necessary.

Did you see what really happened here? The data scientist just went from days of work 
down to minutes. Organizing the data set manually and applying any kind of analytic 
function is not simply expressing the SQL and attaching functions.  All that data 
preparation we hear so many complaints about just vanished because the database 
solved most everything during ingest and optimized the access.  

This query would be difficult if not for the time series features. Specifically, it would 
end up as multiple nested SQL statements. As the user wants to iterate and change 
the granularity or then join to other tables with different time granularity, it 
becomes much more complex. Having GROUP BY TIME resolves these complexity 
and allows users to do what they need to do: Analytics!
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10

10Time Series – FILL Clause

FILL SCHEME AGGREGATE RESULT

NULLS Null 

<Constant> A constant value

PREV/PREVIOUS Same as the previous time bucket’s result

NEXT Same as the next time bucket’s result

SELECT $TD_TIMECODE_RANGE, $TD_GROUP_BY_TIME, BEACON_ID, SUM(TRAFFIC) FROM BEACONS

WHERE DATE_TIME BETWEEN TIMESTAMP '2017-08-11 08:00:00’ 

AND TIMESTAMP '2017-08-11 10:00:00‘

GROUP BY TIME( MINUTES(30) AND BEACON_ID)  

USING TIMECODE(DATE_TIME)

FILL (NULLS)

ORDER BY BEACON_ID, $TD_GROUP_BY_TIME;

Use the FILL clause to replace missing values with a constant value for time buckets 
with missing values.



11Many SQL Table Designs Include Time

Partitioned 

Primary Index (PPI)

Temporal

Tables

Primary 

Time Index (PTI)

Business • Multi-dimensional 

analytics

• Hierarchical analytics

• Date, character, or 

numeric levels

• Time periods (ranges)

• Historical relevance

• Audit – what was the 

situation when…

• High volume time stamped 

data

• Time aware analytics

• Sorted data

• Unique algorithms

Technology • Multi-level (up to 64)

• Does not effect row 

distribution to the AMPs

• Data is not ordered

• Slowly changing 

dimensions

• Insert, update, delete 

• Normalize and overlap 

functions

• Distribution to AMPs by 

time buckets

• Updates/deletes rare

• Insert late arrival data

• Multivariate payload 

common

All table types can use “GROUP BY TIME” 

PPI organizes data within the AMP.  It does not determine which AMP the data goes to.  
This yields highly effective all AMP operations.  

It also has multi level partitions, which uses different keys within the partition 
to segment further.  This helps with BI tools.  PPI and MLPPI helps get rid of 
OLAP cubes. 

Temporal is a time based table.  
This is about effective management of a time period.  When is a row effective 
within a time period.  And when did the RDBMS know about this row.  
When did I know this happened?  When did I know what? Very useful in audits. 
Nothing here affects row redistribution.   
We are recording when changes happen to a row.  
Normalize and overlap are functions for this. 

PTI
Now its about the buckets.  If I make the primary index time, all the events 
would be on different AMPs.  This would cause massive redistributions.  So the 
buckets collect events on an AMP and collocating records that are grouped in 
the bucket
You actually can do updates and deletes.  But should not be doing many of 
them.  Rarely should you be updating the sensor reading. 
It doesn’t really append, it just creates another partition on another AMP
If data arrives late, data is still stored in the right bucket.  
The common SQL functions –bottom, top, median, variance, etc. – are available 
on all tables. 
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12Analytics in Action

“How Can We Serve our High-Value Customers Better?”

Customer locations (Geospatial)
• Current customers’ addresses and 

distance to our store(s) and competitors

• Beacon data 

Customer interests and product 

availability (Time-based)
• Customers recently and frequently 

searched/browsed products 

• Current product sell rate and inventory at 

our store(s)

Valid promotion periods and 

seasonality (Temporal)
• Store hours

• Current promotion begin/end dates

• Holidays and special events

Business data
• High-value customers

• Sales/order history

“Identify high-value customers 
whose purchase interests match our 

current product promotions and 
currently live near one of our stores. 

Send an e-mail with a special 
discount coupon.” 

https://web.microsoftstream.com/video/3f8dd0d6-694b-4230-9edb-e3ad8cdc166c?list=studio

Let’s look at this 4D Analytics in action using a theoretical example of a retailer with 
existing promotions that wants to attract high-value customers into the store.   

As a strategy, the company wants to identify high-value customers whose purchase 
interests match current product promotions and are physically near the store, then 
send an e-mail with a special discount coupon. To do this, the company can integrate:

1) Current customer location. For example, it may identify potential customers who 
are currently within a 1-mile radius from the store. This is ‘where’ analysis.

2) Particular product interests of the customers based on their recent and frequent 
web searches or browsing data, as well as the real-time or near-real time sell-rate 
and inventory level of products. This usually is time-based analysis.

3) There are particular begin and end dates associated with promotions, and even 
store hours. Also, some product sales may be highly affected by holidays, 
seasonality, or special events going on in the area. This usually is temporal.

4) All of those can be combined with the business data, such as a pre-existing list of 
high-value customers and their sales and order history.

As you can see, integration of the business and operational analytics with the 
analytics capabilities for ‘where’ and ‘when’ can provide powerful insights that can 
create actions and improve business outcomes.
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Overview
The following sections describe SQL aggregate functions.

For information on:

• Window aggregate functions and their Teradata-specific equivalents, see Window Aggregate
Functions.

• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ SQL
Operators and User-Defined Functions, B035-1210.

• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and
User-Defined Functions, B035-1210.

About Aggregate Functions
Aggregate functions are typically used in arithmetic expressions. Aggregate functions operate on a group
of rows and return a single numeric value in the result table for each group.

In the following statement, the SUM aggregate function operates on the group of rows defined by the
Sales_Table table:

   SELECT SUM(Total_Sales)
   FROM Sales_Table;
   Sum(Total_Sales)
   ----------------

5192.40

You can use GROUP BY clauses to produce more complex, finer grained results in multiple result values.
In the following statement, the SUM aggregate function operates on groups of rows defined by the
Product_ID column in the Sales_Table table:

   SELECT Product_ID, SUM(Total_Sales)
   FROM Sales_Table
   GROUP BY Product_ID;
   Product_ID  Sum(Total_Sales)
   ----------  ----------------

101 2100.00
107 1000.40
102 2092.00

Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 18



Aggregates in the Select List
Aggregate functions are normally used in the expression list of a SELECT statement and in the summary
list of a WITH clause.

Aggregates and GROUP BY
If you use an aggregate function in the select list of an SQL statement, then either all other columns
occurring in the select list must also be referenced by means of aggregate functions or their column name
must appear in a GROUP BY clause. For example, the following statement uses an aggregate function
and a column in the select list and references the column name in the GROUP BY clause:

   SELECT COUNT(*), Product_ID
   FROM Sales_Table
   GROUP BY Product_ID;

The reason for this is that aggregates return only one value, while a non-GROUP BY column reference
can return any number of values.

Aggregates and Date
It is valid to apply AVG, MIN, MAX, or COUNT to a date. It is not valid to specify SUM(date).

Aggregates and Literal Expressions in the Select List
Literal expressions in the select list may optionally appear in the GROUP BY clause. For example, the
following statement uses an aggregate function and a literal expression in the select list, and does not use
a GROUP BY clause:

   SELECT COUNT(*), 
   SUBSTRING( CAST( CURRENT_TIME(0) AS CHAR(14) ) FROM 1 FOR 8 )
   FROM Sales_Table;

The results of such statements when the table has no rows depends on the type of literal expression.

IF the literal
expression … THEN the result of the literal expression in the query result is …

does not contain a
column reference
is a non-deterministic
function, such as
RANDOM

the value of the literal expression.
Functions such as RANDOM are computed in the immediate retrieve step of the
request instead of in the aggregation step.
Here is an example:
SELECT COUNT(*),
SUBSTRING(CAST(CURRENT_TIME(0) AS CHAR(14))
FROM 1 FOR 8)
FROM Sales_Table;

3: Aggregate Functions
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IF the literal
expression … THEN the result of the literal expression in the query result is …

Count(*) Substring(Current Time(0) From 1 For 8)
-------- ---------------------------------------
       0 09:01:43

contains a column
reference
is a UDF

NULL.
Here is an example:
SELECT COUNT(*), UDF_CALC(1,2)
FROM Sales_Table;
   Count(*) UDF_CALC(1,2)
----------- -------------
          0             ?

Nesting Aggregates
Aggregate operations cannot be nested. The following aggregate is not valid and returns an error:

   AVG(MAXIMUM (Salary)) 

Although direct nesting of aggregates is not supported, nested aggregates can be evaluated using a
derived table that contains the aggregates to be nested. For more information, see Teradata Vantage™
Time Series Tables and Operations, B035-1208.

Also, aggregates can be nested in aggregate window functions. The following statement is valid and
includes an aggregate SUM function nested in a RANK window function:

   SELECT region
      ,product
      ,SUM(amount) 
      ,RANK() OVER (PARTITION BY region ORDER by SUM (amount))
   FROM table;

Results of Aggregation on Zero Rows
Aggregation on zero rows behaves as indicated by the following table.

This form of aggregate function …
Returns this result when there are
zero rows …

COUNT(expression) WHERE … 0

all other forms of aggregate_operator (expression) WHERE … Null

aggregate_operator (expression) … GROUP BY …
aggregate_operator (expression) … HAVING …

No Record Found

3: Aggregate Functions
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Aggregates and Nulls
Aggregates (with the exception of COUNT(*)) ignore nulls in all computations.

Note:
A UDT column value is null only when you explicitly place a NULL in a column, not when a UDT
instance has an attribute that is set to null.

Ignoring nulls can result in apparent nontransitive anomalies. For example, if there are nulls in either
column A or column B (or both), then the following expression is virtually always true.

   SUM(A) + SUM(B) <> SUM(A+B) 

The only exception to this is the case in which the values for columns A and B are both null in the same
rows, because in those cases the entire row is disregarded in the aggregation. This is a trivial case that
does not violate the general rule.

More formally stated, if and only if field A and field B are both null for every occurrence of a null in either
field is the above inequality false.

For examples that illustrate this behavior, see "Example: Employees Returned as Nulls" and "Example:
Counting Employees Not Yet Assigned to a Department" in Result Type and Attributes. Note that the
aggregates are behaving exactly as they should, the results are not mathematically anomalous.

There are several ways to work around this apparent nontransitivity issue if it presents a problem. Either
solution provides the same consistent results.

• Always define your numeric columns as NOT NULL DEFAULT 0.
• Use the ZEROIFNULL function within the aggregate function to convert any nulls to zeros for the

computation, for example SUM(ZEROIFNULL(x) + ZEROIFNULL(y)), which produces the same result
as SUM(ZEROIFNULL(x)) + SUM(ZEROIFNULL(y)).

Aggregate Operations on Floating Point Data
Operations involving floating point numbers are not always associative due to approximation and rounding
errors: ((A + B) + C) is not always equal to (A + (B + C)).

Although not readily apparent, the non-associativity of floating point arithmetic can also affect aggregate
operations: you can get different results each time you use an aggregate function on a given set of floating
point data. When Teradata Database performs an aggregation, it accumulates individual terms from each
AMP involved in the computation and evaluates the terms in order of arrival to produce the final result.
Because the order of evaluation can produce slightly different results, and because the order in which
individual AMPs finish their part of the work is unpredictable, the results of an aggregate function on the
same data on the same system can vary.
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Aggregates and LOBs
Aggregates do not operate on CLOB or BLOB data types.

Aggregates and Period Data Types
Aggregates (with the exception of COUNT) do not operate on Period data types.

Aggregates and SELECT AND CONSUME Statements
Aggregates cannot appear in SELECT AND CONSUME statements.

Aggregates and Recursive Queries
Aggregate functions cannot appear in a recursive statement of a recursive query. However, a non-recursive
seed statement in a recursive query can specify an aggregate function.

Aggregates in WHERE and HAVING Clauses
Aggregates can appear in the following types of clauses:

• The WHERE clause of an ABORT statement to specify an abort condition.

But an aggregate function cannot appear in the WHERE clause of a SELECT statement.

• A HAVING clause to specify a group condition.

DISTINCT Option
The DISTINCT option specifies that duplicate values are not to be used when an expression is processed.

The following SELECT returns the number of unique job titles in a table.

   SELECT COUNT(DISTINCT JobTitle) FROM Employee;

A query can have multiple aggregate functions that use DISTINCT with the same expression, as shown
by the following example.

   SELECT SUM(DISTINCT x), AVG(DISTINCT x) FROM XTable;

A query can also have multiple aggregate functions that use DISTINCT with different expressions, for
example:

   SELECT SUM(DISTINCT x), SUM(DISTINCT y) FROM XYTable;

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 22



Aggregates and Row Level Security Tables
When a request that includes an aggregate function, such as SUM, COUNT, MAX, MIN or AVG, references
a table protected by row level security, the aggregation is based on only the rows that are accessible to
the requesting user. In order to apply all rows of the table to the aggregation, the user must have one of
the following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Time Series Aggregate Functions Overview
A set of aggregate functions is provided to support time series data (optionally stored in Primary Time
Index (PTI) tables). Additionally, some traditional functions support time series as well. To operate on time
series data, both time series-specific functions and traditional functions are invoked in a GROUP BY TIME
clause.

Traditional Aggregate Functions that Support Time Series

You can use the following aggregate functions on time series data in PTI tables by using the GROUP BY
TIME clause and in non-PTI tables by using the GROUP BY TIME clause with the USING TIMECODE
option. For more information on these functions, see Teradata Vantage™ Time Series Tables and
Operations, B035-1208.

• AVERAGE
• COUNT
• KURTOSIS
• MAXIMUM
• MINIMUM
• RANK (ANSI)
• SKEW
• STANDARD DEVIATION OF A POPULATION (STDDEV_POP)
• STANDARD DEVIATION OF A SAMPLE (STDDEV_SAMP)
• SUM
• VARIANCE OF A POPULATION (VAR_POP)
• VARIANCE OF A SAMPLE (VAR_SAMP)

Related Topics
For more information on potential problems associated with floating point values in computations, see
Teradata Vantage™ Data Types and Literals, B035-1143.

For more details on:
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• Window aggregate functions and their Teradata-specific equivalents, see Window Aggregate
Functions.

• Aggregate user-defined functions (UDFs), see Teradata Vantage™ NewSQL Engine Security
Administration, B035-1100.

• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and
User-Defined Functions, B035-1210.

• Row level security, see Teradata Vantage™ NewSQL Engine Security Administration, B035-1100.
• Time series-specific aggregate functions, see Teradata Vantage™ Time Series Tables and

Operations, B035-1208.

AVG
Purpose

Returns the arithmetic average of all values in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null of value_expression, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

value_expression

A literal or column expression for which an average is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.
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ANSI Compliance
This statement is ANSI SQL:2011 compliant.

AVERAGE and AVE are Teradata extensions to the ANSI standard.

Return Value
This function returns the REAL data type.

Computation of INTEGER or DECIMAL Values
An AVG of a DECIMAL or INTEGER value may overflow if the individual values are very large or if there
is a large number of values.

If this occurs, change the AVG call to include a CAST function that converts the DECIMAL or INTEGER
values to REAL as shown in the following example:

   AVG(CAST(value AS REAL) )

Casting the values as REAL before averaging causes a slight loss in precision.

The type of the result is REAL in either case, so the only effect of the CAST is to accept a slight loss of
precision where a result might not otherwise be available at all.

If x is an integer, AVG does not display a fractional value. A fractional value may be obtained by casting
the value as DECIMAL, for example the following CAST to DECIMAL.

   CAST(AVG(value) AS DECIMAL(9,2))

Restrictions
AVG is valid only for numeric data.

Nulls are not included in the result computation.

Example: Using the AVG Function
Example: Querying the Sales Table for Average Sales by Region

This example queries the sales table for average sales by region and returns the following results.

   SELECT Region, AVG(sales)
   FROM sales_tbl
   GROUP BY Region
   ORDER BY Region;
   
   Region  Average (sales)
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   ------  ---------------
   North          21840.17
   East           55061.32
   Midwest        15535.73

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

AVG Window Function
For the AVG window function that computes a group, cumulative, or moving average, see Window
Aggregate Functions.

Related Topics
For more information, see:

• For more information on potential problems associated with floating point values in computations, see
Teradata Vantage™ Data Types and Literals, B035-1143.

• For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

• Teradata Vantage™ NewSQL Engine Security Administration, B035-1100
• For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language

Syntax and Examples, B035-1144.
• To disable the AVG extension, set the DisableUDTImplCastForSysFuncOp field of the DBS Control

Record to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and

Literals, B035-1143.
• For more information on nulls, see Teradata Vantage™ SQL Fundamentals, B035-1141 and

Aggregates and Nulls.
• Aggregate user-defined functions (UDFs), see "Aggregate UDF" in Teradata Vantage™ SQL

Operators and User-Defined Functions, B035-1210.
• Window aggregate UDFs, see "Window Aggregate UDF" in Teradata Vantage™ SQL Operators and

User-Defined Functions, B035-1210.

CORR
Purpose

Returns the Sample Pearson product moment correlation coefficient of its arguments for all non-null data
point pairs.

Syntax
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Syntax Elements

value_expression_2/value_expression_1

A numeric expression to be correlated with a second numeric expression.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The Sample Pearson product moment correlation coefficient is a measure of the linear association
between variables. The boundary on the computed coefficient ranges from -1.00 to +1.00.

Note that high correlation does not imply a causal relationship between the variables.

The following table indicates the meaning of four extreme values for the coefficient of correlation between
two variables.

IF the correlation
coefficient has this
value … THEN the association between the variables …

-1.00 is perfectly linear, but inverse.
As the value for y varies, the value for x varies identically in the opposite
direction.

0 does not exist and they are said to be uncorrelated.

+1.00 is perfectly linear.
As the value for y varies, the value for x varies identically in the same direction.

NULL cannot be measured because there are no non-null data point pairs in the data
used for the computation.

Computation
The equation for computing CORR is defined as follows:

This variable … Represents …

x value_expression_2

y value_expression_1
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Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for CORR(y, x) are as follows.

Data Type Format Title

REAL the default format for DECIMAL(7,6) CORR(y,x)

For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including CORR, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE.

Combination With Other Functions
CORR can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or ORDER
BY clause. For information on ordered analytical functions, see Ordered Analytical Functions.

CORR cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause, or
ORDER BY clause.

Example: Querying Data from the HomeSales Table

This example uses the data from the HomeSales table.

SalesPrice   NbrSold   Area
----------   -------   ---------
    160000       126   358711030
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    180000       103   358711030
    200000        82   358711030
    220000        75   358711030
    240000        82   358711030
    260000        40   358711030
    280000        20   358711030

Consider the following query.

   SELECT CAST (CORR(NbrSold,SalesPrice) AS DECIMAL (6,4)) 
   FROM HomeSales
   WHERE area = 358711030 
   AND SalesPrice Between 160000 AND 280000;
   
   CORR(NbrSold,SalesPrice)
   ------------------------
                     -.9543

The result -.9543 suggests an inverse relationship between the variables. That is, for the area and sales
price range specified in the query, the value for NbrSold increases as sales price decreases and
decreases as sales price increases.

CORR Window Function
For the CORR window function that performs a group, cumulative, or moving computation, see Window
Aggregate Functions.

Related Topics
For more information, see:

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

• For details, see Teradata Vantage™ - Database Utilities, B035-1102.

COUNT
Purpose

Returns a column value that is the total number of qualified rows in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.
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Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

The expression cannot contain any ordered analytical or aggregate functions.

value_expression

A literal or column expression for which the number of values is to be counted.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

*

Counts all rows in the group of rows on which COUNT operates.

Usage Notes
This syntax … Counts the total number of rows …

COUNT(value_expression) in the group for which value_expression is not null.

COUNT (DISTINCT value_expression) in the group for which value_expression is unique and not null.

COUNT(*) in the group of rows on which COUNT operates.

COUNT is valid for any data type.
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Result Type and Attributes
The following table lists the data type and format for the result of COUNT.

Mode Data Type and Format

ANSI MaxDecimal is general field 13 in the DBS Control utility.
If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0) and the format is -(15)9.
• 18, then the result type is DECIMAL(18,0) and the format is -(18)9.
• 38, then the result type is DECIMAL(38,0) and the format is -(38)9.

Teradata INTEGER and the format is the default format for INTEGER.

COUNT The default value for the DBSControl General Field(80), COUNT_mode, is 0. The default is
compatibility mode, which disables all extensions that impact external applications.

BIGINT and NUMBER modes impact COUNT performance:

• Type promotion may entail computing expressions using a different type if the mode is changed. This
occurs when the result of the COUNT (*) based expression is materialized as a BIGINT/NUMBER
type, and later used as a subexpression for computing another expression. The performance
overhead is the same as that incurred when casting COUNT (*) as BIGINT/NUMBER.

• Since the data type of COUNT (*) changes if the mode is changed, queries that made assumptions
on format, title, and data type must be aware of the change.

If the result of COUNT overflows and reports an error, you can cast the result to another data type, as
illustrated by the following example.

   SELECT CAST(COUNT(*) AS BIGINT)
   FROM BIGTABLE;

A similar example is provided for COUNT and rank window functions:

SELECT CAST(COUNT(*) over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE; 
SELECT CAST(rank over([PARTITION/ORDER BY]) AS BIGINT)
FROM BIGTABLE;

Note:
The CAST is required only for default or compatibility mode. If value of 1 or 2 is specified for NUMBER
or BIGINT mode of computing COUNT, then the CAST is not required.

The following table lists the default title for the result of COUNT.
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Operation Title

COUNT(x) Count(x)

COUNT(*) Count(*)

COUNT Specification in Aggregate Join Index

You can specify COUNT, COUNT cast to FLOAT OR DECIMAL(38,0), BIGINT, or NUMBER for a COUNT
aggregate function in a join index. The following illustrates a SHOW JOIN INDEX that accommodates data
type casts to BIGINT:

CREATE JOIN INDEX TEST.j1 ,NO FALLBACK ,CHECKSUM = DEFAULT AS
SELECT COUNT (*)(BIGINT, NAMED a ),TEST.t1.a1
FROM TEST.t1
GROUP BY TEST.t1.a1
PRIMARY INDEX ( a1 );

Examples: Using the COUNT Function
Example: Reporting the Number of Employees in Each Department

COUNT(*) reports the number of employees in each department because the GROUP BY clause groups
results by department number.

   SELECT DeptNo, COUNT(*) FROM Employee 
   GROUP BY DeptNo 
   ORDER BY DeptNo;

Without the GROUP BY clause, only the total number of employees represented in the Employee table is
reported:

   SELECT COUNT(*) FROM Employee;

Note that without the GROUP BY clause, the select list cannot include the DeptNo column because it
returns any number of values and COUNT(*) returns only one value.

Example: Employees Returned as Nulls

If any employees have been inserted but not yet assigned to a department, the return includes them as
nulls in the DeptNo column.

   SELECT DeptNo, COUNT(*) FROM Employee 
   GROUP BY DeptNo 
   ORDER BY DeptNo;

Assuming that two new employees are unassigned, the results table is:
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   DeptNo   Count(*)
   ------   --------
   ?               2
      100          4
      300          3
      500          7
      600          4
      700          3

Example: Counting Employees Not Yet Assigned to a Department

If you ran the report in Example: Reporting the Number of Employees in Each Department using SELECT...
COUNT … without grouping the results by department number, the results table would have only registered
non-null occurrences of DeptNo and would not have included the two employees not yet assigned to a
department(nulls). The counts differ (23 in Example: Reporting the Number of Employees in Each
Department as opposed to 21 using the statement documented in this example).

Recall that in addition to the 21 employees in the Employee table who are assigned to a department, there
are two new employees who are not yet assigned to a department (the row for each new employee has
a null department number).

   SELECT COUNT(deptno) FROM employee ; 

The result of this SELECT is that COUNT returns a total of the non-null occurrences of department number.

Because aggregate functions ignore nulls, the two new employees are not reflected in the figure.

   Count(DeptNo) 
   --------------
              21 

Example: Using COUNT to Find the Number of Employees by Gender

This example uses COUNT to provide the number of male employees in the Employee table of the
database.

   SELECT COUNT(sex) 
   FROM Employee 
   WHERE sex = 'M' ;

The result is as follows.

   Count(Sex)
   ----------
           12
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Example: Providing a Total of the Rows with Non-Null Department Numbers

In this example COUNT provides, for each department, a total of the rows that have non-null department
numbers.

   SELECT deptno, COUNT(deptno) 
   FROM employee 
   GROUP BY deptno 
   ORDER BY deptno ;

Notice once again that the two new employees are not included in the count.

   DeptNo   Count(DeptNo)
   ------   -------------
      100               4
      300               3
      500               7
      600               4
      700               3

Example: Returning the Number of Employees by Department

To get the number of employees by department, use COUNT(*) with GROUP BY and ORDER BY clauses.

   SELECT deptno, COUNT(*) 
   FROM employee 
   GROUP BY deptno 
   ORDER BY deptno ;

In this case, the nulls are included, indicated by QUESTION MARK.

   DeptNo   Count(*)
   ------   --------
   ?               2
      100          4
      300          3
      500          7
      600          4
      700          3

Example: Determining the Number of Departments in the Employee Table

To determine the number of departments in the Employee table, use COUNT (DISTINCT) as illustrated in
the following SELECT COUNT.

   SELECT COUNT (DISTINCT DeptNo) 
   FROM Employee ;
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The system responds with the following report.

   Count(Distinct(DeptNo))
   -----------------------
                         5

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Related Topics
For more information, see:

• For COUNT functions that return the group, cumulative, or moving count, see Window Aggregate
Functions.

• With the exception of COUNT(*), the computation does not include nulls. For more information, see
Teradata Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

• For information on data type default formats, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For information on the COUNT_mode field, see Teradata Vantage™ - Database Utilities, B035-1102.

COVAR_POP
Purpose

Returns the population covariance of its arguments for all non-null data point pairs.

Syntax

Syntax Elements

value_expression_1/value_expression_2

A numeric expression to be paired with a second numeric expression to determine their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.
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Definition
Covariance measures whether or not two random variables vary in the same way. It is the average of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.

Combination With Other Functions
COVAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

COVAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are no non-null data point pairs in the data used for the computation, then COVAR_POP
returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for COVAR_POP are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval
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To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_POP, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

COVAR_POP Window Function
For the COVAR_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

COVAR_SAMP
Purpose

Returns the sample covariance of its arguments for all non-null data point pairs.

Syntax

Syntax Elements

value_expression_2/value_expression_1

A numeric expression to be paired with a second numeric expression to determine their covariance.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
Covariance measures whether or not two random variables vary in the same way. It is the sum of the
products of deviations for each non-null data point pair.

Note that high covariance does not imply a causal relationship between the variables.
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Combination with Other Functions
COVAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

COVAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are no non-null data point pairs in the data used for the computation, then COVAR_SAMP
returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for COVAR_SAMP(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including COVAR_SAMP, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.
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For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

COVAR_SAMP Window Function
For the COVAR_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Using the SELECT statement to Return the Sample
Covariance of Weight and Height
This example is based on the following regrtbl data. Nulls are indicated by the QUESTION MARK
character.

c1 height weight

1 60 84

2 62 95

3 64 140

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

The following SELECT statement returns the sample covariance of weight and height where neither weight
nor height is null.

   SELECT COVAR_SAMP(weight,height) 
   FROM regrtbl;

   Covar_Samp(weight,height)
   -------------------------
                         150
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GROUPING
Purpose

Returns a value that indicates whether a specified column in the result row was excluded from the grouping
set of a GROUP BY clause.

Syntax

Syntax Elements

expression

A column in the result row that might have been excluded from a grouped query containing CUBE,
ROLLUP, or GROUPING SET.

The argument must be an item of a GROUP BY clause.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Usage Notes
A null in the result row of a grouped query containing CUBE, ROLLUP, or GROUPING SET can mean one
of the following:

• The actual data for the column is null.
• The extended grouping specification aggregated over the column and excluded it from the particular

grouping. A null in this case really represents all values for this column.

Use GROUPING to distinguish between rows with nulls in actual data from rows with nulls generated from
grouping sets.

Result Type and Attributes
The data type, format, and title for GROUPING(x) are as follows.

Data Type Format Title

INTEGER Default format of the INTEGER data type Grouping(x)
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Result Value

IF the value of the specified column in the result row is …
THEN GROUPING
returns …

a NULL generated when the extended grouping specification aggregated over
the column and excluded it from the particular grouping

1

anything else 0

Example: Viewing Sales Summaries by County and by City
Suppose you have the following data in the sales_view table.

PID Cost Sale Margin State County City

1 38350 50150 11800 CA Los Angeles Long Beach

1 63375 82875 19500 CA San Diego San Diego

1 46800 61200 14400 CA Los Angeles Avalon

2 40625 53125 12500 CA Los Angeles Long Beach

To look at sales summaries by county and by city, use the following SELECT statement:

   SELECT county, city, sum(margin) 
   FROM sale_view
   GROUP BY GROUPING SETS ((county),(city));

The query reports the following data:

   County       City        Sum(margin)
   -----------  ----------  -----------
   Los Angeles  ?                 38700
   San Diego    ?                 19500
   ?            Long Beach        24300
   ?            San Diego         19500
   ?            Avalon            14400

Notice that in this example, a null represents all values for a column because the column was excluded
from the grouping set represented.

To distinguish between rows with nulls in actual data from rows with nulls generated from grouping sets,
use the GROUPING function:

   SELECT county, city, sum(margin), 
          GROUPING(county) AS County_Grouping, 
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          GROUPING(city) AS City_Grouping
   FROM sale_view
   GROUP BY GROUPING SETS ((county),(city));

The results are:

   County      City       Sum(margin) County_Grouping City_Grouping
   ----------- ---------- ----------- --------------- -------------
   Los Angeles ?                38700               0             1
   San Diego   ?                19500               0             1
   ?           Long Beach       24300               1             0
   ?           San Diego        19500               1             0
   ?           Avalon           14400               1             0
   

You can also use GROUPING to replace the nulls that appear in a result row because the extended
grouping specification aggregated over a column and excluded it from the particular grouping. For
example:

   SELECT CASE 
            WHEN GROUPING(county) = 1
            THEN '-All Counties-'
            ELSE county
          END AS County,
          CASE 
            WHEN GROUPING(city) = 1
            THEN '-All Cities-'
            ELSE city
          END AS City,
          SUM(margin) 
   FROM sale_view
   GROUP BY GROUPING SETS (county,city);

The query reports the following data:

   County          City          Sum(margin)
   --------------  ------------  -----------
   Los Angeles     -All Cities-        38700
   San Diego       -All Cities-        19500
   -All Counties-  Long Beach          24300
   -All Counties-  San Diego           19500
   -All Counties-  Avalon              14400
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Related Topics
For more information on GROUP BY, GROUPING SETS, ROLLUP, and CUBE, see Teradata Vantage™
SQL Data Manipulation Language, B035-1146.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

KURTOSIS
Purpose

Returns the kurtosis of the distribution of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

value_expression

A literal or column expression for which the kurtosis of the distribution of its values is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 43



Definition
Kurtosis is the fourth moment of the distribution of the standardized (z) values. It is a measure of the outlier
(rare, extreme observation) character of the distribution as compared with the normal, Gaussian
distribution.

The normal distribution has a kurtosis of 0.

Positive kurtosis indicates that the distribution is more outlier-prone than the normal distribution, while
negative kurtosis indicates that the distribution is less outlier-prone than the normal distribution.

Return Value
This function returns the REAL data type.

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including KURTOSIS, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

Computation
The equation for computing KURTOSIS is defined as follows:

where:
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This variable … Represents …

x value_expression

Conditions That Produce a NULL Return Value
The following conditions produce a null return value:

• Fewer than four non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

MAX
Purpose

Returns a column value that is the maximum value for value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null specified by value_expression, including duplicates, are included in the
maximum value computation for the group. This is the default.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the maximum
value computation for the group.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 45



value_expression

A literal or column expression for which the maximum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MAXIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MAX(x).

Attribute Value

Data Type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Format If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Maximum(x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MAX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
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DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .

Usage Notes
MAX is valid for character data as well as numeric data. When used with a character expression, MAX
returns the highest sort order.

Nulls are not included in the result computation. For more information, see Teradata Vantage™ SQL
Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression is a column expression, the column must refer to at least one column in the table from
which data is selected.

The value_expression must not specify a column reference to a view column that is derived from a function.

MAX Window Function
For the MAX window function that computes a group, cumulative, or moving maximum value, see Window
Aggregate Functions.

Examples: Using the MAX Function
Example: CHARACTER Data

The following SELECT returns the immediately following result.

   SELECT MAX(Name) 
   FROM Employee; 
   
   Maximum(Name)
   -------------
   Zorn J

Example: Column Expressions

You want to know which item in your warehouse stock has the maximum cost of sales.

   SELECT MAX(CostOfSales) AS m, ProdID 
   FROM Inventory
   GROUP BY ProdID
   ORDER BY m DESC;
   
   Maximum(CostOfSales)  ProdID
   --------------------  ------
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                   1295    3815
                    975    4400
                    950    4120

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

MIN
Purpose

Returns a column value that is the minimum value for value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values that are not null specified by value_expression, including duplicates, are included in the
minimum value computation for the group. This is the default.

DISTINCT

Exclude duplicates specified by value_expression from the computation.

Duplicate and values that are not null specified by value_expression are eliminated from the minimum
value computation for the group.

value_expression

A literal or column expression for which the minimum value is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.
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ANSI Compliance
This statement is ANSI SQL:2011 compliant.

MINIMUM is a Teradata extension to the ANSI SQL:2011 standard.

Result Type and Attributes
The following table lists the default attributes for the result of MIN(x).

Attribute Value

Data type If operand x is not a UDT, the result data type is the data type of operand x.
If operand x is a UDT, the result data type is the data type to which the UDT is implicitly cast.

Title Minimum(x)

Format If operand x is not a UDT, the result format is the format of operand x.
If operand x is a UDT, the result format is the format of the data type to which the UDT is
implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on a UDT argument that has an implicit
cast that casts between the UDT and any of the following predefined types:

• Numeric
• Character
• Byte
• DATE
• TIME or TIMESTAMP
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including MIN, is a Teradata extension
to the ANSI SQL standard. To disable this extension, set the DisableUDTImplCastForSysFuncOp field of
the DBS Control Record to TRUE. For details, see Teradata Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143 .
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Usage Notes
MINIMUM is valid for character data as well as numeric data. MINIMUM returns the lowest sort order of a
character expression.

The computation does not include nulls. For more information, see “Manipulating Nulls” in Teradata
Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

If value_expression specifies a column expression, the expression must refer to at least one column in
the table from which data is selected.

If value_expression specifies a column reference, the column must not be a view column that is derived
from a function.

MIN Window Function
For the MIN window function that computes a group, cumulative, or moving minimum value, see Window
Aggregate Functions.

Examples: Using the MINIMUM Function
Example: MINIMUM Used With CHARACTER Data

The following SELECT returns the immediately following result.

   SELECT MINIMUM(Name) 
   FROM Employee; 
   
   Minimum(Name)
   -------------
   Aarons A    

Example: JIT Inventory

Your manufacturing shop has recently changed vendors and you know that you have no quantity of parts
from that vendor that exceeds 20 items for the ProdID. You need to know how many of your other inventory
items are low enough that you need to schedule a new shipment, where “low enough” is defined as fewer
than 30 items in the QUANTITY column for the part.

   SELECT ProdID, MINIMUM(QUANTITY)
   FROM Inventory
   WHERE QUANTITY BETWEEN 20 AND 30
   GROUP BY ProdID
   ORDER BY ProdID;

The report is as follows:
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        ProdID  Minimum(Quantity)
   -----------  -----------------
          1124                 24
          1355                 21
          3215                 25
          4391                 22

For time series examples, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

PIVOT
Purpose

PIVOT is a relational operator for transforming rows into columns. The function is useful for reporting
purposes, as it allows you to aggregate and rotate data to create easy-to-read tables. You can perform
PIVOT aggregation on PIVOT column results by using the WITH clause.

Specify the PIVOT operator in the FROM clause of the SELECT statement. There are no restrictions on
other clauses that can be specified with the SELECT query that include PIVOT operators.

Syntax

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 51



Syntax Elements

aggr_fn

An aggregate function that supports a single argument.

pvt_aggr_alias

An alias name specified for the Aggregate function.

expr_alias_name

An alias name specified for the values/expressions specified in the IN list.

cname

A column name.

derived_table_name

The table name specified for the resultant pivoted table.

expr

An expression or a column value.

WITH

Using the WITH clause, you can specify all Pivot columns using an asterisk (*) or a subset of columns
on which the aggregation function needs to perform.

aggr_fn
An aggregate function.

column_list
A list of one or more columns. If the list contains more than one column, separate them with
commas.

*
Option to include all the Pivot columns without specifying columns explicitly.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 52



alias
Name of the aggregate result column.

Usage Notes

Note:
For the PIVOT operation, column names within the Aggregate functions are referred to as measure
columns, and column names in the FOR clause are referred to as pivot columns.

As indicated in the syntax, specify at least one Aggregate function with the PIVOT operator.

Columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed with the PIVOT operator.

Column names are not allowed within the IN-list. Only values or expressions (arithmetic expressions such
as MOD or ABS, or string Manipulation expressions such as LENGTH, REVERSE) are allowed.

Measure columns and pivot columns of the PIVOT operator are not allowed in the assign list of the SELECT
statement.

If n number of Aggregate functions are specified where n is greater than 1, then the alias name must be
specified for at least (n-1) aggregate functions.

The cname specified in the derived_table_name takes precedence over the alias names derived from the
IN-list.

If the alias names are not specified for the column values listed in the IN clause, the database processing
encloses the column values into double quotes and converts these string literals to alias names using the
default format. The alias names are used as column names of the pivoted table.

If the length of the alias name derived from a column value exceeds the alias name limit of 128 characters
(if EON feature is enabled) or 30 characters (if EON is not enabled), the alias name is truncated.

If the IN-list contains case-specific values such as ‘abc’ & ‘ABC’, the values are treated the same and an
error occurs.

PIVOT supports the UNPIVOT or TD_UNPIVOT functions as a query source for the PIVOT operator.

The PIVOT/UNPIVOT operator uses a single dimensional way of converting rows to columns, or columns
to rows. You can swap both rows and columns within a single query (for example, using UNPIVOT as
source to PIVOT). This provides flexibility when using the two-dimensional method of interchanging data
in a table.

Using the DT column list for UNPIVOT as a query source to PIVOT is optional.

If the WITH clause is specified in the PIVOT query:

• Specifiying at least one aggregate function with the WITH operator is mandatory.
• SUM, AVG, MIN, and MAX aggregate functions are supported.
• The cname specified in the derived_table_name takes precedence over the alias names derived for

the aggregated result columns.
• DISTINCT keyword is not supported with aggregate column.
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• Column list is not allowed if an asterisk (*) is specified.
• Aggregating a column list or * may produce meaningless results if the values aggregated are not

related. For example, if some pivot columns are for SUM and some are for an AVG, WITH SUM(*) is
not a meaningful value.

• Column names mentioned in the aggregate function should be PIVOT columns or subset of PIVOT
columns.

To avoid the overhead of issuing a separate query to generate values for input to the PIVOT IN-list clause
as hard coded constants, you can issue the query as a subquery in the PIVOT IN-list. If a PIVOT query
has a subquery in the IN-list:

• Alias names are not allowed in the IN-list.
• Alias names in the PIVOT derived table are not allowed.
• The SELECT list of the subquery must contain only one column reference.
• The subquery must return at least one row.
• The results returned by the subquery cannot exceed 32KB, and the row count must be less than or

equal to 16.
• SET operations are not allowed on a PIVOT query that has a subquery in the IN-list.
• Columns generated by an IN-list subquery cannot be explicitly used in the SELECT.
• You cannot use a subquery in a PIVOT IN-list with DDL statements or multistatement requests.
• A PIVOT query cannot include both a WITH clause and a subquery in the IN-list.

For examples of wide tables, see Pivot Examples.

Examples

Example: Alias Names Contained in the IN List

This example uses the star1 table, with the following definition and contents:

CREATE TABLE star1(country VARCHAR(20),state VARCHAR(10), yr INTEGER,qtr 
VARCHAR(3),sales INTEGER,cogs INTEGER);

SELECT * FROM star1;
country  state           yr  qtr        sales         cogs
-------  -----  -----------  ---  -----------  -----------
USA      CA            2001  Q1            30           15
Canada   ON            2001  Q2            10            0
Canada   BC            2001  Q3            10            0
USA      NY            2001  Q1            45           25
USA      CA            2001  Q2            50           20

In this example, the IN list contains alias names. The alias names are concatenated with the alias names
specified by the aggregate functions to build the column names of the output pivoted table.
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SELECT *
FROM star1 PIVOT (
                   SUM(sales) as ss1, SUM(cogs) as sc FOR 
qtr                                                                                               
                                       IN (‘Q1’ AS 
Quarter1,                                                                        
                             
                                           ‘Q2’ AS Quarter2, 
                                           ‘Q3’ AS Quarter3)
                                          )Tmp;

The output is re-written as an equivalent SELECT query using CASE statements:

SELECT *  FROM  (SELECT country ,state ,yr ,
SUM(CASE WHEN qtr =  'Q1' THEN sales ELSE NULL END )AS  Quarter1_ss1,
SUM(CASE WHEN qtr =  'Q1' THEN (cogs) ELSE NULL END )AS Quarter1_sc,
SUM(CASE WHEN qtr =  'Q2' THEN (sales) ELSE NULL END)AS Quarter2_ss1,
SUM(CASE WHEN qtr =  'Q2' THEN (cogs) ELSE NULL  END)AS Quarter2_sc,
SUM(CASE WHEN qtr =  'Q3' THEN (sales) ELSE NULL END)AS Quarter3_ss1,
SUM(CASE WHEN qtr =  'Q3' THEN (cogs) ELSE NULL END)AS Quarter3_sc
FROM star1 GROUP BY country ,state ,yr ) Tmp ;

Output pivoted table:

country state yr   Quarter1_ss1 Quarter1_sc Quarter2_ss1 Quarter2_sc Quarter3_ssl 
Quarter3_sc
------- ---- ----  ------------ ----------- ------------ ----------- ------------ 
-----------
USA     CA  2001             30          15           50          20            ?           ?
USA     NY  2001             45          25            ?           ?            ?           ?
Canada  ON  2001              ?           ?           10           0            ?           ?
Canada  BC  2001              ?           ?            ?           ?           
10           0

Example: Naming Columns with the <column_value_list> Values

In this example, the SELECT statement does not specify the names to use for columns explicitly. The
names of the columns are built internally by adding the aggregated column name to the
<column_value_list> values.

SELECT *
FROM star1 PIVOT (SUM(sales) AS ss1, SUM(cogs) AS sc FOR (yr, qtr)
                                                  IN ((2001, ‘Q1’),
                                                      (2001, ‘Q2’),
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                                                      (2001, ‘Q3’))
                                                     )Tmp;

This is re-written as an equivalent SELECT query that uses CASE statements:

SELECT *  FROM  (SELECT country ,state ,
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q1' THEN sales ELSE NULL END) AS 
"2001_'Q1'_ss1" ,
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q1' THEN cogs ELSE NULL END) AS 
"2001_'Q1'_sc",
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q2' THEN sales ELSE NULL END) AS 
"2001_'Q2'_ss1" ,
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q2' THEN cogs ELSE NULL END) AS 
"2001_'Q2'_sc",
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q3' THEN sales ELSE NULL END) AS 
"2001_'Q3'_ss1",
SUM(CASE WHEN yr =  2001 AND  qtr =  'Q3' THEN cogs ELSE NULL END) AS "2001_'Q3'_sc"
FROM star1 GROUP BY country ,state ) Tmp ;

Output pivoted table:

country state 2001_'Q1'_ss1 2001'_'Q1'_sc 2001_'Q2'_ss1 2001_'Q2'_sc 
2001_'Q3'_ssl 2001_'Q3'_sc
------- ----  ------------- ------------- ------------- ------------ 
------------- ------------
USA     CA               30            15            50           20            ?             ?
USA     NY               45            25             ?            ?            ?             ?
Canada  ON                ?             ?            10            0            ?             ?
Canada  BC                ?             ?             ?            ?           
10             0

Example: Pivot Operation on View

The following example of a view as a PIVOT source.

Assume a view, v1, is defined on the table s1:

CREATE TABLE s1(yr INTEGER, mon VARCHAR(4), sales INTEGER);

sel * from s1;

sel * from s1;

 *** Query completed. 8 rows found. 3 columns returned.
 *** Total elapsed time was 1 second.
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         yr  mon         sales
-----------  ----  -----------
       2001  jan           100
       2003  jan           300
       2002  jan           150
       2001  feb           110
       2003  feb           310
       2002  feb           200
       2001  mar           120
       2002  mar           250

CREATE VIEW V1 AS select yr,sales  from s1;

 *** View has been created.
 *** Total elapsed time was 1 second.

sel * from v1;

select * from v1;

 *** Query completed. 8 rows found. 2 columns returned.
 *** Total elapsed time was 1 second.

         yr        sales
-----------  -----------
       2002          150
       2003          300
       2002          200
       2003          310
       2002          250
       2001          100
       2001          110
       2001          120

The following query generates sales report with respect to each year on view V1:

SELECT *
FROM v1 PIVOT (SUM(sales) FOR yr IN (2001,2002,2003)) tmp;

 *** Query completed. One row found. 3 columns returned.
 *** Total elapsed time was 1 second.
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       2001         2002         2003
-----------  -----------  -----------
        330          600          610

Example: Table Source Using the WITH Clause

The following is an example of a table using the WITH clause as a source to the pivot query.

SELECT *
FROM (with temp
as (select * from s1) select * from temp)dt PIVOT (SUM(sales) FOR mon IN 
('Jan','Feb', 'Mar'))tmp;

 *** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
         yr          Jan          Feb          Mar
      -----        ------       ------      -------
       2001          100          110          120
       2002          150          200          250
       2003          300          310            ?

Example: SELECT Query with the WHERE Condition

The following is an example of using a SELECT query with the WHERE condition:

SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (‘Jan’ as Jan, ‘Feb’ as Feb, ‘Mar’ as 
Mar))tmp where Jan=100;

 *** Query completed. 1 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.
      Yr          Jan          Feb          Mar
  ------       --------     --------     --------
    2001          100          110          120

Example: CREATE TABLE AS Statement Contains Special Characters

In this example, the CREATE TABLE AS statement contains special characters in the pivot query IN list.

CREATE TABLE t1 AS 
(SELECT *
FROM s1 PIVOT (SUM(sales) FOR mon IN (U&"#FAD7" UESCAPE '#')) tmp ) WITH DATA;
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*** Failure 4306 Invalid PIVOT query: Unsupported In-List Values/Expressions.
                Statement# 1, Info =0 
 *** Total elapsed time was 1 second.

Example: The PIVOT Query Response in Different Response Modes

Assume a table t1 is defined as:

CREATE TABLE t1(yr INTEGER,mon VARCHAR(3),sales INTEGER);

Assume that following insert statements 
INSERT t1 VALUES(2003,'Jan',300);
INSERT t1 VALUES(2001,'Jan',100);
INSERT t1 VALUES(2003,'Feb',310);
INSERT t1 VALUES(2001,'Feb',110);
INSERT t1 VALUES(2002,'Jan',150);
INSERT t1 VALUES(2001,'Mar',120);
INSERT t1 VALUES(2002,'Feb',200);
INSERT t1 VALUES(2002,'Mar',250);
INSERT t1 VALUES(2003,'Mar',1000);

Assuming that the PIVOT query is submitted for execution, the output returns as different responses
modes.

For a PIVOT query:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN ('Jan','Feb','Mar')) tmp;

For a PIVOT query re-written as a SELECT statement using CASE expressions:

SELECT yr,SUM(case when mon='Jan' then sales end) AS "Jan",
SUM(case when mon='Feb' then sales end) AS "Feb",
SUM(case when mon='Mar' then sales end) AS "Mar"
FROM t1 GROUP BY yr;

.field mode

 *** Query completed.  3 rows found.

         yr          Jan          Feb          Mar
-----------  -----------  -----------  -----------
       2001          100          110          120
       2003          300          310         1000
       2002          150          200          250
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.multipartrecord mode

 *** Query completed.  3 rows found.

        yr         Jan         Feb         Mar
----------  ----------  ----------  ----------
      2001         100         110         120
      2003         300         310        1000
      2002         150         200         250

.record mode

 *** Query completed.  3 rows found.

         yr          Jan          Feb          Mar
-----------  -----------  -----------  -----------
       2001          100          110          120
       2003          300          310         1000
       2002          150          200          250

.indicator mode

 *** Query completed.  3 rows found.

         yr          Jan          Feb          Mar
-----------  -----------  -----------  -----------
       2001          100          110          120
       2003          300          310         1000
       2002          150          200          250

Example: Pivot Query Truncates the Alias Name

For the first part of this example, the EnableEON dbscontrol flag is set to false, so the column name limit
defaults to 30 characters.

Assume the table t1 is defined as:

CREATE TABLE t1(yr INTEGER, mon VARCHAR(41), sales INTEGER);

Also assume that the table t1 contains the following row:

SELECT * FROM  t1;
yr     mon                                         sales
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----   ----------------------------------          -----
2001   aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa          200

The row contains 35 characters for the column ‘mon’.

The following pivot query results truncate the ‘mon’ column value from 35 characters to 30 characters:

SELECT * FROM t1 PIVOT(SUM(sales) FOR mon IN 
('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'))tmp;

YR  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
----  -------------------------------
2001  200

Now, assume that the EnableEON dbscontrol flag is set to true, so the column name limit defaults to 128
characters.

Also assume that table t2 is defined as follows:

CREATE TABLE t2(yr INTEGER, mon VARCHAR(131), sales INTEGER);

Assume that the table t2 contains the following row:

SELECT mon FROM t2;
mon
--------------------------------------------------------------------------------
-----------------------------------------------
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

The row contains 130 characters for the column ‘mon’.

The following pivot query truncates the ‘mon’ column value from 130 characters to 128 characters:

SELECT * FROM t2 PIVOT(SUM(sales) FOR mon IN 
('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')) tmp;

YR   
----
2001
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
--------------------------------------------------------------------------------
--------------------------------------------------
200
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Example: Using TD_UNPIVOT or UNPIVOT as a Source to PIVOT

PIVOT supports UNPIVOT query or the TD_UNPIVOT function as a source for the PIVOT operator.

PIVOT/ UNPIVOT uses a single dimensional method to interchange data, such as converting rows to
columns, or columns to rows, based on some aggregation on a column data.

Swap rows and columns within a single query by giving UNPIVOT query as a source to PIVOT. This
provides flexibility for a two-dimensional way of interchanging data in a table based on some aggregation
on a column.

Note:

To change data with a two-dimensional method, aggregate data on a column, and then interchange
the rows and columns twice. In this case, swap rows and columns based on some aggregation on
a column data. The table rotates twice by some aggregation, but might not return the actual table
rows. It could introduce new rows where data is missing, or eliminate rows if data is aggregated in
the process.

Two-dimensional uses PIVOT as source to the UNPIVOT query, or UNPIVOT as a source to a
PIVOT query. Using PIVOT as source to an UNPIVOT query is complex when writing the SQL,
whereas using UNPIVOT as a source to PIVOT query is easier.

First, create a table with the following data:

CREATE TABLE t1 (place CHAR(5), sales1 INTEGER, sales2 INTEGER, 
                 sales3 INTEGER, sales4 INTEGER, sales5 INTEGER)
PRIMARY INDEX ( place );

place     sales1    sales2    sales3    sales4    sales5
-----  ---------  --------  --------  --------  --------
Hyd          110       100      1000      1100       500
Che          120       200      2000      1200       600
Kol          150       500      5000      1500       900
Mee          140       400      4000      1400       800
Pun          130       300      3000      1300       700

To get the SUM of sales for each place, swap the sales and place using the following query:

SELECT * from (SELECT * from t1 
            UNPIVOT(saleval 
                    for sales in (sales1, sales2, sales3,
                                  sales4, sales5))dt1)dt2
                 PIVOT(SUM(saleval) 
                       for place in ('hyd','Che','pun',
                                     'mee','kol'))dt3;
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The results for using UNPIVOT as the source:

sales       Hyd       Che       Pun       Mee       Kol
-----  --------  --------  --------  --------  --------
sales1      110       120       130       140       150
sales2      100       200       300       400       500
sales3     1000      2000      3000      4000      5000
sales4     1100      1200      1300      1400      1500
sales5      500       600       700       800       900

Example: Aggregation on Two Columns from PIVOT Results

This example shows how to sum sales in the months of Jan and Feb for each year. This is an aggregation
on two columns from the PIVOT result.

Table s1 is defined as:

CREATE TABLE s1 (yr INTEGER, mon VARCHAR(20), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr      mon      sales
-----   ---      -----
2001    Jan       100
2003    Jan       300
2002    Jan       150
2001    Feb       110
2003    Feb       310
2002    Feb       200
2001    Mar       120
2002    Mar       250

The PIVOT query is:

SELECT * FROM s1 PIVOT(SUM(SALES) FOR MON IN ('JAN', 'FEB', 'MAR')
  WITH SUM("'JAN'", "'FEB'") AS AGGR1 ) DT
order by 1;

AGGR1 is the name of the aggregated result column.

Output:

      yr        'JAN'        'FEB'        'MAR'        AGGR1
--------  -----------  -----------  -----------  -----------
    2001          100          110          120          210
    2002          150          200          250          350
    2003          300          310            ?          610
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Example: Subquery in PIVOT IN-List

This is an example of having a subquery in PIVOT IN-list.

Table s1 is defined as:

CREATE TABLE s1(yr INTEGER, mon VARCHAR (5), sales INTEGER);
CREATE TABLE s2(yr INTEGER, mon VARCHAR (5), sales INTEGER);

The table contains:

SELECT * FROM s1;
yr      mon      sales
-----   ---      -----
2001    Jan       100
2003    Jan       300
2002    Jan       150
2001    Feb       110
2003    Feb       310
2002    Feb       200
2001    Mar       120
2002    Mar       250

SELECT * FROM s2;
 yr     mon      sales
-----  -----    -------
2001    Jan       100
2002    Mar       250
2003    Feb       310

The table as a source to a PIVOT query having a subquery in PIVOT IN-list:

SELECT * FROM s1 PIVOT (SUM (sales) FOR mon in (SELECT mon FROM s2)) dt;

The output pivoted table:

*** Query completed. 3 rows found. 4 columns returned.
 *** Total elapsed time was 1 second.

         yr        'Feb'        'Jan'        'Mar'
-----------  -----------  -----------  -----------
       2001          110          100          120
       2003          310          300           ?
       2002          200          150          250
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Related Topics
For more information, see UNPIVOT.

REGR_AVGX
Purpose

Returns the mean of the independent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.
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Combination With Other Functions
REGR_AVGX can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_AVGX cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_AVGX(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.
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For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

REGR_AVGX Window Function
For the REGR_AVGX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Mean Height for regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
 6       70      175
 7       72      145
 8       74      197
 9       76      150
10       76      ?
11       ?       150
12       ?       ?

The following SELECT statement returns the mean height for regrtbl where neither weight nor height is
null.

   SELECT REGR_AVGX(weight,height) 
   FROM regrtbl;
   
   Regr_Avgx(weight,height)
   ------------------------
                         68

REGR_AVGY
Purpose

Returns the mean of the dependent_variable_expression for all non-null data pairs of the dependent and
independent variable arguments.
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Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_AVGY can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_AVGY cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_AVGY returns NULL.

Division by zero results in NULL rather than an error.
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Result Type and Attributes
The data type, format, and title for REGR_AVGY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is a UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_AVGY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_AVGY Window Function
For the REGR_AVGY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Mean Weight from regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
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 6       70      175
 7       72      145
 8       74      197
 9       76      150
10       76      ?
11       ?       150
12       ?       ?

The following SELECT statement returns the mean weight from regrtbl where neither height nor weight
is null.

   SELECT REGR_AVGY(weight,height) 
   FROM regrtbl;
   
   Regr_Avgy(weight,height)
   ------------------------
                        140

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143:

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_COUNT
Purpose

Returns the count of all non-null data pairs of the dependent and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.
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independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_COUNT can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_COUNT cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Result Type and Attributes
The following table lists the data type for the result of REGR_COUNT(y,x).

Mode Data Type

ANSI If MaxDecimal in DBSControl is…
• 0 or 15, then the result type is DECIMAL(15,0).
• 18, then the result type is DECIMAL(18,0).
• 38, then the result type is DECIMAL(38,0).

Teradata INTEGER

The result type of REGR_COUNT is consistent with the result type of COUNT for ANSI transaction mode
and Teradata transaction mode.

When in Teradata mode, if the result of REGR_COUNT overflows and reports an error, you can cast the
result to another data type, as illustrated by the following example.

   SELECT CAST(REGR_COUNT(weight,height) AS BIGINT)
   FROM regrtbl;
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Here are default formats and titles for the result of REGR_COUNT.

• If operand y is numeric or character, the format is:

◦ For ANSI mode, if MaxDecimal in DBSControl is:

0 or 15, the format is -(15)9

18, the format is -(18)9

38, the format is -(38)9

◦ For Teradata mode, the format is the default format for INTEGER

• If operand y is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_COUNT, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_COUNT Window Function
For the REGR_COUNT window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Number of Rows in regrtbl

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1 height weight

1 60 84

2 62 95

3 64 140

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 72



c1 height weight

4 66 155

5 68 119

6 70 175

7 72 145

8 74 197

9 76 150

10 76 ?

11 ? 150

12 ? ?

The following SELECT statement returns the number of rows in regrtbl where neither height nor weight
is null.

   SELECT REG_COUNT(weight,height) 
   FROM regrtbl;
   

Here is the result:

   Regr_Count(weight,height)
   -------------------------
                           9

Related Topics
• For information on data type default formats, see “Data Type Formats and Format Phrases” in

Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For information on the REGR_COUNT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

REGR_INTERCEPT
Purpose

Returns the intercept of the univariate linear regression line through all non-null data pairs of the dependent
and independent variable arguments.
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Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The intercept is the point at which the regression line through the non-null data pairs in the sample
intersects the ordinate, or y-axis, of the graph.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a
relationship.

Independent and Dependent Variables
An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.
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In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

The value of the linear regression intercept tells you the predicted value for sales when there is no
promotion for the item selected for analysis.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_INTERCEPT can be combined with any of the ordered analytical functions in a SELECT list,
QUALIFY clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_INTERCEPT cannot be combined with aggregate functions within the same SELECT list,
QUALIFY clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_INTERCEPT(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_INTERCEPT(y,x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval
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To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_INTERCEPT, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_INTERCEPT Window Function
For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

Example: Returning the Intercept of the Regression Line for NbrSold
and SalesPrice

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the intercept of the regression line for NbrSold and SalesPrice in the range
of 160000 to 280000 in the 358711030 area.

   SELECT CAST (REGR_INTERCEPT(NbrSold,SalesPrice) AS DECIMAL (5,1))
   FROM HomeSales
   WHERE area = 358711030 
   AND SalesPrice BETWEEN 160000 AND 280000;
   

Here is the result:
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   REGR_INTERCEPT(NbrSold,SalesPrice)
   ----------------------------------
                                249.9

Related Topics
For more information, see:

• For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals, B035-1143.

• For details on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and Literals,
B035-1143.

• For the REGR_INTERCEPT window function that performs a group, cumulative, or moving
computation, see Window Aggregate Functions.

REGR_R2
Purpose

Returns the coefficient of determination for all non-null data pairs of the dependent and independent variable
arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.
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ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_R2 can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_R2 cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_R2 returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_R2(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
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• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_R2, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_R2 Window Function
For the REGR_R2 window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Coefficient of Determination for Height and
Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
 6       70      175
 7       72      145
 8       74      197
 9       76      150
10       76      ?
11       ?       150
12       ?       ?

The following SELECT statement returns the coefficient of determination for height and weight where
neither height nor weight is null.

   SELECT CAST(REGR_R2(weight,height) AS DECIMAL(4,2)) 
   FROM regrtbl;
   
   REGR_R2(weight,height)
   ----------------------
                      .58
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Related Topics
For more information, see:

• For information on the default format of data types and an explanation of the formatting characters in
the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_R2 window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_SLOPE
Purpose

Returns the slope of the univariate linear regression line through all non-null data pairs of the dependent
and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.
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Definition
The slope of the best fit linear regression is a measure of the rate of change of the regression of one
independent variable on the dependent variable.

The plot of the linear regression on the variables is used to predict the behavior of the dependent variable
from the change in the independent variable.

Note that this computation assumes a linear relationship between the variables.

There can be a strong nonlinear relationship between independent and dependent variables, and the
computation of the simple linear regression between such variable pairs does not reflect such a
relationship.

Independent and Dependent Variables
An independent variable is a treatment: something that is varied under your control to test the behavior of
another variable.

A dependent variable is something that is measured in response to a treatment.

For example, you might want to test the ability of various promotions to enhance sales of a particular item.

In this case, the promotion is the independent variable and the sales of the item made as a result of the
individual promotion is the dependent variable.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SLOPE can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

REGR_SLOPE cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SLOPE returns NULL.

Division by zero results in NULL rather than an error.
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Result Type and Attributes
The data type, format, and title for REGR_SLOPE(y, x) are as follows.

Data Type Format Title

REAL Default format of the REAL data type REGR_SLOPE(y,x)

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SLOPE, is a
Teradata extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SLOPE Window Function
For the REGR_SLOPE window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Slope of the Regression Line for NbrSold and
SalesPrice

This example uses the data from the HomeSales table.

SalesPrice NbrSold Area

160000 126 358711030

180000 103 358711030

200000 82 358711030

220000 75 358711030
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SalesPrice NbrSold Area

240000 82 358711030

260000 40 358711030

280000 20 358711030

The following query returns the slope of the regression line for NbrSold and SalesPrice in the range of
160000 to 280000 in the 358711030 area.

   SELECT CAST (REGR_SLOPE(NbrSold,SalesPrice) AS FLOAT)  
   FROM HomeSales
   WHERE area = 358711030 
   AND SalesPrice BETWEEN 160000 AND 280000;

Here is the result:

   REGR_SLOPE(NbrSold,SalesPrice)
   ------------------------------
           -7.92857142857143E-004

Related Topics
• For information on the default format of data types and the formatting characters in the format, see

“Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_SLOPE window function that performs a group, cumulative, or moving computation,
see Window Aggregate Functions.

REGR_SXX
Purpose

Returns the sum of the squares of the independent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax
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Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SXX can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXX cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXX returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SXX(y, x) are as follows.
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Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXX, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SXX Window Function
For the REGR_SXX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Squares for Height

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
 6       70      175
 7       72      145
 8       74      197
 9       76      150
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10       76      ?
11       ?       150
12       ?       ?

The following SELECT statement returns the sum of squares for height where neither height nor weight
is null.

   SELECT REGR_SXX(weight,height) 
   FROM regrtbl;
   
   Regr_Sxx(weight,height)
   -----------------------
                       240

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

• For the REGR_SXX window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

REGR_SXY
Purpose

Returns the sum of the products of the independent_variable_expression and the
dependent_variable_expression for all non-null data pairs of the dependent and independent variable
arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.
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The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SXY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SXY cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_SXY returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SXY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.
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Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SXY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.

REGR_SXY Window Function
For the REGR_SXY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Products of Height and Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
 6       70      175
 7       72      145
 8       74      197
 9       76      150
10       76      ?
11       ?       150
12       ?       ?
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The following SELECT statement returns the sum of products of height and weight where neither height
nor weight is null.

   SELECT REGR_SXY(weight,height) 
   FROM regrtbl;

   Regr_Sxy(weight,height)
   -----------------------
                      1200

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143:

• Information on the default format of data types and an explanation of the formatting characters in
the format

• Information on implicit type conversion of UDTs

REGR_SYY
Purpose

Returns the sum of the squares of the dependent_variable_expression for all non-null data pairs of the
dependent and independent variable arguments.

Syntax

Syntax Elements

dependent_variable_expression

The dependent variable for the regression. A dependent variable is something that is measured in
response to a treatment.

The expression cannot contain any ordered analytical or aggregate functions.

independent_variable_expression

The independent variable for the regression. An independent variable is a treatment: something that is
varied under your control to test the behavior of another variable.

The expression cannot contain any ordered analytical or aggregate functions.
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ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Setting Up Axes for Plotting
If you export the data for plotting, define the y-axis (ordinate) as the dependent variable and the x-axis
(abscissa) as the independent variable.

Combination With Other Functions
REGR_SYY can be combined with any of the ordered analytical functions in a SELECT list, QUALIFY
clause, or ORDER BY clause. For more information on ordered analytical functions, see Window
Aggregate Functions.

REGR_SYY cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

Computation
When there are fewer than two non-null data point pairs in the data used for the computation, then
REGR_INTERCEPT returns NULL.

Division by zero results in NULL rather than an error.

Result Type and Attributes
The data type, format, and title for REGR_SYY(y, x) are as follows.

Data type: REAL

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as y.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

Support for UDTs
By default, Teradata Database performs implicit type conversion on UDT arguments that have implicit
casts that cast between the UDTs and any of the following predefined types:

• Numeric
• Character
• DATE
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• Interval

To define an implicit cast for a UDT, use the CREATE CAST statement and specify the AS ASSIGNMENT
clause. For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

Implicit type conversion of UDTs for system operators and functions, including REGR_SYY, is a Teradata
extension to the ANSI SQL standard. To disable this extension, set the
DisableUDTImplCastForSysFuncOp field of the DBS Control Record to TRUE. For details, see Teradata
Vantage™ - Database Utilities, B035-1102.

REGR_SYY Window Function
For the REGR_SYY window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Example: Returning the Sum of Squares for Weight

This example is based the following regrtbl data. Nulls are indicated by the QUESTION MARK character.

c1   height   weight
--   ------   ------
 1       60       84
 2       62       95
 3       64      140
 4       66      155
 5       68      119
 6       70      175
 7       72      145
 8       74      197
 9       76      150
10       76      ?
11       ?       150
12       ?       ?

The following SELECT statement returns the sum of squares for weight where neither height nor weight
is null.

   SELECT REGR_SYY(weight,height) 
   FROM regrtbl;
   
   Regr_Syy(weight,height)
   -----------------------
                     10426
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SKEW
Purpose

Returns the skewness of the distribution of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Null and duplicate values specified by value_expression are eliminated from the computation for the
group.

value_expression

A literal or column expression for which the skewness of the distribution of its values is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

Definition
Skewness is the third moment of a distribution. It is a measure of the asymmetry of the distribution about
its mean compared with the normal, Gaussian, distribution.

The normal distribution has a skewness of 0.

Positive skewness indicates a distribution having an asymmetric tail extending toward more positive
values, while negative skewness indicates an asymmetric tail extending toward more negative values.
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Return Value
This function returns the REAL data type.

Computation
The equation for computing SKEW is defined as follows:

where:

This variable … Represents …

x value_expression

Conditions That Produce a Null Result
SKEW is valid only for numeric data.

Nulls are not included in the result computation.

The following conditions product a null result:

• Fewer than three non-null data points in the data used for the computation
• STDDEV_SAMP(x) = 0
• Division by zero

Related Topics
For more information, see Teradata Vantage™ Data Types and Literals, B035-1143.

STDDEV_POP
Purpose

Returns the population standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.
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Syntax

Syntax Elements

ALL

Include all values that are not null specified by value_expression, including duplicates, in the computation.
This is the default.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose population standard deviation is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The standard deviation is the second moment of a population. For a population, it is a measure of
dispersion from the mean of that population.

Do not use STDDEV_POP unless the data points you are processing are the complete population.

Combination With Other Functions
STDDEV_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

STDDEV_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.
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How GROUP BY Affects Report Breaks
STDDEV_POP operates differently depending on whether there is a GROUP BY clause in the SELECT
statement.

IF the query … THEN STDDEV_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents only a sample of the entire population for the variable, then use the STDDEV_SAMP
function. For information, see STDDEV_SAMP.

As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should always use the more conservative STDDEV_SAMP calculation unless you are
absolutely certain that your data constitutes the entire population for the variable.

Computation
STANDARD DEVIATION OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

When there are no non-null data points in the population, then STDDEV_POP returns NULL.

Division by zero results in NULL rather than an error.

Return Values
This function returns the REAL data type.

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

STDDEV_POP Window Function
For the STDDEV_POP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Related Topics
For more information, see:
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• Teradata Vantage™ Data Types and Literals, B035-1143
• Window Aggregate Functions

STDDEV_SAMP
Purpose

Returns the sample standard deviation for the non-null data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose sample standard deviation is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.
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Definition
The standard deviation is the second moment of a distribution. For a sample, it is a measure of dispersion
from the mean of that sample. The computation is more conservative for the population standard deviation
to minimize the effect of outliers on the computed value.

Computation
Division by zero results in NULL rather than an error.

When there are fewer than two non-null data points in the sample used for the computation, then
STDDEV_SAMP returns NULL.

Return Values
This function returns the REAL data type.

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

Combination With Other Functions
STDDEV_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause,
or ORDER BY clause. For more information on ordered analytical functions, see Window Aggregate
Functions.

STDDEV_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY
clause, or ORDER BY clause.

How GROUP BY Affects Report Breaks
The GROUP BY clause affects the STDDEV_SAMP operation.

IF the query … THEN STDDEV_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents the entire population for the variable, then use the STDDEV_POP function. For
information, see STDDEV_POP.
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As the sample size increases, the values for STDDEV_SAMP and STDDEV_POP approach the same
number, but you should use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

STDDEV_SAMP Window Function
For the STDDEV_SAMP window function that performs a group, cumulative, or moving computation, see
Window Aggregate Functions.

Related Topics
For more information, see:

• Teradata Vantage™ Data Types and Literals, B035-1143
• Window Aggregate Functions

SUM
Purpose

Returns a column value that is the arithmetic sum of value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

Exclude duplicate and values that are not null specified by value_expression from the computation.
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value_expression

A literal or column expression for which the sum is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Return Values
The following table lists the default attributes for the result of SUM(x).

Data Type of
Operand Data Type of Result Format Title

BYTEINT or
SMALLINT

INTEGER Default format of the
INTEGER data type

Sum(x)

character FLOAT Default format for
FLOAT

UDT Same as the operand Format for the data
type to which the UDT
is implicitly cast

DECIMAL(n,m) DECIMAL(p,m), where p is determined by the
rules in the following rules:
If MaxDecimal in DBSControl is 0 or 15 and
• n  ≤  15, then p = 15.
• 15 < n  ≤  18, p = 18.
• n  > 18, then p = 38.
If MaxDecimal in DBSControl is 18 and
• n  ≤  18, then p = 18.
• n  > 18, then p = 38.
If MaxDecimal in DBSControl is 38 and n  = any
value, the p = 38.

Default format for the
data type of the
operand

Sum(x)

Other than UDT,
SMALLINT,
BYTEINT,
DECIMAL, or
character

Same as the operand Default format for the
data type of the
operand

Usage Notes
SUM is valid only for numeric data.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 99



Nulls are not included in the result computation. For details, see “Manipulating Nulls” in Teradata
Vantage™ SQL Fundamentals, B035-1141 and Aggregates and Nulls.

The SUM function can result in a numeric overflow or the loss of data because of the default output format.
If this occurs, a data type declaration may be used to override the default.

For example, if QUANTITY comprises many rows of INTEGER values, it may be necessary to specify a
data type declaration like the following for the SUM function:

SUM(QUANTITY(FLOAT))

Possible Result Overflow with SELECT Sum
Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Examples

Example: Accounts Receivable

You need to know how much cash you need to pay all vendors who billed you 30 or more days ago.

   SELECT SUM(Invoice)
   FROM AcctsRec
   WHERE (CURRENT_DATE - InvDate) >= 30;

Example: Face Value of Inventory

You need to know the total face value for all items in your inventory.

   SELECT SUM(QUANTITY * Price)
   FROM Inventory;
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   Sum((QUANTITY * Price))
   -----------------------
             38,525,151.91

Related Topics
For more information, see:

• For an explanation of the formatting characters in the format, and information on data type default
formats, see Teradata Vantage™ Data Types and Literals, B035-1143.

• For the SUM function that returns the cumulative, group, or moving sum, see Window Aggregate
Functions.

UNPIVOT
Purpose

UNPIVOT is the reverse of the PIVOT operation. It provides a mechanism for transforming columns into
rows.

The UNPIVOT functionality was introduced previously via the TD_UNPIVOT table operator. This feature
introduces grammar to support the UNPIVOT operator in the FROM clause of the SELECT statement.

Note:
UNPIVOT invokes the TD_UNPIVOT table operator internally. You can still use TD_UNPIVOT
independent of UNPIVOT.

Syntax
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Syntax Elements

cname

A column name.

Note:
For the UNPIVOT operation, column names within the Aggregate functions are referred to as
measure columns, and column names in the FOR clause are referred to as pivot columns.

literal

Any supported Teradata numeric, character or string literal.

derived_table_name

The table name specified for the resultant unpivoted table.

Usage Notes

Note:
Column names specified just before the FOR clause are referred to as measure_columns in the
context of UNPIVOT operation. Column names specified after the FOR clause are referred to as
unpivot_columns.

Similar to the PIVOT operator, columns with CLOB, BLOB, UDT, XML, or JSON data types are not allowed
with the UNPIVOT operator.

The UNPIVOT column name and measure column names cannot be the same as the column names
defined in the derived_table_name.

When multiple measure_columns are involved in UNPIVOT operation, the columns are compatible only if
they belong to any of the following three groups:

• CHAR and VARCHAR
• BYTE and VARBYTE
• BYTEINT SMALLINT INTEGER BIGINT REAL DECIMAL NUMBER

Column names specified in the IN list cannot be specified in the assign list of the SELECT statement.
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Examples
The examples in this section use the following denormalized pivoted table, star1p, which is defined as:

CREATE TABLE star1p(country VARCHAR(20),state VARCHAR(20),Q101Sales 
INTEGER,Q201Sales INTEGER,Q301Sales INTEGER,Q101Cogs INTEGER,Q201Cogs 
INTEGER,Q301Cogs INTEGER);

SELECT * FROM star1p;

country  state  Q101Sales  Q201Sales  Q301Sales  Q101Cogs  Q201Cogs  Q301Cogs
-------  -----  ---------  ---------  ---------  --------  --------  --------
Canada    ON        ?         10          ?         ?         0         ?
Canada    BC        ?          ?         10         ?         ?         0
USA       NY       45          ?          ?        25         ?         ?
USA       CA       30         50          ?        15        20         ?

Example: Unpivoted Sales and Cogs Columns

In this example, the sales and cogs columns are unpivoted.

SELECT *
FROM star1p UNPIVOT ((sales,cogs)  FOR  yr_qtr 
                          IN ((Q101Sales, Q101Cogs) AS ‘Q101’, 
                              (Q201Sales, Q201Cogs) AS ‘Q201’,
                              (Q301Sales, Q301Cogs) AS ‘Q301’)) Tmp;

The output for the unpivoted table:

country  state  yr_qtr        sales         cogs
-------  -----  ------  -----------  -----------
Canada   ON     Q201             10            0
Canada   ON     Q301             10            0
USA      NY     Q101             45           25
USA      CA     Q101             30           15
USA      CA     Q201             50           20

Note that a pivot combined with a matching unpivot may introduce rows with NULL values. It is possible
to unpivot just the ‘yr’ column.
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Example: Using UNPIVOT for a Unique Year Value

This example shows only one unique value of year, so the unpivot is straightforward.

SELECT *
FROM star1p UNPIVOT (Q1sales, Q2sales, Q3sales, Q1cogs, Q2cogs, Q3cogs) FOR
yr IN ((Q101Sales, Q201Sales, Q301Sales, Q101Cogs, Q201Cogs, Q301Cogs) AS
‘2001’) Tmp;

country  state  yr     Q1sales  Q2sales  Q3sales  Q1cogs  Q2cogs  Q3cogs
-------  -----  ----  --------  -------  -------  ------  ------  ------
Canada   ON     2001    ?         10        ?      ?        0       ?
Canada   BC     2001    ?          ?       10      ?        ?       0
USA      NY     2001    45         ?        ?      25       ?       ?
USA      CA     2001    30        50        ?      15       20 

Example: Normalizing the UNPIVOT Operation

This example showcases using UNPIVOT to capture elaborate data of a base table (star1p, in this case).
The data is spread over many columns into a compact table with an optimal number of columns and no
data loss.

SELECT *
FROM star1p UNPIVOT (measure_value  FOR  yr_qtr_measure IN
(Q101Sales, Q201Sales, Q301Sales,Q101Cogs, Q201Cogs, Q301Cogs)) Tmp;
country  state  yr_qtr_measure  measure_value
-------  -----  --------------  -------------
Canada   BC     Q301Cogs                    0
Canada   BC     Q301Sales                  10
Canada   ON     Q201Cogs                    0
Canada   ON     Q201Sales                  10
USA      CA     Q101Cogs                   15
USA      CA     Q101Sales                  30
USA      CA     Q201Cogs                   20
USA      CA     Q201Sales                  50
USA      NY     Q101Cogs                   25
USA      NY     Q101Sales                  45
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Example: Using UNPIVOT with the INCLUDE NULLS Clause

In this example, there are some rows with nulls in the sales and cogs columns. The rows are included in
the output when using the INCLUDE NULLS clause.

SELECT *
FROM star1p UNPIVOT INCLUDE NULLS ((sales,cogs)  FOR  yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales, 
Q301Cogs) AS 'Q301')) Tmp;

country  state    yr_qtr        sales         cogs
-------  -----   ------    -----------  -----------
Canada     BC     Q101              ?            ?
Canada     ON     Q101              ?            ?
Canada     ON     Q201             10            0
Canada     ON     Q301             10            0
USA        NY     Q101             45           25
USA        CA     Q101             30           15
Canada     BC     Q201              ?            ?
USA        NY     Q201              ?            ?
USA        CA     Q201             50           20
Canada     BC     Q301              ?            ?
USA        NY     Q301              ?            ?
USA        CA     Q301              ?            ?

Example: Using UNPIVOT with the EXCLUDE NULLS Clause

In this example, there are no rows with nulls in either the sales or cogs columns, and the rows are excluded
in the output when using EXCLUDE NULLS clause. This is the default option.

SELECT *
FROM star1p UNPIVOT EXCLUDE NULLS (sales, cogs)  FOR  yr_qtr IN
((Q101Sales, Q101Cogs) AS 'Q101', (Q201Sales, Q201Cogs) AS 'Q201', (Q301Sales, 
Q301Cogs) AS 'Q301') Tmp;

country  state     yr_qtr        sales         cogs
-------  ------   --------   ------------    -------
Canada      ON     Q201           10            0
Canada      ON     Q301           10            0
USA         NY     Q101           45           25
USA         CA     Q101           30           15
USA         CA     Q201           50           20
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Example: Using an IN List with Multiple Column Lists and Unspecified
Aliases

In this example, the aliases that the IN list uses were not specified. Instead, the values of the yr_qtr
column were built by adding the column names with an underscore symbol.

SELECT *
FROM star1p UNPIVOT ((sales, cogs)  FOR  yr_qtr IN
((Q101Sales, Q101Cogs),(Q201Sales, Q201Cogs), (Q301Sales, Q301Cogs)) Tmp;

country    state        yr_qtr                        sales         cogs
-------  -------- -----------------------            --------     --------
Canada     ON        Q201Sales_Q201Cogs                 10            0
Canada     ON        Q301Sales_Q301Cogs                 10            0
USA        NY        Q101Sales_Q101Cogs                 45           25
USA        CA        Q101Sales_Q101Cogs                 30           15
USA        CA        Q201Sales_Q201Cogs                 50           20

Example: Using an IN List that Contains Multiple Columns with a
Compatible Data Type

In this example, the Q101Sales column contains an INTEGER data type, and Q201Sales is a BYTEINT
data type. Both the INTEGER and BYTEINT data types are compatible with each other.

SELECT * FROM star1p UNPIVOT (measure_value  FOR  yr_qtr_measure IN
(Q101Sales, Q201Sales)) Tmp;

country     state  yr_qtr_measure  measure_value
-------     -----  --------------  -------------
Canada        ON     Q201Sales               10
USA           CA     Q101Sales               30
USA           CA     Q201Sales               50
USA           NY     Q101Sales               45

Example: Using an IN List that Contains Multiple Columns with an
Incompatible Data Type

In this example, the star1p table is altered to contain a new column Q401Sales with a VARCHAR(20)
data type. The Q101Sales column is an INTEGER data type, and the Q401Sales is VARCHAR.

The INTEGER and VARCHAR data types are not compatible.
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SELECT *
FROM star1p UNPIVOT (measure_value  FOR  yr_qtr_measure IN
(Q101Sales, Q401Sales)) Tmp;

Error 9134 Failure in TD_Unpivot contract function. Error determining column type 
of value columns.

Related Topics
For more information, see:

• PIVOT
• "TD_UNPIVOT" in Teradata Vantage™ SQL Operators and User-Defined Functions, B035-1210

VAR_POP
Purpose

Returns the population variance for the data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax

Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose population variance is to be computed.

3: Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 107



The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The variance of a population is a measure of dispersion from the mean of that population.

Do not use VAR_POP unless the data points you are processing are the complete population.

Computation
When the population has no non-null data points, VAR_POP returns NULL.

Division by zero results in NULL rather than an error.

Return Value
This function returns the REAL data type.

Usage Notes
The following restrictions apply to operands:

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

Combination With Other Functions
VAR_POP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_POP cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.

GROUP BY Affects Report Breaks
The GROUP BY clause affects the VAR_POP operation.
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IF the query … THEN VAR_POP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Standard Deviation of a Population
If your data represents the only a sample of the entire population for the variable, then use the VAR_SAMP
function. For information, see “VAR_SAMP”.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number, but
you should always use the more conservative STDDEV_SAMP calculation unless you are absolutely
certain that your data constitutes the entire population for the variable.

Related Topics
For more information, see:

• Teradata Vantage™ SQL Data Definition Language Syntax and Examples, B035-1144
• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and

Literals, B035-1143.
• For more information on ordered analytical functions, see Overview.
• For the VAR_POP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.

VAR_SAMP
Purpose

Returns the sample variance for the data points in value_expression.

To invoke the time series version of this function, use the GROUP BY TIME clause. For more
information, see Teradata Vantage™ Time Series Tables and Operations, B035-1208.

Syntax
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Syntax Elements

ALL

All values of value_expression that are not null, including duplicates, are included in the computation.

DISTINCT

To exclude duplicates of value_expression from the computation.

value_expression

A numeric literal or column expression whose sample variance is to be computed.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Definition
The variance of a sample is a measure of dispersion from the mean of that sample. It is the square of the
sample standard deviation.

The computation is more conservative than that for the population standard deviation to minimize the effect
of outliers on the computed value.

Computation
When the sample used for the computation has fewer than two non-null data points,
VAR_SAMP returns NULL.

Division by zero results in NULL rather than an error.

Combination With Other Functions
VAR_SAMP can be combined with ordered analytical functions in a SELECT list, QUALIFY clause, or
ORDER BY clause.

VAR_SAMP cannot be combined with aggregate functions within the same SELECT list, QUALIFY clause,
or ORDER BY clause.
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GROUP BY Affects Report Breaks
VAR_SAMP operates differently depending on whether or not there is a GROUP BY clause in the SELECT
statement.

IF the query … THEN VAR_SAMP is reported for …

specifies a GROUP BY clause each individual group.

does not specify a GROUP BY clause all the rows in the sample.

Measuring the Variance of a Population
If your data represents the entire population for the variable, then use the VAR_POP function.

As the sample size increases, the values for VAR_SAMP and VAR_POP approach the same number, but
you should always use the more conservative VAR_SAMP calculation unless you are absolutely certain
that your data constitutes the entire population for the variable.

Return Value
This function returns the REAL data type.

Usage Notes
For operands:

• If the operand is character, the format is the default format for FLOAT.
• If the operand is numeric, date, or interval, the format is the same format as x.
• If the operand is UDT, the format is the format for the data type to which the UDT is implicitly cast.

The value_expression cannot be a reference to a view column derived from a function, and cannot contain
any ordered analytical or aggregate functions.

VARIANCE OF A SAMPLE is valid only for numeric data.

Nulls are not included in the result computation.

Division by zero results in NULL rather than an error.

Related Topics
For more information, see:

• For more information on ordered analytical functions, see Overview.
• For the VAR_SAMP window function that performs a group, cumulative, or moving computation, see

Window Aggregate Functions.
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• If your data represents the entire population for the variable, then use the VAR_POP function. For
information, see VAR_POP.

• For more information on CREATE CAST, see Teradata Vantage™ SQL Data Definition Language
Syntax and Examples, B035-1144.

• For details about the DisableUDTImplCastForSysFuncOp field, see Teradata Vantage™ - Database
Utilities, B035-1102.

• For more information on implicit type conversion of UDTs, see Teradata Vantage™ Data Types and
Literals, B035-1143.
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Overview
The following sections describe:

• Ordered analytical functions
• Window Aggregate Functions

Ordered Analytical Functions
Ordered analytical functions provide support for many common operations in analytical processing and data
mining that require an ordered set of results rows or depend on values in a previous row. Ordered analytical
functions enable and expedite the processing of queries containing On Line Analytical Processing (OLAP)
style decision support requests.

For example, computing a seven-day running sum requires:

• First, that rows be ordered by date.
• Then, that the value for the running sum be computed by:

◦ Adding the current row value to the value of the sum from the previous row, and
◦ Subtracting the value from the row eight days ago.

Benefits
Ordered analytical functions extend the Teradata Database query execution engine with the concept of
an ordered set and with the ability to use the values from multiple rows in computing a new value.

The result of an ordered analytical function is handled the same as any other SQL expression. It can be
a result column or part of a more complex arithmetic expression within its SELECT.

Each of the ordered analytical functions permit you to specify the sort ordering column or columns on
which to sort the rows retrieved by the SELECT statement. The sort order and any other input parameters
to the functions are specified the same as arguments to other SQL functions and can be any normal SQL
expression.

Ordered Analytical Calculations at the SQL Level
Performing ordered analytical computations at the SQL level rather than through a higher-level OLAP
calculation engine provides four distinct advantages.

• Reduced programming effort.
• Elimination of the need for external sort routines.

Ordered Analytical/Window Aggregate
Functions
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• Elimination of the need to export large data sets to external tools because ordered analytical functions
enable you to target the specific data for analysis within the warehouse itself by specifying conditions
in the query.

• Marked enhancement of analysis performance over the slow, single-threaded operations that external
tools perform on large data sets.

Teradata Warehouse Miner
You need not directly code SQL queries to take advantage of ordered analytical functions. Both Teradata
Database and many third-party query management and analytical tools have full access to the Teradata
SQL ordered analytical functions. Teradata Warehouse Miner, for example, a tool that performs data mining
preprocessing inside the database engine, relies on these features to perform functions in the database
itself rather than requiring data extraction.

Teradata Warehouse Miner includes approximately 40 predefined data mining functions in SQL based on
the Teradata SQL-specific functions. For example, the Teradata Warehouse Miner FREQ function uses
the Teradata SQL-specific functions CSUM, RANK, and QUALIFY to determine frequencies.

Example
The following example shows how the SQL query to calculate a frequency of gender to marital status
would appear using Teradata Warehouse Miner.

SELECT gender, marital_status, xcnt,xpct
   ,CSUM(xcnt, xcnt DESC, gender, marital_status) AS xcum_cnt
   ,CSUM(xpct, xcnt DESC, gender, marital_status) AS xcum_pct
   ,RANK(xcnt DESC, gender ASC, marital_status ASC) AS xrank
FROM  
   (SELECT gender, marital_status, COUNT(*) AS xcnt
      ,100.000 * xcnt / xall (FORMAT 'ZZ9.99') AS xpct
   FROM customer_table A,
      (SELECT COUNT(*) AS xall
      FROM customer_table) B
GROUP BY gender, marital_status, xall
HAVING xpct >= 1) T1
QUALIFY xrank <= 8
ORDER BY xcnt DESC, gender, marital_status

The result for this query looks like the following table.

gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

F Married 3910093 36.71 3910093 36.71 1

M Married 2419511 22.71 6329604 59.42 2

F Divorced 1612130 15.13 7941734 74.55 3
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gender marital_status xcnt xpct xcum_cnt xcum_pct xrank

M Divorced 1412624 3.26 9354358 87.81 4

F Single 491224 4.61 9845582 92.42 5

F Widowed 319881 3.01 10165463 95.43 6

M Single 319794 3.00 10485257 98.43 7

M Widowed 197131 1.57 10652388 100.00 8

Characteristics of Ordered Analytical Functions

The Function Value
The function value for a column in a row considers that row (and a subset of all other rows in the group)
and produces a new value.

The generic function describing this operation is as follows:

   new_column_value = FUNCTION(column_value,rows_defined_by_window)

Use of QUALIFY Clause
Rows can be eliminated by applying conditions on the new column value. The QUALIFY clause is
analogous to the HAVING clause of aggregate functions. The QUALIFY clause eliminates rows based on
the function value, returning a new value for each of the participating rows. For example:

   SELECT StoreID, SUM(profit) OVER (PARTITION BY StoreID)
   FROM facts
   QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

An SQL query that contains both ordered analytical functions and aggregate functions can have both a
QUALIFY clause and a HAVING clause, as in the following example:

   SELECT StoreID, SUM(sale), 
   SUM(profit) OVER (PARTITION BY StoreID)
   FROM facts
   GROUP BY StoreID, sale, profit
   HAVING SUM(sale) > 15
   QUALIFY SUM(profit) OVER (PARTITION BY StoreID) > 2;

DISTINCT Clause Restriction
The DISTINCT clause is not permitted in window aggregate functions.
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Permitted Query Objects
Ordered analytical functions are permitted in the following database query objects:

• Views
• Macros
• Derived tables
• INSERT ... SELECT

Where Ordered Analytical Functions are Not Permitted
Ordered analytical functions are not permitted in:

• Subqueries
• WHERE clauses
• SELECT AND CONSUME statements

Use of Standard SQL Features
You can use standard SQL features within the same query to make your statements more sophisticated.

For example, you can use ordered analytical functions in the following ways.

Use an analytical function in this operation … To …

INSERT … SELECT populate a new column.

derived table create a new table to participate in a complex query.

Ordered analytical functions having different sort expressions are evaluated one after another, reusing the
same spool file. Different functions having the same sort expression are evaluated simultaneously.

Unsupported Data Types
Ordered analytical functions do not operate on the following data types:

• CLOB or BLOB data types
• UDT data types

Note that CLOB, BLOB, or UDT data types are usable inside an expression if the result is a supported
data type. For example:

   SELECT
   RANK() OVER 
   (PARTITION BY(CASE WHEN b IS NULL THEN 1 ELSE 0 END) ORDER BY id) 
   FROM btab;

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 400



However, the following example results in an error because the function cannot sort by BLOB:

   SELECT
   RANK() OVER 
   (PARTITION BY b ORDER BY id) 
   FROM btab;

Ordered Analytical Functions and Period Data Types
Expressions that evaluate to Period data types can be specified for any expression within the following
ordered analytical functions: QUANTILE, RANK (Teradata-specific function), and RANK (ANSI SQL
Window function).

Ordered Analytical Functions and Recursive Queries
Ordered analytical functions cannot appear in a recursive statement of a recursive query. However, a non-
recursive seed statement in a recursive query can specify an ordered analytical function.

Ordered Analytical Functions and Hash or Join Indexes
When a single table query specifies an ordered analytical function on columns that are also defined for a
single table compressed hash or join index, the Optimizer does not select the hash or join index to process
the query.

Ordered Analytical Functions and Row Level Security Tables
When a request that includes an ordered analytical function, such as MAVG, CSUM, or RANK, references
a table protected by row level security, the operation is based on only the rows that are accessible to the
requesting user. In order to apply all rows of the table to the function, the user must have one of the
following:

• The required security credentials to access all rows of the table.
• The required OVERRIDE privileges on the security constraints in the table.

Computation Sort Order and Result Order
The sort order that you specify in the window specification defines the sort order of the rows over which
the function is applied; it does not define the ordering of the results.

For example, to compute the average sales for the months following the current month, order the rows by
month:

   SELECT StoreID, SMonth, ProdID, Sales,
   AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
                    ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
   FROM sales_tbl;
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   StoreID  SMonth  ProdID      Sales  Remaining Avg(Sales)
   -------  ------  ------  ---------  --------------------
      1001       6  C        30000.00                     ?
      1001       5  C        30000.00              30000.00
      1001       4  C        25000.00              30000.00
      1001       3  C        40000.00              28333.33
      1001       2  C        25000.00              31250.00
      1001       1  C        35000.00              30000.00
   

The default sort order is ASC for the computation. However, the results are returned in the reverse order.

To order the results, use an ORDER BY phrase in the SELECT statement. For example:

   SELECT StoreID, SMonth, ProdID, Sales,
   AVG(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth
                    ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
   FROM sales_tbl
   ORDER BY SMonth;
   
   StoreID  SMonth  ProdID      Sales  Remaining Avg(Sales)
   -------  ------  ------  ---------  --------------------
      1001       1  C        35000.00              30000.00
      1001       2  C        25000.00              31250.00
      1001       3  C        40000.00              28333.33
      1001       4  C        25000.00              30000.00
      1001       5  C        30000.00              30000.00
      1001       6  C        30000.00                     ?
   

Data in Partitioning Column of Window Specification and
Resource Impact
The columns specified in the PARTITION BY clause of a window specification determine the partitions
over which the ordered analytical function executes. For example, the following query specifies the StoreID
column in the PARTITION BY clause to compute the group sales sum for each store:

   SELECT StoreID, SMonth, ProdID, Sales, 
   SUM(Sales) OVER (PARTITION BY StoreID)
   FROM sales_tbl;
   

At execution time, Teradata Database moves all of the rows that fall into a partition to the same AMP. If a
very large number of rows fall into the same partition, the AMP can run out of spool space. For example,
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if the sales_tbl table in the preceding query has millions or billions of rows, and the StoreID column contains
only a few distinct values, an enormous number of rows are going to fall into the same partition, potentially
resulting in out-of-spool errors.

To avoid this problem, examine the data in the columns of the PARTITION BY clause. If necessary, rewrite
the query to include additional columns in the PARTITION BY clause to create smaller partitions that
Teradata Database can distribute more evenly among the AMPs. For example, the preceding query can
be rewritten to compute the group sales sum for each store for each month:

   SELECT StoreID, SMonth, ProdID, Sales, 
   SUM(Sales) OVER (PARTITION BY StoreID, SMonth)
   FROM sales_tbl;

Using Ordered Analytical Functions
Example: Using RANK and AVG

Consider the result of the following SELECT statement using the following ordered analytical functions,
RANK and AVG.

   SELECT item, smonth, sales, 
   RANK() OVER (PARTITION BY item ORDER BY sales DESC), 
   AVG(sales) OVER (PARTITION BY item 
                    ORDER BY smonth 
                    ROWS 3 PRECEDING)
   FROM sales_tbl
   ORDER BY item, smonth;

The results table might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-01 110 13 110

A 1996-02 130 10 120

A 1996-03 170 6 137

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

A 1996-09 160 7 195

A 1996-10 140 9 168
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Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-11 150 8 158

A 1996-12 120 11 142

A 1997-01 120 11 132

B 1996-02 30 5 30

... ... ... ... ...

Example: Using QUALIFY With RANK

Adding a QUALIFY clause to a query eliminates rows from an unqualified table.

For example, if you wanted to see whether the high sales months were unusual, you could add a QUALIFY
clause to the previous query.

   SELECT item, smonth, sales, 
   RANK() OVER (PARTITION BY item ORDER BY sales DESC), 
   AVG(sales) OVER (PARTITION BY item ORDER BY smonth ROWS 3 PRECEDING)
   FROM sales_tbl
   ORDER BY item, smonth
   QUALIFY RANK() OVER(PARTITION BY item ORDER BY sales DESC) <=5;

This additional qualifier produces a results table that might look like the following.

Item SMonth Sales Rank(Sales) Moving Avg(Sales)

A 1996-04 210 3 155

A 1996-05 270 1 195

A 1996-06 250 2 225

A 1996-07 190 4 230

A 1996-08 180 5 222

B 1996-02 30 1 30

... ... ... ... ...

The result indicates that sales had probably been fairly low prior to the start of the current sales season.

Example: Using QUALIFY With RANK

Consider the following sales table named sales_tbl.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 404



Store ProdID Sales

1003 C 20000.00

1003 D 50000.00

1003 A 30000.00

1002 C 35000.00

1002 D 25000.00

1002 A 40000.00

1001 C 60000.00

1001 D 35000.00

1001 A 100000.00

1001 B 10000.00

Now perform the following simple SELECT statement against this table, qualifying answer rows by rank.

SELECT store, prodID, sales, 
RANK() OVER (PARTITION BY store ORDER BY sales DESC)
FROM sales_tbl
QUALIFY RANK() OVER (PARTITION BY store ORDER BY sales DESC) <=3;

The result appears in the following typical output table.

Store ProdID Sales Rank(Sales)

1001 A 100000.00 1

1001 C 60000.00 2

1001 D 35000.00 3

1002 A 40000.00 1

1002 C 35000.00 2

1002 D 25000.00 3

1003 D 50000.00 1

1003 A 30000.00 2

1003 C 20000.00 3

Note that every row in the table is returned with the computed value for RANK except those that do not
meet the QUALIFY clause (sales rank is less than third within the store).
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Related Topics
For more information, see:

• For more information about row level security, see Teradata Vantage™ NewSQL Engine Security
Administration, B035-1100.

• For details on the QUALIFY clause, see Teradata Vantage™ SQL Data Manipulation Language,
B035-1146.

The Window Feature
The ANSI SQL:2011 window feature provides a way to dynamically define a subset of data, or window, in
an ordered relational database table. A window is specified by the OVER() phrase, which can include the
following clauses inside the parentheses:

• PARTITION BY
• ORDER BY
• RESET WHEN
• ROWS

PARTITION BY Phrase
PARTITION BY takes a column reference list and groups the rows based on the specified column reference
list over which the ordered analytical function executes. Such a grouping is static. To define a group or
partition based on a condition, use the RESET WHEN phrase. For more information, see RESET WHEN
Phrase.

If there is no PARTITION BY phrase or RESET WHEN phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

Consider the following table named sales_tbl.

StoreID SMonth ProdID Sales

1001 1 C 35000.00

1001 2 C 25000.00

1001 3 C 40000.00

1001 4 C 25000.00

1001 5 C 30000.00

1001 6 C 30000.00

1002 1 C 40000.00

1002 2 C 35000.00
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StoreID SMonth ProdID Sales

1002 3 C 110000.00

1002 4 C 60000.00

1002 5 C 35000.00

1002 6 C 100000.00

The following SELECT statement, which does not include PARTITION BY, computes the average sales
for all the stores in the table:

   SELECT StoreID, SMonth, ProdID, Sales, 
   AVG(Sales) OVER () 
   FROM sales_tbl;
   
   StoreID  SMonth  ProdID      Sales  Group Avg(Sales)
   -------  ------  ------  ---------  ----------------
      1001       1  C        35000.00          47083.33
      1001       2  C        25000.00          47083.33
      1001       3  C        40000.00          47083.33
      1001       4  C        25000.00          47083.33
      1001       5  C        30000.00          47083.33
      1001       6  C        30000.00          47083.33
      1002       1  C        40000.00          47083.33
      1002       2  C        35000.00          47083.33
      1002       3  C       110000.00          47083.33
      1002       4  C        60000.00          47083.33
      1002       5  C        35000.00          47083.33
      1002       6  C       100000.00          47083.33
   

To compute the average sales for each store, partition the data in sales_tbl by StoreID:

   SELECT StoreID, SMonth, ProdID, Sales, 
   AVG(Sales) OVER (PARTITION BY StoreID)
   FROM sales_tbl;
   
   StoreID  SMonth  ProdID      Sales  Group Avg(Sales)
   -------  ------  ------  ---------  ----------------
      1001       3  C        40000.00          30833.33
      1001       5  C        30000.00          30833.33
      1001       6  C        30000.00          30833.33
      1001       4  C        25000.00          30833.33
      1001       2  C        25000.00          30833.33
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      1001       1  C        35000.00          30833.33
      1002       3  C       110000.00          63333.33
      1002       5  C        35000.00          63333.33
      1002       6  C       100000.00          63333.33
      1002       4  C        60000.00          63333.33
      1002       2  C        35000.00          63333.33
      1002       1  C        40000.00          63333.33
   

ORDER BY Phrase
ORDER BY specifies how the rows are ordered in a partition, which determines the sort order of the rows
over which the function is applied.

To add the monthly sales for a store in the sales_tbl table to the sales for previous months, compute the
cumulative sales sum and order the rows in each partition by SMonth:

   SELECT StoreID, SMonth, ProdID, Sales,
   SUM(Sales) OVER (PARTITION BY StoreID ORDER BY SMonth 
              ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
   FROM sales_tbl;
   
   StoreID  SMonth  ProdID      Sales  Cumulative Sum(Sales)
   -------  ------  ------  ---------  ---------------------
      1001       1  C        35000.00               35000.00
      1001       2  C        25000.00               60000.00
      1001       3  C        40000.00              100000.00
      1001       4  C        25000.00              125000.00
      1001       5  C        30000.00              155000.00
      1001       6  C        30000.00              185000.00
      1002       1  C        40000.00               40000.00
      1002       2  C        35000.00               75000.00
      1002       3  C       110000.00              185000.00
      1002       4  C        60000.00              245000.00
      1002       5  C        35000.00              280000.00
      1002       6  C       100000.00              380000.00

RESET WHEN Phrase
RESET WHEN is a Teradata extension to the ANSI SQL standard.

Depending on the evaluation of the specified condition, RESET WHEN determines the group or partition,
over which the ordered analytical function operates. If the condition evaluates to TRUE, a new dynamic
partition is created inside the specified window partition. To define a partition based on a column reference
list, use the PARTITION BY phrase. For more information, see PARTITION BY Phrase.
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If there is no RESET WHEN phrase or PARTITION BY phrase, then the entire result set, delivered by the
FROM clause, constitutes a single partition, over which the ordered analytical function executes.

You can have different RESET WHEN clauses in the same SELECT list.

Note:
A window specification that specifies a RESET WHEN clause must also specify an ORDER BY
clause.

RESET WHEN Condition Rules

The condition in the RESET WHEN clause is equivalent in scope to the condition in a QUALIFY clause
with the additional constraint that nested ordered analytical functions cannot specify conditional
partitioning.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

The following rules apply for RESET WHEN conditions.

A RESET WHEN condition can contain the following:

• Ordered analytical functions that do not include the RESET WHEN clause
• Scalar subqueries
• Aggregate operators
• DEFAULT functions

However, DEFAULT without an explicit column specification is valid only if it is specified as a
standalone condition in the predicate. For more information, see Rules For Using a DEFAULT
Function As Part of a RESET WHEN Condition.

A RESET WHEN condition cannot contain the following:

• Ordered analytical functions that include the RESET WHEN clause
• The SELECT statement
• LOB columns
• UDT expressions, including UDFs that return a UDT value

However, a RESET WHEN condition can include an expression that contains UDTs as long as that
expression returns a result that has a predefined data type.

Rules For Using a DEFAULT Function As Part of a RESET WHEN
Condition

The following rules apply to the use of the DEFAULT function as part of a RESET WHEN condition:
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• You can specify a DEFAULT function with a column name argument within a predicate. The system
evaluates the DEFAULT function to the default value of the column specified as its argument. After
the system evaluates the DEFAULT function, it treats it like a literal in the predicate.

• You can specify a DEFAULT function without a column name argument within a predicate only if
there is one column specification and one DEFAULT function as the terms on each side of the
comparison operator within the expression.

• Following existing comparison rules, a condition with a DEFAULT function used with comparison
operators other than IS [NOT] NULL is unknown if the DEFAULT function evaluates to null.

A condition other than IS [NOT]NULL with a DEFAULT function compared with a null evaluates to
unknown.

IF a DEFAULT function is used with... THEN the comparison is...

IS NULL TRUE if the default is null,
else it is FALSE.

IS NOT NULL FALSE if the default is null,
else it is TRUE.

Examples

Example

This example finds cumulative sales for all periods of increasing sales for each region.

   SUM(sales) OVER (
        PARTITION BY region
        ORDER BY day_of_calendar
        RESET WHEN sales < /* preceding row */ SUM(sales) OVER (
             PARTITION BY region
             ORDER BY day_of_calendar
             ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
        ROWS UNBOUNDED PRECEDING
   )

Example

This example finds sequences of increasing balances. This implies that we reset whenever the current
balance is less than or equal to the preceding balance.

   SELECT account_key, month, balance,
   ROW_NUMBER() over

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 410



        (PARTITION BY account_key
         ORDER BY month
         RESET WHEN balance /* current row balance */ <=
         SUM(balance) over (PARTITION BY account_key ORDER BY month
         ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING) /* prev row */
         ) - 1 /* to get the count started at 0 */ as balance_increase
   FROM accounts;

The possible results of the preceding SELECT appear in the table below:

account_key        month      balance  balance_increase
-----------        -----      -------  ----------------
          1            1           60                 0
          1            2           99                 1
          1            3           94                 0
          1            4           90                 0
          1            5           80                 0
          1            6           88                 1
          1            7           90                 2
          1            8           92                 3
          1            9           10                 0
          1           10           60                 1
          1           11           80                 2
          1           12           10                 0

Example

The following example illustrates a window function with a nested aggregate. The query is processed
as follows:

1. We use the SUM(balance) aggregate function to calculate the sum of all the balances for a given
account in a given quarter.

2. We check to see if a balance in a given quarter (for a given account) is greater than the balance of
the previous quarter.

3. If the balance increased, we track a cumulative count value. As long as the RESET WHEN condition
evaluates to false, the balance is increasing over successive quarters, and we continue to increase
the count.

4. We use the ROW_NUMBER() ordered analytical function to calculate the count value. When we
reach a quarter whose balance is less than or equal to that of the previous quarter, the RESET
WHEN condition evaluates to true, and we start a new partition and ROW_NUMBER() restarts the
count from 1. We specify ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING to access the
previous value.

5. Finally, we subtract 1 to ensure that the count values start with 0.
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The balance_increase column shows the number of successive quarters where the balance was
increasing. In this example, we only have one quarter (1->2) where the balance has increased.

   SELECT account_key, quarter, sum(balance),
   ROW_NUMBER() over
        (PARTITION BY account_key
         ORDER BY quarter
         RESET WHEN sum(balance) /* current row balance */ <=
         SUM(sum(balance)) over (PARTITION BY account_key ORDER BY quarter
         ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)/* prev row */
         ) - 1 /* to get the count started at 0 */ as balance_increase
   FROM accounts
   GROUP BY account_key, quarter;

The possible results of the preceding SELECT appear in the table below:

account_key    quarter    balance    balance_increase
-----------    -------    -------    ----------------
          1          1        253                   0
          1          2        258                   1
          1          3        192                   0
          1          4        150                   0

Example

In the following example, the condition in the RESET WHEN clause contains SELECT as a nested
subquery. This is not allowed and results in an error.

   SELECT SUM(a1) OVER
        (ORDER BY 1
         RESET WHEN 1 in (SELECT 1))
   FROM t1;
   $
   *** Failure 3706 Syntax error: SELECT clause not supported in
   RESET...WHEN clause.

ROWS Phrase
ROWS defines the rows over which the aggregate function is computed for each row in the partition.

If ROWS is specified, the computation of the aggregate function for each row in the partition includes only
the subset of rows in the ROWS phrase.

If there is no ROWS phrase, then the computation includes all the rows in the partition.
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To compute the three-month moving average sales for each store in the sales_tbl table, partition by
StoreID, order by SMonth, and perform the computation over the current row and the two preceding rows:

   SELECT StoreID, SMonth, ProdID, Sales,
   AVG(Sales) OVER (PARTITION BY StoreID 
                    ORDER BY SMonth
                    ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)
   FROM sales_tbl;
   
   StoreID  SMonth  ProdID      Sales  Moving Avg(Sales)
   -------  ------  ------  ---------  -----------------
      1001       1  C        35000.00           35000.00
      1001       2  C        25000.00           30000.00
      1001       3  C        40000.00           33333.33
      1001       4  C        25000.00           30000.00
      1001       5  C        30000.00           31666.67
      1001       6  C        30000.00           28333.33
      1002       1  C        40000.00           40000.00
      1002       2  C        35000.00           37500.00
      1002       3  C       110000.00           61666.67
      1002       4  C        60000.00           68333.33
      1002       5  C        35000.00           68333.33
      1002       6  C       100000.00           65000.00
   

Multiple Window Specifications
In an SQL statement using more than one window function, each window function can have a unique
window specification.

For example,

   SELECT StoreID, SMonth, ProdID, Sales,
   AVG(Sales) OVER (PARTITION BY StoreID 
                    ORDER BY SMonth
                    ROWS BETWEEN 2 PRECEDING AND CURRENT ROW),
   RANK() OVER (PARTITION BY StoreID ORDER BY Sales DESC)
   FROM sales_tbl;
   

Related Topics
For more information, see:

• See DEFAULT for more information about the DEFAULT function.
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• The window specification can also be applied to a user-defined aggregate function. For details, see
SQL UDF.

• To see the syntax for the OVER() phrase and the associated clauses, see Window Aggregate
Functions.

Window Aggregate Functions
An aggregate function on which a window specification is applied is called a window aggregate function.
Without a window specification, aggregate functions return one value for all qualified rows examined.
Window aggregate functions return a new value for each of the qualifying rows participating in the query.

Thus, the following SELECT statement, which includes the aggregate AVG, returns one value only: the
average of sales.

   SELECT AVG(sale) 
   FROM monthly_sales;
   
   Average(sale)
   -------------
            1368

The AVG window function retains each qualifying row.

The following SELECT statement might return the results that follow.

   SELECT territory, smonth, sales,
   AVG(sales) OVER (PARTITION BY territory 
                    ORDER BY smonth ROWS 2 PRECEDING)
   FROM sales_history;
   
   territory  smonth   sales  Moving Avg(sales)
   ---------  -------  -----  -----------------
   East        199810     10                 10
   East        199811      4                  7
   East        199812     10                  8
   East        199901      7                  7
   East        199902     10                  9
   West        199810      8                  8
   West        199811     12                 10
   West        199812      7                  9
   West        199901     11                 10
   West        199902      6                  8

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 414



The Window Specification
Purpose

Cumulative, group, moving, or remaining computation of an aggregate function.

Syntax
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Syntax Elements

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.
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OVER

How values are grouped, ordered, and considered when computing the cumulative, group, or moving
function.

Values are grouped according to the PARTITION BY and RESET WHEN clauses, sorted according to
the ORDER BY clause, and considered according to the aggregation group within the partition.

PARTITION BY

In its column_reference, or comma-separated list of column references, the group, or groups, over which
the function operates.

PARTITION BY is optional. If there are no PARTITION BY or RESET WHEN clauses, then the entire
result set, delivered by the FROM clause, constitutes a single group, or partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

In its value_expression the order in which the values in a group, or partition, are sorted.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group or partition, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.
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RESET WHEN is optional. If there are no RESET WHEN or PARTITION BY clauses, then the entire result
set, delivered by the FROM clause, constitutes a single partition.

If RESET WHEN is specified, then the ORDER BY clause must be specified also.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

ROWS

the starting point for the aggregation group within the partition. The aggregation group end is the current
row.

The aggregation group of a row R is a set of rows, defined relative to R in the ordering of the rows within
the partition.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The default when there is no ROWS clause for FIRST_VALUE/LAST_VALUE is different. For more
information, see FIRST_VALUE / LAST_VALUE.

ROWS BETWEEN

The aggregation group start and end, which defines a set of rows relative to the current row in the ordering
of the rows within the partition.

The row specified by the group start must precede the row specified by the group end.

If there are no ROWS or ROWS BETWEEN clause, the default aggregation group is ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

UNBOUNDED PRECEDING

The entire partition preceding the current row.
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UNBOUNDED FOLLOWING

The entire partition following the current row.

CURRENT ROW

The start or end of the aggregation group as the current row.

value PRECEDING

The number of rows preceding the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value PRECEDING appears as the
group start or group end.

value FOLLOWING

The number of rows following the current row.

The value for value is always a positive integer literal.

The maximum number of rows in an aggregation group is 4096 when value FOLLOWING appears as
the group start or group end.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

In the presence of an ORDER BY clause and the absence of a ROWS or ROWS BETWEEN clause, ANSI
SQL:2011 window aggregate functions use ROWS UNBOUNDED PRECEDING as the default
aggregation group, whereas Teradata SQL window aggregate functions use ROWS BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Type of Computation
To compute this
type of function
…

Use this aggregation group …

Cumulative • ROWS UNBOUNDED PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND value PRECEDING
• ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
• ROWS BETWEEN UNBOUNDED PRECEDING AND value FOLLOWING
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To compute this
type of function
…

Use this aggregation group …

Group ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Moving • ROWS value PRECEDING
• ROWS CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value PRECEDING
• ROWS BETWEEN value PRECEDING AND CURRENT ROW
• ROWS BETWEEN value PRECEDING AND value FOLLOWING
• ROWS BETWEEN CURRENT ROW AND CURRENT ROW
• ROWS BETWEEN CURRENT ROW AND value FOLLOWING
• ROWS BETWEEN value FOLLOWING AND value FOLLOWING

Remaining • ROWS BETWEEN value PRECEDING AND UNBOUNDED FOLLOWING
• ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
• ROWS BETWEEN value FOLLOWING AND UNBOUNDED FOLLOWING

Arguments to Window Aggregate Functions
Window aggregate functions can take literals, literal expressions, column names (sales, for example), or
column expressions (sales + profit) as arguments.

Window aggregates can also take regular aggregates as input parameters to the PARTITION BY and
ORDER BY clauses. The RESET WHEN clause can take an aggregate as part of the RESET WHEN
condition clause.

COUNT can take “*” as an input argument, as in the following SQL query:

   SELECT city, kind, sales, profit,
   COUNT(*) OVER (PARTITION BY city, kind 
                  ROWS BETWEEN UNBOUNDED PRECEDING AND 
                  UNBOUNDED FOLLOWING)
   FROM activity_month;

Result Type and Format
The result data type and format for window aggregate functions are as follows.

Function Result Type Format

AVG(x)
where x is a character type

FLOAT Default format for
FLOAT

AVG(x) FLOAT Same format as
operand x
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Function Result Type Format

where x is a numeric, DATE, or
INTERVAL type

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX( y,x)
REGR_AVGY( y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x,)
STDDEV_SAMP(x,)
VAR_POP(x,)
VAR_SAMP(x)
where x is a character type

FLOAT Default format for
FLOAT

CORR(x,y)
COVAR_POP(x,y)
COVAR_SAMP(x,y)
REGR_AVGX (y,x)
REGR_AVGY( y,x)
REGR_INTERCEPT(x,y)
REGR_R2(x,y)
REGR_SLOPE(x,y)
REGR_SXX(x,y)
REGR_SXY(x,y)
REGR_SYY(x,y)
STDDEV_POP(x)
STDDEV_SAMP(x)
VAR_POP(x)
VAR_SAMP(x)
where x is one of the following types:
• Numeric
• DATE
• Interval

Same data type as operand x. Default format for the
data type of operand x

REGR_AVGX(y,x)
REGR_AVGY(y, x)
where x is a UDT

Default format for the
data type to which the
UDT is implicitly cast.

COUNT(x) If MaxDecimal in DBSControl is…
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Function Result Type Format

COUNT(*)
REGR_COUNT(x ,y)
where the transaction mode is ANSI

• 0 or 15, then the result type is DECIMAL(15,0) and the
format is -(15)9.

• 18, then the result type is DECIMAL(18,0) and the format is
-(18)9.

• 38, then the result type is DECIMAL(38,0) and the format is
-(38)9.

ANSI transaction mode uses DECIMAL because tables
frequently have a cardinality exceeding the range of
INTEGER.

COUNT(x)
COUNT(*)
REGR_COUNT(x,y)
where the transaction mode is Teradata

INTEGER
Teradata transaction mode uses
INTEGER to avoid regression
problems.

Note:
You can cast the final result of a
COUNT window aggregate
function; however, the cast is not
used as part of the window function
computation as it is for the COUNT
aggregate function and, therefore,
cannot be used to avoid numeric
overflow errors that might occur
during the computation.

Default format for
INTEGER

MAX(x), MIN(x) Same data type as operand x. Same format as
operand x

SUM(x)
where x is a character type

Same as operand x. Default format for
FLOAT

SUM(x)
where x is a DECIMAL(n,m) type

DECIMAL(p,m), where p is
determined according to the
following rules:
If MaxDecimal in DBSControl is 0 or
15 and
• n  ≤  15, then p = 15.
• 15 < n  ≤  18, p = 18.
• n  > 18, then p = 38.
If MaxDecimal in DBSControl is 18
and
• n  ≤  18, then p = 18.
• n  > 18, then p = 38.
If MaxDecimal in DBSControl is 38
and n  = any value, the p = 38.

Default format for
DECIMAL

SUM(x)
where x is any numeric type other than
DECIMAL

Same as operand x. Default format for the
data type of the
operand
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Result Title
The default title that appears in the heading for displayed or printed results depends on the type of
computation performed.

IF the type of computation is … THEN the result title is …

cumulative Cumulative Function_name (argument_list)
For example, consider the following computation:

   SELECT AVG(sales) OVER (PARTITION BY region
      ORDER BY smonth ROWS UNBOUNDED PRECEDING)
   FROM sales_history;

The title that appears in the result heading is:
Cumulative Avg(sales)

group Group Function_name (argument_list)
For example, consider the following computation:

   SELECT AVG(sales) OVER (PARTITION BY region
      ORDER BY smonth ROWS BETWEEN UNBOUNDED
      PRECEDING AND UNBOUNDED FOLLOWING)
   FROM sales_history;

The title that appears in the result heading is:
Group Avg(sales)

moving Moving Function_name (argument_list)
For example, consider the following computation:

   SELECT AVG(sales) OVER (PARTITION BY region
      ORDER BY smonth ROWS 2 PRECEDING)
   FROM sales_history;

The title that appears in the result heading is:
Moving Avg(sales)

remaining Remaining Function_name (argument_list)
For example, consider the following computation:

   SELECT AVG(sales) OVER (PARTITION BY region
      ORDER BY smonth ROWS BETWEEN CURRENT ROW
      AND UNBOUNDED FOLLOWING)
   FROM sales_history;

The title that appears in the result heading is:
Remaining Avg(sales)
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Problems with Missing Data
Make sure that data you analyze has no missing data points. Computing a moving function over data with
missing points produces unexpected and incorrect results because the computation considers n physical
rows of data rather than n logical data points.

Nesting Aggregates in Window Functions
Although you can nest aggregates in window functions, including the select list, HAVING, QUALIFY, and
ORDER BY clauses, the HAVING clause can only contain aggregate function references because HAVING
cannot contain nested syntax like RANK() OVER (ORDER BY SUM(x)).

Aggregate functions cannot be specified with Teradata-specific functions.

Example

The following query nests the SUM aggregate function within the RANK ordered analytical function in the
select list:

   SELECT state, city, SUM(sale), 
   RANK() OVER (PARTITION BY state ORDER BY SUM(sale))
   FROM T1
   WHERE T1.cityID = T2.cityID
   GROUP BY state, city
   HAVING MAX(sale) > 10;

Alternative: Using Derived Tables

Although only window functions allow aggregates specified together in the same SELECT list, window
functions and Teradata-specific functions can be combined with aggregates using derived tables or views.
Using derived tables or views also clarifies the semantics of the computation.

Example

The following example shows the sales rank of a particular product in a store and its percent contribution
to the store sales for the top three products in each store.

   SELECT RT.storeid, RT.prodid, RT.sales,
   RT.rank_sales, RT.sales * 100.0/ST.sum_store_sales
   FROM (SELECT storeid, prodid, sales, RANK(sales) AS rank_sales
   FROM sales_tbl
   GROUP BY storeID
   QUALIFY RANK(sales) <=3) AS RT,
   (SELECT storeID, SUM(sales) AS sum_store_sales
   FROM sales_tbl
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   GROUP BY storeID) AS ST
   WHERE RT.storeID = ST.storeID
   ORDER BY RT.storeID, RT.sales;

The results table might look something like the following.

storeID prodID sales rank_sales sales*100.0/sum_store_sales

1001 D 35000.00 3 17.949

1001 C 60000.00 2 30.769

1001 A 100000.00 1 51.282

1002 D 25000.00 3 25.000

1002 C 35000.00 2 35.000

1002 A 40000.00 1 40.000

1003 C 20000.00 3 20.000

1003 A 30000.00 2 30.000

1003 D 50000.00 1 50.000

... ... ... ...

Teradata-Specific Alternatives to Ordered Analytical Functions
Teradata SQL supports two syntax alternatives for ordered analytical functions:

• Teradata-specific
• ANSI SQL:2011 compliant

Window aggregate, rank, distribution, and row number functions are ANSI SQL:2011 compliant. Teradata-
specific functions are not.

Teradata-Specific Functions and ANSI SQL:2011 Window Functions

The following table identifies equivalent ANSI SQL:2011 window functions for Teradata-specific functions.

Note:
The use of the Teradata-specific functions listed in the following table is strongly discouraged. These
functions are retained only for backward compatibility with existing applications. Be sure to use the
ANSI-compliant window functions for any new applications you develop.
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Teradata-Specific Functions Equivalent ANSI SQL:2011 Window Functions

CSUM SUM

MAVG AVG

MDIFF(x, w, y) composable from SUM

MLINREG composable from SUM and COUNT

QUANTILE composable from RANK and COUNT

RANK RANK

MSUM SUM

Comparing Window Aggregate Functions and Teradata-Specific Functions

Avoid using Teradata-specific functions such as MAVG, CSUM, and MSUM for applications intended to
be ANSI-compliant and portable.

ANSI
Function

Teradata
Function Relationship

AVG MAVG The form of the AVG window function that specifies an aggregation group of
ROWS value PRECEDING is the ANSI equivalent of the MAVG Teradata-
specific function.
Note that the ROWS value PRECEDING phrase specifies the number of rows
preceding the current row that are used, together with the current row, to
compute the moving average. The total number of rows in the aggregation
group is value + 1. For the MAVG function, the total number of rows in the
aggregation group is the value of width.
For AVG window function, an aggregation group of ROWS 5 PRECEDING,
for example, means that the 5 rows preceding the current row, plus the current
row, are used to compute the moving average. Thus the moving average for
the 6th row of a partition would have considered row 6, plus rows 5, 4, 3, 2,
and 1 (that is, 6 rows in all).
For the MAVG function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving average. The moving
average for the 6th row would have considered row 6, plus rows 4, 5, 3, and
2 (that is, 5 rows in all).

SUM CSUM
MSUM

Be sure to use the ANSI-compliant SUM window function for any new
applications you develop. Avoid using CSUM and MSUM for applications
intended to be ANSI-compliant and portable.
The following defines the relationship between the SUM window function and
the CSUM and MSUM Teradata-specific functions, respectively:
• The SUM window function that uses the ORDER BY clause and specifies

ROWS UNBOUNDED PRECEDING is the ANSI equivalent of CSUM.
• The SUM window function that uses the ORDER BY clause and specifies

ROWS value PRECEDING is the ANSI equivalent of MSUM.

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 426



ANSI
Function

Teradata
Function Relationship

Note that the ROWS value PRECEDING phrase specifies the number of
rows preceding the current row that are used, together with the current row,
 to compute the moving average. The total number of rows in the
aggregation group is value + 1. For the MSUM function, the total number of
rows in the aggregation group is the value of width.
Thus for the SUM window function that computes a moving sum, an
aggregation group of ROWS 5 PRECEDING means that the 5 rows
preceding the current row, plus the current row, are used to compute the
moving sum. The moving sum for the 6th row of a partition, for example,
would have considered row 6, plus rows 5, 4, 3, 2, and 1 (that is, 6 rows in
all).
For the MSUM function, a width of 5 means that the current row, plus 4
preceding rows, are used to compute the moving sum. The moving sum for
the 6th row, for example, would have considered row 6, plus rows 5, 4, 3,
and 2 (that is, 5 rows in all).
Moreover, for data having fewer than width rows, MSUM computes the sum
using all the preceding rows. MSUM returns the current sum rather than
nulls when the number of rows in the sample is fewer than width.

Example: Group Count

The following SQL query might yield the results that follow it, where the group count for sales is returned
for each of the four partitions defined by city and kind. Notice that rows that have no sales are not
counted.

   SELECT city, kind, sales, profit,
   COUNT(sales) OVER (PARTITION BY city, kind 
                      ROWS BETWEEN UNBOUNDED PRECEDING AND
                      UNBOUNDED FOLLOWING)
   FROM activity_month;
   
   city     kind      sales  profit  Group Count(sales)
   -------  --------  -----  ------  ------------------
   LA       Canvas       45     320                   4
   LA       Canvas      125     190                   4
   LA       Canvas      125     400                   4
   LA       Canvas       20     120                   4
   LA       Leather      20      40                   1
   LA       Leather       ?       ?                   1
   Seattle  Canvas       15      30                   3
   Seattle  Canvas       20      30                   3
   Seattle  Canvas       20     100                   3
   Seattle  Leather      35      50                   1
   Seattle  Leather       ?       ?                   1

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 427



Example: Remaining Count

To count all the rows, including rows that have no sales, use COUNT(*). Here is an example that counts
the number of rows remaining in the partition after the current row:

   SELECT city, kind, sales, profit,
   COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
                  ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
   FROM activity_month;
   
   city     kind      sales  profit  Remaining Count(*)
   -------  --------  -----  ------  ------------------
   LA       Canvas       20     120                   ?
   LA       Canvas      125     190                   1
   LA       Canvas       45     320                   2
   LA       Canvas      125     400                   3
   LA       Leather       ?       ?                   ?
   LA       Leather      20      40                   1
   Seattle  Canvas       15      30                   ?
   Seattle  Canvas       20      30                   1
   Seattle  Canvas       20     100                   2
   Seattle  Leather       ?       ?                   ?
   Seattle  Leather      35      50                   1

Note that the sort order that you specify in the window specification defines the sort order of the rows
over which the function is applied; it does not define the ordering of the results.

In the example, the DESC sort order is specified for the computation, but the results are returned in the
reverse order.

To order the results, use the ORDER BY phrase in the SELECT statement:

   SELECT city, kind, sales, profit,
   COUNT(*) OVER (PARTITION BY city, kind ORDER BY profit DESC
                  ROWS BETWEEN 1 FOLLOWING AND 
                  UNBOUNDED FOLLOWING)
   FROM activity_month
   ORDER BY city, kind, profit DESC;
   
   city     kind      sales  profit  Remaining Count(*)
   -------  --------  -----  ------  ------------------
   LA       Canvas      125     400                   3
   LA       Canvas       45     320                   2
   LA       Canvas      125     190                   1
   LA       Canvas       20     120                   ?

13: Ordered Analytical/Window Aggregate Functions

Teradata Vantage™ SQL Functions, Expressions, and Predicates,
Release 16.20 428



   LA       Leather      20      40                   1
   LA       Leather       ?       ?                   ?
   Seattle  Canvas       20     100                   2
   Seattle  Canvas       20      30                   1
   Seattle  Canvas       15      30                   ?
   Seattle  Leather      35      50                   1
   Seattle  Leather       ?       ?                   ?

Example: Cumulative Maximum

The following SQL query might yield the results that follow it, where the cumulative maximum value for
sales is returned for each partition defined by city and kind.

   SELECT city, kind, sales, week, 
   MAX(sales) OVER (PARTITION BY city, kind 
                    ORDER BY week ROWS UNBOUNDED PRECEDING)
   FROM activity_month;
   
   city     kind      sales  week  Cumulative Max(sales)
   -------  --------  -----  ----  ---------------------
   LA       Canvas      263    16                    263
   LA       Canvas      294    17                    294
   LA       Canvas      321    18                    321
   LA       Canvas      274    20                    321
   LA       Leather     144    16                    144
   LA       Leather     826    17                    826
   LA       Leather     489    20                    826
   LA       Leather     555    21                    826
   Seattle  Canvas      100    16                    100
   Seattle  Canvas      182    17                    182
   Seattle  Canvas       94    18                    182
   Seattle  Leather     933    16                    933
   Seattle  Leather     840    17                    933
   Seattle  Leather     899    18                    933
   Seattle  Leather     915    19                    933
   Seattle  Leather     462    20                    933
   

Example: Cumulative Minimum

The following SQL query might yield the results that follow it, where the cumulative minimum value for
sales is returned for each partition defined by city and kind.
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   SELECT city, kind, sales, week, 
   MIN(sales) OVER (PARTITION BY city, kind
                    ORDER BY week 
                    ROWS UNBOUNDED PRECEDING) 
   FROM activity_month;
   
   city     kind      sales  week  Cumulative Min(sales)
   -------  --------  -----  ----  ---------------------
   LA       Canvas      263    16                    263
   LA       Canvas      294    17                    263
   LA       Canvas      321    18                    263
   LA       Canvas      274    20                    263
   LA       Leather     144    16                    144
   LA       Leather     826    17                    144
   LA       Leather     489    20                    144
   LA       Leather     555    21                    144
   Seattle  Canvas      100    16                    100
   Seattle  Canvas      182    17                    100
   Seattle  Canvas       94    18                     94
   Seattle  Leather     933    16                    933
   Seattle  Leather     840    17                    840
   Seattle  Leather     899    18                    840
   Seattle  Leather     915    19                    840
   Seattle  Leather     462    20                    462

Example: Cumulative Sum

The following query returns the cumulative balance per account ordered by transaction date:

   SELECT acct_number, trans_date, trans_amount,
   SUM(trans_amount) OVER (PARTITION BY acct_number 
                           ORDER BY trans_date 
                           ROWS UNBOUNDED PRECEDING) as balance
   FROM ledger
   ORDER BY acct_number, trans_date;

Here are the possible results of the preceding SELECT.

acct_number trans_date trans_amount balance

73829 1998-11-01 113.45 113.45

73829 1988-11-05 -52.01 61.44

73929 1998-11-13 36.25 97.69
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acct_number trans_date trans_amount balance

82930 1998-11-01 10.56 10.56

82930 1998-11-21 32.55 43.11

82930 1998-11-29 -5.02 38.09

Example: Group Sum

The query below finds the total sum of meat sales for each city.

   SELECT city, kind, sales,
   SUM(sales) OVER (PARTITION BY city ROWS BETWEEN UNBOUNDED PRECEDING
   AND UNBOUNDED FOLLOWING) FROM monthly;

The possible results of the preceding SELECT appear in the following table.

city kind sales Group Sum (sales)

Omaha pure pork 45 220

Omaha pure pork 125 220

Omaha pure pork 25 220

Omaha variety pack 25 220

Chicago variety pack 55 175

Chicago variety pack 45 175

Chicago pure pork 50 175

Chicago variety pack 25 175

Example: Group Sum

The following query returns the total sum of meat sales for all cities. Note there is no PARTITION BY
clause in the SUM function, so all cities are included in the group sum.

   SELECT city, kind, sales,
   SUM(sales) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND
                    UNBOUNDED FOLLOWING) 
   FROM monthly;

The possible results of the preceding SELECT appear in the table below.
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city kind sales Group Sum (sales)

Omaha pure pork 45 395

Omaha pure pork 125 395

Omaha pure pork 25 395

Omaha variety pack 25 395

Chicago variety pack 55 395

Chicago variety pack 45 395

Chicago pure pork 50 395

Chicago variety pack 25 395

Example: Moving Sum

The following query returns the moving sum of meat sales by city. Notice that the query returns the
moving sum of sales by city (the partition) for the current row (of the partition) and three preceding rows
where possible.

The order in which each meat variety is returned is the default ascending order according to profit.

Where no sales figures are available, no moving sum of sales is possible. In this case, there is a null in
the sum(sales) column.

   SELECT city, kind, sales, profit,
   SUM(sales) OVER (PARTITION BY city, kind
                    ORDER BY profit ROWS 3 PRECEDING)
   FROM monthly;

city kind sales profit Moving sum (sales)

Omaha pure pork 25 40 25

Omaha pure pork 25 120 50

Omaha pure pork 45 140 95

Omaha pure pork 125 190 220

Omaha pure pork 45 320 240

Omaha pure pork 1255 400 340

Omaha variety pack ? ? ?

Omaha variety pack 25 40 25

Omaha variety pack 25 120 50
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city kind sales profit Moving sum (sales)

Chicago pure pork ? ? ?

Chicago pure pork 15 10 15

Chicago pure pork 54 12 69

Chicago pure pork 14 20 83

Chicago pure pork 54 24 137

Chicago pure pork 14 34 136

Chicago pure pork 95 80 177

Chicago pure pork 95 140 258

Chicago pure pork 15 220 219

Chicago variety pack 23 39 23

Chicago variety pack 25 40 48

Chicago variety pack 125 70 173

Chicago variety pack 125 100 298

Chicago variety pack 23 100 298

Chicago variety pack 25 120 298

Example: Remaining Sum

The following query returns the remaining sum of meat sales for all cities. Note there is no PARTITION
BY clause in the SUM function, so all cities are included in the remaining sum.

   SELECT city, kind, sales,
   SUM(sales) OVER (ORDER BY city, kind
                    ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
   FROM monthly;

The possible results of the preceding SELECT appear in the table below.

city     kind           sales    Remaining Sum(sales)
-------  -------------  -------  --------------------
Omaha    variety pack   25       ?
Omaha    pure pork      125      25
Omaha    pure pork      25       150
Omaha    pure pork      45       175
Chicago  variety pack   55       220
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Chicago  variety pack   25       275
Chicago  variety pack   45       300
Chicago  pure pork      50       345

Note that the sort order for the computation is alphabetical by city, and then by kind. The results, however,
appear in the reverse order.

The sort order that you specify in the window specification defines the sort order of the rows over which
the function is applied; it does not define the ordering of the results. To order the results, use an ORDER
BY phrase in the SELECT statement.

For example:

   SELECT city, kind, sales,
   SUM(sales) OVER (ORDER BY city, kind
                    ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING)
   FROM monthly
   ORDER BY city, kind;

The possible results of the preceding SELECT appear in the table below:

city     kind           sales    Remaining Sum(sales)
-------  -------------  -------  --------------------
Chicago  pure pork      50       345
Chicago  variety pack   55       265
Chicago  variety pack   25       320
Chicago  variety pack   45       220
Omaha    pure pork      25       70
Omaha    pure pork      125      95
Omaha    pure pork      45       25
Omaha    variety pack   25       ?

IF you want to compute the … THEN use this function …

cumulative sum • SUM window function
• CSUM

cumulative, group, or moving count COUNT window function

group sum SUM window function

moving average • AVG window function
• MAVG

moving difference between the current row-column value and
the preceding n th row-column value

MDIFF

moving linear regression MLINREG

moving sum • SUM window function
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IF you want to compute the … THEN use this function …

• MSUM

quantile scores for the values in a column QUANTILE

ordered rank of all rows in a group • RANK window function
• RANK

relative rank of a row in a group PERCENT_RANK window function

sequential row number of the row within its window partition
according to the window ordering of the window

ROW_NUMBER

cumulative, group, or moving maximum value MAX window function

cumulative, group, or moving minimum value MIN window function

GROUP BY Clause

GROUP BY and Window Functions

For window functions, the GROUP BY clause must include all the columns specified in the:

• Select list of the SELECT clause
• Window functions in the select list of a SELECT clause
• Window functions in the search condition of a QUALIFY clause
• The condition in the RESET WHEN clause

For example, the following SELECT statement specifies the column City in the select list and the column
StoreID in the COUNT window function in the select list and QUALIFY clause. Both columns must also
appear in the GROUP BY clause:

   SELECT City, StoreID, COUNT(StoreID) OVER ()
   FROM sales_tbl 
   GROUP BY City, StoreID
   QUALIFY COUNT(StoreID) >=3;

For window functions, GROUP BY collapses all rows with the same value for the group-by columns into
a single row.

For example, the following statement uses the GROUP BY clause to collapse all rows with the same
value for City and StoreID into a single row:

   SELECT City, StoreID, COUNT(StoreID) OVER ()
   FROM sales_tbl 
   GROUP BY City, StoreID;
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The results look like this:

   City   StoreID  Group Count(StoreID)
   -----  -------  --------------------
   Pecos     1001                     3
   Pecos     1002                     3
   Ozona     1003                     3

Without the GROUP BY, the results look like this:

   City   StoreID  Group Count(StoreID)
   -----  -------  --------------------
   Pecos     1001                     9
   Pecos     1001                     9
   Pecos     1001                     9
   Pecos     1001                     9
   Pecos     1002                     9
   Pecos     1002                     9
   Pecos     1002                     9
   Ozona     1003                     9
   Ozona     1003                     9

GROUP BY and Teradata-Specific Functions

For Teradata-specific functions, GROUP BY determines the partitions over which the function executes.
The clause does not collapse all rows with the same value for the group-by columns into a single row.
Thus, the GROUP BY clause in these cases need only specify the partitioning column for the function.

For example, the following statement computes the running sales for each store by using the GROUP
BY clause to partition the data in sales_tbl by StoreID:

   SELECT StoreID, Sales, CSUM(Sales, StoreID)
   FROM sales_tbl 
   GROUP BY StoreID;

The results look like this:

   StoreID     Sales  CSum(Sales,StoreID)
   -------  --------  -------------------
      1001   1100.00              1100.00
      1001    400.00              1500.00
      1001   1000.00              2500.00
      1001   2000.00              4500.00
      1002    500.00               500.00
      1002   1500.00              2000.00
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      1002   2500.00              4500.00
      1003   1000.00              1000.00
      1003   3000.00              4000.00

Combining Window Functions, Teradata-Specific Functions, and
GROUP BY

The following table provides the semantics of the allowable combinations of window functions, Teradata-
specific functions, aggregate functions, and the GROUP BY clause.

Combination Semantics

Window
Function

Teradata-
Specific
Function

Aggregate
Function

GROUP
BY
Clause

X A value is computed for each row.

X A value is computed for each row. The entire
table constitutes a single group, or partition,
over which the Teradata-specific function
executes.

X One aggregate value is computed for the entire
table.

X X GROUP BY collapses all rows with the same
value for the group-by columns into a single
row, and a value is computed for each resulting
row.

X X GROUP BY determines the partitions over
which the Teradata-specific function executes.
 The clause does not collapse all rows with the
same value for the group-by columns into a
single row.

X X An aggregation is performed for each group.

X X Teradata-specific functions do not have
partitions. The whole table is one partition.

X X X GROUP BY determines partitions for Teradata-
specific functions. GROUP BY does not
collapse all rows with the same value for the
group-by columns into a single row, and does
not affect window function computation.

X X X GROUP BY collapses all rows with the same
value for the group-by columns into a single
row. For window functions, a value is computed
for each resulting row; for aggregate functions,
 an aggregation is performed for each group.
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Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format '$ZZZ,ZZ9.99'

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format '$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Related Topics
For more information, see:

• For descriptions of aggregate functions and arguments, see Aggregate Functions.
• For more information, see “RESET WHEN Condition Rules” and “QUALIFY Clause” in Teradata

Vantage™ SQL Data Manipulation Language, B035-1146.
• For information on the default format of data types and an explanation of the formatting characters in

the format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and
Literals.

CSUM
Purpose

Returns the cumulative (or running) sum of a value expression for each row in a partition, assuming the
rows in the partition are sorted by the sort_expression list.

Type

Teradata-specific function.

Syntax
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Syntax Elements

value_expression

A numeric literal or column expression for which a running sum is to be computed.

By default, CSUM uses the default data type of value_expression. Larger numeric values are supported
by casting it to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using SUM Instead of CSUM
The use of CSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant SUM window function that specifies ROWS UNBOUNDED
PRECEDING as its aggregation group. CSUM is retained only for backward compatibility with existing
applications.

Meaning of Cumulative Sums
CSUM accumulates a sum over an ordered set of rows, providing the current value of the SUM on each
row.
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Possible Result Overflow with SELECT Sum
Possible Result Overflow with SELECT Sum

When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;

Result Type and Attributes
The data type, format, and title for CSUM are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

Examples

Example

Report the daily running sales total for product code 10 for each month of 1998.

   SELECT cmonth, CSUM(sumPrice, cdate)
   FROM 
   (SELECT a2.month_of_year,
   a2.calendar_date,a1.itemID, SUM(a1.price)
   FROM Sales a1, SYS_CALENDAR.Calendar a2
   WHERE a1.calendar_date=a2.calendar_date
   AND a2.calendar_date=1998
   AND a1.itemID=10
   GROUP BY a2.month_of_year, a1.calendar_date,
   a1.itemID) AS T1(cmonth, cdate, sumPrice)
   GROUP BY cmonth;
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Grouping by month allows the total to accumulate until the end of each month, when it is then set to zero
for the next month. This permits the calculation of cumulative totals for each item in the same query.

Example

Provide a running total for sales of each item in store 5 in January and generate output that is ready to
export into a graphing program.

   SELECT Item, SalesDate, CSUM(Revenue,Item,SalesDate) AS CumulativeSales 
   FROM 
   (SELECT Item, SalesDate, SUM(Sales) AS Revenue
   FROM DailySales
   WHERE StoreId=5 AND SalesDate BETWEEN 
   '1/1/1999' AND '1/31/1999'
   GROUP BY Item, SalesDate) AS ItemSales
   ORDER BY SalesDate;

The result might like something like the following table.

Item SalesDate CumulativeSales

InstaWoof dog food 01/01/1999 972.99

InstaWoof dog food 01/02/1999 2361.99

InstaWoof dog food 01/03/1999 5110.97

InstaWoof dog food 01/04/1999 7793.91

CUME_DIST
Purpose

Calculates the cumulative distribution of a value in a group of values.

Type

ANSI SQL:2011 window function.
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Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.
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DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

RESET WHEN is optional. If there are no RESET WHEN or PARTITION BY clauses, then the entire result
set constitutes a single partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.
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ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using CUME_DIST
CUME_DIST is similar to PERCENT_RANK. Unlike PERCENT_RANK, which considers the RANK value
in the presence of ties, CUME_DIST uses the highest tied rank, that is, the position of the last tied value
when there are peers. CUME_DIST is the ratio of that position in the partition (RANK-HIGH/NUM ROWS).

Results
The range of values returned by CUME_DIST is >0 to <=1.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 CUME_DIST()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the cumulative distribution by service years for teachers listed in schooltbl.

lname serviceyrs CUME_DIST

Adams 10 0.333333

Peters 10 0.333333

Murray 10 0.333333

Rogers 15 0.444333

Franklin 16 0.555333

Smith 20 0.888889

Ford 20 0.888889

Derby 20 0.888889

Baker 20 1.000000
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DENSE_RANK (ANSI)
Purpose

Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.
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ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes a single
partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.
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For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using DENSE_RANK
The ranks are consecutive integers beginning with 1. Rows with equal values receive the same rank. Rank
values are not skipped in the event of ties.

Result Type
The result data type is INTEGER.

Example
The following SELECT statement:

SELECT lname, serviceyrs,
 DENSE_RANK()OVER(ORDER BY serviceyrs)
 FROM schooltbl
 GROUP BY 1,2;

returns the ordered ranking by service years for teachers listed in schooltbl.

lname serviceyrs DENSE_RANK

Adams 10 1

Peters 10 1

Murray 10 1

Rogers 15 2

Franklin 16 3

Smith 20 4

Ford 20 4

Derby 20 4

Baker 25 5
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FIRST_VALUE / LAST_VALUE
Purpose

Returns the first value or last value in an ordered set of values.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

value_expression

A column expression.

FIRST_VALUE and LAST_VALUE use the default data type of value_expression.

Larger numeric values are supported by casting them to a higher data type.

The expression cannot contain any ordered analytical or aggregate functions.

IGNORE NULLS

Keyword that specifies not to return NULL.

• IGNORE NULLS (with FIRST_VALUE) = returns the first non-null value in the set, or NULL if all
values are NULL.

• If IGNORE NULLS (with LAST_VALUE) = returns the last non-null value in the set, or NULL if all
values are NULL.

RESPECT NULLS

Optional keyword that specifies whether to return NULL.

• RESPECT NULLS (with FIRST_VALUE) = returns the first value, whether or not it is null.
• RESPECT NULLS (with LAST_VALUE) = returns the last value, whether or not it is null.

If all values are null, NULL is returned.
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window

A group, cumulative, or moving computation.

For Window Aggregate Function syntax, see Window Aggregate Functions.

In presence of ties in the sort key of the Window Aggregate Function syntax, FIRST_VALUE and
LAST_VALUE are non-deterministic. They return value_expression from any one of the rows with tied
order by value.

Note:
If the ROWS phrase is omitted and there is an ORDER BY phrase, the default ROWS is
UNBOUNDED PRECEDING AND CURRENT ROW.

If the ROWS phrase is omitted and there is no ORDER BY phrase, the default ROWS is
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Usage Notes
FIRST_VALUE and LAST_VALUE are especially valuable because they are often used as the baselines
in calculations. For instance, with a partition holding sales data ordered by day, you may want to know
how much the sales for each day were compared to the first sales day (FIRST_VALUE) for the period, or
you may want to know, for a set of rows in increasing sales order, what the percentage size of each sale
in the region was compared to the largest sale (LAST_VALUE) in the region.

IGNORE NULLS is particularly useful in populating an inventory table properly.

Selecting neither IGNORE NULLS or RESPECT NULLS is equivalent to selecting RESPECT NULLS.

Example
The following example returns by start date the salary, moving average (ma), and first and last salary in
the moving average group.
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Note:

The functions are going to return the first/last value in the window. In the example, the first and last
rows fall within the window. If the window were between 3 preceding and 2 preceding rows, you would
see NULL for first value in the 1st two rows.

SELECT start_date, salary,
       AVG(salary) OVER(ORDER BY start_date
       ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) ma,
       FIRST_VALUE(salary) OVER(ORDER BY start_date
       ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) first,
       LAST_VALUE(salary) OVER(ORDER BY start_date
       ROWS BETWEEN 3 PRECEDING AND 1 FOLLOWING) last
FROM employee
ORDER BY start_date;

start_date salary ma first last

21-MAR-76 6661.78 6603.280 6661.78 6544.78

12-DEC-78 6544.78 5183.780 6661.78 2344.78

24-OCT-82 2344.78 4471.530 6661.78 2344.78

15-JAN-84 2334.78 4441.780 6661.78 4322.78

30-JUL-87 4322.980 4688.980 6544.78 7897.78

31-DEC-90 7897.78 3626.936 2344.78 1234.56

25-JUL-96 1234.56 3404.536 2334.78 1232.78

17-SEP-96 1232.78 3671.975 4322.78 1232.78

LAG/LEAD
Purpose

Ordered analytic functions calculate an aggregate or non-aggregate value on a window of rows within a
group of rows. The window of rows is defined by the Window Framing clause, also called the ROWS clause.
Window sizes are based on the size specified in the ROWS clause. The group of rows is defined by the
PARTITION BY clause of the Window function.

The LAG function accesses data from the row preceding the current row at a specified offset value in a
window group, while the LEAD function returns data from the row following the current row. If the offset
value is outside the scope of the window, the user-specified default value is returned.

The LAG and LEAD functions are used for OLAP and decision support queries.
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Syntax for LAG/LEAD ANSI Style

Syntax for LAG/LEAD Teradata Style

Syntax Elements

value_expression

The expression cannot contain any ordered analytical functions.

value_expression is mandatory and can be any expression that returns a scalar value. It cannot be a
table function.
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offset_value

A literal unsigned integer value between 0 and 4096. If not specified, the default value is 1.

offset_value specifies the physical row position relative to the current row in a given window of rows. The
row position is the row following the current row for the LEAD function, and the preceding row for the
LAG function.

An offset_value of 0 specifies the current row.

default_value_expression

Any expression that returns a scalar value.

If not specified, the value is assumed to be NULL.

When running in ANSI mode, the default_value_expression data type must match value_expression. An
error occurs if the data types do not match.

In Teradata mode, the database attempts to match the default_value_expression data type to
value_expression by doing a cast to value_expression data type to execute the query. If there are casting
rule violations, Teradata Database displays an error message.

RESPECT NULLS

If the preceding or following row determined by offset_value is within the scope of the window group, and
if the value_expression evaluation returns a NULL, LAG or LEAD returns NULL. This setting indicates
that the NULL value is not ignored.

If the preceding or following row is outside the scope of the window group, LAG or LEAD returns
default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

IGNORE NULLS

If value_expression returns a NULL value where the preceding or following row, as determined by the
specified offset_value, is within the scope of the window group, LAG or LEAD ignores the NULL value.

LAG or LEAD then continues searching for the non-NULL value_expression in the preceding or following
row, which may be far from the current row but within the scope of the window group. The search
terminates at the window boundaries:

• For LAG, the search terminates at the first row of the window group.
• For LEAD, the search terminates at the last row of the window group.
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At the end of the search, LAG or LEAD returns default_value_expression if no non-NULL
value_expression is found.

If the preceding or following row is outside the scope of the window group, LAG or LEAD returns
default_value_expression.

If the optional NULL clause is not specified, the default option is RESPECT NULLS.

OVER

Specifies how values are grouped, ordered, and considered while computing the LAG or LEAD function.

Values are grouped by the optional PARTITION BY clause and the optional RESET WHEN clause. Values
are sorted according to the ORDER BY clause in a given partition of rows.

PARTITION BY

The group or groups over which the function operates.

This is a comma-separated value expression list.

ORDER BY

The order in which the values in a group or partition are sorted.

This is a comma-separated value expression list.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.
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NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there are no RESET WHEN or PARTITION BY clauses, then the entire result set constitutes a single
partition.

ANSI Compliance
This statement is ANSI SQL:2011 compliant.

Result Type
The data type of the LEAD or LAG function's returned values is the same as the specified value of
value_expression. If default_value_expression and value_expression have different data types, Teradata
recommends explicitly casting default_value_expression to the data type of value_expression.

In ANSI mode, an error occurs if default_value_expression and value_expression data types do not match.

In the Teradata Transaction (BTET) mode, if the data types do not match, the database attempts to cast
the default_value_expression to the value_expression data type based on the internal casting rules. If this
results in casting rule violations, an error message displays.

Usage Notes
Because the LEAD and LAG functions do not support the ROWS clause in the syntax, the window size is
the same as the size of the group of rows defined by the PARTITION BY clause. If the PARTITION BY
clause is absent, the entire table becomes a single group, and the size of the group of rows is the same
as the total number of rows in the table.

The RESET WHEN clause, which is applicable to all window functions in Teradata Database, is extended
to the LEAD and LAG functions.

The RESET WHEN clause is a Teradata Extension to ANSI. The LEAD and LAG functions support
performance-driven rewrites, and support both Teradata syntax and ANSI syntax to simplify data migration
from other databases.

In ANSI Transaction mode, the value_expression data type must match the default value expression data
type, or else an error occurs.
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Examples

Example: LAG with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal, 
       LAG(sal, 1, 0) IGNORE NULLS 
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev 
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       950
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       2450
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       1250
   8         MATTHEW    SALESMAN   1600       1500

Teradata style syntax:

SELECT empno, empname, job, sal, 
       LAG(sal IGNORE NULLS, 1, 0)  
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev 
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
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   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       950
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       2450
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       1250
   8         MATTHEW    SALESMAN   1600       1500

Example: LAG with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
       LAG(sal, 1, 0) RESPECT NULLS
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME     JOB        SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       ?
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       ?
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       ?
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       ?
   8         MATTHEW    SALESMAN   1600       1500

Teradata style syntax:

SELECT empno, empname, job, sal,
       LAG(sal RESPECT NULLS, 1, 0) 
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM   emp
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ORDER BY job, empno;

 EMPNO      EMPNAME     JOB        SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       ?
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       ?
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       ?
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       ?
   8         MATTHEW    SALESMAN   1600       1500

Example: LAG with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
       LAG (sal, 1, 0) 
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       ?
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       ?
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       ?
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
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   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       ?
   8         MATTHEW    SALESMAN   1600       1500

Teradata style syntax:

SELECT empno, empname, job, sal,
       LAG (sal, 1, 0) 
       OVER (PARTITION BY job ORDER BY empno) AS sal_prev
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_PREV
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          0
   13        GRACE      ANALYST    3000       ?
   1         JOHN       CLERK      800        0
   2         ERIC       CLERK      950        800
   3         KURT       CLERK      ?          950
   6         JULIE      CLERK      1300       ?
   9         NICHOLAS   MANAGER    2450       0
   10        NOVAK      MANAGER    ?          2450
   11        ROGER      MANAGER    2850       ?
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       0
   5         LYNN       SALESMAN   ?          1250
   7         TERESA     SALESMAN   1500       ?
   8         MATTHEW    SALESMAN   1600       1500

Example: LEAD with RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
       LEAD(sal, 1, 0) RESPECT NULLS
       OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME     JOB        SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
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   2         ERIC       CLERK      950        ?
   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       ?
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       ?
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0

Teradata style syntax:

SELECT empno, empname, job, sal,
       LEAD(sal RESPECT NULLS, 1, 0) 
       OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME     JOB        SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
   2         ERIC       CLERK      950        ?
   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       ?
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       ?
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0

Example: LEAD with IGNORE NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
       LEAD(sal, 1, 0) IGNORE NULLS
       OVER (PARTITION BY job ORDER BY empno) AS sal_next
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FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
   2         ERIC       CLERK      950        1300
   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       2850
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       1500
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0

Teradata style syntax:

SELECT empno, empname, job, sal,
       LEAD(sal IGNORE NULLS, 1, 0) 
       OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
   2         ERIC       CLERK      950        1300
   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       2850
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       1500
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0
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Example: LEAD with RESPECT NULLS without Explicitly Specifying
RESPECT NULLS

ANSI style syntax:

SELECT empno, empname, job, sal,
       LEAD (sal, 1, 0)
       OVER (PARTITION BY job ORDER BY empno) AS sal_next

FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
   2         ERIC       CLERK      950        ?
   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       ?
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       ?
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0

Teradata style syntax:

SELECT empno, empname, job, sal,
       LEAD (sal, 1, 0)
       OVER (PARTITION BY job ORDER BY empno) AS sal_next
FROM   emp
ORDER BY job, empno;

 EMPNO      EMPNAME      JOB       SAL      SAL_NEXT
---------- ---------- --------- ---------- ----------
   12        PAUL       ANALYST    ?          3000
   13        GRACE      ANALYST    3000       0
   1         JOHN       CLERK      800        950
   2         ERIC       CLERK      950        ?
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   3         KURT       CLERK      ?          1300
   6         JULIE      CLERK      1300       0
   9         NICHOLAS   MANAGER    2450       ?
   10        NOVAK      MANAGER    ?          2850
   11        ROGER      MANAGER    2850       0
   14        RICH       PRESIDENT  5000       0
   4         KENT       SALESMAN   1250       ?
   5         LYNN       SALESMAN   ?          1500
   7         TERESA     SALESMAN   1500       1600
   8         MATTHEW    SALESMAN   1600       0

MAVG
Purpose

Computes the moving average of a value expression for each row in a partition using the specified value
expression for the current row and the preceding width-1 rows.

Type

Teradata-specific function.

Syntax

Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.
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sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

For example, MAVG(Sale, 6, Region ASC, Store DESC), where Sale is the value_expression, 6 is the
width, and Region ASC, Store DESC is the sort_expression list.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

That the results are to be ordered in ascending sort order.

If the sort field is a character string, the system orders it in ascending order according to the definition of
the collation sequence for the current session.

The default order is ASC.

DESC

That the results are to be ordered in descending sort order.

If the sort field is a character string, the system orders it in descending order according to the definition
of the collation sequence for the current session.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using AVG Instead of MAVG
The use of MAVG is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant AVG window function that specifies ROWS value PRECEDING as its
aggregation group. MAVG is retained only for backward compatibility with existing applications.

Result Type and Attributes
The data type, format, and title for MAVG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.
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Problems With Missing Data
Ensure that data you analyze using MAVG has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing the Moving Average When Number of Rows < width
For the (possibly grouped) resulting relation, the moving average considering width rows is computed
where the rows are sorted by the sort_expression list.

When there are fewer than width rows, the average is computed using the current row and all preceding
rows.

Examples

Example

Compute the 7-day moving average of sales for product code 10 for each day in the month of October,
1996.

   SELECT cdate, itemID, MAVG(sumPrice, 7, date)
   FROM (SELECT a1.calendar_date, a1.itemID,
   SUM(a1.price)
   FROM Sales a1
   WHERE a1.itemID=10 AND a1.calendar_date
   BETWEEN 96-10-01 AND 96-10-31
   GROUP BY a1.calendar_date, a1.itemID) AS T1(cdate,
   itemID, sumPrice);

Example

The following example calculates the 50-day moving average of the closing price of the stock for
Zemlinsky Bros. Corporation. The ticker name for the company is ZBC.

   SELECT MarketDay, ClosingPrice, 
      MAVG(ClosingPrice,50, MarketDay) AS ZBCAverage
   FROM MarketDailyClosing
   WHERE Ticker = 'ZBC'
   ORDER BY MarketDay;

The results for the query might look something like the following table.
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MarketDay ClosingPrice ZBCAverage

12/27/1999 89 1/16 85 1/2

12/28/1999 91 1/8 86 1/16

12/29/1999 92 3/4 86 1/2

12/30/1999 94 1/2 87

MDIFF
Purpose

Returns the moving difference between the specified value expression for the current row and the preceding
width rows for each row in the partition.

Type

Teradata-specific function.

Syntax

Syntax Elements

value_expression

A numeric column or literal expression for which a moving difference is to be computed.

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.
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sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Meaning of Moving Difference
A common business metric is to compare activity for some variable in a current time period to the activity
for the same variable in another time period a fixed distance in the past. For example, you might want to
compare current sales volume against sales volume for preceding quarters. This is a moving difference
calculation where value_expression would be the quarterly sales volume, width is 4, and sort_expression
might be the quarter_of_calendar column from the SYS_CALENDAR.Calendar system view.

Using SUM Instead of MDIFF
The use of MDIFF is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is retained only for backward compatibility with existing applications. MDIFF(x, w, y) is equivalent to:

   x - SUM(x) OVER (ORDER BY y 
                    ROWS BETWEEN w PRECEDING AND w PRECEDING)

Result Type and Attributes
The data type, format, and title for MDIFF are as follows:

• If operand x is character, the data type is the same as x and the format is the default format for FLOAT.
• If operand x is numeric, the data type is the same as x and the format is the same format as x.
• If operand is date, the data type is INTEGER and the format is the default format for INTEGER.
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Problems With Missing Data
Ensure that rows you analyze using MDIFF have no missing data points. Computing a moving difference
over data with missing points produces unexpected and incorrect results because the computation
considers n physical rows of data rather than n logical data points.

Computing the Moving Difference When No Preceding Row
Exists
When the number of preceding rows to use in a moving difference computation is fewer than the specified
width, the result is null.

Examples

Example

Display the difference between each quarter and the same quarter sales for last year for product code
10.

   SELECT year_of_calendar, quarter_of_calendar,
   MDIFF(sumPrice, 4, year_of_calendar, quarter_of_calendar)
   FROM (SELECT a2.year_of_calendar,
   a2.quarter_of_calendar, SUM(a2.Price) AS sumPrice
   FROM Sales a1, SYS_CALENDAR.Calendar a2
   WHERE a1.itemID=10 and a1.calendar_date=a2.calendar_date
   GROUP BY a2.year_of_calendar, a2.quarter_of_calendar) AS T1
   ORDER BY year_of_calendar, quarter_of_year;

Example

The following example computes the changing market volume week over week for the stock of company
Horatio Parker Imports. The ticker name for the company is HPI.

   SELECT MarketWeek, WeekVolume, 
      MDIFF(WeekVolume,1,MarketWeek) AS HPIVolumeDiff
   FROM
   (SELECT MarketWeek, SUM(Volume) AS WeekVolume
   FROM MarketDailyClosing
   WHERE Ticker = 'HPI'
   GROUP BY MarketWeek)
   ORDER BY MarketWeek;
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The result might look like the following table. Note that the first row is null for column HPIVolume Diff,
indicating no previous row from which to compute a difference.

MarketWeek WeekVolume HPIVolumeDiff

11/29/1999 9817671 ?

12/06/1999 9945671 128000

12/13/1999 10099459 153788

12/20/1999 10490732 391273

12/27/1999 11045331 554599

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on the SUM window function, see Window Aggregate Functions.

MEDIAN
Purpose

For numeric values, returns the middle value or an interpolated value that would be the middle value after
the values are sorted. Nulls are ignored in the calculation.

Type

MEDIAN is an aggregate function.

Syntax

Syntax Elements

value_expression

A single expression that must be a numeric or interval data type.
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ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Result
The function returns the same data type as the data type of the argument.

Example
MEDIAN, an inverse distribution function that assumes a continuous distribution model, is a specific case
of PERCENTILE_CONT where the percentile value is 0.5.

MEDIAN  (value_expression)

is same as:

PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY value_expression)

Related Topics
For more information, see:

• See PERCENTILE_CONT / PERCENTILE_DISC.

MLINREG
Purpose

Returns a predicted value for an expression based on a least squares moving linear regression of the
previous width -1 (based on sort_expression) column values.

Type

Teradata-specific function.

Syntax
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Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_expression

A column expression that defines the in dependent variable for calculating the linear regression.

For example, MLINREG(Sales, 6, Fiscal_Year_Month ASC), where Sales is the value_expression, 6 is
the width, and Fiscal_Year_Month ASC is the sort_expression.

The data type of the column reference must be numeric or a data type that Teradata Database can
successfully convert implicitly to numeric.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using ANSI-Compliant Window Functions Instead of MLINREG
Using ANSI-compliant window functions instead of MLINREG is strongly encouraged. MLINREG is a
Teradata extension to the ANSI SQL:2011 standard, and is retained only for backward compatibility with
existing applications.
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Result Type and Attributes
The data type, format, and title for MLINREG are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, date, or interval, the format is the same format as x.

Default Independent Variable
MLINREG assumes that the independent variable is described by sort_expression.

Computing MLINREG When Preceding Rows < width - 1
When there are fewer than width -1 preceding rows, MLINREG computes the regression using all the
preceding rows.

MLINREG Report Structure
All rows in the results table except the first two, which are always null, display the predicted value.

Example
Consider the itemID, smonth, and sales columns from sales_table:

   SELECT itemID, smonth, sales 
   FROM fiscal_year_sales_table 
   ORDER BY itemID, smonth;
   itemID  smonth    sales
   ------  --------  -----
   A              1    100
   A              2    110
   A              3    120
   A              4    130
   A              5    140
   A              6    150
   A              7    170
   A              8    190
   A              9    210
   A             10    230
   A             11    250
   A             12  ?
   B              1     20
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   B              2     30
   ...

Assume that the NULL in the sales column is because in this example the month of December (month 12)
is a future date and the value is unknown.

The following statement uses MLINREG to display the expected sales using past trends for each month
for each product using the sales data for the previous six months.

   SELECT itemID, smonth, sales, MLINREG(sales,7,smonth)
   FROM fiscal_year_sales_table;
   GROUP BY itemID;
   itemID  smonth    sales  MLinReg(sales,7,smonth)
   ------  --------  -----  -----------------------
   A              1    100  ?
   A              2    110  ?
   A              3    120          120
   A              4    130          130
   A              5    140          140
   A              6    150          150
   A              7    170          160
   A              8    190          177
   A              9    210          198
   A             10    230          222
   A             11    250          247
   A             12  ?              270
   B              1     20  ?
   B              2     30  ?
   ...

Related Topics
For information on the default format of data types and an explanation of the formatting characters in the
format, see “Data Type Formats and Format Phrases” in Teradata Vantage™ Data Types and Literals,
B035-1143.

MSUM
Purpose

Computes the moving sum specified by a value expression for the current row and the preceding n-1 rows.
This function is very similar to the MAVG function.

Type

Teradata-specific function.
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Syntax

Syntax Elements

value_expression

The expression cannot contain any ordered analytical or aggregate functions.

width

The number of previous rows to be used in the computation.

The value is always a positive integer literal.

The maximum is 4096.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.
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Using SUM Instead of MSUM
The use of MSUM is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard, and
is equivalent to the ANSI-compliant SUM window function. MSUM is retained only for backward
compatibility with existing applications.

Result Type and Attributes
The data type, format, and title for MSUM are as follows:

Data Type: Same as operand x

• If operand x is character, the format is the default format for FLOAT.
• If operand x is numeric, the format is the same format as x.

Problems With Missing Data
Ensure that data you analyze using MSUM has no missing data points. Computing a moving average over
data with missing points produces unexpected and incorrect results because the computation considers
n physical rows of data rather than n logical data points.

Computing MSUM When Number of Rows < width
For data having fewer than width rows, MSUM computes the sum using all the preceding rows. MSUM
returns the current sum rather than nulls when the number of rows in the sample is fewer than width.

Possible Result Overflow with SELECT Sum
When using this function, the result can create an overflow when the data type and format are not in sync.
For a column defined as:

Salary Decimal(15,2) Format ‘$ZZZ,ZZ9.99’

The following query:

SELECT SUM (Salary) FROM Employee;

causes an overflow because the decimal operand and the format are not in sync.

To avoid possible overflows, explicitly specify the format for decimal sum to specify a format large enough
to accommodate the decimal sum resultant data type.

SELECT Sum(Salary) (format ‘$Z,ZZZ,ZZZ,ZZ9.99) FROM Employee;
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PERCENT_RANK
Purpose

Returns the relative rank of rows for a value_expression.

Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.
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ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This is ANSI SQL:2011 compliant.
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The RESET WHEN clause is a Teradata extension to the ANSI SQL standard.

Computation
The assigned rank of a row is defined as 1 (one) plus the number of rows that precede the row and are
not peers of it.

PERCENT_RANK is expressed as an approximate numeric ratio between 0.0 and 1.0.

PERCENT_RANK has this value … FOR the result row assigned this rank …

0.0 1.

1.0 highest in the result.

Result Type and Attributes
For PERCENT_RANK() OVER (PARTITION BY x ORDER BY y direction ), the data type, format, and title
are as follows:

Data Type Format Title

REAL the default format for DECIMAL(7,6). Percent_Rank(y direction)

Examples

Example: Relative Rank

Determine the relative rank, called the percent_rank, of Christmas sales.

The following query:

   SELECT sales_amt, 
   PERCENT_RANK() OVER (ORDER BY sales_amt)
   FROM xsales;

might return the following results. Note that the relative rank is returned in ascending order, the default
when no sort order is specified and that the currency is not reported explicitly.

sales_amt Percent_Rank

100.00 0.000000

120.00 0.125000

130.00 0.250000
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sales_amt Percent_Rank

140.00 0.375000

143.00 0.500000

147.00 0.625000

150.00 0.750000

155.00 0.875000

160.00 1.000000

Example: Rank and Relative Rank

Determine the rank and the relative rank of Christmas sales.

   SELECT sales_amt,
   RANK() OVER (ORDER BY sales_amt),
   PERCENT_RANK () OVER (ORDER BY sales_amt)
   FROM xsales;

sales_amt Rank Percent_Rank

100.00 1 0.000000

120.00 2 0.125000

130.00 3 0.250000

140.00 4 0.375000

143.00 5 0.500000

147.00 6 0.625000

150.00 7 0.750000

155.00 8 0.875000

160.00 9 1.000000

Example: PERCENT_RANK and CUM_DIST

The following SQL statement illustrates the difference between PERCENT_RANK and cumulative
distribution.
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SELECT sales_amt,
 PERCENT_RANK() OVER (ORDER BY sales_amt),
 CUME_DIST() OVER (ORDER BY sales_amt)
 FROM xsales;

sales_amt PERCENT_Rank CUME_DIST

100. .000000 0.125000

120. .142857 0.250000

130 .285714 .375000

140. .428571 .500000

147. .571429 .625000

150. .714286 .750000

155. .857143 .875000

160. 1.000000 1.000000

PERCENTILE_CONT / PERCENTILE_DISC
Purpose

Returns an interpolated value that falls within its value_expression with respect to its sort specification.

Type

PERCENTILE_CONT and PERCENTILE_DISC are aggregate functions.

Syntax
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Syntax Elements

value_expression_1

A numeric value between 0 and 1 inclusive.

WITHIN GROUP

The order in which the values in a group or partition are sorted.

ORDER BY

The order in which the values in a group or partition are sorted.

value_expression_2

A single expression that must be a numeric value.

ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.
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Result
The function returns the same data type as the data type of the argument.

Nulls are ignored in the calculation.

Usage Notes
Both functions are inverse distribution functions that assume a continuous distribution.

• PERCENTILE_CONT returns a computed result after doing linear interpolation.
• PERCENTILE_DISC simply returns a value from the set of values.

Example
Using this table:

Area Address Price

Downtown 72 Easy Street 509000

Downtown 29 Right Way 402000

Downtown 45 Diamond Lane 203000

Downtown 76 Blind Alley 201000

Downtown 15 Tern Pike 199000

Downtown 444 Kanga Road 102000

Uptown 15 Peak Street 456000

Uptown 27 Primrose Path 349000

Uptown 44 Shady Lane 341000

Uptown 34 Design Road 244000

Uptown 2331 Highway 64 244000

Uptown 77 Sunset Strip 102000

the following SQL statement returns a computed result after doing linear interpolation, as shown in the
table immediately below.

SELECT area,
       AVG(price),
       PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY price),
       PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY price)
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FROM market
GROUP BY area;

Area Average Price PERC_DISC PERC_CONT

Downtown 269333 201000 202000

Uptown 289333 244000 292500

QUANTILE
Purpose

Computes the quantile scores for the values in a group.

Type

Teradata-specific function.

Syntax

Syntax Elements

quantile_literal

A positive integer literal used to define the number of quantile partitions to be used.

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

ASC

Ascending sort order.
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DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Definition
A quantile is a generic interval of user-defined width. For example, percentiles divide data among 100
evenly spaced intervals, deciles among 10 evenly spaced intervals, quartiles among 4, and so on. A
quantile score indicates the fraction of rows having a sort_expression value lower than the current value.
For example, a percentile score of 98 means that 98 percent of the rows in the list have a sort_expression
value lower than the current value.

Using ANSI Window Functions Instead of QUANTILE
The use of QUANTILE is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011 standard
and is retained only for backward compatibility with existing applications.

To compute QUANTILE(q, s) using ANSI window functions, use the following:

   (RANK() OVER (ORDER BY s) - 1) * q / COUNT(*) OVER()

QUANTILE Report
For each row in the group, QUANTILE returns an integer value that represents the quantile of the
sort_expression value for that row relative to the sort_expression value for all the rows in the group.

Quantile Value Range
Quantile values range from 0 through (Q-1), where Q is the number of quantile partitions specified by
quantile_literal.

Result Type and Attributes
The data type, format, and title for QUANTILE(Q, list) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Quantile(Q, list)
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Examples

Example

Display each item and its total sales in the ninth (top) decile according to the total sales.

   SELECT itemID, sumPrice
   FROM (SELECT a1.itemID, SUM(price)
   FROM Sales a1
   GROUP BY a1.itemID) AS T1(itemID, sumPrice)
   QUALIFY QUANTILE(10,sumPrice)=9;

Example

The following example groups all items into deciles by profitability.

   SELECT Item, Profit, QUANTILE(10, Profit) AS Decile
   FROM
      (SELECT Item, Sum(Sales) — (Count(Sales) * ItemCost) AS Profit
      FROM DailySales, Items
      WHERE DailySales.Item = Items.Item
      GROUP BY Item) AS Item;

The result might look like the following table.

Item Profit Decile

High Tops 97112 9

Low Tops 74699 7

Running 69712 6

Casual 28912 3

Xtrain 100129 9

Example

Because QUANTILE uses equal-width histograms to partition the specified data, it does not partition the
data equally using equal-height histograms. In other words, do not expect equal row counts per specified
quantile. Expect empty quantile histograms when, for example, duplicate values for sort_expression are
found in the data.
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For example, consider the following simple SELECT statement.

   SELECT itemNo, quantity, QUANTILE(10,quantity) FROM inventory;

The report might look like this.

itemNo quantity Quantile(10, quantity)

13 1 0

9 1 0

7 1 0

2 1 0

5 1 0

3 1 0

1 1 0

6 1 0

4 1 0

10 1 0

8 1 0

11 1 0

12 9 9

Because the quantile sort is on quantity, and there are only two quantity scores in the inventory table,
there are no scores in the report for deciles 1 through 8.

Related Topics
For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

RANK (ANSI)
Purpose

Returns an ordered ranking of rows based on the value_expression in the ORDER BY clause.

To use this function with time series data, see Teradata Vantage™ Time Series Tables and Operations,
B035-1208.
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Type

ANSI SQL:2011 window function.

Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

PARTITION BY clause is also called the window partition clause.

ORDER BY

The order in which the values in a group or partition are sorted.
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ASC

Ascending sort order.

DESC

Descending sort order.

NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

TIES LOW

Specifies that all ties get the lowest rank.
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Returns an Integer data type.

TIES HIGH

Specifies that all ties get the highest rank.

Returns an Integer data type.

TIES AVG

Specifies that all ties get the average rank.

Returns a Decimal dat type.

TIES DENSE

Specifies that all ties are ranked as DENSE_RANK ranks them.

Returns an Integer data type.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

Meaning of Rank
RANK returns an ordered ranking of rows based on the value_expression in the ORDER BY clause. All
rows having the same value_expression value are assigned the same rank.

If n rows have the same value_expression values, then they are assigned the same rank, call it rank r.
The next distinct value receives rank r +n. And so on.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. RANK
returns an integer that represents the rank of each row in the result.

Result Type and Attributes
For RANK() OVER (PARTITION BY x ORDER BY y direction), the data type, format, and title are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(y direction)
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Examples

Example: Ranking Salespeople Based on Sales

This example ranks salespersons by sales region based on their sales.

   SELECT sales_person, sales_region, sales_amount,
      RANK() OVER (PARTITION BY sales_region ORDER BY sales_amount DESC)
   FROM sales_table;

sales_person sales_region sales_amount Rank(sales_amount)

Garabaldi East 100 1

Baker East 99 2

Fine East 89 3

Adams East 75 4

Edwards West 100 1

Connors West 99 2

Davis West 99 2

The rank column in the preceding table lists salespersons in declining sales order according to the column
specified in the PARTITION BY clause (sales_region) and that the rank of their sales (sales_amount) is
reset when the sales_region changes.

Example: Finding Differences Between RANK(ANSI) and DENSE_
RANK(ANSI)

The following SQL statement illustrates the difference between RANK(ANSI) and DENSE_RANK(ANSI),
returning the RANK and DENSE_RANK for sales_person by sales_region and sales_amount.

SELECT sales_person, sales_region, sales_amount,
 RANK() OVER
    (PARTITION BY sales_region ORDER BY sales_amount DESC) as "Rank",
 DENSE_RANK() OVER
    (PARTITION BY sales_region ORDER BY sales_amount DESC) as "DenseRank"
 FROM sales_table;

sales_person sales_region sales_amount Rank DenseRank

Garabaldi East 100 1 1
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sales_person sales_region sales_amount Rank DenseRank

Baker East 100 1 1

Fine East 89 3 2

Adams East 75 4 3

Edwards West 100 1 1

Connors West 99 2 2

Davis West 99 2 2

Russell West 50 4 3

Related Topics
For more information, see:

• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

• For an explanation of the formatting characters in the format, see “Data Type Formats and Format
Phrases” in Teradata Vantage™ Data Types and Literals, B035-1143.

RANK (Teradata)
Purpose

Returns the rank (1 … n) of all the rows in the group by the value of sort_expression list, with the same
sort_expression values receiving the same rank.

Type

Teradata-specific function.

Syntax
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Syntax Elements

sort_expression

A literal or column expression or comma-separated list of literal or column expressions to be used to sort
the values.

The expression cannot contain any ordered analytical or aggregate functions.

ASC

Ascending sort order.

DESC

Descending sort order.

ANSI Compliance
This statement is a Teradata extension to the ANSI SQL:2011 standard.

Using ANSI RANK Instead of Teradata RANK
The use of Teradata RANK is strongly discouraged. It is a Teradata extension to the ANSI SQL:2011
standard, and is equivalent to the ANSI-compliant RANK window function. Teradata RANK is retained only
for backward compatibility with existing applications.

Meaning of Rank
A rank r implies the existence of exactly r -1 rows with sort_expression value preceding it. All rows
having the same sort_expression value are assigned the same rank.

For example, if n rows have the same sort_expression values, then they are assigned the same rank, call
it rank r. The next distinct value receives rank r +n.

Less formally, RANK sorts a result set and identifies the numeric rank of each row in the result. The only
argument for RANK is the sort column or columns, and the function returns an integer that represents the
rank of each row in the result.

Computing Top and Bottom Values
You can use RANK to compute top and bottom values as shown in the following examples.

Top(n, column) is computed as QUALIFY RANK(column DESC) <=n.
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Bottom(n, column) is computed as QUALIFY RANK(column ASC) <=n.

Result Type and Attributes
The data type, format, and title for RANK(x) are as follows.

Data Type Format Title

INTEGER the default format for the INTEGER data type Rank(x)

Examples

Example

Display each item, its total sales, and its sales rank for the top 100 selling items.

   SELECT itemID, sumPrice, RANK(sumPrice)
   FROM 
      (SELECT a1.itemID, SUM(a1.Price)
      FROM Sales a1
      GROUP BY a1.itemID AS T1(itemID, sumPrice)
      QUALIFY RANK(sumPrice) <=100;

Example

Sort employees alphabetically and identify their level of seniority in the company.

   SELECT EmployeeName, (HireDate - CURRENT_DATE) AS ServiceDays,
   RANK(ServiceDays) AS Seniority
   FROM Employee
   ORDER BY EmployeeName;

The result might look like the following table.

EmployeeName Service Days Seniority

Ferneyhough 9931 2

Lucier 9409 4

Revueltas 9408 5

Ung 9931 2

Wagner 10248 1
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Example

Sort items by category and report them in order of descending revenue rank.

   SELECT Category, Item, Revenue, RANK(Revenue) AS ItemRank
   FROM ItemCategory,
      (SELECT Item, SUM(sales) AS Revenue
      FROM DailySales
      GROUP BY Item) AS ItemSales
   WHERE ItemCategory.Item = ItemSales.Item
   ORDER BY Category, ItemRank DESC;

The result might look like the following table.

Category Item Revenue ItemRank

Hot Cereal Regular Oatmeal 39112.00 4

Hot Cereal Instant Oatmeal 44918.00 3

Hot Cereal Regular COW 59813.00 2

Hot Cereal Instant COW 75411.00 1

Related Topics
For more information, see:

• For information on the default format of data types, see “Data Type Formats and Format Phrases” in
Teradata Vantage™ Data Types and Literals, B035-1143.

• For more information on the RANK window function, see RANK (ANSI).

ROW_NUMBER
Purpose

Returns the sequential row number, where the first row is number one, of the row within its window partition
according to the window ordering of the window.

Type

ANSI SQL:2011 window function.
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Syntax

Syntax Elements

OVER

Specifies how values are grouped, ordered, and considered when computing the cumulative, group, or
moving function.

Values are grouped according to the PARTITION BY BEGIN and RESET WHEN clauses END, sorted
according to the ORDER BY clause, and considered according to the aggregation group within the
partition.

PARTITION BY

The group or groups over which the function operates.

ORDER BY

The order in which the values in a group or partition are sorted.

ASC

Ascending sort order.

DESC

Descending sort order.
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NULLS FIRST

NULL results are to be listed first.

NULLS LAST

NULL results are to be listed last.

RESET WHEN

The group, or groups, over which the function operates, depending on the evaluation of the specified
condition. If the condition evaluates to TRUE, a new dynamic partition is created inside the specified
window partition.

If there is no PARTITION BY or RESET WHEN clauses, then the entire result set, delivered by the FROM
clause, constitutes a partition.

condition

A conditional expression used to determine conditional partitioning. The condition in the RESET WHEN
clause is equivalent in scope to the condition in a QUALIFY clause with the additional constraint that
nested ordered analytical functions cannot specify a RESET WHEN clause. In addition, you cannot
specify SELECT as a nested subquery within the condition.

The condition is applied to the rows in all designated window partitions to create sub-partitions within the
particular window partitions.

For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

ANSI Compliance
This statement is ANSI SQL:2011 compliant, but includes non-ANSI Teradata Database extensions.

Window Aggregate Equivalent
   ROW_NUMBER() OVER (PARTITION BY  column 
 ORDER BY  value 
) 

is equivalent to
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   COUNT(*) OVER (PARTITION BY  column 
 ORDER BY  value 
 
   ROWS UNBOUNDED PRECEDING).

Example
To order salespersons based on sales within a sales region, the following SQL query might yield the
following results.

   SELECT ROW_NUMBER() OVER (PARTITION BY sales_region 
                             ORDER BY sales_amount DESC),
   sales_person, sales_region, sales_amount
   FROM sales_table;
   
   Row_Number()  sales_person  sales_region  sales_amount
   ------------  ------------  ------------  ------------
              1  Baker         East                   100
              2  Edwards       East                    99
              3  Davis         East                    89
              4  Adams         East                    75
              1  Garabaldi     West                   100
              2  Connors       West                    99
              3  Fine          West                    99

Related Topics
For more information, see:

• For more information, see “RESET WHEN Condition Rules” and the “QUALIFY Clause” in Teradata
Vantage™ SQL Data Manipulation Language, B035-1146.

• For more information on COUNT, see Window Aggregate Functions.
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After completing this module, you will be able to:

• Describe what the CFilter functions does

• Describe typical use cases for CFilter

• Write CFilter queries

• Interpret the output of CFilter queries

Objectives
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• CFilter
• Background Information (Description, Use 

Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table 
Schema, Output Table Schema)

• Labs
• Review

Topics
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• CFilter
• Background Information (Description, 

Use Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input 
Table Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Background Information
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• The CFilter function creates baskets (sets) of two-way interactions. The input is 
typically a set of purchase transaction records (e.g., what was bought) or Web page-
view logs (e.g., what Web pages were visited)

• Each basket is a unique permutation of two-way interactions; i.e., butter:eggs would 
be displayed, as well as eggs:butter. Unlike BasketGenerator, though, with CFilter
we are limited to building two-way interactions

• CFilter writes data to a user-specified output table. Unlike BasketGenerator, CFilter
output includes a host of columns in an attempt to put context to the two-way 
interactions that it finds. These output columns can guide the end-user in 
understanding the relationships between the items in a pair and the pair in relation to 
all other pairs

CFilter Description

The CFilter function creates baskets (sets) of two-way interactions. The input is typically a set of 
purchase transaction records (e.g., what was bought) or Web page-view logs (e.g., what Web pages 
were visited). 

Each basket is a unique permutation of two-way interactions; i.e., butter:eggs would be displayed, as 
well as eggs:butter. Unlike BasketGenerator, though, with CFilter we are limited to building two-way 
interactions.

CFilter writes data to a user-specified output table. Unlike BasketGenerator, CFilter output includes a 
host of columns in an attempt to put context to the two-way interactions that it finds. These output 
columns can guide the end-user in understanding the relationships between the items in a pair and the 
pair in relation to all other pairs. 
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The CFilter function deals with finding two-way combinations of entities (e.g., product domains 
purchased, Web pages visited, etc.) that co-occur at the defined level of analysis; e.g., household, 
unique_trans_id, etc. For example, it could be used to identify products that are bought together 
(association analysis, basket analysis, affinity analysis), such as peanut butter and jelly.
Many companies across a wide array of industries use collaborative filtering to 1) increase sales, 2) 
increase units-moved, 3) increase profit, 4) and increase relevancy to end consumers. 
Before embarking on things such as offering free jelly if peanut butter is bought, as is always the 
case, it is recommended that you test your theories out in practice with strict adherence to 
treatment:control experimental-design principles so as to be able to quantify the effects of your 
efforts. For example, certain organizations may be reluctant to co-promote peanut and jelly, 
assuming that only one of the two needs to be promoted, as the other one will be bought anyway 
(at full-price, moreover); i.e., there will be an "erosion of margin" or a "loss of sales and profit" by 
co-promoting the affinity products. Experiment to see what works and what doesn’t work!

CFilter Use Cases

CFilter provides numerous metrics to broaden your understanding of two-way interactions. 

Such "Association Analysis" techniques have been used by numerous companies with great success to 
drive top- and bottom-line sales.

Take care to experiment find out what works and what doesn’t.
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Following are some examples of how CFilter could be used:
• A retailer wishes to redesign the layout of its stores, so it runs CFilter to discover what product 

domains co-occur together; e.g., peanut butter and jelly. These products will be placed near one 
another on the shelf

• A retailer manufactures and carries a private-label peanut butter, but no private-label jelly; i.e., 
customers have no choice but to purchase the national-brand jelly—which is not as profitable as a 
private-label jelly would be. The retailer decides to start offering a private-label jelly for sale

• A telecommunications company wishes to offer particular bundlings of products and services to 
its clients, so it uses CFilter to discover which products/services have natural attractions to one 
another

• A healthcare company wishes to discover which ailments co-occur together on a patient-by-
patient basis so as to help in future diagnoses of patients

• A retailer notices that there is a universe of customers who only purchase one-half of a significant 
affinity pairing, so they target such customers with the appropriate affinity-void offer

CFilter Use Cases

CFilter can be used by any business that wishes to understand the interplay of how products/services  
are purchased together.
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• Input Tables: Data is read from a specified input table, views, or query.
• CFilter: The following arguments, at a minimum, are specified when the 

function is invoked.
• OutputTable
• TargetColumns
• JoinColumns

• Output table: Data is written to the output table specified.

CFilter Workflow

Input Table CFilter Output Table

The CFilter function will read from a defined table, view, or query, and output the results to a table per 
its defined arguments. 
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SELECT * FROM CFilter (
ON { table | view | (query) } AS InputTable
OUT TABLE OutputTable (output_table)
USING
TargetColumns ({ 'target_column' | target_column_range }[,...])
JoinColumns ({ 'join_column' | join_column_range }[,...])
[ PartitionColumns ({ 'partition_column' | partition_column_range 
}[,...]) ]
[ PartitionKey ('partition_key_column') ]
[ MaxDistinctItems (max_distinct_items) ]
) AS alias;

CFilter Syntax

Here, we show the base syntax for CFilter. Note that there are three required arguments:
• OutputTable
• TargetColumns
• JoinColumns
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The required arguments for the CFilter function are as follows:
OutputTable: Specify the name of the output table that the function 
creates. The table must not exist
TargetColumns: Specify the names of the input table columns that 
contain the data to filter

CFilter Required Arguments (1 of 2)

The required arguments for the CFilter function are as follows:

• OutputTable: Specify the name of the output table that the function creates. The table must not 
exist.

• TargetColumns: Specify the names of the input table columns that contain the data to filter.
• JoinColumns: Specify the names of join columns, which the function uses as follows:

• The function uses the items in each join column to define groups of items listed in the input 
columns.

• The function tries to identify items in each input column that often appear in the same group.
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JoinColumns: Specify the names of join columns, which the function uses as follows:
1. The function uses the items in each join column to define groups of items listed in the 

input columns
2. The function tries to identify items in each input column that often appear in the same 

group

For example, a join column might contain a list of sales transactions from a store, and 
the input column might contain each individual item purchased at the store. A sales 
transaction can include multiple items. For each sales transaction, the function tries to 
identify items that often appear in the same sales transaction (that is, items that are 
often purchased together).

CFilter Required Arguments (2 of 2)

The required arguments for the CFilter function are as follows:

• OutputTable: Specify the name of the output table that the function creates. The table must not 
exist.

• TargetColumns: Specify the names of the input table columns that contain the data to filter.
• JoinColumns: Specify the names of join columns, which the function uses as follows:

• The function uses the items in each join column to define groups of items listed in the input 
columns.

• The function tries to identify items in each input column that often appear in the same group.
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The following CFilter arguments are optional.
PartitionColumns: [Optional] Specify the names of the input columns to 
copy to the output table. The function partitions the input data and the 
output table on these columns. Default behavior: The function treats the 
input data as belonging to one partition

Note: Specifying a column as both a partition_column and a join_column causes 
incorrect counts in partitions. This argument makes the function output 
nondeterministic unless each partition_column is unique in the group defined by 
JoinColumns

CFilter Optional Arguments (1 of 2)

The following CFilter arguments are optional.

• PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The function 
partitions the input data and the output table on these columns. Default behavior: The function treats the input 
data as belonging to one partition.

• Note: Specifying a column as both a partition_column and a join_column causes incorrect counts in 
partitions. This argument makes the function output nondeterministic unless each partition_column is 
unique in the group defined by JoinColumns.

• PartitionKey: [Optional] Specify the name of the output column to use as the partition key. Default: 'col1_item1'
• MaxDistinctItems [Optional] Specify the maximum size of the item set. Default: 100

• Note: The function uses max_item_set to determine the size of the data structures it uses to accumulate 
intermediate results. If the number of distinct items in an target_column is greater than max_item_set, the 
function might report incorrect results without an error message.

Association Analysis    Slide 3-12



PartitionKey: [Optional] Specify the name of the output column to use as 
the partition key. Default: 'col1_item1'

MaxDistinctItems [Optional] Specify the maximum size of the item set. 
Default: 100

• Note: The function uses max_item_set to determine the size of the data 
structures it uses to accumulate intermediate results. If the number of distinct 
items in an target_column is greater than max_item_set, the function might 
report incorrect results without an error message

CFilter Optional Arguments (2 of 2)

The following CFilter arguments are optional.

• PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The function 
partitions the input data and the output table on these columns. Default behavior: The function treats the input 
data as belonging to one partition.

• Note: Specifying a column as both a partition_column and a join_column causes incorrect counts in 
partitions. This argument makes the function output nondeterministic unless each partition_column is 
unique in the group defined by JoinColumns.

• PartitionKey: [Optional] Specify the name of the output column to use as the partition key. Default: 'col1_item1'
• MaxDistinctItems [Optional] Specify the maximum size of the item set. Default: 100

• Note: The function uses max_item_set to determine the size of the data structures it uses to accumulate 
intermediate results. If the number of distinct items in an target_column is greater than max_item_set, the 
function might report incorrect results without an error message.
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CFilter Input Table Schema
Column Data Type Description

target_column VARCHAR Data to filter

join_column Any Column to join

partition_column Any [Column appears once for each specified 
partition_column.] Column to copy to output table. Used 
to partition input data and output table. Must not be a 
join_column. Must be unique in the group defined by 
JoinColumns, or function output is nondeterministic

Note: Input-table column names that you reference in your CFilter
queries must be named using all lower-case letters.

This page displays the input table schema.
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CFilter Output Table Schema (1 of 5)
Column Data Type Description

col1_item1 VARCHAR Name of item1

col1_item2 VARCHAR Name of item2

cntb INTEGER Count of co-occurrence of both items in partition

cnt1 INTEGER Count of occurrence of item1 in partition

cnt2 INTEGER Count of occurrence of item2 in partition

score DOUBLE 
PRECISION

Product of two conditional probabilities:
P({ item2 | item1 }) * P({ item1 | item2 })

Preceding product equals following quotient:

(cntb * cntb)/(cnt1 * cnt2)

This page displays the output table schema.
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CFilter Output Table Schema (2 of 5)
Column Data Type Description

support DOUBLE
PRECISION

Percentage of transactions in partition in which the two items co-
occur, calculated with this formula:

cntb/tran_cnt

where tran_cnt is the number of transactions in the partition

For example, if eggs and milk were purchased together 3 times in 
5 transactions in the same store, and the data is partitioned by 
store, then the support value in the partition is 3/5 = 0.6 = 60%

This page displays the output table schema.
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CFilter Output Table Schema (3 of 5)
Column Data Type Description

confidence DOUBLE
PRECISION

Percentage of transactions in partition in which item1 occurs, in 
which item2 also occurs, calculated with this formula:

cntb/cnt1

For example, if, in the same store, the number of times that a 
customer buys both milk (item1) and butter (item2) is 3 (cntb) and 
the number of times that a customer buys milk is 4 (cnt1), then 
the confidence that a person who buys milk will also buy butter is 
3/4 = 0.75 = 75%

This page displays the output table schema.
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CFilter Output Table Schema (4 of 5)
Column Data Type Description

lift DOUBLE
PRECISION

Ratio of observed support value to expected support value if 
item1 and item2 were independent; that is:
support(item1 and item2) / [support(item1) * support(item2)]

Value is calculated with this formula:

(cntb/tran_cnt) / [(cnt1/tran_cnt) * (cnt2/tran_cnt)]

• If Lift > 1, the occurrence of item1 or item2 has a positive 
effect on the occurrence of the other items

• If Lift = 1, the occurrence of item1 or item2 has a no effect on 
the occurrence of the other items

• If Lift < 1, the occurrence of item1 or item2 has a negative 
effect on the occurrence of the other items

This page displays the output table schema.
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CFilter Output Table Schema (5 of 5)
Column Data Type Description

z_score DOUBLE
PRECISION

Significance of co-occurrence, assuming that cntb follows a 
normal distribution, calculated with this formula:

(cntb - mean(cntb)) / sd(cntb)

If all cntb values are equal, then sd(cntb) is 0, and function does 
not calculate zscore

This page displays the output table schema.
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• CFilter
• Background Information (Description, Use 

Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table 
Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Labs
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Here, we are scrutinizing the contents of a simple input table. The next many pages will go through 
various examples of running the CFilter function against this table and reviewing the resulting output.

c Lab 01a – Understanding CFilter Output: 
Reviewing Input Data

SELECT * 
FROM bb_cfilter_test
ORDER BY tranid, item;

• For this initial lab, we will 
look at a small data-set of 
transactions and discuss 
each of the fields that 
CFilter outputs, using 
only required arguments.

• Our transaction data 
appears to the right

Data Table
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Here, we are scrutinizing the contents of a simple input table.

c Lab 01b – Understanding CFilter Output: 
Reviewing Input Data

SELECT tranid, item 
FROM bb_cfilter_test
ORDER BY tranid, item;

Here, we are segregating fields of 
interest and sorting the data:

• We have eight distinct transactions
• We have four distinct items

SELECT item, tranid
FROM bb_cfilter_test
ORDER BY item, tranid;

Eight transactions Four items
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Here, we are summarizing the domain of transactions that involved either butter or eggs or both.

c Lab 01c – Understanding CFilter Output: 
Reviewing Input Data

Here, we are viewing a Venn diagram that 
summarizes the transactions for eggs 
and/or butter from the previous page:

• Butter occurred in 5 transactions (1+4)
• Eggs occurred in 7 transactions (3+4)
• There were 8 transactions that 

contained butter and/or eggs (1+4+3)
• There were 4 transactions that 

contained both eggs and butter
• There was 1 transaction that contained 

butter with no eggs
• There were 3 transactions that 

contained eggs with no butter
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Here, we are running a simple CFilter query against our input data, utilizing only required arguments.

Note that the OUT TABLE must not exist or the query will fail; therefore, we first drop the defined OUT 
TABLE.

c Lab 01d – Understanding CFilter Output: 
Running CFilter Query

--must drop output table if exists
DROP TABLE bb_cfilter_test_output;

--run CFilter
SELECT * 
FROM CFilter (
ON bb_cfilter_test AS InputTable
OUT TABLE OutputTable
(bb_cfilter_test_output)
USING
TargetColumns ('item')
JoinColumns ('tranid')
) AS my_alias;

Here, we are running CFilter against our input 
table. Note the required arguments:

• OUT TABLE: This is the table to which 
CFilter will write the results. We have 
defined bb_cfilter_test_output

• TargetColumns: This is the column 
against which we would like to find co-
occurrences. We have defined item; e.g., 
find co-occurrences of butter and eggs

• JoinColumns: This is the column that 
defines at what level we would like to find 
co-occurrences of items. We have define 
tranid; e.g., find co-occurrences of butter 
and eggs if and only if they occurred within 
the same transaction
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Here we are viewing the contents of the generated output table. 

Note the following:

• CFilter generates all possible pairs. You will see an output row for butter:eggs and another output 
row eggs:butter.

• Out of the five scores to the right of the output, only confidence will differ between any two sister-
rows.

• Unlike BasketGenerator, CFilter does not allow you to specify three-way, four-way, etc. 
interactions. CFilter calculates only two-way interactions. 

c Lab 01e – Understanding CFilter Output: 
Reviewing Output Table

--interrogate output table 
SELECT * 
FROM bb_cfilter_test_output
ORDER BY col1_item1, col1_item2;

• Here, we are selecting all columns from our 
generated output table

• Unlike BasketGenerator, note that in CFilter, by 
default, butter:eggs is not equivalent to 
eggs:butter; i.e., all product-pairings appear in 
both directions
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01f – Understanding CFilter Output: 
Reviewing Basic Output Columns

Following is a discussion of the first five columns generated by CFilter. Also, note 
that CFilter only generates two-way interactions. It cannot generate multi-way 
interactions like BasketGenerator can.

• col1_item1: The first item of the pair
• col2_item2: The second item of the pair
• cntb: The number of transactions in which both items appeared
• cnt1: The number of transactions in which item1 appeared
• cnt2: The number of transactions in which item2 appeared
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01g – Understanding CFilter Output: Score

Score displays the chance of both products co-occurring together in the same transaction--ONLY 
considering the totality of transactions that had both (as opposed to the totality of all transactions). 
The formula for calculating score follows:

(cntb * cntb) / (cnt1 * cnt2)

which is equivalent to (cntb / cnt1) * (cntb / cnt2); i.e., ௧௦	௪௧	௧௧௦	௪௧	௨௧௧ 	∗ 	 ௧௦	௪௧	௧௧௦	௪௧	௦	 =	ସହ 	∗ ସ =	0.457142857
That is to say, there is roughly a 45% chance that if either butter or eggs is present in a 
transaction, then the other one will be present too. The highest possible score is 1, implying that if 
one of them is present, there is a 100% probability that the other one will be as well.
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01h – Understanding CFilter Output: 
Support

Support displays the percentage of all transactions that had both items present.

cntb / total_trans

In the CFilter output, the value for total_trans (total transaction count) is not displayed. Recall 
from an earlier slide, however, that our total count of distinct transactions was 8. Therefore, ௧௦	௪௧	௧௧௧	௧௦௧	௨௧ = 	 ସ଼	 =		0.5
The larger support is, the more commonplace the co-occurrence was. A value of 1 would imply 
that every single transaction had the both items present. Here, we are seeing that 50% of all 
transactions had both butter and eggs present.
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01i – Understanding CFilter Output: 
Confidence

Confidence displays out of all transactions with item1, what percentage of them also had 
item2. You can think of this as the "crossover percent", with item1 being the focal point.

cntb / cnt1

Therefore, we see that 80% of the transactions with butter also have eggs present.௧௦	௪௧	௧௧௦	௪௧	௨௧௧ = 	 ସହ	 =		0.8
If butter is present in a transaction, there is an 80% confidence that eggs will also be present 
in the same transaction. The larger that confidence is for butter, the more likely that eggs will 
also be present in the same transaction. A value of 1 would imply that every single 
transaction that had butter also had eggs.
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01j – Understanding CFilter Output: Lift

Lift displays how many times the actual cntb is from the expectation of what cntb should be. To calculate the 
expectation, we need to know how many total transactions there were. From an earlier slide, recall that the total 
transaction count was 8. The formula for lift is as follows:

( cntb / total_trans) / ( ( cnt1 / total_trans ) * ( cnt2 / total_trans ) )

The formula for the expectation is (cnt1 * cnt2) / total_trans. Therefore, the expectation is 

௧௦	௪௧	௨௧௧	∗	௧௦	௪௧	௦௧௧	௧௦௧௦ = 	 ହ	∗	଼ 	 =	4.375
Our actual cntb was 4, and 4 is 0.9142 times the size 4.375—derived from ସସ.ଷହ	 = 0.914285714. Using our 
original formula, we see that ( 4 / 8 ) / ( (5 / 8) * (7 / 8 ) ) = 0.914285714; i.e., the actual co-occurrence of butter 
and eggs wasn't what mere chance would have suggested it should have been (it almost was, at roughly 91%).

• If lift > 1, then actual co-occurrence is greater than the expectation; i.e., product attraction
• If lift = 1, then actual co-occurrence is equal to the expectation; i.e., product neutrality
• If lift < 1, then actual co-occurrence is less than the expectation; i.e., product repulsion
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Following are brief definitions of all output columns:

For z_score, note that if all cntb values are equal, then sd(cntb) is 0, and the function does not 
calculate z_score (returns NULL).

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01k – Understanding CFilter Output: 
z_score

Z_score displays how many standard deviations the cntb value lies from the average cntb value.

(cntb - mean(cntb)) / sd(cntb)

In our data-set, the average of cntb is 3.5 and the standard deviation of cntb is 0.957427108. Therefore, for the 
co-occurrence of butter and eggs, we see the following:

௧௦	௪௧	௧	ି	ଷ.ହ	.ଽହସଶଵ଼ = ସ	ି	ଷ.ହ	.ଽହସଶଵ଼ =	0.522232968
By its very nature, z_score will be higher for common product-pairings and less for infrequent product-pairings; 
i.e., high-volume items will likely have a higher score. If co-promoting affinity pairings, you can think of z_score as 
volume potential. The higher the score, the more overall volume potential. Butter and eggs is slightly more than 
half a standard deviation to the right of the mean relative to all product-pairings (it is slightly more commonplace).
• If z_score > 0, then product-pairing occurs more frequently than typical product-pairing
• If z_score < 0, then product-pairing occurs less frequently than typical product-pairing
• If z_score = 0, then product-pairing occurs with the same frequency as the typical product-pairing
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Following are brief definitions of all output columns:

For z_score, note that if all cntb values are equal, then sd(cntb) is 0, and the function does not 
calculate z_score (returns NULL).

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 01l – Understanding CFilter Output: z_score

3.5

0.522

4.4 5.3 6.22.61.70.8

4.0

• In our data-set, the average of cntb is 3.5 and 
the standard deviation of cntb is roughly 0.9
(precision simplified here for illustrative 
purposes). Butter and eggs has a cntb value 
of 4, or around half (0.522) a standard 
deviation to the right of the mean

• Each standard deviation to the left of the mean 
decrements by 0.9; i.e., 2.6, 1.7, and 0.8

• Each standard deviation to the right of the 
mean increments by 0.9; i.e., 4.4, 5.3, and 6.2

• Our z_score for butter and eggs is roughly 
+0.522 (shown in orange to the left), signifying 
that its cntb value of 4 is around half a 
standard deviation to the right of the cntb
mean; i.e., its co-occurrence value is higher 
than the average, by around half a standard 
deviation
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c Lab 01m – Understanding CFilter Output: 
Summary

Following are some general guidelines on interpreting the output of CFilter.

• No single output metric should necessarily be viewed in isolation: View metrics as a collective

• If volume is of most interest: Focus on high support and/or high z_score values. High values on 
these metrics put the emphasis on frequently-occurring product pairings. Products such as bananas, 
milk, eggs, bread, etc. by their sheer volume will have high support and high z_score values when 
paired with other such similar products. Something like granola paired with organic yogurt will have 
lower support and z_score values due to the relatively low volume of both of those products. If 
neither one is bought frequently, then, by extension, the raw co-occurrence, support, and z_score 
values for the two will be relatively low as well

• If product attraction is paramount: Focus on high score, confidence, and lift values. High values 
on these metrics suggest that even though they may or may not be high-volume items, their attraction 
towards one another is strong; e.g., granola and organic yogurt

• Of course, you could focus on product pairings that have both high volume and high product attraction
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Here, we are familiarizing ourselves with the input table.

c
Lab 02a – Discovering Product Pairings

SELECT * 
FROM sales_transaction
ORDER BY orderid, product;

Here, we are viewing a sub-set of rows from our 
input table. On the next page, we will run a CFilter
query against this input table.

The columns of interest are as follows:
• orderid: The unique identifier of a transaction
• product: The product that was purchased
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Here, we are running our query. Note that we first drop our OUT TABLE (if it exists).

c
Lab 02b – Discovering Product Pairings

DROP TABLE
bb_borre_cfilter_output;

SELECT * FROM CFilter (
ON sales_transaction AS
InputTable
OUT TABLE OutputTable 
(bb_borre_cfilter_output)
USING
TargetColumns ('product')
JoinColumns ('orderid')
) AS my_alias;

Here, we are running our CFilter query. Note the 
following:

• We first drop our OUT TABLE
• We have defined the product column as our 

TargetColumns value. This is the product that 
was purchased

• We have defined orderid as our JoinColumns
value. This is the unique identifier of a 
transaction

The end-result of these arguments is that we are 
seeking our product-pairings that occurred within 
the same transaction
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02c – Discovering Product Pairings

SELECT * 
FROM bb_borre_cfilter_output;

• Below, we are selecting our CFilter
results from our defined output table

• Data is displayed for product-pairings that 
occurred within the same transactions

• Recall that each distinct pairing will 
occupy its own row; labels:envelopes
will be in one row, and 
envelopes:labels will be in another row

• Refer to the Notes below for a brief 
definition of each column in the output
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02d – Discovering Product Pairings

• Recall that z_score displays how many standard deviations the cntb value lies 
from the average cntb value

• Here, we are sorting our data by z_score DESC. What do you notice? 
• The support value displays the percentage of all transactions that had both items 

present. What happens when we sort by support DESC?
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Following are brief definitions of all output columns:

• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 02e – Discovering Product Pairings

• Recall that lift displays how many times the actual cntb is from the expectation of 
what cntb should be

• Here, we are sorting our data by lift DESC. What do you notice? What does a high 
lift value, but low z_score value represent?
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The default is MaxDistinctItems (100). If your data contains more than 100 distinct entities for which 
you are trying to discover pairings, make sure to set MaxDistinctItems appropriately; i.e., greater than 
or equal to the number of distinct entities.

c
Lab 03a – MaxDistinctItems

--must drop output table if exists
DROP TABLE bb_cfilter_test_output2;

--run CFilter
SELECT * 
FROM CFilter (
ON bb_cfilter_test AS InputTable
OUT TABLE OutputTable 
(bb_cfilter_test_output2)
USING
TargetColumns ('item')
JoinColumns ('tranid')
MaxDistinctItems (3)
) AS my_alias;

• Here, we are running another CFilter query 
against our input table used in Lab 01. Recall 
that this input table has four distinct items 
(butter, eggs, flour, milk)

• In our query here, we have specified a value of 
MaxDistinctItems (3)

• MaxDistinctItems: [Optional] Specify the 
maximum size of the item set. Default: 100
• Note: The function uses max_item_set to 

determine the size of the data structures it 
uses to accumulate intermediate results. If 
the number of distinct items in a 
target_column is greater than max_item_set, 
the function might report incorrect results 
without an error message
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The default is MaxDistinctItems (100). If your data contains more than 100 distinct entities for which 
you are trying to discover pairings, make sure to set MaxDistinctItems appropriately; i.e., greater than 
or equal to the number of distinct entities in your data.

c
Lab 03b – MaxDistinctItems

• Below are the results of our CFilter query from Lab 01 compared to our results from this lab, in 
which we specified a value of MaxDistinctItems (3)

• Note the highlighted differences
• The lesson here is know your data. The default MaxDistinctItems is 100. If your data 

contains more than 100 distinct items, make sure to set the MaxDistinctItems argument 
appropriately

Output from Lab 01 (correct) Output from this lab (incorrect)

Association Analysis    Slide 3-40



Here, we are familiarizing ourselves with the input table.

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input 
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column 
might contain each individual item purchased at the store. A sales transaction can include multiple 
items. For each sales transaction, the function tries to identify items that often appear in the same sales 
transaction (that is, items that are often purchased together).

c
Lab 04a – JoinColumns

SELECT * 
FROM bb_basket01
ORDER BY
hh_id, trans_id, prod;

• Here, we view the contents of our input table
• Note that there are 4 distinct households and 7

distinct transactions
• Only trans_id 7 had more than one item present
• All households except hh_id 4 had only single-

item transactions
• On the following pages, we will show examples 

of specifying different JoinColumns values 
when we run our CFilter function against our 
input data-set

• We will specify the following:

• JoinColumns ('hh_id')
• JoinColumns ('trans_id')
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Here, we are specifying JoinColumns ('trans_id'). This causes the function to seek out product-
pairings that occurred within the same trans_id (transaction).

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input 
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column 
might contain each individual item purchased at the store. A sales transaction can include multiple 
items. For each sales transaction, the function tries to identify items that often appear in the same sales 
transaction (that is, items that are often purchased together).

c
Lab 04b – JoinColumns

--drop OUT TABLE
DROP TABLE bb_cfilter_trans;

SELECT * 
FROM CFilter (
ON bb_basket01 AS InputTable
OUT TABLE OutputTable 
(bb_cfilter_trans)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
) AS my_alias;

SELECT * 
FROM bb_cfilter_trans
ORDER BY col1_item1, 
col1_item2;

• Here, we are specifying JoinColumns ('trans_id')
• This causes the function to seek out product-

pairings that occurred within the same trans_id
(transaction)

• Since there was only one trans_id in our source 
data that had more than one product present 
(trans_id 7), only two rows are returned
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Here, we are specifying JoinColumns ('hh_id'). This causes the function to seek out product-pairings 
that were purchased by the same hh_id (household).

JoinColumns: Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input 
columns.

2. The function tries to identify items in each input column that often appear in the same group.

For example, a join column might contain a list of sales transactions from a store, and the input column 
might contain each individual item purchased at the store. A sales transaction can include multiple 
items. For each sales transaction, the function tries to identify items that often appear in the same sales 
transaction (that is, items that are often purchased together).

c
Lab 04c – JoinColumns

DROP TABLE bb_cfilter_hh;

SELECT * 
FROM CFilter (
ON bb_basket01 AS InputTable
OUT TABLE OutputTable 
(bb_cfilter_hh)
USING
TargetColumns ('prod')
JoinColumns ('hh_id')
) AS my_alias;

SELECT * 
FROM bb_cfilter_hh
ORDER BY col1_item1, 
col1_item2;

• Here, we are specifying JoinColumns ('hh_id')
• This causes the function to seek out product-

pairings that were purchased by the same hh_id
(household)

• Since every household purchased two products in 
our source data, multiple rows are returned
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Here, we are familiarizing ourselves with the input table.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The 
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in 

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique 

in the group defined by JoinColumns.

c
Lab 05a – PartitionColumns

SELECT * 
FROM bb_trans11
ORDER BY hh_id, trans_id;

• Here, we view the contents of our input table
• Note that transactions occurred in two 

different regions: Miami and New York
• On the following pages, we will show an 

example of how the PartitionColumns
argument can be used

• PartitionColumns: [Optional] Specify the 
names of the input columns to copy to the 
output table. The function partitions the input 
data and the output table on these columns

• PartitionColumns is especially useful if you 
wish to have CFilter output calculated 
independently for different timeframes, 
geographies, customer segments, etc.
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Here, we are running our query without PartitionColumns.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The 
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in 

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique 

in the group defined by JoinColumns.

Following are brief definitions of all output columns:
• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 05b – PartitionColumns

DROP TABLE bb_cfilter_wop;

SELECT * 
FROM CFilter (ON bb_trans11 AS InputTable
OUT TABLE OutputTable (bb_cfilter_wop)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
) AS my_alias;

SELECT * 
FROM bb_cfilter_wop
ORDER BY col1_item1, col1_item2;

• Here, we are not using the optional PartitionColumns argument
• All product-pairings and their corresponding metrics are calculated globally

Output
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Here, we are running our query with the optional PartitionColumns argument.

PartitionColumns: [Optional] Specify the names of the input columns to copy to the output table. The 
function partitions the input data and the output table on these columns.

Note:
• Specifying a column as both an partition_column and a join_column causes incorrect counts in 

partitions.
• This argument makes the function output nondeterministic unless each partition_column is unique 

in the group defined by JoinColumns.

Following are brief definitions of all output columns:
• col1_item1: The first item of the pair.
• col2_item2: The second item of the pair.
• cntb: The number of transactions in which both items appeared.
• cnt1: The number of transactions in which item1 appeared.
• cnt2: The number of transactions in which item2 appeared.
• score: Displays the chance of both products co-occurring together in the same transaction--ONLY 

considering the totality of transactions that had both (as opposed to the totality of all transactions). 
• support: Displays the percentage of all transactions that had both items present.
• confidence: Displays out of all transactions with item1, what percentage of them also had item2. 

You can think of this as the "crossover percent", with item1 being the focal point.
• lift: Displays how many times the actual cntb is from the expectation of what cntb should be. 
• z_score displays how many standard deviations the cntb value lies from the average cntb value.

c
Lab 05c – PartitionColumns

DROP TABLE bb_cfilter_wp;

SELECT * 
FROM CFilter (
ON bb_trans11 AS InputTable
OUT TABLE OutputTable (bb_cfilter_wp)
USING
TargetColumns ('prod')
JoinColumns ('trans_id')
PartitionColumns ('region')
) AS my_alias;

SELECT * 
FROM bb_cfilter_wp
ORDER BY region, col1_item1, col1_item2;

• Here, we are using the optional PartitionColumns argument
• All product-pairings and their corresponding metrics are calculated by region

Output
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• CFilter
• Background Information (Description, Use 

Cases, Workflow, Syntax, Required 
Arguments, Optional Arguments, Input Table 
Schema, Output Table Schema)

• Labs
• Review

Current Topic – CFilter Review
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c
Hackathon: Product Combination Metrics

The following exercise is intended to provide you with further practice on using the CFilter
function. There is no single “right” or “wrong” approach. The intent is for you to become 
comfortable writing queries that use CFilter

1. Run a CFilter query on the sales_transaction table. Make sure the CFilter runs its logic against each 
region:customer_segment combination. What rows have the highest lift? How often did the highest co-
occurrence occur? Etc

2. Run a CFilter query on the bb_sales_fact table to find product-pairings that customers buy (i.e., don’t 
need to be in the same transaction). What rows have the highest lift? What about rows with the most co-
occurrences? Etc. What would you need to do to find product-pairings that co-occurred within the same 
transaction?

In this “free-form” exercise, the intent is to get you to write your own CFilter query(ies) so as to become 
more comfortable with the syntax.
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c Hackathon: Product Combination Metrics 
(Answers)

SELECT * FROM CFilter (
ON sales_transaction AS InputTable
OUT TABLE OutputTable 
(bb_cfilter_hack01)
USING
TargetColumns ('product')
JoinColumns ('orderid')
PartitionColumns ('region', 
'customer_segment')
) AS my_alias;

SELECT * FROM CFilter (
ON bb_sales_fact AS InputTable
OUT TABLE OutputTable 
(bb_cfilter_hack02)
USING
TargetColumns ('product_name')
JoinColumns ('customer_id')
) AS my_alias;

In this “free-form” exercise,, the intent is to get you to write your own CFilter query(ies) so as to become 
more comfortable with the syntax.
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Game Time! CFilter Hoops!

Click here to start!

This game, containing review questions, reinforces the module objectives.
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In this module, you learned how to:

• Describe what the CFilter function does

• Describe typical use cases for CFilter

• Write CFilter queries

• Interpret the output of CFilter queries

Summary
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A typical input table for the CFilter function is a set of sales transactions, with a column of purchased items
and a column of something by which to group the purchased items; for example, a transaction id or time
stamp.

The CFilter function calculates several statistical measures of how likely each pair of items is to be
purchased together. You can use CFilter output as input to the WSRecommender function, which performs
item-based, collaborative filtering, using a weighted-sum algorithm, to make recommendations.

CFilter Syntax
Version 1.13

SELECT * FROM CFilter (
  ON { table | view | (query) } AS InputTable
  OUT TABLE OutputTable (output_table)
  USING
  TargetColumns ({ 'target_column' | target_column_range }[,...])
  JoinColumns ({ 'join_column' | join_column_range }[,...])
  [ PartitionColumns ({ 'partition_column' | partition_column_range }[,...]) ]
  [ PartitionKey ('partition_key_column') ]
  [ MaxDistinctItems (max_distinct_items) ]
) AS alias;

Related Information:

Column Specification Syntax Elements

CFilter Syntax Elements
OutputTable

Specify the name of the output table that the function creates. The table must not exist.

TargetColumns
Specify the names of the InputTable columns that contain the data to filter.

JoinColumns
Specify the names of join columns, which the function uses as follows:

1. The function uses the items in each join column to define groups of items listed in the input
columns.

2. The function tries to identify items in each input column that often appear in the same group.

CFilter (ML Engine)
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For example, a join column might contain a list of sales transactions from a store, and the input
column might contain each individual item purchased at the store. A sales transaction can include
multiple items. For each sales transaction, the function tries to identify items that often appear in
the same sales transaction (that is, items that are often purchased together).

PartitionColumns
[Optional] Specify the names of the input columns to copy to the output table. The function
partitions the input data and the output table on these columns.

Specifying a column as both an partition_column and a join_column causes incorrect counts in
partitions.

This syntax element makes the function output nondeterministic unless each partition_column is
unique in the group defined by JoinColumns (for more information, see Nondeterministic Results
and UniqueID Syntax Element).

Default behavior: The function treats the input data as belonging to one partition.

PartitionKey
[Optional] Specify the name of the output column to use as the partition key.

Default: 'col1_item1'

MaxDistinctItems
[Optional] Specify the maximum size of the item set.

The function uses max_item_set to determine the size of the data structures it uses to accumulate
intermediate results. If the number of distinct items in an target_column is greater than
max_item_set, the function might report incorrect results without an error message.

Default: 100

CFilter Input
InputTable Schema

The table can have additional columns, but the function ignores them.

Column Data Type Description

target_column VARCHAR Data to filter.

join_column Any Column to join.

partition_column Any [Column appears once for each specified partition_column.] Column to
copy to output table. Used to partition input data and output table. Must
not be a join_column. Must be unique in the group defined by
JoinColumns, or function output is nondeterministic (for more
information, see Nondeterministic Results and UniqueID Syntax
Element).

106: CFilter (ML Engine)
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CFilter Output
Output Message Schema

Column Data Type Description

message VARCHAR Reports that output table was created successfully.

OutputTable Schema

Output is nondeterministic unless each add_column is unique in the group defined by JoinColumns (for
more information, see Nondeterministic Results and UniqueID Syntax Element).

Column Data Type Description

col1_item1 VARCHAR Name of item1.

col1_item2 VARCHAR Name of item2.

cntb INTEGER Count of co-occurrence of both items in partition.

cnt1 INTEGER Count of occurrence of item1 in partition.

cnt2 INTEGER Count of occurrence of item2 in partition.

score DOUBLE
PRECISION

Product of two conditional probabilities:
P({ item2 | item1 }) * P({ item1 | item2 })
Preceding product equals following quotient:
(cntb * cntb)/(cnt1 * cnt2)

support DOUBLE
PRECISION

Percentage of transactions in partition in which the two items co-occur,
calculated with this formula:
cntb/tran_cnt
where tran_cnt is the number of transactions in the partition.
For example, if eggs and milk were purchased together 3 times in 5
transactions in the same store, and the data is partitioned by store, then
the support value in the partition is 3/5 = 0.6 = 60%.

confidence DOUBLE
PRECISION

Percentage of transactions in partition in which item1 occurs, in which
item2 also occurs, calculated with this formula:
cntb/cnt1
For example, if, in the same store, the number of times that a customer
buys both milk (item1) and butter (item2) is 3 (cntb) and the number of
times that a customer buys milk is 4 (cnt1), then the confidence that a
person who buys milk will also buy butter is 3/4 = 0.75 = 75%.

lift DOUBLE
PRECISION

Ratio of observed support value to expected support value if item1 and
item2 were independent; that is:
support(item1 and item2) / [support(item1) * support(item2)]
Value is calculated with this formula:
(cntb/tran_cnt) / [(cnt1/tran_cnt) * (cnt2/tran_cnt)]
If Lift > 1, the occurrence of item1 or item2 has a positive effect on the
occurrence of the other items.
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Column Data Type Description

If Lift = 1, the occurrence of item1 or item2 has a no effect on the occurrence
of the other items.
If Lift < 1, the occurrence of item1 or item2 has a negative effect on the
occurrence of the other items.

z_score DOUBLE
PRECISION

Significance of co-occurrence, assuming that cntb follows a normal
distribution, calculated with this formula:
(cntb - mean(cntb)) / sd(cntb)
If all cntb values are equal, then sd(cntb) is 0, and function does not
calculate zscore.

Deleting Duplicate Output Table Rows
Duplicate output table rows appear because each pair of items appears in two rows—one row has item1
in col1_item1 and item2 in col1_item2, and the other row has item2 in col1_item1 and item1 in col1_item2.
To delete duplicate output table rows, use this code (where output_table is the output table name):

DROP TABLE copy;

CREATE MULTISET TABLE copy AS (
  SELECT *, ROW_NUMBER() OVER(ORDER BY col1_item1, col1_item2) rn
  FROM output_table
) WITH DATA;

DROP TABLE DuplicatesRemoved;

CREATE MULTISET TABLE DuplicatesRemoved AS (
  SELECT * FROM copy
) WITH DATA;

DELETE FROM DuplicatesRemoved WHERE rn IN (
  SELECT a.rn FROM DuplicatesRemoved a
  JOIN copy b
  ON a.col1_item1=b.col1_item2 AND a.col1_item2=b.col1_item1 AND a.rn < b.rn
);

DROP TABLE copy;

CFilter DuplicatesRemoved Table Schema
Column Data Type Description

col1_item1 VARCHAR Name of item1.

col1_item2 VARCHAR Name of item2.
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Column Data Type Description

rn INTEGER Row number in output_table when ordered by col1_item1, col1_item2.

CFilter Examples

CFilter Example: Filter by Product
Collaborative filtering by product is also called item-based collaborative filtering. In this example,
JoinColumns = 'orderid'. The function tries to identify products that are often bought in the same
transaction (as identified by the order_id).

Input
The InputTable has sales transaction data from an office supply chain store, in these columns:

Column Description

orderid Order (transaction) identifier

orderdate Order date

orderqty Quantity of product ordered

region Geographic region of store where order was placed

customer_segment Segment of customer who ordered product

prd_category Category of product ordered

product Product ordered

InputTable: sales_transaction

orderid orderdate orderqty region customer_
segment

prd_
category product

3 2010-10-13 00:
00:00

6 Nunavut Small
Business

Office
Supplies

Storage &
Organization

293 2012-10-01 00:
00:00

49 Nunavut Consumer Office
Supplies

Appliances

293 2012-10-01 00:
00:00

27 Nunavut Consumer Office
Supplies

Binders and
Binder
Accessories

483 2011-07-10 00:
00:00

30 Nunavut Corporate Technology Telephones and
Communication

515 2010-08-28 00:
00:00

19 Nunavut Consumer Office
Supplies

Appliances
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orderid orderdate orderqty region customer_
segment

prd_
category product

515 2010-08-28 00:
00:00

21 Nunavut Consumer Furniture Office
Furnishings

613 2011-06-17 00:
00:00

12 Nunavut Corporate Office
Supplies

Binders and
Binder
Accessories

613 2011-06-17 00:
00:00

22 Nunavut Corporate Office
Supplies

Storage &
Organization

643 2011-03-24 00:
00:00

21 Nunavut Corporate Office
Supplies

Storage &
Organization

678 2010-02-26 00:
00:00

44 Nunavut Home Office Office
Supplies

Paper

807 2010-11-23 00:
00:00

45 Nunavut Home Office Office
Supplies

Paper

807 2010-11-23 00:
00:00

32 Nunavut Home Office Office
Supplies

Rubber Bands

868 2012-06-08 00:
00:00

32 Nunavut Home Office Office
Supplies

Appliances

... ... ... ... ... ... ...

SQL Call

SELECT * FROM CFilter (
  ON sales_transaction AS InputTable
  OUT TABLE OutputTable (cfilter_output)
  USING
  TargetColumns ('product')
  JoinColumns ('orderid')
  PartitionColumns ('region')
) AS dt;

Output

              message              
-----------------------------------
 Output table created successfully
(1 row)

SELECT * FROM cfilter_output;

 region                col1_item1                     col1_item2                     
cntb cnt1 cnt2 score                 support               confidence           
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lift                z_score             
 --------------------- ------------------------------ 
------------------------------ ---- ---- ---- --------------------- 
--------------------- -------------------- ------------------- 
------------------- 
 northwest territories binders and binder accessories 
labels                            2   44   16  0.005681818181818182  
0.007434944237918215 0.045454545454545456  0.7642045454545454 0.12784297268860556
 northwest territories tables                         labels                            
1   12   16  0.005208333333333333 0.0037174721189591076  0.08333333333333333  
1.4010416666666667 -0.8522864845907044
 northwest territories computer peripherals           labels                            
1   30   16 0.0020833333333333333 0.0037174721189591076  0.03333333333333333  
0.5604166666666667 -0.8522864845907044
 nunavut               tables                         bookcases                         
1    1    2                   0.5  0.017857142857142856                  
1.0                28.0 -0.4588314677411239
 northwest territories binders and binder accessories 
tables                            2   44   12  0.007575757575757576  
0.007434944237918215 0.045454545454545456   1.018939393939394 0.12784297268860556
 nunavut               labels                         rubber bands                      
1    4    2                 0.125  0.017857142857142856                 
0.25                 7.0 -0.4588314677411239
 nunavut               binders and binder accessories computer 
peripherals              1   10    6  0.016666666666666666  
0.017857142857142856                  0.1  0.9333333333333333 -0.4588314677411239
 northwest territories labels                         binders and binder 
accessories    2   16   44  0.005681818181818182  0.007434944237918215                
0.125  0.7642045454545454 0.12784297268860556
 northwest territories binders and binder accessories rubber 
bands                      3   44   10  0.020454545454545454  0.011152416356877323  
0.06818181818181818   1.834090909090909  1.1079724299679155
 northwest territories labels                         paper                             
2   16   40               0.00625  0.007434944237918215                0.125            
0.840625 0.12784297268860556
 northwest territories computer peripherals           binders and binder 
accessories    3   30   44  0.006818181818181818  
0.011152416356877323                  0.1  0.6113636363636363  1.1079724299679155
 atlantic              labels                         pens & art supplies               
1    3    2   0.16666666666666666   0.05555555555555555   
0.3333333333333333                 3.0                NULL
...

106: CFilter (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 1752



Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

CFilter Example: Filter by Customer Segment
In this example, JoinColumns = 'product'. The function tries to identify segments of customers that often
purchase the same products.

Input

• InputTable: sales_transaction, as in CFilter Example: Filter by Product

SQL Call

SELECT * FROM CFilter (
  ON sales_transaction AS InputTable
  OUT TABLE OutputTable (cfilter_output1)
  USING
  TargetColumns ('customer_segment')
  JoinColumns ('product')
) AS dt;

Output

              message              
-----------------------------------
 Output table created successfully
(1 row)

SELECT * FROM cfilter_output1;

 col1_item1     col1_item2     cntb cnt1 cnt2 score              support            
confidence         lift   z_score             
 -------------- -------------- ---- ---- ---- ------------------ 
------------------ ------------------ ------ ------------------- 
 corporate      small business   17   17   17                1.0                
1.0                1.0    1.0  1.3728129459672886
 home office    small business   16   16   17 0.9411764705882353 
0.9411764705882353                1.0    1.0  0.7844645405527365
 consumer       small business   13   13   17 0.7647058823529411 
0.7647058823529411                1.0    1.0 -0.9805806756909198
 home office    consumer         13   16   13             0.8125 
0.7647058823529411             0.8125 1.0625 -0.9805806756909198
 consumer       corporate        13   13   17 0.7647058823529411 
0.7647058823529411                1.0    1.0 -0.9805806756909198
 small business corporate        17   17   17                1.0                
1.0                1.0    1.0  1.3728129459672886
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 corporate      home office      16   17   16 0.9411764705882353 0.9411764705882353 
0.9411764705882353    1.0  0.7844645405527365
 small business home office      16   17   16 0.9411764705882353 0.9411764705882353 
0.9411764705882353    1.0  0.7844645405527365
 corporate      consumer         13   17   13 0.7647058823529411 0.7647058823529411 
0.7647058823529411    1.0 -0.9805806756909198
 small business consumer         13   17   13 0.7647058823529411 0.7647058823529411 
0.7647058823529411    1.0 -0.9805806756909198
 consumer       home office      13   13   16             0.8125 
0.7647058823529411                1.0 1.0625 -0.9805806756909198
 home office    corporate        16   16   17 0.9411764705882353 
0.9411764705882353                1.0    1.0  0.7844645405527365

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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Receiver Operating Characteristic 

Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic 

A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability 
of a binary classifier system as its discrimination threshold is varied. 

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various 
threshold settings. The true-positive rate is also known as sensitivity, recall or probability of 
detection in machine learning. The false-positive rate is also known as probability of false alarm and can be 
calculated as (1 − specificity). It can also be thought of as a plot of the power as a function of the Type I Error of 
the decision rule (when the performance is calculated from just a sample of the population, it can be thought 
of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In 
general, if the probability distributions for both detection and false alarm are known, the ROC curve can be 

generated by plotting the cumulative distribution function (area under the probability distribution from -∞ to 

the discrimination threshold) of the detection probability in the y-axis versus the cumulative distribution 
function of the false-alarm probability on the x-axis. 

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones independently 
from (and prior to specifying) the cost context or the class distribution. ROC analysis is related in a direct and 
natural way to cost/benefit analysis of diagnostic decision making. 

The ROC curve was first developed by electrical engineers and radar engineers during World War II for 
detecting enemy objects in battlefields and was soon introduced to psychology to account for perceptual 
detection of stimuli. ROC analysis since then has been used 
in medicine, radiology, biometrics, forecasting of natural hazards, meteorology, model performance 
assessment, and other areas for many decades and is increasingly used in machine learning and data 
mining research. 

The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating 
characteristics (TPR and FPR) as the criterion changes.   

 

A classification model (classifier or diagnosis) is a mapping of instances between certain classes/groups. 
Because the classifier or diagnosis result can be an arbitrary real value (continuous output), the classifier 
boundary between classes must be determined by a threshold value (for instance, to determine whether a 
person has hypertension based on a blood pressure measure). Or it can be a discrete class label, indicating 
one of the classes. 

Consider a two-class prediction problem (binary classification), in which the outcomes are labeled either as 
positive (p) or negative (n). There are four possible outcomes from a binary classifier. If the outcome from a 
prediction is p and the actual value is also p, then it is called a true positive (TP); however if the actual value 
is n then it is said to be a false positive (FP). Conversely, a true negative (TN) has occurred when both the 
prediction outcome and the actual value are n, and false negative (FN) is when the prediction outcome 
is n while the actual value is p. 

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks to determine 
whether a person has a certain disease. A false positive in this case occurs when the person tests positive, but 
does not actually have the disease. A false negative, on the other hand, occurs when the person tests 
negative, suggesting they are healthy, when they actually do have the disease.  
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https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Specificity_(tests)
https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/Type_I_Error
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Psychology
https://en.wikipedia.org/wiki/Medicine
https://en.wikipedia.org/wiki/Radiology
https://en.wikipedia.org/wiki/Biometrics
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Natural_hazard
https://en.wikipedia.org/wiki/Meteorology
https://en.wikipedia.org/wiki/Machine_learning
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https://en.wikipedia.org/wiki/Mapping_(mathematics)
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https://en.wikipedia.org/wiki/Binary_classification
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ROC space 

The contingency table can derive several evaluation "metrics" (see infobox). To draw an ROC curve, only the 
true positive rate (TPR) and false positive rate (FPR) are needed (as functions of some classifier parameter). 
The TPR defines how many correct positive results occur among all positive samples available during the test. 
FPR, on the other hand, defines how many incorrect positive results occur among all negative samples 
available during the test. 

An ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative trade-offs 
between true positive (benefits) and false positive (costs). Since TPR is equivalent to sensitivity and FPR is 
equal to 1 − specificity, the ROC graph is sometimes called the sensitivity vs (1 − specificity) plot. Each 
prediction result or instance of a confusion matrix represents one point in the ROC space. 

The best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the 
ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no false positives). The 
(0,1) point is also called a perfect classification. A random guess would give a point along a diagonal line (the 
so-called line of no-discrimination) from the left bottom to the top right corners (regardless of the positive 
and negative base rates). An intuitive example of random guessing is a decision by flipping coins. As the size 
of the sample increases, a random classifier's ROC point tends towards the diagonal line. In the case of a 
balanced coin, it will tend to the point (0.5, 0.5). 

The diagonal divides the ROC space. Points above the diagonal represent good classification results (better 
than random); points below the line represent bad results (worse than random). Note that the output of a 
consistently bad predictor could simply be inverted to obtain a good predictor.  

 

 

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Base_rate


Teradata Vantage: Analytics Certification Learning Resource 

 

 

Let us look into four prediction results from 100 positive and 100 negative instances:  

 

Plots of the four results above in the ROC space are given in the figure. The result of method A clearly shows 

the best predictive power among A, B, and C. The result of B lies on the random guess line (the diagonal line), 

and it can be seen in the table that the accuracy of B is 50%. However, when C is mirrored across the center 

point (0.5,0.5), the resulting method C′ is even better than A. This mirrored method simply reverses the 

predictions of whatever method or test produced the C contingency table. Although the original C method has 

negative predictive power, simply reversing its decisions leads to a new predictive method C′ which has positive 

predictive power. When the C method predicts p or n, the C′ method would predict n or p, respectively. In this 

manner, the C′ test would perform the best. The closer a result from a contingency table is to the upper left 

corner, the better it predicts, but the distance from the random guess line in either direction is the best 

indicator of how much predictive power a method has. If the result is below the line (i.e. the method is worse 

than a random guess), all of the method's predictions must be reversed in order to utilize its power, thereby 

moving the result above the random guess line. 

Sometimes, the ROC is used to generate a summary statistic. Common versions are: 

• the intercept of the ROC curve with the line at 45 degrees orthogonal to the no-discrimination line - the 
balance point where Sensitivity = 1 - Specificity 

• the intercept of the ROC curve with the tangent at 45 degrees parallel to the no-discrimination line that 
is closest to the error-free point (0,1) - also called Youden's J statistic and generalized as Informedness 

• the area between the ROC curve and the no-discrimination line multiplied by two - Gini Coefficient 

• the area between the full ROC curve and the triangular ROC curve including only (0,0), (1,1) and one 
selected operating point (tpr,fpr) - Consistency 

• the area under the ROC curve, or "AUC" ("Area Under Curve"), or A' (pronounced "a-prime"), or "c-
statistic" ("concordance statistic"). 

• the sensitivity index d' (pronounced "d-prime"), the distance between the mean of the distribution of 
activity in the system under noise-alone conditions and its distribution under signal-alone conditions, 
divided by their standard deviation, under the assumption that both these distributions are normal with 
the same standard deviation. Under these assumptions, the shape of the ROC is entirely determined 
by d'. 

 

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Specificity_(statistics)
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Gini_Coefficient
https://en.wikipedia.org/wiki/Sensitivity_index
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Normal_distribution


A receiver operating characteristic (ROC) curve shows the performance of a binary classification model as
its discrimination threshold varies. For a range of thresholds, the curve plots the true positive rate against
the false positive rate.

The Receiver Operating Characteristic (ROC) function takes a set of prediction-actual pairs for a binary
classification model and calculates the following values for a range of discrimination thresholds:

• True positive rate (TPR)
• False positive rate (FPR)
• Area under the ROC curve (AUC)
• Gini coefficient

A prediction-actual pair for a binary classifier consists of:

• Predicted probability that an observation is in the positive class
• Actual class of the observation

A discrimination threshold determines whether an observation is classified as positive (1) or negative (0).
For example, suppose that a model predicts that an observation will be classified as positive with 0.55
probability. If the threshold above which an observation is classified as positive is 0.5, then the observation
is classified as positive. If the threshold is 0.6, the observation is classified as negative.

You can create prediction-actual pairs for ROC with these functions:

• AdaBoostPredict
• DecisionForestPredict_MLE
• DecisionTreePredict_MLE
• GLMPredict_MLE
• XGBoostPredict

ROC Syntax
Version 1.8

SELECT * FROM ROC (
  ON { table | view | (query) } AS InputTable
  { OUT TABLE OutputTable (output_table) |
    OUT TABLE ROCTable (ROC_table) }
  USING
  [ ModelIDColumn ('model_id_column')]
  ProbabilityColumn ('probability_column')
  ObservationColumn ('observation_column')
  PositiveClass ('positive_class_label')
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  [ NumThresholds (num_thresholds)]
  [ ROCValues ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ AUC ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
  [ Gini ({'true'|'t'|'yes'|'y'|'1'|'false'|'f'|'no'|'n'|'0'}) ]
) AS alias;

ROC Syntax Elements
OutputTable

[Required if you omit ROCTable, disallowed otherwise.] Specify the name for the output table
that the function creates. The output_table must not already exist.

ROCTable
[Required if you omit OutputTable, disallowed otherwise.] Specify the name for the ROC table
that the function creates. The ROC_table must not already exist.

ModelIDColumn
[Optional] Specify the name of the InputTable column that contains the model or partition
identifiers for the ROC curves.

Use this syntax element only when InputTable contains information for more than one model. The
function creates a separate ROC curve for each model identifier in this column. Each model must
include exactly two classes in ObservationColumn.

ProbabilityColumn
Specify the name of the InputTable column that contains the predictions.

ObservationColumn
Specify the name of the InputTable column that contains the actual classes.

PositiveClass
Specify the label of the positive class.

NumThresholds
[Optional] Specify the number of thresholds for the function to use. The num_thresholds must be
a NUMERIC value in the range [1, 10000].

Default: 50 (The function uniformly distributes the thresholds between 0 and 1.)

ROCValues
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
ROC values (thresholds, false positive rates, and true positive rates).

Default: 'true'. See the following note.

AUC
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
the AUC calculated from the ROC values.

Default: 'false'. See the following note.
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Gini
[Optional with OutputTable, disallowed with ROCTable.] Specify whether the function displays
the Gini coefficient calculated from the ROC values. The Gini coefficient is a measure of inequality
among values of a frequency distribution. A Gini coefficient of 0 indicates that all values are the
same. The closer the Gini coefficient is to 1, the more unequal are the values in the distribution.

Default: 'false'. See the following note.

If you specify OutputTable, the valid combinations of ROCValues, AUC, and Gini syntax elements
are those that specify one of the following:

• ROCValues only
• AUC only
• Gini only
• AUC and Gini

The function issues an error message if you do any of the following:

• Specify AUC only, Gini only, or AUC and Gini only, and ROCValues ('true').

(When specifying AUC only, Gini only, or AUC and Gini only, ROCValues is false by default.)

• Specify an invalid combination (such as ROCValues ('true') and AUC ('true'), or all three
'false').

• Specify ROCTable and also specify any of AUC, Gini, or ROCValues.

ROC Input
Input Table Schema

The table has one row for each observation.

Column Data Type Description

model_id_column Any [Column appears only with ModelIDColumn syntax element.
] Model identifier or partition for ROC curve associated with
observation.

probability_column DOUBLE
PRECISION

Predicted probability that observation is in positive class.

observation_column Any Actual class of observation.

ROC Output
The output depends on whether you specify OutputTable or ROCTable.

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 137



ROC Output with OutputTable
If you specify OutputTable, the function outputs a message and creates OutputTable. The OutputTable
schema depends on the ROCValues syntax element.

Output Message Schema

Column Data Type Description

info VARCHAR Reports whether function completed.

OutputTable Schema, ROCValues ('true') (Default)

The table has one row for each threshold for each model, and contains only ROC values.

Column Data Type Description

model Same as model_id_
column in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

threshold DOUBLE PRECISION Threshold at which function classifies an observation as positive.

tpr DOUBLE PRECISION True positive rate for threshold (number of observations correctly
predicted as positive based on threshold, divided by number of
observations known to be positive).

fpr DOUBLE PRECISION False positive rate for threshold (number of observations incorrectly
predicted as positive based on threshold, divided by number of
observations known to be negative).

OutputTable Schema, ROCValues ('false')

This is the default output table if you specify AUC only, Gini only, or AUC and Gini only.

The table has the following:

• One row for each model
• No ROC values
• AUC values, Gini values, or both (depending on AUC and Gini syntax elements)

Column Data Type Description

model Same as model_id_
column in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

AUC DOUBLE PRECISION Area under ROC curve for data in partition. With AUC ( 'false'), this
value is NULL.
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Column Data Type Description

Gini DOUBLE PRECISION Gini coefficient for ROC curve for data in partition. With Gini
('false'), this value is NULL.

ROC Output with ROCTable
If you specify ROCTable, the function outputs a table to the screen and creates ROCTable.

Onscreen Output Table Schema

Column Data Type Description

model Same as model_id_column
in input table

[Column appears only with ModelIDColumn syntax element.]
Model identifier or partition for ROC curve associated with
observation, taken from model_id_column.

auc DOUBLE PRECISION Area under ROC curve for data in partition.

gini DOUBLE PRECISION Gini coefficient for ROC curve for data in partition.

ROCTable Schema

Same as default OutputTable Schema in ROC Output with OutputTable.

ROC Examples

ROC Example: OutputTable, Default Values
Input

All ROC examples use this input table, roc_input, which has data from four different models:

model_id id  observation  probability          
 -------- --- ----------- ------------
        1   7 0           0.15
        1  40 0           0.4
        1  55 1           1.0
        1  57 1           0.85
        1  72 1           1.0
        1  80 1           0.9
        1  95 1           1.0
        1 110 0           0.0
        1 112 0           0.0
        1 118 0           0.0
        1 120 1           0.9
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        1 127 0           0.0
        1 135 0           0.0
        1 150 0           0.1
        1 158 1           1.0
        1 162 0           0.05
        1 167 0           0.0
        1 173 0           0.0
        1 175 0           0.0
        1 190 1           0.9
        1 200 0           0.0
        1 213 1           0.1
        1 217 0           0.0
        1 223 1           1.0
        1 228 0           0.0
        2 230 0           0.05
        2 240 0           0.0
        2 255 0           0.0
        2 268 1           1.0
        2 270 1           1.0
        2 272 1           1.0
        2 278 1           0.9
        2 295 1           1.0
        2 310 1           0.9
        2 343 0           0.0
        2 345 0           0.05
        2 360 0           0.15
        2 383 1           1.0
        2 398 0           0.3
        2 400 1           0.95
        2 406 0           0.0
        2 415 0           0.0
        2 423 0           0.0
        2 438 0           0.0
        2 446 1           1.0
        2 453 0           0.0
        2 455 0           0.05
        2 461 0           0.1
        2 463 0           0.0
        2 478 1           0.85
        3 488 1           0.75
        3 493 1           1.0
        3 501 1           1.0
        3 503 0           0.4
        3 505 0           0.35
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        3 516 0           0.0
        3 518 0           0.0
        3 528 0           0.15
        3 533 1           0.9
        3 543 1           0.7
        3 556 1           0.7
        3 558 1           1.0
        3 560 1           0.95
        3 575 1           0.35
        3 583 0           0.0
        3 598 1           1.0
        3 615 1           0.45
        3 631 1           1.0
        3 648 1           0.9
        3 671 0           0.05
        3 686 0           0.0
        3 688 0           0.1
        3 703 0           0.0
        3 711 0           0.8
        3 718 0           0.15
        4 726 1           1.0
        4 734 0           0.05
        4 741 1           0.4
        4 743 0           0.05
        4 749 0           0.0
        4 751 0           0.0
        4 758 0           0.0
        4 766 1           0.85
        4 781 0           0.7
        4 789 0           0.1
        4 791 1           0.7
        4 793 1           1.0
        4 798 0           0.0
        4 804 1           1.0
        4 806 0           0.0
        4 808 1           0.9
        4 821 1           1.0
        4 831 0           0.0
        4 846 0           0.0
        4 848 0           0.0
        4 861 1           0.8
        4 863 0           0.05
        4 886 0           0.3
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        4 901 0           0.0
        4 903 0           0.0

SQL Call

In this call, the ROCValues, AUC, and Gini syntax elements default to the values 'true', 'false', and 'false',
respectively.

SELECT * FROM ROC (
  ON roc_input AS InputTable
  OUT TABLE OutputTable (roc_out_1)
  USING
  ModelIdColumn ('model_id')
  ProbabilityColumn ('probability')
  ObservationColumn ('observation')
  PositiveClass ('1')
  NumThresholds (100)
) AS dt;

Output

 info          
 ------------- 
 ROC complete.

SELECT * FROM roc_out_1;

 model_id threshold          tpr               fpr                
 -------- ------------------ ----------------- ------------------ 
        1                0.0               1.0                1.0
        1 0.0101010101010101               1.0  0.266666666666667
        1 0.0202020202020202               1.0  0.266666666666667
        1 0.0303030303030303               1.0  0.266666666666667
        1 0.0404040404040404               1.0  0.266666666666667
        1 0.0505050505050505               1.0                0.2
        1 0.0606060606060606               1.0                0.2
        1 0.0707070707070707               1.0                0.2
        1 0.0808080808080808               1.0                0.2
        1 0.0909090909090909               1.0                0.2
        1  0.101010101010101               0.9  0.133333333333333
        1  0.111111111111111               0.9  0.133333333333333
        1  0.121212121212121               0.9  0.133333333333333
        1  0.131313131313131               0.9  0.133333333333333
        1  0.141414141414141               0.9  0.133333333333333
        1  0.151515151515152               0.9 0.0666666666666667
        1  0.161616161616162               0.9 0.0666666666666667

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 142



        1  0.171717171717172               0.9 0.0666666666666667
        1  0.181818181818182               0.9 0.0666666666666667
        1  0.191919191919192               0.9 0.0666666666666667
        1  0.202020202020202               0.9 0.0666666666666667
        1  0.212121212121212               0.9 0.0666666666666667
        1  0.222222222222222               0.9 0.0666666666666667
        1  0.232323232323232               0.9 0.0666666666666667
        1  0.242424242424242               0.9 0.0666666666666667
        1  0.252525252525253               0.9 0.0666666666666667
        1  0.262626262626263               0.9 0.0666666666666667
        1  0.272727272727273               0.9 0.0666666666666667
        1  0.282828282828283               0.9 0.0666666666666667
        1  0.292929292929293               0.9 0.0666666666666667
        1  0.303030303030303               0.9 0.0666666666666667
        1  0.313131313131313               0.9 0.0666666666666667
        1  0.323232323232323               0.9 0.0666666666666667
        1  0.333333333333333               0.9 0.0666666666666667
        1  0.343434343434343               0.9 0.0666666666666667
        1  0.353535353535354               0.9 0.0666666666666667
        1  0.363636363636364               0.9 0.0666666666666667
        1  0.373737373737374               0.9 0.0666666666666667
        1  0.383838383838384               0.9 0.0666666666666667
        1  0.393939393939394               0.9 0.0666666666666667
        1  0.404040404040404               0.9                0.0
        1  0.414141414141414               0.9                0.0
        1  0.424242424242424               0.9                0.0
        1  0.434343434343434               0.9                0.0
        1  0.444444444444444               0.9                0.0
        1  0.454545454545455               0.9                0.0
        1  0.464646464646465               0.9                0.0
        1  0.474747474747475               0.9                0.0
        1  0.484848484848485               0.9                0.0
        1  0.494949494949495               0.9                0.0
        1  0.505050505050505               0.9                0.0
        1  0.515151515151515               0.9                0.0
        1  0.525252525252525               0.9                0.0
        1  0.535353535353535               0.9                0.0
        1  0.545454545454546               0.9                0.0
        1  0.555555555555556               0.9                0.0
        1  0.565656565656566               0.9                0.0
        1  0.575757575757576               0.9                0.0
        1  0.585858585858586               0.9                0.0
        1  0.595959595959596               0.9                0.0
        1  0.606060606060606               0.9                0.0
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        1  0.616161616161616               0.9                0.0
        1  0.626262626262626               0.9                0.0
        1  0.636363636363636               0.9                0.0
        1  0.646464646464647               0.9                0.0
        1  0.656565656565657               0.9                0.0
        1  0.666666666666667               0.9                0.0
        1  0.676767676767677               0.9                0.0
        1  0.686868686868687               0.9                0.0
        1  0.696969696969697               0.9                0.0
        1  0.707070707070707               0.9                0.0
        1  0.717171717171717               0.9                0.0
        1  0.727272727272727               0.9                0.0
        1  0.737373737373737               0.9                0.0
        1  0.747474747474748               0.9                0.0
        1  0.757575757575758               0.9                0.0
        1  0.767676767676768               0.9                0.0
        1  0.777777777777778               0.9                0.0
        1  0.787878787878788               0.9                0.0
        1  0.797979797979798               0.9                0.0
        1  0.808080808080808               0.9                0.0
        1  0.818181818181818               0.9                0.0
        1  0.828282828282828               0.9                0.0
        1  0.838383838383838               0.9                0.0
        1  0.848484848484849               0.9                0.0
        1  0.858585858585859               0.8                0.0
        1  0.868686868686869               0.8                0.0
        1  0.878787878787879               0.8                0.0
        1  0.888888888888889               0.8                0.0
        1  0.898989898989899               0.8                0.0
        1  0.909090909090909               0.5                0.0
        1  0.919191919191919               0.5                0.0
        1  0.929292929292929               0.5                0.0
        1  0.939393939393939               0.5                0.0
        1   0.94949494949495               0.5                0.0
        1   0.95959595959596               0.5                0.0
        1   0.96969696969697               0.5                0.0
        1   0.97979797979798               0.5                0.0
        1   0.98989898989899               0.5                0.0
        1                1.0               0.5                0.0
        2                0.0               1.0                1.0
        2 0.0101010101010101               1.0                0.4
        2 0.0202020202020202               1.0                0.4
        2 0.0303030303030303               1.0                0.4
        2 0.0404040404040404               1.0                0.4
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        2 0.0505050505050505               1.0                0.2
        2 0.0606060606060606               1.0                0.2
        2 0.0707070707070707               1.0                0.2
        2 0.0808080808080808               1.0                0.2
        2 0.0909090909090909               1.0                0.2
        2  0.101010101010101               1.0  0.133333333333333
        2  0.111111111111111               1.0  0.133333333333333
        2  0.121212121212121               1.0  0.133333333333333
        2  0.131313131313131               1.0  0.133333333333333
        2  0.141414141414141               1.0  0.133333333333333
        2  0.151515151515152               1.0 0.0666666666666667
        2  0.161616161616162               1.0 0.0666666666666667
        2  0.171717171717172               1.0 0.0666666666666667
        2  0.181818181818182               1.0 0.0666666666666667
        2  0.191919191919192               1.0 0.0666666666666667
        2  0.202020202020202               1.0 0.0666666666666667
        2  0.212121212121212               1.0 0.0666666666666667
        2  0.222222222222222               1.0 0.0666666666666667
        2  0.232323232323232               1.0 0.0666666666666667
        2  0.242424242424242               1.0 0.0666666666666667
        2  0.252525252525253               1.0 0.0666666666666667
        2  0.262626262626263               1.0 0.0666666666666667
        2  0.272727272727273               1.0 0.0666666666666667
        2  0.282828282828283               1.0 0.0666666666666667
        2  0.292929292929293               1.0 0.0666666666666667
        2  0.303030303030303               1.0                0.0
        2  0.313131313131313               1.0                0.0
        2  0.323232323232323               1.0                0.0
        2  0.333333333333333               1.0                0.0
        2  0.343434343434343               1.0                0.0
        2  0.353535353535354               1.0                0.0
        2  0.363636363636364               1.0                0.0
        2  0.373737373737374               1.0                0.0
        2  0.383838383838384               1.0                0.0
        2  0.393939393939394               1.0                0.0
        2  0.404040404040404               1.0                0.0
        2  0.414141414141414               1.0                0.0
        2  0.424242424242424               1.0                0.0
        2  0.434343434343434               1.0                0.0
        2  0.444444444444444               1.0                0.0
        2  0.454545454545455               1.0                0.0
        2  0.464646464646465               1.0                0.0
        2  0.474747474747475               1.0                0.0
        2  0.484848484848485               1.0                0.0
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        2  0.494949494949495               1.0                0.0
        2  0.505050505050505               1.0                0.0
        2  0.515151515151515               1.0                0.0
        2  0.525252525252525               1.0                0.0
        2  0.535353535353535               1.0                0.0
        2  0.545454545454546               1.0                0.0
        2  0.555555555555556               1.0                0.0
        2  0.565656565656566               1.0                0.0
        2  0.575757575757576               1.0                0.0
        2  0.585858585858586               1.0                0.0
        2  0.595959595959596               1.0                0.0
        2  0.606060606060606               1.0                0.0
        2  0.616161616161616               1.0                0.0
        2  0.626262626262626               1.0                0.0
        2  0.636363636363636               1.0                0.0
        2  0.646464646464647               1.0                0.0
        2  0.656565656565657               1.0                0.0
        2  0.666666666666667               1.0                0.0
        2  0.676767676767677               1.0                0.0
        2  0.686868686868687               1.0                0.0
        2  0.696969696969697               1.0                0.0
        2  0.707070707070707               1.0                0.0
        2  0.717171717171717               1.0                0.0
        2  0.727272727272727               1.0                0.0
        2  0.737373737373737               1.0                0.0
        2  0.747474747474748               1.0                0.0
        2  0.757575757575758               1.0                0.0
        2  0.767676767676768               1.0                0.0
        2  0.777777777777778               1.0                0.0
        2  0.787878787878788               1.0                0.0
        2  0.797979797979798               1.0                0.0
        2  0.808080808080808               1.0                0.0
        2  0.818181818181818               1.0                0.0
        2  0.828282828282828               1.0                0.0
        2  0.838383838383838               1.0                0.0
        2  0.848484848484849               1.0                0.0
        2  0.858585858585859               0.9                0.0
        2  0.868686868686869               0.9                0.0
        2  0.878787878787879               0.9                0.0
        2  0.888888888888889               0.9                0.0
        2  0.898989898989899               0.9                0.0
        2  0.909090909090909               0.7                0.0
        2  0.919191919191919               0.7                0.0
        2  0.929292929292929               0.7                0.0
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        2  0.939393939393939               0.7                0.0
        2   0.94949494949495               0.7                0.0
        2   0.95959595959596               0.6                0.0
        2   0.96969696969697               0.6                0.0
        2   0.97979797979798               0.6                0.0
        2   0.98989898989899               0.6                0.0
        2                1.0               0.6                0.0
        3                0.0               1.0                1.0
        3 0.0101010101010101               1.0  0.583333333333333
        3 0.0202020202020202               1.0  0.583333333333333
        3 0.0303030303030303               1.0  0.583333333333333
        3 0.0404040404040404               1.0  0.583333333333333
        3 0.0505050505050505               1.0                0.5
        3 0.0606060606060606               1.0                0.5
        3 0.0707070707070707               1.0                0.5
        3 0.0808080808080808               1.0                0.5
        3 0.0909090909090909               1.0                0.5
        3  0.101010101010101               1.0  0.416666666666667
        3  0.111111111111111               1.0  0.416666666666667
        3  0.121212121212121               1.0  0.416666666666667
        3  0.131313131313131               1.0  0.416666666666667
        3  0.141414141414141               1.0  0.416666666666667
        3  0.151515151515152               1.0               0.25
        3  0.161616161616162               1.0               0.25
        3  0.171717171717172               1.0               0.25
        3  0.181818181818182               1.0               0.25
        3  0.191919191919192               1.0               0.25
        3  0.202020202020202               1.0               0.25
        3  0.212121212121212               1.0               0.25
        3  0.222222222222222               1.0               0.25
        3  0.232323232323232               1.0               0.25
        3  0.242424242424242               1.0               0.25
        3  0.252525252525253               1.0               0.25
        3  0.262626262626263               1.0               0.25
        3  0.272727272727273               1.0               0.25
        3  0.282828282828283               1.0               0.25
        3  0.292929292929293               1.0               0.25
        3  0.303030303030303               1.0               0.25
        3  0.313131313131313               1.0               0.25
        3  0.323232323232323               1.0               0.25
        3  0.333333333333333               1.0               0.25
        3  0.343434343434343               1.0               0.25
        3  0.353535353535354 0.923076923076923  0.166666666666667
        3  0.363636363636364 0.923076923076923  0.166666666666667
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        3  0.373737373737374 0.923076923076923  0.166666666666667
        3  0.383838383838384 0.923076923076923  0.166666666666667
        3  0.393939393939394 0.923076923076923  0.166666666666667
        3  0.404040404040404 0.923076923076923 0.0833333333333333
        3  0.414141414141414 0.923076923076923 0.0833333333333333
        3  0.424242424242424 0.923076923076923 0.0833333333333333
        3  0.434343434343434 0.923076923076923 0.0833333333333333
        3  0.444444444444444 0.923076923076923 0.0833333333333333
        3  0.454545454545455 0.846153846153846 0.0833333333333333
        3  0.464646464646465 0.846153846153846 0.0833333333333333
        3  0.474747474747475 0.846153846153846 0.0833333333333333
        3  0.484848484848485 0.846153846153846 0.0833333333333333
        3  0.494949494949495 0.846153846153846 0.0833333333333333
        3  0.505050505050505 0.846153846153846 0.0833333333333333
        3  0.515151515151515 0.846153846153846 0.0833333333333333
        3  0.525252525252525 0.846153846153846 0.0833333333333333
        3  0.535353535353535 0.846153846153846 0.0833333333333333
        3  0.545454545454546 0.846153846153846 0.0833333333333333
        3  0.555555555555556 0.846153846153846 0.0833333333333333
        3  0.565656565656566 0.846153846153846 0.0833333333333333
        3  0.575757575757576 0.846153846153846 0.0833333333333333
        3  0.585858585858586 0.846153846153846 0.0833333333333333
        3  0.595959595959596 0.846153846153846 0.0833333333333333
        3  0.606060606060606 0.846153846153846 0.0833333333333333
        3  0.616161616161616 0.846153846153846 0.0833333333333333
        3  0.626262626262626 0.846153846153846 0.0833333333333333
        3  0.636363636363636 0.846153846153846 0.0833333333333333
        3  0.646464646464647 0.846153846153846 0.0833333333333333
        3  0.656565656565657 0.846153846153846 0.0833333333333333
        3  0.666666666666667 0.846153846153846 0.0833333333333333
        3  0.676767676767677 0.846153846153846 0.0833333333333333
        3  0.686868686868687 0.846153846153846 0.0833333333333333
        3  0.696969696969697 0.846153846153846 0.0833333333333333
        3  0.707070707070707 0.692307692307692 0.0833333333333333
        3  0.717171717171717 0.692307692307692 0.0833333333333333
        3  0.727272727272727 0.692307692307692 0.0833333333333333
        3  0.737373737373737 0.692307692307692 0.0833333333333333
        3  0.747474747474748 0.692307692307692 0.0833333333333333
        3  0.757575757575758 0.615384615384615 0.0833333333333333
        3  0.767676767676768 0.615384615384615 0.0833333333333333
        3  0.777777777777778 0.615384615384615 0.0833333333333333
        3  0.787878787878788 0.615384615384615 0.0833333333333333
        3  0.797979797979798 0.615384615384615 0.0833333333333333
        3  0.808080808080808 0.615384615384615                0.0
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        3  0.818181818181818 0.615384615384615                0.0
        3  0.828282828282828 0.615384615384615                0.0
        3  0.838383838383838 0.615384615384615                0.0
        3  0.848484848484849 0.615384615384615                0.0
        3  0.858585858585859 0.615384615384615                0.0
        3  0.868686868686869 0.615384615384615                0.0
        3  0.878787878787879 0.615384615384615                0.0
        3  0.888888888888889 0.615384615384615                0.0
        3  0.898989898989899 0.615384615384615                0.0
        3  0.909090909090909 0.461538461538462                0.0
        3  0.919191919191919 0.461538461538462                0.0
        3  0.929292929292929 0.461538461538462                0.0
        3  0.939393939393939 0.461538461538462                0.0
        3   0.94949494949495 0.461538461538462                0.0
        3   0.95959595959596 0.384615384615385                0.0
        3   0.96969696969697 0.384615384615385                0.0
        3   0.97979797979798 0.384615384615385                0.0
        3   0.98989898989899 0.384615384615385                0.0
        3                1.0 0.384615384615385                0.0
        4                0.0               1.0                1.0
        4 0.0101010101010101               1.0              0.375
        4 0.0202020202020202               1.0              0.375
        4 0.0303030303030303               1.0              0.375
        4 0.0404040404040404               1.0              0.375
        4 0.0505050505050505               1.0             0.1875
        4 0.0606060606060606               1.0             0.1875
        4 0.0707070707070707               1.0             0.1875
        4 0.0808080808080808               1.0             0.1875
        4 0.0909090909090909               1.0             0.1875
        4  0.101010101010101               1.0              0.125
        4  0.111111111111111               1.0              0.125
        4  0.121212121212121               1.0              0.125
        4  0.131313131313131               1.0              0.125
        4  0.141414141414141               1.0              0.125
        4  0.151515151515152               1.0              0.125
        4  0.161616161616162               1.0              0.125
        4  0.171717171717172               1.0              0.125
        4  0.181818181818182               1.0              0.125
        4  0.191919191919192               1.0              0.125
        4  0.202020202020202               1.0              0.125
        4  0.212121212121212               1.0              0.125
        4  0.222222222222222               1.0              0.125
        4  0.232323232323232               1.0              0.125
        4  0.242424242424242               1.0              0.125
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        4  0.252525252525253               1.0              0.125
        4  0.262626262626263               1.0              0.125
        4  0.272727272727273               1.0              0.125
        4  0.282828282828283               1.0              0.125
        4  0.292929292929293               1.0              0.125
        4  0.303030303030303               1.0             0.0625
        4  0.313131313131313               1.0             0.0625
        4  0.323232323232323               1.0             0.0625
        4  0.333333333333333               1.0             0.0625
        4  0.343434343434343               1.0             0.0625
        4  0.353535353535354               1.0             0.0625
        4  0.363636363636364               1.0             0.0625
        4  0.373737373737374               1.0             0.0625
        4  0.383838383838384               1.0             0.0625
        4  0.393939393939394               1.0             0.0625
        4  0.404040404040404 0.888888888888889             0.0625
        4  0.414141414141414 0.888888888888889             0.0625
        4  0.424242424242424 0.888888888888889             0.0625
        4  0.434343434343434 0.888888888888889             0.0625
        4  0.444444444444444 0.888888888888889             0.0625
        4  0.454545454545455 0.888888888888889             0.0625
        4  0.464646464646465 0.888888888888889             0.0625
        4  0.474747474747475 0.888888888888889             0.0625
        4  0.484848484848485 0.888888888888889             0.0625
        4  0.494949494949495 0.888888888888889             0.0625
        4  0.505050505050505 0.888888888888889             0.0625
        4  0.515151515151515 0.888888888888889             0.0625
        4  0.525252525252525 0.888888888888889             0.0625
        4  0.535353535353535 0.888888888888889             0.0625
        4  0.545454545454546 0.888888888888889             0.0625
        4  0.555555555555556 0.888888888888889             0.0625
        4  0.565656565656566 0.888888888888889             0.0625
        4  0.575757575757576 0.888888888888889             0.0625
        4  0.585858585858586 0.888888888888889             0.0625
        4  0.595959595959596 0.888888888888889             0.0625
        4  0.606060606060606 0.888888888888889             0.0625
        4  0.616161616161616 0.888888888888889             0.0625
        4  0.626262626262626 0.888888888888889             0.0625
        4  0.636363636363636 0.888888888888889             0.0625
        4  0.646464646464647 0.888888888888889             0.0625
        4  0.656565656565657 0.888888888888889             0.0625
        4  0.666666666666667 0.888888888888889             0.0625
        4  0.676767676767677 0.888888888888889             0.0625
        4  0.686868686868687 0.888888888888889             0.0625
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        4  0.696969696969697 0.888888888888889             0.0625
        4  0.707070707070707 0.777777777777778                0.0
        4  0.717171717171717 0.777777777777778                0.0
        4  0.727272727272727 0.777777777777778                0.0
        4  0.737373737373737 0.777777777777778                0.0
        4  0.747474747474748 0.777777777777778                0.0
        4  0.757575757575758 0.777777777777778                0.0
        4  0.767676767676768 0.777777777777778                0.0
        4  0.777777777777778 0.777777777777778                0.0
        4  0.787878787878788 0.777777777777778                0.0
        4  0.797979797979798 0.777777777777778                0.0
        4  0.808080808080808 0.666666666666667                0.0
        4  0.818181818181818 0.666666666666667                0.0
        4  0.828282828282828 0.666666666666667                0.0
        4  0.838383838383838 0.666666666666667                0.0
        4  0.848484848484849 0.666666666666667                0.0
        4  0.858585858585859 0.555555555555556                0.0
        4  0.868686868686869 0.555555555555556                0.0
        4  0.878787878787879 0.555555555555556                0.0
        4  0.888888888888889 0.555555555555556                0.0
        4  0.898989898989899 0.555555555555556                0.0
        4  0.909090909090909 0.444444444444444                0.0
        4  0.919191919191919 0.444444444444444                0.0
        4  0.929292929292929 0.444444444444444                0.0
        4  0.939393939393939 0.444444444444444                0.0
        4   0.94949494949495 0.444444444444444                0.0
        4   0.95959595959596 0.444444444444444                0.0
        4   0.96969696969697 0.444444444444444                0.0
        4   0.97979797979798 0.444444444444444                0.0
        4   0.98989898989899 0.444444444444444                0.0
        4                1.0 0.444444444444444                0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: OutputTable, AUC ('true')
This example uses AUC values to check the performance of the model used in ROC Example:
OutputTable, Default Values.

Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.
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SQL Call

Because this call specifies AUC ('true') and omits the ROCValues syntax element, the ROCValues syntax
element has the value 'false'.

SELECT * FROM ROC (
  ON roc_input AS InputTable
  OUT TABLE OutputTable (roc_out_2)
  USING
  ModelIdColumn ('model_id')
  ProbabilityColumn ('probability')
  ObservationColumn ('observation')
  PositiveClass ('1')
  NumThresholds (100)
  AUC ('true')
) AS dt;

Output

 info          
 ------------- 
 ROC complete.

SELECT * FROM roc_out_2;

 model_id auc                gini 
 -------- ------------------ ---- 
        1 0.9833333333333334 NULL
        2                1.0 NULL
        3 0.9583333333333333 NULL
        4 0.9895833333333334 NULL

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: OutputTable, AUC ('true'), Gini ('true')
Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.

SQL Call

Because this call specifies AUC ('true') and Gini ('true') and omits the ROCValues syntax element, the
ROCValues syntax element has the value 'false'.

SELECT * FROM ROC (
  ON roc_input AS InputTable
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  OUT TABLE OutputTable (roc_out_3)
  USING
  ProbabilityColumn ('model_id')
  ObservationColumn ('observation')
  PositiveClass ('1')
  NumThresholds (100)
  AUC ('true')
  Gini ('true')
) AS dt;

Output

 info          
 ------------- 
 ROC complete.

SELECT * FROM roc_out_3;

 model_id auc                gini               
 -------- ------------------ ------------------ 
        1 0.9833333333333334 0.9666666666666668
        2                1.0                1.0
        3 0.9583333333333333 0.9166666666666665
        4 0.9895833333333334 0.9791666666666667

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.

ROC Example: ROCTable
Input

The input table is roc_input, as in ROC Example: OutputTable, Default Values.

SQL Call

SELECT * FROM ROC (
  ON roc_input AS InputTable
  OUT TABLE ROCTable (roc_out_4)
  USING
  ModelIdColumn ('model_id')
  ProbabilityColumn ('probability')
  ObservationColumn ('observation')
  PositiveClass ('1')
  NumThresholds (100)
) AS dt;
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Output

Onscreen:

model_id auc                gini               
 -------- ------------------ ------------------ 
        1 0.9833333333333334 0.9666666666666668
        2                1.0                1.0
        3 0.9583333333333333 0.9166666666666665
        4 0.9895833333333334 0.9791666666666667

The ROCTable, roc_out_4, is the same as the OutputTable in ROC Example: OutputTable, Default
Values.

SELECT * FROM roc_out_4;

model_id threshold          tpr               fpr                
 -------- ------------------ ----------------- ------------------ 
        1                0.0               1.0                1.0
        1 0.0101010101010101               1.0  0.266666666666667
        1 0.0202020202020202               1.0  0.266666666666667
        1 0.0303030303030303               1.0  0.266666666666667
        1 0.0404040404040404               1.0  0.266666666666667
        1 0.0505050505050505               1.0                0.2
        1 0.0606060606060606               1.0                0.2
        1 0.0707070707070707               1.0                0.2
        1 0.0808080808080808               1.0                0.2
        1 0.0909090909090909               1.0                0.2
        1  0.101010101010101               0.9  0.133333333333333
        1  0.111111111111111               0.9  0.133333333333333
        1  0.121212121212121               0.9  0.133333333333333
        1  0.131313131313131               0.9  0.133333333333333
        1  0.141414141414141               0.9  0.133333333333333
        1  0.151515151515152               0.9 0.0666666666666667
        1  0.161616161616162               0.9 0.0666666666666667
        1  0.171717171717172               0.9 0.0666666666666667
        1  0.181818181818182               0.9 0.0666666666666667
        1  0.191919191919192               0.9 0.0666666666666667
        1  0.202020202020202               0.9 0.0666666666666667
        1  0.212121212121212               0.9 0.0666666666666667
        1  0.222222222222222               0.9 0.0666666666666667
        1  0.232323232323232               0.9 0.0666666666666667
        1  0.242424242424242               0.9 0.0666666666666667
        1  0.252525252525253               0.9 0.0666666666666667
        1  0.262626262626263               0.9 0.0666666666666667
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        1  0.272727272727273               0.9 0.0666666666666667
        1  0.282828282828283               0.9 0.0666666666666667
        1  0.292929292929293               0.9 0.0666666666666667
        1  0.303030303030303               0.9 0.0666666666666667
        1  0.313131313131313               0.9 0.0666666666666667
        1  0.323232323232323               0.9 0.0666666666666667
        1  0.333333333333333               0.9 0.0666666666666667
        1  0.343434343434343               0.9 0.0666666666666667
        1  0.353535353535354               0.9 0.0666666666666667
        1  0.363636363636364               0.9 0.0666666666666667
        1  0.373737373737374               0.9 0.0666666666666667
        1  0.383838383838384               0.9 0.0666666666666667
        1  0.393939393939394               0.9 0.0666666666666667
        1  0.404040404040404               0.9                0.0
        1  0.414141414141414               0.9                0.0
        1  0.424242424242424               0.9                0.0
        1  0.434343434343434               0.9                0.0
        1  0.444444444444444               0.9                0.0
        1  0.454545454545455               0.9                0.0
        1  0.464646464646465               0.9                0.0
        1  0.474747474747475               0.9                0.0
        1  0.484848484848485               0.9                0.0
        1  0.494949494949495               0.9                0.0
        1  0.505050505050505               0.9                0.0
        1  0.515151515151515               0.9                0.0
        1  0.525252525252525               0.9                0.0
        1  0.535353535353535               0.9                0.0
        1  0.545454545454546               0.9                0.0
        1  0.555555555555556               0.9                0.0
        1  0.565656565656566               0.9                0.0
        1  0.575757575757576               0.9                0.0
        1  0.585858585858586               0.9                0.0
        1  0.595959595959596               0.9                0.0
        1  0.606060606060606               0.9                0.0
        1  0.616161616161616               0.9                0.0
        1  0.626262626262626               0.9                0.0
        1  0.636363636363636               0.9                0.0
        1  0.646464646464647               0.9                0.0
        1  0.656565656565657               0.9                0.0
        1  0.666666666666667               0.9                0.0
        1  0.676767676767677               0.9                0.0
        1  0.686868686868687               0.9                0.0
        1  0.696969696969697               0.9                0.0
        1  0.707070707070707               0.9                0.0
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        1  0.717171717171717               0.9                0.0
        1  0.727272727272727               0.9                0.0
        1  0.737373737373737               0.9                0.0
        1  0.747474747474748               0.9                0.0
        1  0.757575757575758               0.9                0.0
        1  0.767676767676768               0.9                0.0
        1  0.777777777777778               0.9                0.0
        1  0.787878787878788               0.9                0.0
        1  0.797979797979798               0.9                0.0
        1  0.808080808080808               0.9                0.0
        1  0.818181818181818               0.9                0.0
        1  0.828282828282828               0.9                0.0
        1  0.838383838383838               0.9                0.0
        1  0.848484848484849               0.9                0.0
        1  0.858585858585859               0.8                0.0
        1  0.868686868686869               0.8                0.0
        1  0.878787878787879               0.8                0.0
        1  0.888888888888889               0.8                0.0
        1  0.898989898989899               0.8                0.0
        1  0.909090909090909               0.5                0.0
        1  0.919191919191919               0.5                0.0
        1  0.929292929292929               0.5                0.0
        1  0.939393939393939               0.5                0.0
        1   0.94949494949495               0.5                0.0
        1   0.95959595959596               0.5                0.0
        1   0.96969696969697               0.5                0.0
        1   0.97979797979798               0.5                0.0
        1   0.98989898989899               0.5                0.0
        1                1.0               0.5                0.0
        2                0.0               1.0                1.0
        2 0.0101010101010101               1.0                0.4
        2 0.0202020202020202               1.0                0.4
        2 0.0303030303030303               1.0                0.4
        2 0.0404040404040404               1.0                0.4
        2 0.0505050505050505               1.0                0.2
        2 0.0606060606060606               1.0                0.2
        2 0.0707070707070707               1.0                0.2
        2 0.0808080808080808               1.0                0.2
        2 0.0909090909090909               1.0                0.2
        2  0.101010101010101               1.0  0.133333333333333
        2  0.111111111111111               1.0  0.133333333333333
        2  0.121212121212121               1.0  0.133333333333333
        2  0.131313131313131               1.0  0.133333333333333
        2  0.141414141414141               1.0  0.133333333333333
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        2  0.151515151515152               1.0 0.0666666666666667
        2  0.161616161616162               1.0 0.0666666666666667
        2  0.171717171717172               1.0 0.0666666666666667
        2  0.181818181818182               1.0 0.0666666666666667
        2  0.191919191919192               1.0 0.0666666666666667
        2  0.202020202020202               1.0 0.0666666666666667
        2  0.212121212121212               1.0 0.0666666666666667
        2  0.222222222222222               1.0 0.0666666666666667
        2  0.232323232323232               1.0 0.0666666666666667
        2  0.242424242424242               1.0 0.0666666666666667
        2  0.252525252525253               1.0 0.0666666666666667
        2  0.262626262626263               1.0 0.0666666666666667
        2  0.272727272727273               1.0 0.0666666666666667
        2  0.282828282828283               1.0 0.0666666666666667
        2  0.292929292929293               1.0 0.0666666666666667
        2  0.303030303030303               1.0                0.0
        2  0.313131313131313               1.0                0.0
        2  0.323232323232323               1.0                0.0
        2  0.333333333333333               1.0                0.0
        2  0.343434343434343               1.0                0.0
        2  0.353535353535354               1.0                0.0
        2  0.363636363636364               1.0                0.0
        2  0.373737373737374               1.0                0.0
        2  0.383838383838384               1.0                0.0
        2  0.393939393939394               1.0                0.0
        2  0.404040404040404               1.0                0.0
        2  0.414141414141414               1.0                0.0
        2  0.424242424242424               1.0                0.0
        2  0.434343434343434               1.0                0.0
        2  0.444444444444444               1.0                0.0
        2  0.454545454545455               1.0                0.0
        2  0.464646464646465               1.0                0.0
        2  0.474747474747475               1.0                0.0
        2  0.484848484848485               1.0                0.0
        2  0.494949494949495               1.0                0.0
        2  0.505050505050505               1.0                0.0
        2  0.515151515151515               1.0                0.0
        2  0.525252525252525               1.0                0.0
        2  0.535353535353535               1.0                0.0
        2  0.545454545454546               1.0                0.0
        2  0.555555555555556               1.0                0.0
        2  0.565656565656566               1.0                0.0
        2  0.575757575757576               1.0                0.0
        2  0.585858585858586               1.0                0.0

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 157



        2  0.595959595959596               1.0                0.0
        2  0.606060606060606               1.0                0.0
        2  0.616161616161616               1.0                0.0
        2  0.626262626262626               1.0                0.0
        2  0.636363636363636               1.0                0.0
        2  0.646464646464647               1.0                0.0
        2  0.656565656565657               1.0                0.0
        2  0.666666666666667               1.0                0.0
        2  0.676767676767677               1.0                0.0
        2  0.686868686868687               1.0                0.0
        2  0.696969696969697               1.0                0.0
        2  0.707070707070707               1.0                0.0
        2  0.717171717171717               1.0                0.0
        2  0.727272727272727               1.0                0.0
        2  0.737373737373737               1.0                0.0
        2  0.747474747474748               1.0                0.0
        2  0.757575757575758               1.0                0.0
        2  0.767676767676768               1.0                0.0
        2  0.777777777777778               1.0                0.0
        2  0.787878787878788               1.0                0.0
        2  0.797979797979798               1.0                0.0
        2  0.808080808080808               1.0                0.0
        2  0.818181818181818               1.0                0.0
        2  0.828282828282828               1.0                0.0
        2  0.838383838383838               1.0                0.0
        2  0.848484848484849               1.0                0.0
        2  0.858585858585859               0.9                0.0
        2  0.868686868686869               0.9                0.0
        2  0.878787878787879               0.9                0.0
        2  0.888888888888889               0.9                0.0
        2  0.898989898989899               0.9                0.0
        2  0.909090909090909               0.7                0.0
        2  0.919191919191919               0.7                0.0
        2  0.929292929292929               0.7                0.0
        2  0.939393939393939               0.7                0.0
        2   0.94949494949495               0.7                0.0
        2   0.95959595959596               0.6                0.0
        2   0.96969696969697               0.6                0.0
        2   0.97979797979798               0.6                0.0
        2   0.98989898989899               0.6                0.0
        2                1.0               0.6                0.0
        3                0.0               1.0                1.0
        3 0.0101010101010101               1.0  0.583333333333333
        3 0.0202020202020202               1.0  0.583333333333333

13: Receiver Operating Characteristic (ROC) (ML Engine)

Teradata Vantage™ - Machine Learning Engine Analytic Function
Reference, Release 8.10 158



        3 0.0303030303030303               1.0  0.583333333333333
        3 0.0404040404040404               1.0  0.583333333333333
        3 0.0505050505050505               1.0                0.5
        3 0.0606060606060606               1.0                0.5
        3 0.0707070707070707               1.0                0.5
        3 0.0808080808080808               1.0                0.5
        3 0.0909090909090909               1.0                0.5
        3  0.101010101010101               1.0  0.416666666666667
        3  0.111111111111111               1.0  0.416666666666667
        3  0.121212121212121               1.0  0.416666666666667
        3  0.131313131313131               1.0  0.416666666666667
        3  0.141414141414141               1.0  0.416666666666667
        3  0.151515151515152               1.0               0.25
        3  0.161616161616162               1.0               0.25
        3  0.171717171717172               1.0               0.25
        3  0.181818181818182               1.0               0.25
        3  0.191919191919192               1.0               0.25
        3  0.202020202020202               1.0               0.25
        3  0.212121212121212               1.0               0.25
        3  0.222222222222222               1.0               0.25
        3  0.232323232323232               1.0               0.25
        3  0.242424242424242               1.0               0.25
        3  0.252525252525253               1.0               0.25
        3  0.262626262626263               1.0               0.25
        3  0.272727272727273               1.0               0.25
        3  0.282828282828283               1.0               0.25
        3  0.292929292929293               1.0               0.25
        3  0.303030303030303               1.0               0.25
        3  0.313131313131313               1.0               0.25
        3  0.323232323232323               1.0               0.25
        3  0.333333333333333               1.0               0.25
        3  0.343434343434343               1.0               0.25
        3  0.353535353535354 0.923076923076923  0.166666666666667
        3  0.363636363636364 0.923076923076923  0.166666666666667
        3  0.373737373737374 0.923076923076923  0.166666666666667
        3  0.383838383838384 0.923076923076923  0.166666666666667
        3  0.393939393939394 0.923076923076923  0.166666666666667
        3  0.404040404040404 0.923076923076923 0.0833333333333333
        3  0.414141414141414 0.923076923076923 0.0833333333333333
        3  0.424242424242424 0.923076923076923 0.0833333333333333
        3  0.434343434343434 0.923076923076923 0.0833333333333333
        3  0.444444444444444 0.923076923076923 0.0833333333333333
        3  0.454545454545455 0.846153846153846 0.0833333333333333
        3  0.464646464646465 0.846153846153846 0.0833333333333333
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        3  0.474747474747475 0.846153846153846 0.0833333333333333
        3  0.484848484848485 0.846153846153846 0.0833333333333333
        3  0.494949494949495 0.846153846153846 0.0833333333333333
        3  0.505050505050505 0.846153846153846 0.0833333333333333
        3  0.515151515151515 0.846153846153846 0.0833333333333333
        3  0.525252525252525 0.846153846153846 0.0833333333333333
        3  0.535353535353535 0.846153846153846 0.0833333333333333
        3  0.545454545454546 0.846153846153846 0.0833333333333333
        3  0.555555555555556 0.846153846153846 0.0833333333333333
        3  0.565656565656566 0.846153846153846 0.0833333333333333
        3  0.575757575757576 0.846153846153846 0.0833333333333333
        3  0.585858585858586 0.846153846153846 0.0833333333333333
        3  0.595959595959596 0.846153846153846 0.0833333333333333
        3  0.606060606060606 0.846153846153846 0.0833333333333333
        3  0.616161616161616 0.846153846153846 0.0833333333333333
        3  0.626262626262626 0.846153846153846 0.0833333333333333
        3  0.636363636363636 0.846153846153846 0.0833333333333333
        3  0.646464646464647 0.846153846153846 0.0833333333333333
        3  0.656565656565657 0.846153846153846 0.0833333333333333
        3  0.666666666666667 0.846153846153846 0.0833333333333333
        3  0.676767676767677 0.846153846153846 0.0833333333333333
        3  0.686868686868687 0.846153846153846 0.0833333333333333
        3  0.696969696969697 0.846153846153846 0.0833333333333333
        3  0.707070707070707 0.692307692307692 0.0833333333333333
        3  0.717171717171717 0.692307692307692 0.0833333333333333
        3  0.727272727272727 0.692307692307692 0.0833333333333333
        3  0.737373737373737 0.692307692307692 0.0833333333333333
        3  0.747474747474748 0.692307692307692 0.0833333333333333
        3  0.757575757575758 0.615384615384615 0.0833333333333333
        3  0.767676767676768 0.615384615384615 0.0833333333333333
        3  0.777777777777778 0.615384615384615 0.0833333333333333
        3  0.787878787878788 0.615384615384615 0.0833333333333333
        3  0.797979797979798 0.615384615384615 0.0833333333333333
        3  0.808080808080808 0.615384615384615                0.0
        3  0.818181818181818 0.615384615384615                0.0
        3  0.828282828282828 0.615384615384615                0.0
        3  0.838383838383838 0.615384615384615                0.0
        3  0.848484848484849 0.615384615384615                0.0
        3  0.858585858585859 0.615384615384615                0.0
        3  0.868686868686869 0.615384615384615                0.0
        3  0.878787878787879 0.615384615384615                0.0
        3  0.888888888888889 0.615384615384615                0.0
        3  0.898989898989899 0.615384615384615                0.0
        3  0.909090909090909 0.461538461538462                0.0
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        3  0.919191919191919 0.461538461538462                0.0
        3  0.929292929292929 0.461538461538462                0.0
        3  0.939393939393939 0.461538461538462                0.0
        3   0.94949494949495 0.461538461538462                0.0
        3   0.95959595959596 0.384615384615385                0.0
        3   0.96969696969697 0.384615384615385                0.0
        3   0.97979797979798 0.384615384615385                0.0
        3   0.98989898989899 0.384615384615385                0.0
        3                1.0 0.384615384615385                0.0
        4                0.0               1.0                1.0
        4 0.0101010101010101               1.0              0.375
        4 0.0202020202020202               1.0              0.375
        4 0.0303030303030303               1.0              0.375
        4 0.0404040404040404               1.0              0.375
        4 0.0505050505050505               1.0             0.1875
        4 0.0606060606060606               1.0             0.1875
        4 0.0707070707070707               1.0             0.1875
        4 0.0808080808080808               1.0             0.1875
        4 0.0909090909090909               1.0             0.1875
        4  0.101010101010101               1.0              0.125
        4  0.111111111111111               1.0              0.125
        4  0.121212121212121               1.0              0.125
        4  0.131313131313131               1.0              0.125
        4  0.141414141414141               1.0              0.125
        4  0.151515151515152               1.0              0.125
        4  0.161616161616162               1.0              0.125
        4  0.171717171717172               1.0              0.125
        4  0.181818181818182               1.0              0.125
        4  0.191919191919192               1.0              0.125
        4  0.202020202020202               1.0              0.125
        4  0.212121212121212               1.0              0.125
        4  0.222222222222222               1.0              0.125
        4  0.232323232323232               1.0              0.125
        4  0.242424242424242               1.0              0.125
        4  0.252525252525253               1.0              0.125
        4  0.262626262626263               1.0              0.125
        4  0.272727272727273               1.0              0.125
        4  0.282828282828283               1.0              0.125
        4  0.292929292929293               1.0              0.125
        4  0.303030303030303               1.0             0.0625
        4  0.313131313131313               1.0             0.0625
        4  0.323232323232323               1.0             0.0625
        4  0.333333333333333               1.0             0.0625
        4  0.343434343434343               1.0             0.0625
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        4  0.353535353535354               1.0             0.0625
        4  0.363636363636364               1.0             0.0625
        4  0.373737373737374               1.0             0.0625
        4  0.383838383838384               1.0             0.0625
        4  0.393939393939394               1.0             0.0625
        4  0.404040404040404 0.888888888888889             0.0625
        4  0.414141414141414 0.888888888888889             0.0625
        4  0.424242424242424 0.888888888888889             0.0625
        4  0.434343434343434 0.888888888888889             0.0625
        4  0.444444444444444 0.888888888888889             0.0625
        4  0.454545454545455 0.888888888888889             0.0625
        4  0.464646464646465 0.888888888888889             0.0625
        4  0.474747474747475 0.888888888888889             0.0625
        4  0.484848484848485 0.888888888888889             0.0625
        4  0.494949494949495 0.888888888888889             0.0625
        4  0.505050505050505 0.888888888888889             0.0625
        4  0.515151515151515 0.888888888888889             0.0625
        4  0.525252525252525 0.888888888888889             0.0625
        4  0.535353535353535 0.888888888888889             0.0625
        4  0.545454545454546 0.888888888888889             0.0625
        4  0.555555555555556 0.888888888888889             0.0625
        4  0.565656565656566 0.888888888888889             0.0625
        4  0.575757575757576 0.888888888888889             0.0625
        4  0.585858585858586 0.888888888888889             0.0625
        4  0.595959595959596 0.888888888888889             0.0625
        4  0.606060606060606 0.888888888888889             0.0625
        4  0.616161616161616 0.888888888888889             0.0625
        4  0.626262626262626 0.888888888888889             0.0625
        4  0.636363636363636 0.888888888888889             0.0625
        4  0.646464646464647 0.888888888888889             0.0625
        4  0.656565656565657 0.888888888888889             0.0625
        4  0.666666666666667 0.888888888888889             0.0625
        4  0.676767676767677 0.888888888888889             0.0625
        4  0.686868686868687 0.888888888888889             0.0625
        4  0.696969696969697 0.888888888888889             0.0625
        4  0.707070707070707 0.777777777777778                0.0
        4  0.717171717171717 0.777777777777778                0.0
        4  0.727272727272727 0.777777777777778                0.0
        4  0.737373737373737 0.777777777777778                0.0
        4  0.747474747474748 0.777777777777778                0.0
        4  0.757575757575758 0.777777777777778                0.0
        4  0.767676767676768 0.777777777777778                0.0
        4  0.777777777777778 0.777777777777778                0.0
        4  0.787878787878788 0.777777777777778                0.0
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        4  0.797979797979798 0.777777777777778                0.0
        4  0.808080808080808 0.666666666666667                0.0
        4  0.818181818181818 0.666666666666667                0.0
        4  0.828282828282828 0.666666666666667                0.0
        4  0.838383838383838 0.666666666666667                0.0
        4  0.848484848484849 0.666666666666667                0.0
        4  0.858585858585859 0.555555555555556                0.0
        4  0.868686868686869 0.555555555555556                0.0
        4  0.878787878787879 0.555555555555556                0.0
        4  0.888888888888889 0.555555555555556                0.0
        4  0.898989898989899 0.555555555555556                0.0
        4  0.909090909090909 0.444444444444444                0.0
        4  0.919191919191919 0.444444444444444                0.0
        4  0.929292929292929 0.444444444444444                0.0
        4  0.939393939393939 0.444444444444444                0.0
        4   0.94949494949495 0.444444444444444                0.0
        4   0.95959595959596 0.444444444444444                0.0
        4   0.96969696969697 0.444444444444444                0.0
        4   0.97979797979798 0.444444444444444                0.0
        4   0.98989898989899 0.444444444444444                0.0
        4                1.0 0.444444444444444                0.0

Download a zip file of all examples and a SQL script file that creates their input tables from the attachment
in the left sidebar.
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Receiver operating characteristic
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The method was developed for operators of military radar receivers, which
is why it is so named.

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The true-positive rate is also known as sensitivity, recall or probability of detection[7] in machine learning. The false-positive rate is
also known as probability of false alarm[7] and can be calculated as (1 − specificity). It can also be thought of as a plot of the power as
a function of the Type I Error of the decision rule (when the performance is calculated from just a sample of the population, it can be
thought of as estimators of these quantities). The ROC curve is thus the sensitivity or recall as a function of fall-out. In general, if the
probability distributions for both detection and false alarm are known, the ROC curve can be generated by plotting the cumulative
distribution function (area under the probability distribution from  to the discrimination threshold) of the detection probability
in the y-axis versus the cumulative distribution function of the false-alarm probability on the x-axis.

ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones independently from (and prior to
specifying) the cost context or the class distribution. ROC analysis is related in a direct and natural way to cost/benefit analysis of
diagnostic decision making.

The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in
battlefields and was soon introduced to psychology to account for perceptual detection of stimuli. ROC analysis since then has been
used in medicine, radiology, biometrics, forecasting of natural hazards,[8] meteorology,[9] model performance assessment,[10] and
other areas for many decades and is increasingly used in machine learning and data mining research.

The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR
and FPR) as the criterion changes.[11]

Basic concept
ROC space
Curves in ROC space
Further interpretations

Area under the curve
Other measures

Detection error tradeoff graph
Z-score
History
ROC curves beyond binary classification
See also
References
External links
Further reading

A classification model (classifier or diagnosis) is a mapping of instances between certain classes/groups. Because the classifier or
diagnosis result can be an arbitrary real value (continuous output), the classifier boundary between classes must be determined by a
threshold value (for instance, to determine whether a person has hypertension based on a blood pressure measure). Or it can be a
discrete class label, indicating one of the classes.

Consider a two-class prediction problem (binary classification), in which the outcomes are labeled either as positive (p) or negative
(n). There are four possible outcomes from a binary classifier. If the outcome from a prediction is p and the actual value is also p, then
it is called a true positive (TP); however if the actual value is n then it is said to be a false positive (FP). Conversely, a true negative
(TN) has occurred when both the prediction outcome and the actual value are n, and false negative (FN) is when the prediction
outcome is n while the actual value is p.
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Terminology and derivations
from a confusion matrix

condition positive (P)
the number of real positive cases in the data

condition negative (N)
the number of real negative cases in the data

true positive (TP)
eqv. with hit

true negative (TN)
eqv. with correct rejection

false positive (FP)
eqv. with false alarm, Type I error

false negative (FN)
eqv. with miss, Type II error

sensitivity, recall, hit rate, or true positive rate (TPR)

specificity, selectivity or true negative rate (TNR)

precision or positive predictive value (PPV)

negative predictive value (NPV)

miss rate or false negative rate (FNR)

fall-out or false positive rate (FPR)

false discovery rate (FDR)

false omission rate (FOR)

Prevalence Threshold (PT)

Threat score (TS) or critical success index (CSI)

accuracy (ACC)

balanced accuracy (BA)

F1 score
is the harmonic mean of precision and sensitivity

Matthews correlation coefficient (MCC)

ROC curve of three predictors of
peptide cleaving in the proteasome.

To get an appropriate
example in a real-world
problem, consider a
diagnostic test that seeks to
determine whether a
person has a certain
disease. A false positive in
this case occurs when the
person tests positive, but
does not actually have the
disease. A false negative,
on the other hand, occurs
when the person tests
negative, suggesting they
are healthy, when they
actually do have the

disease.

Let us define an experiment from P positive instances and N
negative instances for some condition. The four outcomes can
be formulated in a 2×2 contingency table or confusion matrix,
as follows:
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Fowlkes–Mallows index (FM)

informedness or bookmaker informedness (BM)

markedness (MK) or deltaP

Sources: Fawcett (2006),[1] Powers (2011),[2] Ting (2011),[3] and
CAWCR[4] Chicco & Jurman (2020),[5] Tharwat (2018).[6]

The ROC space and plots of the four
prediction examples.

True condition

Total
population Condition positive Condition negative

Prevalence
= Σ Condition positive

Σ Total population

Accuracy (ACC) = 
Σ True positive + Σ True negative

Σ Total population

Predicted
condition
positive

True positive False positive,
Type I error

Positive predictive value (PPV),
Precision = 

Σ True positive
Σ Predicted condition positive

False discovery rate (FDR) = 
Σ False positive

Σ Predicted condition positive

Predicted
condition
negative

False negative,
Type II error True negative

False omission rate (FOR) = 
Σ False negative

Σ Predicted condition negative

Negative predictive value (NPV) = 
Σ True negative

Σ Predicted condition negative

True positive rate (TPR), Recall,
Sensitivity, probability of detection,

Power = Σ True positive
Σ Condition positive

False positive rate (FPR), Fall-out,
probability of false alarm
= Σ False positive

Σ Condition negative

Positive likelihood ratio (LR+)
= TPR

FPR Diagnostic
odds ratio

(DOR) = LR+
LR−

F1 score =

2 · Precision · Recall
Precision + RecallFalse negative rate (FNR), Miss rate

= Σ False negative
Σ Condition positive

Specificity (SPC), Selectivity, True
negative rate (TNR)

= Σ True negative
Σ Condition negative

Negative likelihood ratio (LR−)
= FNR

TNR

The contingency table can derive several evaluation "metrics" (see infobox). To draw a ROC
curve, only the true positive rate (TPR) and false positive rate (FPR) are needed (as functions
of some classifier parameter). The TPR defines how many correct positive results occur
among all positive samples available during the test. FPR, on the other hand, defines how
many incorrect positive results occur among all negative samples available during the test.

An ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative
trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent
to sensitivity and FPR is equal to 1 − specificity, the ROC graph is sometimes called the
sensitivity vs (1 − specificity) plot. Each prediction result or instance of a confusion matrix
represents one point in the ROC space.

The best possible prediction method would yield a point in the upper left corner or
coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). The (0,1) point is also called a perfect classification. A
random guess would give a point along a diagonal line (the so-called line of no-
discrimination) from the left bottom to the top right corners (regardless of the positive and
negative base rates). An intuitive example of random guessing is a decision by flipping coins.
As the size of the sample increases, a random classifier's ROC point tends towards the diagonal line. In the case of a balanced coin, it
will tend to the point (0.5, 0.5).

The diagonal divides the ROC space. Points above the diagonal represent good classification results (better than random); points
below the line represent bad results (worse than random). Note that the output of a consistently bad predictor could simply be
inverted to obtain a good predictor.

Let us look into four prediction results from 100 positive and 100 negative instances:
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A B C C′

TP=63 FP=28 91

FN=37 TN=72 109

100 100 200

TP=77 FP=77 154

FN=23 TN=23 46

100 100 200

TP=24 FP=88 112

FN=76 TN=12 88

100 100 200

TP=76 FP=12 88

FN=24 TN=88 112

100 100 200

TPR = 0.63 TPR = 0.77 TPR = 0.24 TPR = 0.76

FPR = 0.28 FPR = 0.77 FPR = 0.88 FPR = 0.12

PPV = 0.69 PPV = 0.50 PPV = 0.21 PPV = 0.86

F1 = 0.66 F1 = 0.61 F1 = 0.23 F1 = 0.81

ACC = 0.68 ACC = 0.50 ACC = 0.18 ACC = 0.82

Plots of the four results above in the ROC space are given in the figure. The result of method A clearly shows the best predictive power
among A, B, and C. The result of B lies on the random guess line (the diagonal line), and it can be seen in the table that the accuracy
of B is 50%. However, when C is mirrored across the center point (0.5,0.5), the resulting method C′ is even better than A. This
mirrored method simply reverses the predictions of whatever method or test produced the C contingency table. Although the original
C method has negative predictive power, simply reversing its decisions leads to a new predictive method C′ which has positive
predictive power. When the C method predicts p or n, the C′ method would predict n or p, respectively. In this manner, the C′ test
would perform the best. The closer a result from a contingency table is to the upper left corner, the better it predicts, but the distance
from the random guess line in either direction is the best indicator of how much predictive power a method has. If the result is below
the line (i.e. the method is worse than a random guess), all of the method's predictions must be reversed in order to utilize its power,
thereby moving the result above the random guess line.

In binary classification, the class prediction for each instance is often made based on a
continuous random variable , which is a "score" computed for the instance (e.g. the
estimated probability in logistic regression). Given a threshold parameter , the
instance is classified as "positive" if , and "negative" otherwise.  follows a
probability density  if the instance actually belongs to class "positive", and 

if otherwise. Therefore, the true positive rate is given by 

and the false positive rate is given by . The ROC curve plots

parametrically TPR(T) versus FPR(T) with T as the varying parameter.

For example, imagine that the blood protein levels in diseased people and healthy
people are normally distributed with means of 2 g/dL and 1 g/dL respectively. A
medical test might measure the level of a certain protein in a blood sample and classify any number above a certain threshold as
indicating disease. The experimenter can adjust the threshold (black vertical line in the figure), which will in turn change the false
positive rate. Increasing the threshold would result in fewer false positives (and more false negatives), corresponding to a leftward
movement on the curve. The actual shape of the curve is determined by how much overlap the two distributions have.

Sometimes, the ROC is used to generate a summary statistic. Common versions are:

the intercept of the ROC curve with the line at 45 degrees orthogonal to the no-discrimination line - the balance point where
Sensitivity = 1 - Specificity
the intercept of the ROC curve with the tangent at 45 degrees parallel to the no-discrimination line that is closest to the error-free
point (0,1) - also called Youden's J statistic and generalized as Informedness
the area between the ROC curve and the no-discrimination line multiplied by two is called the Gini coefficient. It should not be
confused with the measure of statistical dispersion also called Gini coefficient.
the area between the full ROC curve and the triangular ROC curve including only (0,0), (1,1) and one selected operating point
(tpr,fpr) - Consistency[12]

the area under the ROC curve, or "AUC" ("Area Under Curve"), or A' (pronounced "a-prime"),[13] or "c-statistic" ("concordance
statistic").[14]

Curves in ROC space

Further interpretations
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the sensitivity index d' (pronounced "d-prime"), the distance between the mean of the distribution of activity in the system under
noise-alone conditions and its distribution under signal-alone conditions, divided by their standard deviation, under the
assumption that both these distributions are normal with the same standard deviation. Under these assumptions, the shape of the
ROC is entirely determined by d'.

However, any attempt to summarize the ROC curve into a single number loses information about the pattern of tradeoffs of the
particular discriminator algorithm.

When using normalized units, the area under the curve (often referred to as simply the AUC) is equal to the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher
than 'negative').[15] This can be seen as follows: the area under the curve is given by (the integral boundaries are reversed as large T
has a lower value on the x-axis)

where  is the score for a positive instance and  is the score for a negative instance, and  and  are probability densities as
defined in previous section.

It can further be shown that the AUC is closely related to the Mann–Whitney U,[16][17] which tests whether positives are ranked
higher than negatives. It is also equivalent to the Wilcoxon test of ranks.[17] For a predictor , an unbiased estimator of its AUC can be
expressed by the following Wilcoxon-Mann-Whitney statistic[18]:

where,  denotes an indicator function which returns 1 iff  otherwise return 0;  is the set of negative
examples, and  is the set of positive examples.

The AUC is related to the *Gini coefficient* ( ) by the formula , where:

[19]

In this way, it is possible to calculate the AUC by using an average of a number of trapezoidal approximations.  should not be
confused with the measure of statistical dispersion that is also called Gini coefficient.

It is also common to calculate the Area Under the ROC Convex Hull (ROC AUCH = ROCH AUC) as any point on the line segment
between two prediction results can be achieved by randomly using one or the other system with probabilities proportional to the
relative length of the opposite component of the segment.[20] It is also possible to invert concavities – just as in the figure the worse
solution can be reflected to become a better solution; concavities can be reflected in any line segment, but this more extreme form of
fusion is much more likely to overfit the data.[21]

The machine learning community most often uses the ROC AUC statistic for model comparison.[22] This practice has been questioned
because AUC estimates are quite noisy and suffer from other problems.[23][24][25] Nonetheless, the coherence of AUC as a measure of
aggregated classification performance has been vindicated, in terms of a uniform rate distribution,[26] and AUC has been linked to a
number of other performance metrics such as the Brier score.[27]

Another problem with ROC AUC is that reducing the ROC Curve to a single number ignores the fact that it is about the tradeoffs
between the different systems or performance points plotted and not the performance of an individual system, as well as ignoring the
possibility of concavity repair, so that related alternative measures such as Informedness or DeltaP are recommended.[12][28] These
measures are essentially equivalent to the Gini for a single prediction point with DeltaP' = Informedness = 2AUC-1, whilst DeltaP =
Markedness represents the dual (viz. predicting the prediction from the real class) and their geometric mean is the Matthews
correlation coefficient.

Whereas ROC AUC varies between 0 and 1 — with an uninformative classifier yielding 0.5 — the alternative measures known as
Informedness, Certainty [12] and Gini Coefficient (in the single parameterization or single system case) all have the advantage that 0
represents chance performance whilst 1 represents perfect performance, and −1 represents the "perverse" case of full informedness

Area under the curve
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TOC Curve

ROC Curve

Example DET graph

always giving the wrong response.[29] Bringing chance performance to 0 allows these alternative scales to be interpreted as Kappa
statistics. Informedness has been shown to have desirable characteristics for Machine Learning versus other common definitions of
Kappa such as Cohen Kappa and Fleiss Kappa.[30]

Sometimes it can be more useful to look at a specific region of the ROC Curve rather than at the whole curve. It is possible to compute
partial AUC.[31] For example, one could focus on the region of the curve with low false positive rate, which is often of prime interest
for population screening tests.[32] Another common approach for classification problems in which P ≪ N (common in bioinformatics
applications) is to use a logarithmic scale for the x-axis.[33]

The ROC area under the curve is also called c-statistic or c statistic.[34]

The Total Operating Characteristic (TOC) also characterizes diagnostic ability while revealing
more information than the ROC. For each threshold, ROC reveals two ratios, TP/(TP + FN) and
FP/(FP + TN). In other words, ROC reveals hits/(hits + misses) and false alarms/(false alarms +
correct rejections). On the other hand, TOC shows the total information in the contingency table
for each threshold.[35] The TOC method reveals all of the information that the ROC method
provides, plus additional important information that ROC does not reveal, i.e. the size of every
entry in the contingency table for each threshold. TOC also provides the popular AUC of the
ROC.[36]

These figures are the TOC and ROC curves using the same data and thresholds. Consider the
point that corresponds to a threshold of 74. The TOC curve shows the number of hits, which is 3,
and hence the number of misses, which is 7. Additionally, the TOC curve shows that the number
of false alarms is 4 and the number of correct rejections is 16. At any given point in the ROC
curve, it is possible to glean values for the ratios of false alarms/(false alarms + correct rejections)
and hits/(hits + misses). For example, at threshold 74, it is evident that the x coordinate is 0.2
and the y coordinate is 0.3. However, these two values are insufficient to construct all entries of
the underlying two-by-two contingency table.

An alternative to the ROC curve is the detection error tradeoff (DET) graph, which plots the false
negative rate (missed detections) vs. the false positive rate (false alarms) on non-linearly
transformed x- and y-axes. The transformation function is the quantile function of the normal
distribution, i.e., the inverse of the cumulative normal distribution. It is, in fact, the same
transformation as zROC, below, except that the complement of the hit rate, the miss rate or false
negative rate, is used. This alternative spends more graph area on the region of interest. Most of
the ROC area is of little interest; one primarily cares about the region tight against the y-axis and
the top left corner – which, because of using miss rate instead of its complement, the hit rate, is
the lower left corner in a DET plot. Furthermore, DET graphs have the useful property of linearity
and a linear threshold behavior for normal distributions.[37] The DET plot is used extensively in
the automatic speaker recognition community, where the name DET was first used. The analysis
of the ROC performance in graphs with this warping of the axes was used by psychologists in
perception studies halfway through the 20th century, where this was dubbed "double probability paper".[38]

If a standard score is applied to the ROC curve, the curve will be transformed into a straight line.[39] This z-score is based on a normal
distribution with a mean of zero and a standard deviation of one. In memory strength theory, one must assume that the zROC is not
only linear, but has a slope of 1.0. The normal distributions of targets (studied objects that the subjects need to recall) and lures (non
studied objects that the subjects attempt to recall) is the factor causing the zROC to be linear.

The linearity of the zROC curve depends on the standard deviations of the target and lure strength distributions. If the standard
deviations are equal, the slope will be 1.0. If the standard deviation of the target strength distribution is larger than the standard
deviation of the lure strength distribution, then the slope will be smaller than 1.0. In most studies, it has been found that the zROC

Other measures

Detection error tradeoff graph

Z-score
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curve slopes constantly fall below 1, usually between 0.5 and 0.9.[40] Many experiments yielded a zROC slope of 0.8. A slope of 0.8
implies that the variability of the target strength distribution is 25% larger than the variability of the lure strength distribution.[41]

Another variable used is d' (d prime) (discussed above in "Other measures"), which can easily be expressed in terms of z-values.
Although d' is a commonly used parameter, it must be recognized that it is only relevant when strictly adhering to the very strong
assumptions of strength theory made above.[42]

The z-score of an ROC curve is always linear, as assumed, except in special situations. The Yonelinas familiarity-recollection model is
a two-dimensional account of recognition memory. Instead of the subject simply answering yes or no to a specific input, the subject
gives the input a feeling of familiarity, which operates like the original ROC curve. What changes, though, is a parameter for
Recollection (R). Recollection is assumed to be all-or-none, and it trumps familiarity. If there were no recollection component, zROC
would have a predicted slope of 1. However, when adding the recollection component, the zROC curve will be concave up, with a
decreased slope. This difference in shape and slope result from an added element of variability due to some items being recollected.
Patients with anterograde amnesia are unable to recollect, so their Yonelinas zROC curve would have a slope close to 1.0.[43]

The ROC curve was first used during World War II for the analysis of radar signals before it was employed in signal detection
theory.[44] Following the attack on Pearl Harbor in 1941, the United States army began new research to increase the prediction of
correctly detected Japanese aircraft from their radar signals. For these purposes they measured the ability of a radar receiver operator
to make these important distinctions, which was called the Receiver Operating Characteristic.[45]

In the 1950s, ROC curves were employed in psychophysics to assess human (and occasionally non-human animal) detection of weak
signals.[44] In medicine, ROC analysis has been extensively used in the evaluation of diagnostic tests.[46][47] ROC curves are also used
extensively in epidemiology and medical research and are frequently mentioned in conjunction with evidence-based medicine. In
radiology, ROC analysis is a common technique to evaluate new radiology techniques.[48] In the social sciences, ROC analysis is often
called the ROC Accuracy Ratio, a common technique for judging the accuracy of default probability models. ROC curves are widely
used in laboratory medicine to assess the diagnostic accuracy of a test, to choose the optimal cut-off of a test and to compare
diagnostic accuracy of several tests.

ROC curves also proved useful for the evaluation of machine learning techniques. The first application of ROC in machine learning
was by Spackman who demonstrated the value of ROC curves in comparing and evaluating different classification algorithms.[49]

ROC curves are also used in verification of forecasts in meteorology.[50]

The extension of ROC curves for classification problems with more than two classes has always been cumbersome, as the degrees of
freedom increase quadratically with the number of classes, and the ROC space has  dimensions, where  is the number of
classes.[51] Some approaches have been made for the particular case with three classes (three-way ROC).[52] The calculation of the
volume under the ROC surface (VUS) has been analyzed and studied as a performance metric for multi-class problems.[53] However,
because of the complexity of approximating the true VUS, some other approaches [54] based on an extension of AUC are more popular
as an evaluation metric.

Given the success of ROC curves for the assessment of classification models, the extension of ROC curves for other supervised tasks
has also been investigated. Notable proposals for regression problems are the so-called regression error characteristic (REC) Curves
[55] and the Regression ROC (RROC) curves.[56] In the latter, RROC curves become extremely similar to ROC curves for classification,
with the notions of asymmetry, dominance and convex hull. Also, the area under RROC curves is proportional to the error variance of
the regression model.

Brier score
Coefficient of determination
Constant false alarm rate
Detection error tradeoff
Detection theory
F1 score
False alarm
Precision and recall
ROCCET
Total operating characteristic

History

ROC curves beyond binary classification
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Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc 

Classification: ROC Curve and AUC 

ROC curve 

An ROC curve (receiver operating characteristic curve) is a graph showing the performance 
of a classification model at all classification thresholds. This curve plots two parameters: 

 True Positive Rate 

 False Positive Rate 

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows: 

TPR=TP/(TP+FN) 

False Positive Rate (FPR) is defined as follows: 

FPR=FP/(FP+TN) 

An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the 
classification threshold classifies more items as positive, thus increasing both False Positives and 
True Positives. The following figure shows a typical ROC curve. 

 

Figure 4. TP vs. FP rate at different classification thresholds. 

To compute the points in an ROC curve, we could evaluate a logistic regression model many 
times with different classification thresholds, but this would be inefficient. Fortunately, there's an 
efficient, sorting-based algorithm that can provide this information for us, called AUC. 
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AUC: Area Under the ROC Curve 

AUC stands for "Area under the ROC Curve." That is, AUC measures the entire two-
dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1). 

 

Figure 5. AUC (Area under the ROC Curve). 

AUC provides an aggregate measure of performance across all possible classification thresholds. 
One way of interpreting AUC is as the probability that the model ranks a random positive 
example more highly than a random negative example. For example, given the following 
examples, which are arranged from left to right in ascending order of logistic regression 
predictions: 

 

Figure 6. Predictions ranked in ascending order of logistic regression score. 

AUC represents the probability that a random positive (green) example is positioned to the right 
of a random negative (red) example. 

AUC ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUC of 
0.0; one whose predictions are 100% correct has an AUC of 1.0. 

AUC is desirable for the following two reasons: 

 AUC is scale-invariant. It measures how well predictions are ranked, rather than their absolute values. 
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 AUC is classification-threshold-invariant. It measures the quality of the model's predictions irrespective 
of what classification threshold is chosen. 

However, both these reasons come with caveats, which may limit the usefulness of AUC in 
certain use cases: 

 Scale invariance is not always desirable. For example, sometimes we really do need well 
calibrated probability outputs, and AUC won’t tell us about that. 

 Classification-threshold invariance is not always desirable. In cases where there are wide 
disparities in the cost of false negatives vs. false positives, it may be critical to minimize one 
type of classification error. For example, when doing email spam detection, you likely want to 
prioritize minimizing false positives (even if that results in a significant increase of false 
negatives). AUC isn't a useful metric for this type of optimization. 

Except as otherwise noted, the content of this page is licensed under the Creative Commons 
Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For 
details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or 
its affiliates. 
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Source: https://sanchom.wordpress.com/2011/09/01/precision-recall/ 

It’s a bird… it’s a plane… it… depends on 
your classifier’s threshold 
 Sancho McCann Uncategorized September 1, 2011 

Evaluation of an information retrieval system (a search engine, for 
example) generally focuses on two things: 
1. How relevant are the retrieved results? (precision) 
2. Did the system retrieve many of the truly relevant documents? (recall) 

For those that aren’t familiar, I’ll explain what precision and recall are, and 
for those that are familiar, I’ll explain some of the confusion in the 
literature when comparing precision-recall curves. 

Geese and airplanes 
Suppose you have an image collection consisting of airplanes and geese. 

 

 
You want your system to retrieve all the airplane images and none of the 
geese images. 
Given a set of images that your system retrieves from this collection, we can 
define four accuracy counts: 
True positives: Airplane images that your system correctly retrieved 
True negatives: Geese images that your system correctly did not retrieve 
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False positives: Geese images that your system incorrectly retrieved, 
believing them to be airplanes 
False negatives: Airplane images that your system did incorrectly did not 
retrieve, believing them to be geese 

 

In this example retrieval, there are three true positives and one false 
positive. 
Using the terms I just defined, in this example retrieval, there are three true 
positives and one false positive. How many false negatives are there? How 
many true negatives are there? 

There are two false negatives (the airplanes that the system failed to 
retrieve) and four true negatives (the geese that the system did not 
retrieve). 

Precision and recall 
Now, you’ll be able to understand more exactly 
what precision and recall are. 

Precision is the percentage true positives in the retrieved results. That is: 
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where n is equal to the total number of images retrieved (tp + fp). 

Recall is the percentage of the airplanes that the system retrieves. That is: 

 

In our example above, with 3 true positives, 1 false positive, 4 true 
negatives, and 2 false negatives, precision = 0.75, and recall = 0.6. 

75% of the retrieved results were airplanes, and 60% of the airplanes were 
retrieved. 

Adjusting the threshold 
What if we’re not happy with that performance? We could ask the system to 
return more examples. This would be done be relaxing our threshold of 
what we want our system to consider as an airplane. We could also ask our 
system to be more strict, and return fewer examples. In our example so far, 
the system retrieved four examples. That corresponds to a particular 
threshold (shown below by a blue line). The system retrieved the examples 
that appeared more airplane-like than that threshold. 
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This is a hypothetical ordering that our airplane retrieval system could 
give to the images in our collection. More airplane-like are at the top of 
the list. The blue line is the threshold that gave our example retrieval. 

We can move that threshold up and down to get a different set of retrieved 
documents. At each position of the threshold, we would get a different 
precision and recall value. Specifically, if we retrieved only the top example, 
precision would be 100% and recall would be 20%. If we retrieved the top 
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two examples, precision would still be 100%, and recall will have gone up to 
40%. The following chart gives precision and recall for the above 
hypothetical ordering at all the possible thresholds. 

Retrieval cutoff Precision Recall 

Top 1 image 100% 20% 

Top 2 images 100% 40% 

Top 3 images 66% 40% 

Top 4 images 75% 60% 

Top 5 images 60% 60% 

Top 6 images 66% 80% 

Top 7 images 57% 80% 

Top 8 images 50% 80% 

Top 9 images 44% 80% 

Top 10 images 50% 100% 
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Precision-recall curves 
A good way to characterize the performance of a classifier is to look at how 
precision and recall change as you change the threshold. A good classifier 
will be good at ranking actual airplane images near the top of the list, and 
be able to retrieve a lot of airplane images before retrieving any geese: its 
precision will stay high as recall increases. A poor classifier will have to take 
a large hit in precision to get higher recall. Usually, a publication will 
present a precision-recall curve to show how this tradeoff looks for their 
classifier. This is a plot of precision p as a function of recall r. 

The precision-recall curve for our example airplane classifier. It can achieve 
40% recall without sacrificing any precision, but to get 100% recall, its 
precision drops to 50%. 

Average precision 
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Rather than comparing curves, its sometimes useful to have a single 
number that characterizes the performance of a classifier. A common 
metric is the average precision. This can actually mean one of several 
things. 

Average precision 

Strictly, the average precision is precision averaged across all values of 
recall between 0 and 1: 

 

That’s equal to taking the area under the curve. In practice, the integral is 
closely approximated by a sum over the precisions at every possible 
threshold value, multiplied by the change in recall: 

 

where N is the total number of images in the collection, P(k) is the precision 
at a cutoff of k images, and delta r(k) is the change in recall that happened 
between cutoff k-1 and cutoff k. 

In our example, this is (1 * 0.2) + (1 * 0.2) + (0.66 * 0) + (0.75 * 0.2) + (0.6 
* 0) + (0.66 * 0.2) + (0.57 * 0) + (0.5 * 0) + (0.44 * 0) + (0.5 * 0.2) = 0.782. 

Notice that the points at which the recall doesn’t change don’t contribute to 
this sum (in the graph, these points are on the vertical sections of the plot, 
where it’s dropping straight down). This makes sense, because since we’re 
computing the area under the curve, those sections of the curve aren’t 
adding any area. 

Interpolated average precision 

Some authors choose an alternate approximation that is called 
the interpolated average precision. Often, they still call it average 
precision. Instead of using P(k), the precision at a retrieval cutoff 
of k images, the interpolated average precision uses: 
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In other words, instead of using the precision that was actually observed at 
cutoff k, the interpolated average precision uses the maximum precision 
observed across all cutoffs with higher recall. The full equation for 
computing the interpolated average precision is: 

 

Visually, here’s how the interpolated average precision compares to the 
approximated average precision (to show a more interesting plot, this one 
isn’t from the earlier example): 
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The approximated average precision closely hugs the actually observed 
curve. The interpolated average precision over estimates the precision at 
many points and produces a higher average precision value than the 
approximated average precision. 

Further, there are variations on where to take the samples when computing 
the interpolated average precision. Some take samples at a fixed 11 points 
from 0 to 1: {0, 0.1, 0.2, …, 0.9, 1.0}. This is called the 11-point interpolated 
average precision. Others sample at every k where the recall changes. 

Confusion 
Some important publications use the interpolated average precision as their 
metric and still call it average precision. For example, the PASCAL Visual 
Objects Challenge has used this as their evaluation metric since 2007. I 
don’t think their justification is strong. They say, “the intention in 
interpolating the precision/recall curve in this way is to reduce the impact 
of the “wiggles” in the precision/recall curve”. Regardless, everyone 
compares against each other on this metric, so within the competition, this 
is not an issue. However, the rest of us need to be careful when comparing 
“average precision” values against other published results. Are we using the 
VOC’s interpolated average precision, while previous work had used the 
non-interpolated average precision? This would incorrectly show 
improvement of a new method when compared to the previous work. 

Summary 
Precision and recall are useful metrics for evaluating the performance of a 
classifier. 

Precision and recall vary with the strictness of your classifier’s threshold. 

There are several ways to summarize the precision-recall curve with a single 
number called average precision; be sure you’re using the same metric as 
the previous work that you’re comparing with. 
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