
1

Study Guide for the Beta Teradata Database
Associate Exam – 2017 – Reference 3

Contents
1. Foreign Keys .. 4

Foreign Key Rules .. 4

2. What is a Database? .. 5

3. Dimensional Modeling, Star, and Snowflake Schemas Definition of Dimensional Modeling 7

4. Prejoin with Aggregation ... 10

5. CHAPTER 6 Denormalizing the Physical Schema ... 11

Overview .. 11

Denormalization, Data Marts, and Data Warehouses .. 11

Denormalization Issues ... 11

Commonly Performed Denormalizations .. 13

Alternatives to Denormalization ... 13

Denormalizing with Repeating Groups.. 13

Example: Denormalizing with Repeating Groups .. 14

Reasons to Denormalize With Repeating Groups ... 14

Reasons Not to Denormalize With Repeating Groups .. 14

Denormalizing Through Prejoins ... 15

Denormalizing through Join Indexes ... 16

Derived Data Attributes... 16

Denormalizing Through Global Temporary and Volatile Tables ... 17

Denormalizing Through Views ... 19

Dimensional Modeling, Star, and Snowflake Schemas ... 21

6. NoPI Tables, Column-Partitioned NoPI Tables, and Column-Partitioned NoPI Join Indexes 24

INSERT... SELECT into NoPI and Column-Partitioned NoPI Tables .. 24

Uses for Nonpartitioned NoPI Tables .. 25

7. Teradata Reference Information Architecture .. 26

Data Layers .. 26

8. Teradata Reference Information Architecture .. 27

Data Tiers ... 27

2

9. Increase Insights while Reducing Costs and Complexity with Teradata’s Unified Data Architecture 29

10.Teradata IntelliCloud .. 29

11. Hybrid Cloud Solutions – Analytics Should be Everywhere ... 29

12. What is a Hybrid Cloud? .. 29

13. Data Marts ... 29

14. Overview of the Data Warehouse ... 31

15. Teradata Active Solutions .. 31

16. Recovering a Specific AMP .. 33

17. Analytic Architecture Modernization .. 34

18. Teradata Aster AppCenter ... 35

19. Reduce Big Data Complexity to Bring Better Visibility to Your Business ... 35

20. Teradata Everywhere Sales Introduction – 55751 ... 35

21. Teradata QueryGrid Overview – course 52285 ... 36

22. Teradata Listener ... 36

23. SQL Data Definition Language Detailed Topics ... 36

24. SQL Data Definition Language Syntax and Examples .. 38

25. SQL Data Definition Language, Syntax and Examples ... 39

ALTER PROCEDURE (SQL Form) ... 39

Attributes Changed by ALTER PROCEDURE (SQL Form) .. 39

Attributes Not Changed by ALTER PROCEDURE (SQL Form) ... 40

26. SQL Request and Transaction Processing .. 40

About Locking Levels ... 40

27. SQL Request and Transaction Processing .. 43

28. SQL Request and Transaction Processing .. 46

29. SQL Request and Transaction Processing .. 50

30. Database Design .. 56

31. Teradata Database Security .. 56

32. Security Administration ... 59

Using Teradata Wallet to Store and Retrieve Logon Elements ... 59

Benefits .. 59

Use Cases ... 59

Restrictions .. 59

Prerequisites .. 60

3

33. Security Administration ... 60

CHAPTER 11 Implementing Row Level Security .. 60

About Row Level Security .. 60

Row Level Security Compared to View and Column Access Controls ... 60

Related Information .. 60

Elements of Row Level Security .. 61

Row Level Security Implementation Process .. 61

About Security Labels .. 62

Defining Security Labels for Users and Rows .. 62

34. Implementing Teradata Secure Zones .. 63

Overview.. 63

Teradata Secure Zones Overview .. 63

Secure Zone Objects .. 63

Secure Zone User Types .. 64

35. Usage Considerations: Summary Data and Detail Data .. 65

Observing the Effects of Summarization ... 65

Information Value of Summary Data .. 67

36. Teradata MultiLoad ... 68

37. Teradata Parallel Transporter User Guide ... 70

4

Note: The numbering in this document is solely

provided to separate contents and for ease of use.

Please also note that internal Teradata linked

information is also available in Reference documents

1 and 2 for all exam candidates.

1. Foreign Keys
Relational databases permit data values to associate across more than one entity. A Foreign Key (FK) value identifies

table relationships.

On the next frame you will see that the employee table has three FK attributes, one of which models the relationship

between employees and their departments. A second FK attributes models the relationship between employees and

their jobs.

A third FK attributes is used to model the relationship between employees and each other. This is called a recursive

relationship.

Foreign Key Rules
• Duplicate values are allowed in a FK attribute.
• NULLs are allowed in a FK attribute.
• Values may be changed in a FK attribute.
• Each FK must exist elsewhere as a Primary Key.

Note that Department_Number is the Primary Key for the DEPARTMENT entity.

Remember, these terms are not Teradata specific - they are just general relational concepts.

5

Foreign Keys

• Foreign Keys (FK) are optional.

• A entity may have more than one FK.

• A FK may consist of more than one

attribute.

• FK values may be duplicated.

• FK values may be null.

• FK values may be changed.

• FK values must exist elsewhere as a

PK.

Foreign Key

(FK) values

model

relationships.

MANAGER

EMPLOYEE EMPLOYEE DEPARTMENT JOB LAST FIRST HIRE BIRTH SALARY

NUMBER NUMBER NUMBER CODE NAME NAME DATE DATE AMOUNT

1006 1019 301 312101 Stein John 861015 631015 3945000

1008 1019 301 312102 Kanieski Carol 870201 680517 3925000

1005 0801 403 431100 Ryan Loretta 861015 650910 4120000

1004 1003 401 412101 Johnson Darlene 861015 560423 4630000

1007 Villegas Arnando 870102 470131 5970000

1003 0801 401 411100 Trader James 860731 570619 4785000

PK FK FK FK

EMPLOYEE (partial listing)

MANAGER

DEPARTMENT DEPARTMENT BUDGET EMPLOYEE

NUMBER NAME AMOUNT NUMBER

501 marketing sales 80050000 1017

301 research and development 46560000 1019

302 product planning 22600000 1016

403 education 93200000 1005

402 software support 30800000 1011

401 customer support 98230000 1003

201 technical operations 29380000 1025

PK FK

DEPARTMENT

Job

Code

Table

2. What is a Database?
A database is a collection of permanently stored data that is used by an application or enterprise.

A database contains logically related data, which means that the database was created with a specific purpose in

mind. A database supports shared access by many users. One characteristic of a database is that many people use

it, often for many different purposes. A database is protected to control access and managed to retain its value and

integrity.

One example of a database is payroll data that includes the names of the employees, their employee numbers, and

their salary history. This database is logically related—it's all about payroll. It must have shared access, since it will

be used by the payroll department to generate checks, and also by management to make decisions. This database

must be protected; much of the information is confidential and must be managed to ensure the accuracy of the

records.

The Teradata Database is a relational database. Relational databases are based on the relational model, which is

founded on mathematical Set Theory. The relational model uses and extends many principles of Set Theory to

provide a disciplined approach to data management. Users and applications access data in an RDBMS using industry-

standard SQL statements. SQL is a set-oriented language for relational database management.

Later in this course we will provide another definition of database that is specific to the Teradata Database.

6

What is a Database?

A database is a collection of permanently stored data that is:

– Logically related - the data relates to other data (tables to tables).

– Shared - many users may access the data.

– Protected - access to data is controlled.

– Managed - the data has integrity and value.

7

3. Dimensional Modeling, Star, and Snowflake

Schemas Definition of Dimensional Modeling
According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique

that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is

inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.

Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller

tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of

the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a

fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Fact Tables and Dimension Tables The structure of a dimension model somewhat resembles that of a crude drawing

of a star or snowflake (see the following graphics). In a dimensional model, fact tables always represent M:M

relationships (see Many-to-Many Relationships). According to the model, a fact table should contain one or more

numerical measures (the “facts” of the fact table) that occur for the combination of keys that define each tuple in the

table. Dimension tables are satellites of the central fact table. They typically contain textual information that

describes the attributes of the fact table.

Star Schema The following graphic illustrates the classical star schema:

8

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique

that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is

inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.

Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller

tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of

the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a

fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Fact Tables and Dimension Tables

The structure of a dimension model somewhat resembles that of a crude drawing of a star or snowflake (see the

graphics “Star Schema” on page 188 and “Snowflake Schema” on page 189). In a dimensional model, fact tables

always represent M:M relationships (see “Many-to-Many Relationships” on page 70). According to the model, a fact

table should contain one or more numerical measures (the “facts” of the fact table) that occur for the combination of

keys that define each tuple in the table. Dimension tables are satellites of the central fact table. They typically

contain textual information that describes the attributes of the fact table. Star Schema The following graphic

illustrates the classical star schema:

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique

that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is

inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.

Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller

tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of

the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a

fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Fact Tables and Dimension Tables The structure of a dimension model somewhat resembles that of a crude drawing

of a star or snowflake (see the following graphics). In a dimensional model, fact tables always represent M:M

relationships (see Many-to-Many Relationships). According to the model, a fact table should contain one or more

numerical measures (the “facts” of the fact table) that occur for the combination of keys that define each tuple in the

9

table. Dimension tables are satellites of the central fact table. They typically contain textual information that

describes the attributes of the fact table.

Star Schema The following graphic illustrates the classical star schema:

Snowflake Schema

The following graphic illustrates the classical snowflake schema

10

4. Prejoin with Aggregation
The following example creates a prejoin view with aggregation. Note that you can create a functionally identical

object as a join index

Dimensional Views

A dimensional view is a virtual star or snowflake schema layered over detail data maintained in fullynormalized base

tables. Not only does such a view provide high performance, but it does so without incurring the update anomalies

caused by a physically denormalized database schema. The following illustration, adapted from a report by the

Hurwitz Group (1999), graphs the capability of various data modeling approaches to solve ad hoc and data mining

queries as a function of ease-of navigation of the database. As you can see, a dimensional view of a normalized

database schema optimizes both the capability of the database to handle ad hoc queries and the navigational ease of

use desired by many end users.

11

5. CHAPTER 6 Denormalizing the Physical Schema
Pages 99 – 114 – Database Design – TD 16.00

Overview

This chapter describes some of the common ways to denormalize the physical implementation of a fully normalized

model. The chapter also briefly describing the popular technique of dimensional modeling and shows how the most

useful attributes of a dimensional model can be emulated for a fully-normalized or partially-normalized physical

database implementation through the careful use of dimensional views. The term denormalization describes any

number of physical implementation techniques that enhance performance by reducing or eliminating the isomorphic

mapping of the logical database design on the physical implementation of that design. The result of these operations

is usually a violation of the design goal of making databases application-neutral. In other words, a “denormalized”

database favors one or a few applications at the expense of all other possible applications. Strictly speaking, these

operations are not denormalization at all. The concept of database schema normalization is logical, not physical.

Logical denormalization should be avoided. Develop a fully normalized design and then, if necessary, adjust the

semantic layer of your physical implementation to provide the desired performance enhancement. Finally, use views

to tailor the external schema to the usability needs of users and to limit their direct access to base tables (see

Denormalizing Through Views).

Denormalization, Data Marts, and Data Warehouses

The following quotation is taken from the web site of Bill Inmon, who coined the term data warehousing. It supports

the position argued here: the more general the analyses undertaken on the warehouse data store, the more

important the requirement that the data be normalized. The audience size issue he raises is a reflection of the

diversity of analysis anticipated and the need to support any and all potential explorations of the data. “The generic

data model represents a logical structuring of data. Depending on whether the modeler is building the model for a

data mart or a data warehouse the data modeler will wish to engage in some degree of denormalization.

Denormalization of the logical data model serves the purpose of making the data more efficient to access. In the case

of a data mart, a high degree of denormalization can be practiced. In the case of a data warehouse a low degree of

denormalization is in order. “The degree of denormalization that is applicable is a function of how many people are

being served. The smaller the audience being served, the greater the degree of denormalization. The larger the

audience being served, the lower the degree of denormalization.”

Denormalization Issues

The effects of denormalization on database performance are unpredictable: as many applications can be affected

negatively by denormalization as are optimized. If you decide to denormalize your database, make sure you always

complete your normalized logical model first. Document the pure logical model and keep your documentation of the

physical model current as well. Denormalize the implementation of the logical model only after you have thoroughly

analyzed the costs and benefits, and only after you have completed a normalized logical design. Consider the

following list of effects of denormalization before you decide to undertake design changes:

• A denormalized physical implementation can increase hardware costs.

12

The rows of a denormalized table are always wider than the rows of a fully normalized table. A row cannot

span data blocks; therefore, there is a high probability that you will be forced to use a larger data block size

for a denormalized table. The greater the degree of a table, the larger the impact on storage space. This

impact can be severe in many cases.

Row width also affects the transfer rate for all I/O operations; not just for disk access, but also for

transmission across the BYNET and to the requesting client.

• While denormalization benefits the applications it is specifically designed to enhance, it often decreases the

performance of other applications, thus contravening the goal of maintaining application neutrality for the

database.

• A corollary to this observation is the fact that a denormalized database makes it more difficult to implement

new, high-performing applications unless the new applications rely on the same denormalized schema

components as existing applications.

• Because of the previous two effects, denormalization often increases the cost and complexity of

programming.

• Denormalization introduces update anomalies to the database. Remember that the original impetus behind

normalization theory was to eliminate update anomalies.

The following graphic uses a simple database to illustrate some common problems encountered with

denormalization:

13

Consider the denormalized schema. Notice that the name of the salesman has been duplicated in the Customers and

Invoices tables in addition to being in the Sales Reps table, which is its sole location in the normalized form of the

database.

This particular denormalization has all of the following impacts:

• When a sales person is reassigned to a different customer, then all accounts represented by that individual

must be updated, either individually or by reloading the table with the new sales person added to the

accounts in place of the former representative.

Because the Customers, or account, table is relatively small (fewer than a million rows), either method of

updating it is a minor cost in most cases.

• At the same time, because the ID and name for the sales person also appear in every Invoice transaction for

the account, each transaction in the database must also be updated with the information for the new sales

person. This update would probably touch many millions of rows in the Invoice table, and even a reload of

the table could easily take several days to complete. This is a very costly operation from any perspective.

• Denormalized rows are always wider rows. The greater the degree of a table, the larger the impact on

storage space. This impact can be severe in many cases.

Row width also affects the transfer rate for all I/O operations; not just for disk access, but also for

transmission across the BYNET and to the requesting client.

Evaluate all these factors carefully before you decide to denormalize large tables. Smaller tables can be denormalized

with fewer penalties in those cases where the denormalization significantly improves the performance of frequently

performed queries.

Commonly Performed Denormalizations
The following items are typical of the denormalizations that can sometimes be exploited to optimize performance:

• Repeating groups

• Prejoins

• Derived data (fields) and summary tables (column aggregations)

Alternatives to Denormalization
Teradata continues to introduce functions and facilities that permit you to achieve the performance benefits of

denormalization while running under a direct physical implementation of your fully normalized logical model.

Among the available alternatives are the following:

• Views

• Hash and join indexes

• Aggregate join indexes

• Global temporary and volatile tables

Denormalizing with Repeating Groups
Repeating groups are attributes of a non-1NF relation that would be converted to individual tuples in a normalized

relation.

14

Example: Denormalizing with Repeating Groups
For example, this relation has six attributes of sales amounts, one for each of the past six months:

When normalized, the Sales History relation has six tuples that correspond to the same six months of sales expressed

by the denormalized relation:

Reasons to Denormalize With Repeating Groups
The following items are all possible reasons for denormalizing with repeating groups:

• Saves disk space

• Reduces query and load time

• Makes comparisons among values within the repeating group easier

• Many 3GLs and third party query tools work well with this structure

Reasons Not to Denormalize With Repeating Groups
The following items all mitigate the use of repeating groups:

• Makes it difficult to detect which month an attribute corresponds to

15

• Makes it impossible to compare periods other than months

• Changing the number of columns requires both DDL and application modifications

Denormalizing Through Prejoins
A prejoin moves frequently joined attributes to the same base relation in order to eliminate join processing. Some

vendors refer to prejoins as materialized views.

Example: Denormalizing through Prejoins

The following example first indicates two normalized relations, Job and Employee, and then shows how the

attributes of the minor relation Job can be carried to the parent relation Employee in order to enhance join

processing:

Reasons to Denormalize Using Prejoins

The following items are all possible reasons for denormalizing with prejoins:

• Performance can be enhanced significantly.

• The method is a good way to handle situations where there are tables having fewer rows than there are AMPs in

the configuration.

• The minor entity is retained in the prejoin so anomalies are avoided and data consistency is maintained.

Reasons Not to Denormalize Using Prejoins

You can achieve the same results obtained with prejoins without denormalizing your database schema by using any

of the following methods:

• Views with joins (see Denormalizing Through Views)

16

• Join indexes (see Denormalizing through Join Indexes)

• Global temporary tables (see Denormalizing Through Global Temporary and Volatile Tables)

Denormalizing through Join Indexes
Join indexes provide the performance benefits of prejoin tables without incurring update anomalies and without

denormalizing your logical or physical database schemas.

Although join indexes create and manage prejoins and, optionally, aggregates, they do not denormalize the physical

implementation of your normalized logical model because they are not a component of the fully normalized physical

model.

Remember: normalization is a logical concept, not a physical concept.

Example: Denormalizing through Join Indexes

Consider the prejoin example in Denormalizing Through Prejoins. You can obtain the same performance benefits this

denormalization offers without incurring any of its negative effects by creating a join index.

CREATE JOIN INDEX EmployeeJob

AS SELECT (JobCode, JobDescription), (EmployeeNumber, EmployeeName)

FROM Job JOIN Employee ON JobCode;

This join index not only eliminates the possibility for update anomalies, it also reduces storage by row compressing

redundant Job table information.

Reasons to Denormalize Using Join Indexes

The following items are all reasons to use join indexes to “denormalize” your database by optimizing join and

aggregate processing:

• Update anomalies are eliminated because the system handles all updates to the join index for you, ensuring the

integrity of your database.

• Aggregates are also supported for join indexes and can be used to replace base summary tables. Related

Information Join and Hash Indexes

Derived Data Attributes
Derived attributes are attributes that are not atomic. Their data can be derived from atomic attributes in the

database. Because they are not atomic, they violate the rules of normalization.

Derived attributes fall into these basic types:

• Summary (aggregate) data

• Data that can be directly derived from other attributes

Approaches to Handling Standalone Derived Data

There are occasions when you might want to denormalize standalone calculations for performance reasons. Base the

decision to denormalize on the following demographic information, all of which is derived through the ATM process.

• Number of tables and rows involved

• Access frequency

• Data volatility

• Data change schedule

17

Guidelines for Handling Standalone Derived Data

As a general rule, using an aggregate join index or a global temporary table is preferable to denormalizing the

physical implementation of the fully normalized logical model.

The following table provides guidelines on handling standalone derived data attributes by denormalization. The

decisions are all based on the demographics of the particular data. When more than one recommended approach is

given, and one is preferable to the other, the entries are ranked in order of preference.

Any time the number of tables and rows involved is small, calculate the derived information on demand.

Reasons Not to Denormalize Using Derived Data

The following items deal with the issues of derived data without denormalizing user base data tables:

• Aggregate join index (see Aggregate Join Indexes)

• Global temporary table with derived column definitions

• View with derived column definitions

Denormalizing Through Global Temporary and Volatile Tables
Global temporary tables have a persistent stored definition just like any base table. The difference is that a global

temporary table is materialized only when it is accessed by a DML request for the first time in a session and then

remains materialized for the duration of the session unless explicitly dropped. At the close of the session, all rows in

the table are dropped. Keep in mind that the containing database or user for a global temporary table must have a

minimum of 512 bytes of PERM space per AMP in order to contain the table header. This means that the minimum

18

amount of permanent space per global temporary table for the database is 512 bytes for each times the number of

AMPs on your system.

Analogously, volatile tables can have a persistent stored definition if that definition is contained within a macro.

When used in this manner, the properties of global temporary and volatile tables are largely identical in regard to

persistence of the definition (see “CREATE TABLE” in SQL Data Definition Language Detailed Topics for other

distinctions and differences).

Global temporary tables, like join and hash indexes, are not part of the logical model. Because of this, they can be

denormalized to any degree desired, enhancing the performance of targeted applications without affecting the

physically implemented normalization of the underlying database schema. The logical model is not affected, but all

the benefits of physical schema denormalization are accrued.

It is important to remember that a materialized instance of a global temporary table and a volatile table are local to

the session from which they are materialized or created, and only that session can access its materialized instance.

This also means that multiple sessions can simultaneously materialize instances of a global temporary table definition

(or volatile tables) that are private to those sessions.

Using Global Temporary Tables and Volatile Tables to Avoid Denormalization

You can use global temporary and volatile tables to avoid the following denormalizations you might otherwise

consider:

• Prejoins

• Summary tables and other derived data

This final point is important as an alternative for applications that do not require persistent storage of summary

results as offered, for example, by aggregate join indexes.

Using Global Temporary and Volatile Tables to Enhance Performance

You can use global temporary tables to enhance performance in the following ways:

• Simplify application code

• Reduce spool usage

• Eliminate large numbers of joins

This final point is important as an alternative for applications that do not require persistent storage of prejoin results

as offered, for example, by join indexes.

Example: Simple Denormalization for Batch Processing

The following global temporary table serves 500 different transactions that create the output it defines. These

transactions collectively run over one million times per year, but 95% of them run only on a monthly batch schedule.

With the following table definition stored in the dictionary, the table itself, which violates 2NF, is materialized only

when one of those batch transactions accesses it for the first time in a session:

19

Example: Aggregate Summary Table

The following global temporary table definition, if used infrequently and is not shared, might be an alternative to

using an aggregate join index to define the equivalent summary table:

Example: Prejoin

Prejoins are a form of derived relationship among tables. The following table definition, if used infrequently, might

be an alternative to using a join index to define the equivalent prejoin table.

This particular table saves the cost of having to join the Order, Location, and Customer tables:

Denormalizing Through Views
You cannot denormalize a physical database using views, though views can be used to provide the appearance of

denormalizing base relations without actually implementing the apparent denormalizations they simulate.

Denormalized views can be a particularly useful solution to the conflicting goals of dimensional and normalized

models because it is possible to maintain a fully-normalized physical database while at the same time presenting a

virtual multidimensional database to users through the use of a semantic layer based on dimensional views (see

"Dimensional Views" below and Denormalized Physical Schemas and Ambiguity).

Prejoin with Aggregation

The following example creates a prejoin view with aggregation. Note that you can create a functionally identical

object as a join index.

20

Dimensional Views

A dimensional view is a virtual star or snowflake schema layered over detail data maintained in fullynormalized base

tables. Not only does such a view provide high performance, but it does so without incurring the update anomalies

caused by a physically denormalized database schema.

The following illustration, adapted from a report by the Hurwitz Group (1999), graphs the capability of various data

modeling approaches to solve ad hoc and data mining queries as a function of ease-of navigation of the database. As

you can see, a dimensional view of a normalized database schema optimizes both the capability of the database to

handle ad hoc queries and the navigational ease of use desired by many end users.

21

Many third party reporting and query tools are designed to access data that has been configured in a star schema

(see Dimensional Modeling, Star, and Snowflake Schemas). Dimensional views combine the strengths of the E-R and

dimensional models by providing the interface for which these reporting and query tools are optimized.

Access to the data through standard applications, or by unsophisticated end users, can also be accomplished by

means of dimensional views. More sophisticated applications, such as ad hoc tactical and strategic queries and data

mining explorations can analyze the normalized data either directly or by means of views on the normalized

database.

The following procedure outlines a hybrid methodology for developing dimensional views in the context of

traditional database design techniques:

1. Develop parallel logical database models. It makes no difference which model is developed first, nor does it make

a difference if the two models are developed in parallel. The order of steps in the following procedure is

arbitrary:

• Develop an enterprise E-R model.

• Develop an enterprise DM model.

2. Develop an enterprise physical model based on the E-R model developed in step 1.

3. Implement the physical model designed in step 2.

4. Implement dimensional views to emulate the enterprise DM model developed in step 1 as desired

Several Teradata customers use this hybrid methodology to provide a high-performing, flexible design that benefits

data manipulation while simultaneously being user- and third-party-tool friendly.

Martyn (2004) examines dimensional views from a research-oriented perspective and concludes that dimensional

views are an optimal means for overcoming the objections to normalized databases visa-a-vis DM models.

Dimensional Modeling, Star, and Snowflake Schemas

Definition of Dimensional Modeling

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique

that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is

inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.

Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller

tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of

the components of the multipart key in the fact table” (Kimball, 1997).

The graphic indicates a simplified example of a fact table (Product) and its associated dimension tables (Division,

Department, Class, Item, UPC, and Subclass).

22

Fact Tables and Dimension Tables

The structure of a dimension model somewhat resembles that of a crude drawing of a star or snowflake (see the

following graphics).

In a dimensional model, fact tables always represent M:M relationships (see Many-to-Many Relationships). According

to the model, a fact table should contain one or more numerical measures (the “facts” of the fact table) that occur

for the combination of keys that define each tuple in the table.

Dimension tables are satellites of the central fact table. They typically contain textual information that describes the

attributes of the fact table.

23

Snowflake Schema

The following graphic illustrates the classical snowflake schema:

The E-R Model Versus the DM Model

While a table in a normalized E-R-derived database represents an entity and its relevant atomic descriptors, tables in

a DM-derived database represent dimensions of the business rules of the enterprise. The meaning of business rule

here is somewhat different from that used by writers in the business rules community, where the term applies to the

declarative domain, range, uniqueness, referential, and other constraints you can specify in the database.

While advocates of implementing a normalized physical schema emphasize the flexibility of the model for answering

previously undefined questions, DM advocates emphasize its usability because the tables in a DM database are

configured in a structure more akin to their business use.

The E-R model for an enterprise is always more complex than a DM model for the same enterprise. While the E-R

model might have hundreds of individual relations, the comparable DM model typically has dozens of star join

schemas. The dimension tables of the typical DM-derived database are often shared to some extent among the

various fact tables in the database.

24

6. NoPI Tables, Column-Partitioned NoPI Tables, and

Column-Partitioned NoPI Join Indexes

A NoPI object is a table or join index that does not have a primary index or a primary AMP index and always has a

table kind of MULTISET.

The basic types of NoPI objects are:

• Nonpartitioned NoPI tables

• Column-partitioned NoPI tables and NoPI join indexes (these may also have row partitioning)

The chief purpose of nonpartitioned NoPI tables is as staging tables. FastLoad can efficiently load data into empty

nonpartitioned NoPI staging tables because NoPI tables do not have the overhead of row distribution among the

AMPs and sorting the rows on the AMPs by rowhash.

Nonpartitioned NoPI tables are also critical to support Extended MultiLoad Protocol (MLOADX). A nonpartitioned

NoPI staging table is used for each MLOADX job.

The optimal method of loading rows into any type of column-partitioned table from an external client is to use

FastLoad to insert the rows into a staging table, then use an INSERT … SELECT request to load the rows from the

source staging table into the column-partitioned target table.

You can also use Teradata Parallel Data Pump array INSERT operations to load rows into a column-partitioned table.

Global temporary trace tables are, strictly speaking, also a type of NoPI table because they do not have a primary

index, though they are generally not treated as NoPI tables.

Because there is no primary index or a primary AMP index for the rows of a NoPI table, its rows are not hashed to an

AMP based on their primary index or a primary AMP index value. Instead, Teradata Database either hashes on the

Query ID for a row, or it uses a different algorithm to assign the row to its home AMP (see Hash-Based Table

Partitioning to AMPs).

Teradata Database then generates a RowID for each row in a NoPI table by using a hash bucket that an AMP owns

(see Indexes and Partitioning and Hash-Based Table Partitioning to AMPs). This strategy makes fallback and index

maintenance very similar to their maintenance on a PI table.

Global temporary tables and volatile tables can be defined as nonpartitioned NoPI tables but not as partitioned NoPI

tables. Column-partitioned tables and column-partitioned join indexes can also be defined without a primary index

but can have a primary index or a primary AMP index. See Column-Partitioned NoPI Tables and Join Indexes for

details about column partitioning and NoPI tables and join indexes.

INSERT... SELECT into NoPI and Column-Partitioned NoPI Tables
When the target table of an INSERT … SELECT request is a NoPI table, Teradata Database inserts the data from the

source table locally into the target table, whether it comes directly from the source table or from an intermediate

spool. This is very efficient because it avoids a redistribution and sort. However, if the source table or the resulting

spool is skewed, the target table can also be skewed. In this case, you can specify a HASH BY clause to redistribute

the data from the source before Teradata Database executes the local copy operation.

25

Consider using hash expressions that provide good distribution and, if appropriate, improve the effectiveness of

autocompression for the insertion of rows into the target table. Alternatively, you can specify HASH BY RANDOM to

achieve good distribution if there is not a clear choice for the expressions to hash on.

When inserting into a column-partitioned NoPI table, also consider specifying a LOCAL ORDER BY clause with the

INSERT … SELECT request to improve the effectiveness of autocompression.

Uses for Nonpartitioned NoPI Tables
Nonpartitioned NoPI tables are particularly useful as staging tables for bulk data loads. When a table has no primary

index or a primary AMP index, its rows can be dispatched to any given AMP arbitrarily and the rows do not need to

be sorted, so the system can load data into a staging table faster and more efficiently using FastLoad or Teradata

Parallel Data Pump array INSERT operations. You can only use FastLoad to load rows into a NoPI table when it is

unpopulated, not partitioned, and there are no USIs.

You must use Teradata Parallel Data Pump array INSERT operations to load rows into NoPI tables that are already

populated. If a NoPI table is defined with a USI, Teradata Database checks for an already existing row with the same

value for the USI column (to prevent duplicate rows) when you use Teradata Parallel Data Pump array INSERT

operations to insert rows into it.

By storing bulk loaded rows on any arbitrary AMP, the performance impact for both CPU and I/O is reduced

significantly. After having been received by Teradata Database all of the rows can be appended to anonpartitioned or

column-partitioned NoPI table without needing to be redistributed to their hash-owning AMPs.

Because there is no requirement for such tables to maintain their rows in any particular order, the system need not

sort them. The performance advantage realized from NoPI tables is achieved optimally for applications that load data

into a staging table, which must first undergo a conversion to some other form, and then be redistributed before

they are stored in a secondary staging table or the target table.

Using a nonpartitioned NoPI table as a staging table for such applications avoids the row redistribution and sorting

required for primary-indexed staging tables. Another advantage of nonpartitioned NoPI tables is that you can quickly

load data into them and be finished with the acquisition phase of the utility operation, which frees client resources

for other applications.

Both NoPI and column-partitioned NoPI tables are also useful as so-called sandbox tables when an appropriate

primary index has not yet been defined for the primary-indexed table they will eventually populate. This use of a

NoPI table enables you to experiment with several different primary index possibilities before deciding on the most

optimal choice for your particular application workloads.

26

7. Teradata Reference Information Architecture

Data Layers

The RIA can be further clarified via a series of data layers. The data layers within the Reference Information
Architecture are depicted below. Each data layer has a specific purpose. There are many terms used for
these layers, some of which are ambiguous. A few of the most common terms are provided.

Figure 1 – Analytic Ecosystem – Data Layers

The reference information architecture is broken down into 3 major data layers, i.e. acquisition, integration
and access. These are logical layers and do not infer specific technologies or vendor products, simply the
capabilities they enable. The acquisition layer focuses on acquiring raw data from source systems and
performing basic standardizations.

The integration layer is primarily responsible for integrating from multiple systems both normalized and
potential de-normalized. It also may create common metrics and summaries which are widely used within
an organization.

The access layer’s primary responsibility is to provide user-friendly data access which will perform

according to service level agreements (SLAs). Each of the data layers are can be broken down further.

27

8. Teradata Reference Information Architecture

Data Tiers

Data layers are further broken down into data tiers. Data tiers provide a finer grain of how data progresses
through the data layers.

Figure 2 – Analytic Ecosystem – Data Tiers

Not all the data tiers are used for every feed coming in from a data source. For example there may not be a
business need for derived values. Or if performance is not an issue, common summaries and/or optimized
structures data tiers would not be needed. However, if these types of needs surface, these data tiers are
specifically designed to address them. Below is a list of definitions for each of the data tiers within the data
layers.

Layer Data Tiers Definition

Acquisition

Landing
This tier is the initial repository of data within data architecture. It is used to house data in its

raw, unprocessed format at the lowest level of granularity enabling reconstitution of any

view, aggregation or modification of data processed throughout the data architecture.

Standardization

This tier processes data ingested into the Landing tier into a “consumable” format. The

extensible, reusable format is necessary for further processing. Very light standardization

occurs, such as values that are made to be consistent (e.g. gender codes, medical codes,

etc. are standardized). Standardization may include optimization of the physical layout, e.g.

indexing, (re-)partitioning, compression.

28

Integration

Common Keys

This tier standardizes heavily reused keys that are the basis for connecting subject areas.

We use the term common to express a highest order of denomination – such as

“customer_id”, “product_id”, “order_id”, “session_id” and the like. This is not about defining

every primary and foreign key for all data. In general, we’d expect < 20 common keys for a

large enterprise. Point is, at this stage, invest in common keys to enable connecting the

dots across subject areas, but don’t go too far in standardizing every key such that it slows

the overall deployment to a grinding halt.

Derived Values This tier is where enterprise, governed Key Performance Indicators (KPIs) are defined and

automated.

Common

Summaries
This tier is where summarization occurs, not just for performance, but for consistency (e.g.

Total Revenue may be a complex calculation involving SKU level roll ups and tax

implications, less returns)

Consumption

Optimized

Structures
This tier in the Access Layer is about performance, where a variety of schemes (such as

indexing and partitioning) are used to optimize resource utilization and query speed. This is

common use for autonomous applications.

Shared Views &

Services
This tier in the Access Layer is about ease of use, whereby techniques such as materialized

views and metadata services are created to assist users in navigating and consuming the

data.

Figure 3 – Data Tiers Definitions

Data tiers can be further broken down into sub-tiers. As processing patterns emerge, sub-tiers help to

clarify repeatable steps and improve manageability. More details on sub-tiers are provided in the section

“Bringing the RIA Concepts Together”.

29

9. Increase Insights while Reducing Costs and

Complexity with Teradata’s Unified Data Architecture
http://assets.teradata.com/resourceCenter/downloads/Brochures/EB6732.pdf?processed=1,

10.Teradata IntelliCloud
http://www.teradata.com/products-and-services/intellicloud/

11. Hybrid Cloud Solutions – Analytics Should be

Everywhere
http://www.teradata.com/Solutions-and-Industries/hybrid-cloud-solutions

12. What is a Hybrid Cloud?
http://www.teradata.com/Resources/Videos/What-is-a-Hybrid-Cloud/

13. Data Marts

Data Marts

A data mart is generally a relatively small application- or function-specific subset of the data warehouse
database created to optimize application performance for a narrowly defined user population.

Data marts are often categorized into three different types:

•Independent data marts

Independent data marts are isolated entities, entirely separate from the enterprise data warehouse. Their data derives
from independent sources and they should be viewed as data pirates in the context of the enterprise data warehouse
because their independent inputs, which are entirely separate from the enterprise data warehouse, have a high
likelihood of producing data that does not match that of the warehouse.
These independent data marts are sometimes referred to as , and Teradata strongly discourages their use.

•Dependent data marts

Dependent data marts are derived from the enterprise data warehouse. Depending on how a dependent data mart is
configured, it might or might not be useful.
The recommended process uses only data that is derived from the enterprise data warehouse data store and also
permits its users to have full access to the enterprise data store when the need to investigate more enterprise-wide
issues arises.
The less useful forms of dependent data mart are sometimes referred to as .

•Logical data marts

The logical mart is a form of dependent data mart that is constructed virtually from the physical data warehouse. Data
is presented to users of the mart using a series of SQL views that make it appear that a physical data mart underlies
the data available for analysis.

Independent Data Marts

http://assets.teradata.com/resourceCenter/downloads/Brochures/EB6732.pdf?processed=1
http://www.teradata.com/products-and-services/intellicloud/
http://www.teradata.com/Solutions-and-Industries/hybrid-cloud-solutions

30

An independent data mart has neither a relationship with the enterprise data warehouse nor with any
other data mart. Its data is input separately and its analyses are conducted autonomously. Because the
data is not derived from the central warehouse, the likelihood that it does not match the enterprise data is
high. Which version of reality is correct? How can a user know?

Teradata often discourages the use of independent data marts, sometimes referred to disparagingly as
“data basements.” Implementation of independent data marts is antithetical to the motivation for building
a data warehouse in the first place: to have a consistent, centralized store of enterprise data that can be
analyzed in a multiplicity of ways by multiple users with different interests seeking widely varying
information.

A data basement is a collection of independent data marts. Suppose you have parts that you decide to
store in your basement. There is no particular rhyme or reason to what part is stored or where it is stored
other than convenience. Continuing the analogy, what is stored in the basement depends on what any
family member decides needs to be stored there. If you need to locate a part that you think might have
been stored in the basement, you ask everybody in the family if they have seen it recently and then you
make your search based on their recollections. If you need to visit more than one basement to find your
parts, it is unlikely they will be compatible even if you are able to find them.

This method of storing data is essentially the same as the mix of paper databases and mixed hierarchical
and relational online databases spread among multiple departments that supports many businesses today.
It is the sort of situation that businesses generally want to escape, not automate.

Dependent Data Marts

If you need to develop one or more physical data marts in the Teradata environment, you should strongly
consider configuring them as dependent data marts. Dependent data marts can be built in one of two
ways: either where a user can access both the data mart and the complete data warehouse, depending on
need, or where access is limited exclusively to the data mart. The latter approach is not optimal and the
type of data mart it produces is sometimes referred to as a data junkyard.

In the data junkyard, all data begins with a common source (in this analogy, “cars”), but they are scrapped,
rearranged, and generally junked to get some common parts that the yard operator believes are useful to
his customers. The parts collection in the junkyard relates more to what has been useful in the past:
previous supply and demand determines what the user can access.

Continuing the analogy, you, as a user, visit the junkyard and search through the various wrecks you
encounter in hopes of finding the part you need. To find your part (to answer your question), you will
probably need to scavenge through several different junkyards.

The approach results in a decision support environment molded, and compromised, from a specific, well
known set of questions and responses rather than around your ever-changing business needs.

Logical Data Marts

Perhaps the ideal approach to incorporating the data mart concept into your data warehouse is to
construct one or more logical, or virtual, data marts. By using a system of carefully constructed views on
the detail data of the warehouse, you can design multiple user- or department-specific virtual data marts
that provide the same sort of highly tailored information a physical data mart would without the need for
massive data loads, cleansing, and other necessary transformations.

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/Database_Management%2FB035-1094-

160K%2Fwwv1472240583884.html%23

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/Database_Management%2FB035-1094-160K%2Fwwv1472240583884.html%23
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/Database_Management%2FB035-1094-160K%2Fwwv1472240583884.html%23

31

14. Overview of the Data Warehouse

Overview of the Data Warehouse

Initially, the data warehouse was a historical database, enterprise-wide and centralized, containing data
derived from an operational database.

The data in the data warehouse was:

• Subject-oriented

• Integrated

• Usually identified by a timestamp

• Nonvolatile, that is, nothing was added or removed

Rows in the tables supporting the operational database were loaded into the data warehouse (the
historical database) after they exceeded some well-defined date.

Data could be queried, but the responses returned only reflected historical information. In this sense, a
data warehouse was initially static, and even if a historical data warehouse contained data that was being
updated, it would still not be an active data warehouse.

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/General_Reference/B035-1091-

160K/kxc1472241424495.html

15. Teradata Active Solutions

In an active data warehouse, Teradata provides both strategic intelligence and operational
intelligence.

• Strategic intelligence entails delivering intelligence through tools and utilities and query
mechanisms that support strategic decision-making.
This includes, for example, providing users with simple as well as complex reports throughout the
day which indicate the business trends that have occurred and that are occurring, which show why
such trends occurred, and which predict if they will continue to occur.

• Operational intelligence entails delivering intelligence through tools and utilities and query
mechanisms that support front-line or operational decision-making.
This includes, for example, ensuring aggressive Service Level Goals (SLGs) with respect to high
performance, data freshness, and system availability.

Active Load

Teradata is able to load data actively and in a non-disruptive manner and, at the same time, process other workloads.

Teradata delivers Active Load through methods that support continuous data loading. These include streaming from
a queue, more frequent batch updates, and moving changed data from another database platform to Teradata.

These methods exercise such Teradata Database features as queue tables and triggers, and use FastLoad, MultiLoad,
TPump, standalone utilities, and Teradata Parallel Transporter.

Teradata can effectively manage a complex workload environment on a “single version of the business.”

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/General_Reference/B035-1091-160K/kxc1472241424495.html
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/General_Reference/B035-1091-160K/kxc1472241424495.html

32

Active Access

Teradata is able to access analytical intelligence quickly and consistently in support of operational business
processes.

But the benefit of Active Access entails more than just speeding up user and customer requests. Active Access
provides intelligence for operational and customer interactions consistently.

Active Access queries, also referred to as tactical queries, support tactical decision-making at the front-line. Such
queries can be informational, such as simply retrieving a customer record or transaction, or they may include
complex analytics.

Active Events

Teradata is able to detect a business event automatically, apply business rules against current and historical data, and
initiate operational actions when appropriate. This enables enterprises to reduce the latency between the
identification of an event and taking action with respect to it. Active Events entails more than event detection.

When notified of something important, Teradata presents users with recommendations for appropriate action. The
analysis done for users may prescribe the best course of action or give them alternatives from which to choose.

Active Workload Management

Teradata is able to manage mixed workloads dynamically and to optimize system resource utilization to meet
business goals.

Teradata Active System Management (TASM) is a portfolio of products that enables real-time system management.

TASM assists the database administrator in analyzing and establishing workloads and resource allocation to meet
business needs. TASM facilitates monitoring workload requests to ensure that resources are used efficiently and that
dynamic workloads are prioritized automatically.

TASM also provides state-of-the-art techniques to visualize the current operational environment and to analyze long-
term trends. TASM enables database administrators to set SLGs, to monitor adherence to them, and to take any
necessary steps to reallocate resources to meet business objectives.

Active Enterprise Integration

Teradata is able to integrate itself into enterprise business and technical architectures, especially those that support
business users, partners, and customers. This simplifies the task of coordinating enterprise applications and business
processes.

For example, a Teradata event, generated from a database trigger, calls a stored procedure, which inserts a row into
a queue table and publishes a message via the Teradata JMS Provider. The message is delivered to a JMS queue on a
WebLogic, SAP NetWeaver, or other JMScompatible application server. SAP Customer Relationship Management
receives the message, notifies the user, and takes an action.

Active Availability

Teradata is able to meet business objectives for its own availability. Moreover, it assists customers in identifying
application-specific availability, recoverability, and performance requirements based on the impact of enterprise
downtime. Teradata can also recommend strategies for achieving system availability goals.

33

16. Recovering a Specific AMP

When restoring a nonfallback table with after-image journaling to a specific AMP after a disk failure, use a

ROLLFORWARD statement followed by a BUILD statement of the nonfallback table.

If the nonfallback table has unique indexes, rollforward time may be improved by using the PRIMARY DATA option.

This option instructs the rollforward process to skip unique secondary index change images in the journal. These

indexes would be invalid from the specific-AMP restore operation, therefore the PRIMARY DATA option might save a

significant amount of I/O. Revalidate the indexes following the rollforward with the BUILD statement.

Copying Objects

Teradata ARC can copy (or restore) an object to a different Teradata Database environment. Use the COPY statement

to:

• Replace an object in a target database

• Create an object in a target database

• Move an archived file to a different Teradata Database other than the one from which the archive was made

• Move an archived file to the same Teradata Database from which the archive was made

Note: The ability to copy all objects as individual objects is a feature of TTU 13.00.00 and later. Triggers cannot be

copied. For a complete list of objects supported by Teradata ARC, see “Appendix A Database Objects” on page 271.

Copy vs. Restore

The difference between copy and restore depends on the kind of operation being performed:

• A restore operation moves data from archived files back to the same Teradata Database from which it was

archived or moves data to a different Teradata Database so long as database DBC is already restored.

• A copy operation moves data from an archived file to any existing Teradata Database and creates a new

object if one does not already exist on that target database. (The target object does not have to exist,

however, the database must already exist.)

When selected partitions are copied, the table must exist and be a table that was previously copied as a full-

table copy

34

17. Analytic Architecture Modernization

35

18. Teradata Aster AppCenter
http://www.teradata.com/products-and-services/appcenter

19. Reduce Big Data Complexity to Bring Better

Visibility to Your Business
http://www.teradata.com/Solutions-and-Industries/unified-data-architecture

20. Teradata Everywhere Sales Introduction – 55751
Direct link to the course:
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=55751&componentTyp

eID=RECORDED-WEBCAST&revisionDate=1472851800000

Slides 4 and 5, 02:13 to 05:04

http://www.teradata.com/products-and-services/appcenter
http://www.teradata.com/Solutions-and-Industries/unified-data-architecture
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=55751&componentTypeID=RECORDED-WEBCAST&revisionDate=1472851800000
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=55751&componentTypeID=RECORDED-WEBCAST&revisionDate=1472851800000

36

21. Teradata QueryGrid Overview – course 52285
Direct link to the course:

https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=52285&co

mponentTypeID=RECORDED-WEBCAST&revisionDate=1420477200000

Teradata QueryGrid Overview 52285 - Part 1: Introduction (9 minutes), 00:00 to 05:30

22. Teradata Listener
http://www.teradata.com/products-and-services/listener

23. SQL Data Definition Language Detailed Topics
ALTER TABLE, Fallback, and Block Level Compression of Fallback Tables

The effect on block level compression of altering a table defined with block level compression to have fallback falls into two general

categories.

•The ALTER TABLE request alters the specified table in some way, but does not add fallback.

In this case, the table retains the block level compression it had before the request was submitted.

•The ALTER TABLE request adds fallback to the table. Whether the table definition is otherwise altered makes no difference.

https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=52285&componentTypeID=RECORDED-WEBCAST&revisionDate=1420477200000
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=52285&componentTypeID=RECORDED-WEBCAST&revisionDate=1420477200000
http://www.teradata.com/products-and-services/listener

37

In this case, the primary table retains the block level compression it had before the request was submitted, but the newly created

fallback table does not inherit the block level compression from its primary table by default.

There are two possible actions for this case.

•You do nothing to override the system defaults for data block compression.

In this case, the block level compression assigned to the new fallback table depends on the system defaults that have been defined

for your site using the compression fields of the DBS Control record (see Utilities: Volume 1 (A-K)) and whether you submit a SET

QUERY_BAND … FOR SESSION request that overrides those defaults.

•You submit a SET QUERY_BAND request to override the system defaults for data block compression.

If you submit the ALTER TABLE request with a SET QUERY_BAND … FOR SESSION request that specifies BlockCompression=Y

(see “Storage Management Query Bands”), Teradata Database creates the fallback table with block level compression regardless

of the settings of the compression fields of the DBS Control record.

You must specify the query band FOR SESSION, not FOR TRANSACTION, because both SET QUERY_BAND and ALTER

TABLE are DDL statements, and you cannot specify more than one DDL statement per transaction.

The following table explains how Teradata Database does or does not assign block level compression to a newly created fallback

table for this case.

IF you submit an ALTER

TABLE request that changes

the table definition, adds

fallback, and … THEN the FALLBACK table …

also specifies the

BlockCompression query band

•uses block level compression if the value for BlockCompression is set

to Y.

•does not use block level compression if the value for

BlockCompression is set to N.

do not also specify the

BlockCompression query band

defaults to the system-wide compression characteristics for your site

as defined by the compression fields of the DBS Control record

(see Utilities: Volume 1 (A-K)).

Copyright © 1998-2013 by Teradata Corporation. All Rights Reserved.

http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1184_109A/Alter

_Function-Details.03.038.html

http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/SQL_Reference/B035_1184_109A/End_Logging-Details.10.093.html#ww14673937
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1184_109A/Alter_Function-Details.03.038.html
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1184_109A/Alter_Function-Details.03.038.html

38

24. SQL Data Definition Language Syntax and

Examples
Teradata Database, Tools and Utilities – Release 16.--

Table Kind

Table Kind option, CREATE TABLE SQL statement.

The kind of table determines duplicate row control. See SQL Data Definition Language - Detailed Topics,
B035-1184 for details. The table can be created as a global temporary table or a volatile table. If you do not
specify global temporary or volatile, then the table is defined as a persistent user data table, also referred
to as base tables. Hash and join index tables are also considered base tables.

If you do not explicitly specify SET or MULTISET, the table kind assignment depends on the session mode:

Session Mode Default

ANSI MULTISET

Teradata SET

The session mode default is in effect, except for when you:

• Copy a table definition using the non-subquery form of the CREATE TABLE … AS syntax. The default
table kind is the table kind of the source table, regardless of the current session mode.
Create a column-partitioned table. The default table kind is always MULTISET, regardless of the
session mode or the setting of the DBS Control parameter PrimaryIndexDefault.

MULTISET

Duplicate rows are permitted, in compliance with the ANSI SQL:2011 standard. If there are uniqueness
constraints on any column or set of columns in the table definition, then the table cannot have duplicate
rows even if it is declared as MULTISET. Teradata Database creates NoPI and column-partitioned tables as
MULTISET tables by default.

Some client utilities have restrictions regarding MULTISET tables. See the appropriate documentation:

• ◦Teradata FastLoad Reference

• ◦Teradata Archive/Recovery Utility Reference

• ◦Teradata Parallel Data Pump Reference

SET

Duplicate rows are not permitted. You cannot create the following kinds of tables as SET tables:

• ◦Temporal

• ◦Column-partitioned

• ◦NoPI

GLOBAL TEMPORARY

A temporary table definition is created and stored in the data dictionary for future materialization. You can
create global temporary tables by copying a table WITH NO DATA, but not by copying a table WITH DATA.

You cannot create a column-partitioned global temporary table.

39

You cannot create a global temporary table with row-level security constraint columns.

VOLATILE

Create a volatile table. The definition is of a volatile table is retained in memory only for the duration of the
session in which it is defined. Space usage is charged to the login user spool space. Because volatile tables
are private to the session that creates them, the system does not check the creation, access, modification,
and drop privileges. A single session can materialize up to 1,000 volatile tables.

The contents and the definition of a volatile table are dropped when a system reset occurs.

If you frequently reuse particular volatile table definitions, consider writing a macro that contains the
CREATE TABLE text for those volatile tables.

You cannot create a column-partitioned volatile table or normalized volatile table.

You cannot create secondary, hash, or join indexes on a volatile table.

You cannot create a volatile table with row-level security constraint columns.

For further information about volatile tables, see SQL Data Definition Language - Detailed Topics, B035-
1184

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference/B035-1144-
160K/qmh1472241477693.html

25. SQL Data Definition Language, Syntax and

Examples
ALTER PROCEDURE (SQL Form)
Invocation Restrictions

Valid for SQL procedures only.

Not valid inside a procedure body.

Limitations

You cannot use ALTER PROCEDURE to change the DDL definition of an SQL procedure, that is, to REPLACE the

procedure. To replace the definition on an SQL procedure, you must submit a REPLACE PROCEDURE request (see

CREATE PROCEDURE and REPLACE PROCEDURE (SQL Form)).

Attributes Changed by ALTER PROCEDURE (SQL Form)
ALTER PROCEDURE can alter the following attributes of the recompiled SQL procedure.

• Platform.

This is an implicit change and cannot be specified by an ALTER PROCEDURE request.

• TDSP version number.

This is an implicit change and cannot be specified by an ALTER PROCEDURE request. For information about

procedure version numbers, see HELP PROCEDURE.

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference/B035-1144-160K/qmh1472241477693.html
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference/B035-1144-160K/qmh1472241477693.html

40

• Creation time zone.

This is an explicit change that you specify using the AT TIME ZONE option.

You can also change one or all of the following attributes:

• SPL to NO SPL.

You cannot change NO SPL back to SPL.

• WARNING to NO WARNING and vice versa.

Attributes Not Changed by ALTER PROCEDURE (SQL Form)
The creator and the immediate owner of a procedure are not changed after recompilation.

ALTER PROCEDURE (SQL Form) also does not change the following attributes of the procedure being recompiled.

• Session mode

• Creator character set

• Creator character type

• Default database

• Privileges granted to the procedure

26. SQL Request and Transaction Processing

About Locking Levels
The hierarchy of locking levels for a database management system is a function of the available granularities of

locking, with database-level locks having the coarsest granularity and rowkey-level locks having the finest granularity.

Depending on the request being processed, the system places a certain default lock level on the object of the

request, which can be one of the following database objects:

• Database

• Table

See Proxy Locks for a description of a special category of table-level locking.

• View

• Partition

• RowHash

• RowKey (Partition and RowHash)

41

42

43

27. SQL Request and Transaction Processing

44

45

46

28. SQL Request and Transaction Processing

47

48

49

50

29. SQL Request and Transaction Processing

51

52

53

54

55

56

30. Database Design
There are 44 pages of material identified.

Teradata Database: 16.00, B035-1094-160K (see separate reference document)

Or, Information Products site that has the link to the referenced document – Teradata employees only:.

http://www.info.teradata.com/doclist.cfm?Prod=1060&ProdName=Teradata%20Database

31. Teradata Database Security

57

58

59

32. Security Administration
Using Teradata Wallet to Store and Retrieve Logon Elements
Users can optionally store usernames and passwords on a Teradata client computer or application server running

Teradata Tools and Utilities 14.0 and up, using the included Teradata Wallet software, and then retrieve the needed

data when logging on to any compatible Teradata Database system.

Benefits
Teradata Wallet storage is especially beneficial for easy retrieval of passwords on application servers or other shared

computers that host multiple users and connect to multiple databases. Users wanting to use retrieved data in logon

strings must have a personal Teradata Wallet instance on each computer through which they access Teradata

Database.

Passwords and other data are securely stored in protected form. See Encryption.

Each user can store data only in their own wallet, which is not accessible by other users. The system retrieves data

only from the wallet belonging to the logged on user.

Teradata Wallet substitution strings are accepted by both the .logon and .logdata statements in the logon string, and

by the corresponding logon functions in ODBC (14.10 and up only) and CLI applications and scripts.

Use Cases
Users running scripted applications can embed password retrieval syntax into scripts instead of compromising

security by including a password.

Users accessing multiple Teradata Database systems can automatically retrieve the correct username and password

for a system (tdpid) instead of having to remember the information or look it up.

Restrictions
• On Windows, using the Credential Manager to modify Teradata Wallet string values is not supported because it

corrupts the values and they must be deleted and re-added using the tdwallet command-line tool.

• When multiple users log on to the database from a single computer, each user must be uniquely identified on the

computer so retrieval of wallet data is user-specific and private.

• Teradata Database authenticated users (TD2 mechanism) must reset passwords stored in Teradata Wallet to

conform to any changes required by database password controls, for example, PasswordExpire. See Working

with Password Controls.

60

Prerequisites
The topics that follow, showing how to use Teradata Wallet to store and retrieve logon string information, assume

that Teradata Wallet is installed and configured on a Teradata client. For detailed information on Teradata Wallet

installation and setup options, see the Teradata Tools and Utilities Installation Guide for the client operating system.

33. Security Administration

CHAPTER 11 Implementing Row Level Security

About Row Level Security
Access to Teradata Database objects is controlled primarily by object level user privileges. Object level privileges are

discretionary, that is, object owners automatically have the right to grant access on any owned object to any other

user.

In addition to object level privileges, you can use row level security (RLS) to control user access by table row and by

SQL operation. RLS access rules are based on the comparison of the RLS access capabilities of each user and the RLS

access requirements for each row.

Object owners do not have discretionary privileges to grant row access to other users. Only users with security

constraint administrative privileges can manage row level access controls.

When multiple Teradata Database systems are managed by Unity, the same row level security constraints and access

privileges should exist on all database systems.

Row Level Security Compared to View and Column Access Controls
Implementation of row level security can be complicated compared to standard discretionary access controls. Before

you commit to using row level security, determine whether or not you can meet access control needs by more

conventional means, for example:

• Grant user access to views that do not include columns with sensitive data, instead of granting user privileges on

the entire base table.

• Grant or revoke access privileges only on selected columns in the base table.

When comparing access control methods, consider that view and column level access controls:

• Are usually adequate for controlling SELECT statements, but users cannot execute INSERT, UPDATE, and DELETE

statements on columns they cannot see, and must revert to accessing the base tables for these operations.

• Are discretionary, that is, the object owner can grant access to any user.

Related Information
For additional information on the use of view and column level privileges, see Other Options for Limiting Database

Access.

61

Elements of Row Level Security

Row Level Security Implementation Process
1. Create the security classifications that define security labels for users and data rows. See Defining Security Labels

for Users and Rows.

2. Create user-defined functions to define and enforce row level security restrictions. Creating Row Level Security

UDFs.

3. Grant the necessary administrator privileges for working with row level security constraints. See Granting

Security Constraint Administrative Privileges.

4. Create security constraint objects. See Working with Security Constraints.

5. Assign security constraints and constraint values to database users. See Working with Constraint Assignments.

6. Create/Alter tables to define security constraint columns. See Working with Security Constraint Columns.

7. Assign constraint OVERRIDE privileges to users who need to bypass the enforcement of security constraints. See

Working with Constraint OVERRIDE Privileges.

62

8. Evaluate database objects and processes that interface with RLS tables, and where necessary, rework them to

ensure conformance with RLS requirements. See Working with Row Level Security Effects.

9. Learn how the system derives the session constraint values under various conditions, and how to set alternate

values. See Determining the Session Constraint Values.

10. Enable logging of user attempts to access RLS tables, views, and administrative functions. Using Access Logging

with Row Level Security.

11. Access system tables and views that contain security constraint information. See About Constraint Related

System Tables and Views.

12. Examples are provided on an external website. See Examples - Row Level Security.

About Security Labels
You must set up a system of labels for each security classification category you want to use in defining user access

levels and row access requirements.

A security classification system consists of:

• The name of the classification.

• The valid labels for use in classification, where each label is a name:value pair

The labels within a classification system may represent a value hierarchy, or they may be a series of compartments

with no hierarchical relationship, for example:

• Security clearance (hierarchical): Top Secret, Secret, Classified, Unclassified

• User function (non-hierarchical): Administrator, Programmer, Batch User, End User

• Division/location (non-hierarchical): Canada, China, France, Germany, United States

Each classification system is the basis for:

• A security CONSTRAINT object, which defines a set of applicable access restrictions

• A security constraint column, which apply the restrictions defined in the corresponding CONSTRAINT object to

each table in which the column appears

Defining Security Labels for Users and Rows
Before implementing row level security, you should define the security classification systems and associated labels

required to support your site security policy.

1. Define each classification system and identify the labels in the system.

Each system is the basis for a security CONSTRAINT object, which defines a set of access controls. Each user can

be assigned up to 6 hierarchical and 2 non-hierarchical constraints.

2. For each table requiring RLS protection, determine which of the classification system (security constraints) should

apply to the range of users who access the table.

A table can contain up to 5 constraint columns.

3. Identify how security labels for each system should apply to table rows, and define the user access level required

to perform each SQL operation (INSERT, SELECT, UPDATE, and DELETE).

You can use this analysis to help:

• Determine the level of protection required for each row

• Define the SQL access rules used in creating security constraint UDFs

63

• Determine which UDFs should be used in a security CONSTRAINT object

34. Implementing Teradata Secure Zones

Overview
Secure zones separate the access to data from the database administration duties in an exclusive database hierarchy

inside a Teradata database system.

Teradata Secure Zones Overview
The Teradata Secure Zones feature allows you to create one or more exclusive database hierarchies, called zones,

within a single Teradata database system. Access to the data in each zone and the database administration is handled

separately from the Teradata database system and from other zones.

Secure zones are useful in situations where the access to data must be tightly controlled and restricted. You can also

use secure zones to support some regulatory compliance requirements for the separation of data access from

database administration duties.

For example, consider the following use of secure zones. Suppose you have a multinational company or

conglomerate enterprise with many subsidiaries. You can create a separate zone for each of the subsidiaries. If your

company has divisions in different countries, you can create separate zones for each country to restrict data access to

the personnel that are citizens of that country. Your corporate personnel can manage and access data across multiple

zones while the subsidiary personnel in each zone have no access to data or objects in the other zones. A system-

level zone administrator can manage the subsidiary zones and object administration can be done by either corporate

DBAs or zone DBAs, as required.

With Teradata Secure Zones, you can ensure the following:

• Users in one subsidiary have no access or visibility to objects in other subsidiaries.

• Corporate-level users may have access to objects across any or all subsidiaries.

Another typical scenario is the case of cloud companies that host multiple data customers as tenants. Companies that

offer cloud-based database services can host multiple tenants within a single a Teradata Database system, using

zones to isolate the tenants from each other as if they were running on physically segregated systems. Zone DBAs can

administer the objects in their own zone as required. The tenant zones can be managed by a system-level zone

administrator.

With Teradata Secure Zones, you can ensure the following:

• Users in a tenant zone have no access or visibility to objects within other zones.

• Users in a tenant zone cannot grant rights on any objects in the zone to any other users, databases, or roles of

other zones within the system.

Secure Zone Objects
Zone objects are created, modified, and dropped in the same way as any other Teradata database object; an object

exists only inside its own zone. Tables, triggers, and macros that are created inside a zone are zone objects. Objects

such as roles and profiles, which are not qualified by database names, are only accessible inside the zone in which

they are created. Security constraints are an exception. Security constraints that are created outside a zone can be

64

assigned to zone users. Security constraints that are created inside a zone can be assigned to users who are outside

the zone.

Secure Zone User Types
The following list describes the different types of users that are associated with a zone:

• zone creator

Creates zones and assigns a user or a database as the zone root. Zone creators cannot access the objects or data

in the zones that they create. Any user who has the ZONE rights with the WITH GRANT OPTION privilege can

grant CREATE ZONE and DROP ZONE privileges.

Only the zone’s creator can add a root and primary DBA to a zone or drop a root and primary DBA from a zone.

If the zone creator creates the zone with a user as root, then the zone creator must have DROP USER privilege on

that user. Once the root is assigned to a zone, all privileges on the root user are revoked from the zone creator.

If the zone creator creates the zone with a database as root, then the zone creator must have CREATE USER

privilege on the database that becomes a root. Once the root is assigned to a zone, all privileges except CREATE

USER privilege on the root database are revoked from the zone creator.

A zone creator may grant zone access to users or roles that exist outside of the zone and is also responsible for

revoking access to the zone.

A zone creator must have CREATE ZONE and DROP ZONE privileges. A zone creator cannot be dropped until the

zone itself is dropped.

• zone root

The empty database or user on which the zone creator creates a zone.

A zone creator creates the zone and associates a database or a user as its root. The zone root database or user

must be empty. It cannot have any objects, users, databases, roles, or profiles associated with it. It also cannot

have privileges on any other user. Similarly, no user should have any privileges on root except for the zone

creator, owner of the root, and creator of the root.

If the zone root is a database, the zone creator must subsequently assign a primary DBA to the zone. If the zone

root is a user, that user automatically becomes the primary DBA for the zone.

• primary zone DBA

A primary zone DBA acts as the zone’s database administrator.

The zone creator creates the primary zone DBA. The primary zone DBA can create zone users, databases, objects,

and zone-level objects such as roles and profiles.

• zone user

A permanent database user with privileges in a zone. A zone user is a user that is created by another user in the

zone, under the hierarchy of the zone root. Zone users are created using the existing CREATE USER syntax. A zone

user cannot be a zone guest of another zone.

Only zone users can grant privileges on database objects within the zone to zone guests.

• zone guest

65

A zone guest is a role or user that is located outside of the zone but is granted privileges to create and access

objects in the zone where he is a guest. A zone can have many zone guests and a user or a role can be a guest of

more than one zone.

Zone guests cannot grant privileges on zone objects to other users.

To make an external LDAP user a zone guest, the zone creator can use the GRANT ZONE syntax to grant zone

access privilege to an external role. External users that log on with that role are able to access the zone objects

that they have privileges on.

Only the zone users can grant privileges on database objects in a zone to zone guests. Zone users cannot grant

privileges to zone guests with the WITH GRANT OPTION privilege.

Zone guests with the required privileges can create users, databases, and TVM objects inside the zone but they

cannot add another guest to the zone.

Zone guests can create views, triggers, and macros on the zone objects in their perm space

35. Usage Considerations: Summary Data and Detail

Data
This topic examines the nature of the data you keep in your data warehouse and attempts to indicate why storing

detail data is a better idea, particularly for ad hoc tactical and decision support queries and data mining explorations.

Observing the Effects of Summarization
Suppose we have an application that gathers check stand scanner data and stores it in relational tables. The raw

detail data captured by the scanner includes a system-generated transaction number, codes for the individual items

purchased as part of the transaction, and the number of each item purchased. The table that contains this detail data

is named Scanner Data in the following graphic:

66

The middle table, store_item_daily_sales, illustrates a first level summary of the data in scanner_data. Notice that

where we knew which items sold at which store at which time of day in scanner_data, now we only know the

quantity of an item sold for an entire business day. The clarity of the detail data has been replaced by a more fuzzy

snapshot. Potential insights have been lost.

The right most table, store_item_weekly_sales, illustrates a further abstraction of the detail data. Now all we have is

the quantity of each item sold by each store for an entire week. Still fewer insights can be garnered from the data.

Of course, the data could be further abstracted. Summarization can occur at many levels. The important lesson to be

learned from this study is that summaries hide valuable information. Worse still, it is not possible to reverse

summarize the data in order to regain the original detail. The sharper granularity is lost forever.

Consider this simple, and highly logical, query that an analyst might ask of the sales data: How effective was the mid-

week promotion we ran on sales for an item on Tuesday and Wednesday? If the only data available for analysis is a

unit volume by week entity, then it is not possible to answer the question. The answer to the question is to be found

in the detail, and the analyst has no way to determine the effectiveness of the promotion.

Other basic questions that cannot be answered by summary data include the following:

• What is the daily sales pattern for item 2 at any given store?

• When a customer purchases item 2, what other items are most frequently purchased with it?

• What is the profile of a customer who purchases item 2?

67

Information Value of Summary Data
The information value of summary data is extremely limited. As we have seen, summary data cannot answer

questions about daily sales patterns by store, nor can it reveal what additional purchases were made in the same

market basket, nor can it tell you anything at all about the individual customer who made the purchase.

What summary data can provide is summary answers and nothing more. This puts you in the position of always being

reactive rather than proactive. Two classic retail dilemmas posed by this summary-only situation indicate that both

extremes of a given problem can be caused by only having access to summary data:

• An out-of-stock situation has only been discovered after it is too late to remedy the problem.

• There is too much stock on hand, forcing an unplanned price reduction promotion to eliminate the unwanted

inventories.

68

36. Teradata MultiLoad

69

70

37. Teradata Parallel Transporter User Guide

71

72

