Study Guide for the Beta Teradata Database
Associate Exam — 2017 — Reference 3

Contents
I oo T =T 7= T (= V£ 4
FOI@IGN KEY RUIES ... eieeee ettt ettt e e et e e e et e e e e ttaeeeeataeeeeasaeeeaassaaeeaansseaesansaeeesansaeeeeansseeesanssneesansrneennn 4
2. What is @ Database?o ittt e e e e s bt e e ab e e e b e e e bt e e s be e e ene e e enreesaneeesareenn 5
3. Dimensional Modeling, Star, and Snowflake Schemas Definition of Dimensional Modeling.........c..ccccccvvveenneen. 7
4. Prejoin With AEIrEZatiONcccuiii i ecieee ettt eectte e e e ette e e e et e e e e ebteeeeebtaeesesteeaaastseasastaeeeastasessssasaesastasassastenansnes 10
5. CHAPTER 6 Denormalizing the Physical SChEMAccoociiiiiiic et e e e sbae e e e 11
OVEBIVIEW. ...t eeteee ettt ettt e ettt e e e ettt e e sttt e e sttt e e s a b et e e s m bt e e e e nbe e e e en bt e e e e abe e e e ambeee s e nbeeeeenbeeeeeaareneseaaneneseanrenesennrenas 11
Denormalization, Data Marts, and Data WarEhOUSESccccuiiieieeeeiiiciireeee e ecccrree e e e e e e e estrrreeee e e e e e sataaaeeeeeeeenns 11
DENOIMAIZAtION ISSUBSveiiiiiiieiie ettt ettt sttt ettt et esb e s bt e s ae e sabeeabe e b e e beesbeeemeesateenbeenbeesbeesaeesanenas 11
Commonly Performed DenormaliZations.........ccueiiieiiii ittt tre e e e et re e e e e bte e e e e bee e e e eareeeeeenreeas 13
Alternatives t0 DeNOIMAlIZatioNcoiii ittt be e sa e ettt e e sbe e saee st sabe e b e e beens 13
Denormalizing With RePEating GrOUPS........ciiiciiiiiiiiiiee sttt e erte e e esre e e e sttt e e e stb e e e e ssabeeeessabaeeeasbeeeesssbeeeesssseeesssasens 13
Example: Denormalizing With REPEatiNg GrOUPS......cccccuiieiiiiiiieiieiiee e cettee e eeitee e esree s e stee e e e sbee e e e sbae e e ssabaeeessabaeeeesnsenas 14
Reasons to Denormalize With RePEating GrOUPScccuieeiiiiieeeiiiiee e ecitee e ettt e e ertre e s e stee e e s sbeee s s sbaeeaesbaeeesssseeeesnnnenas 14
Reasons Not to Denormalize With REPeating GrOUPSccccueieiieiiieeeiiieeecetiee e eeteee e eetee e e eetee e e e sbaeeeesbeeeesenseeeeennsenas 14
DenormMalizing TRrOUZN PreJOiNSuvii ittt e st e e e ettt e e e et te e e e et e e e eetbeeeseabaeesansbeeeeenaseeeeennsenaeennsenas 15
Denormalizing throUgh JOIN INAEXESc.uueiieeiiie ettt e et e e e et e e e et e e e e e abeeesenbeeaseabeeeeennsenaeennsenas 16
Derived Data AtTriDULES.o..vi ittt e r e s sane e 16
Denormalizing Through Global Temporary and Volatile Tablesc.eeveiieeiiiiiii e 17
DeNnormMalizing TRIOUZN VIBWS.......ceiii ittt e e e e e e ettt e e e e e e e e s beteeeeeaeeeeannsasaeeeeaeeeeansasaneeeenannns 19
Dimensional Modeling, Star, and SNOWFIaKe SChEMAScc.uviiiiee e et e e areea e 21
6. NoPI Tables, Column-Partitioned NoPI Tables, and Column-Partitioned NoPI Join Indexesccceeevvvrieiviieerireeennns 24
INSERT... SELECT into NoPl and Column-Partitioned NOPI Tablesccooeeriirieninieieeeeeee e 24
Uses for Nonpartitioned NOPI Tables.......coii ittt et e et e e e etae e e e ba e e e e sabtee e ssnaaeesennsenas 25
7. Teradata Reference INformation ArChitECIUIE.......c.eiiuiiiiiiiee e s s 26
(DY 1T TR 26
8. Teradata Reference INformation ArChit@CtUIEooiiii i st s 27
D = T =T PO OTORP 27

9. Increase Insights while Reducing Costs and Complexity with Teradata’s Unified Data Architecture........ccccccccuuuue 29

10.Teradata INteIlICIOUMoo ittt ettt ettt e e e st e s bt e e at e e s bt e e sabeesabeeeneeesabeeesnseesabeesaneeesareenn 29
11. Hybrid Cloud Solutions — Analytics Should be EVEryWHEIE.........cooouiiiii ittt 29
VAV o L = T Vo T o @1 o ¥ T TSR 29
ST D= v I 1V - o PO P PR PPU PPN 29
14. Overview Of the Data War€hOUSEo.uii ittt st e sab e st e s bt e e sabe e e saseesaseesaneeesareean 31
15. Teradata ACtIVE SOIUTIONS........eiiiiie ittt ettt s e e bt e e s bt e s bt e e sat e e sabeeesabeesabeeenbeesabeeesnseesnseesanenesareean 31
16. RECOVENING @ SPECITIC AP ... ettt et e sttt e e sttt e e s atae e e s ate e e e e ssaeaeeassaeeesansbaeesansaeaesansreeenan 33
17. Analytic Architecture MOAEINIZAtIONuiiiieiiie et e e e e et e e e st e e e ssataeeeeastaeeeeansbaeesaasaeeesansrneennn 34
R NCY o Y I =T A o o1 O=T o o T TR 35
19. Reduce Big Data Complexity to Bring Better Visibility to YOUr BUSINESS.......ccccvvviieiiiiieeiiiie e 35
20. Teradata Everywhere Sales INtroduction — 55751uiiiiiiiiiiiiiiiee ettt esree et e e s e e e s e e s s sabee e e s sabaee e s enneeas 35
21. Teradata QueryGrid OVErviEW — COUISE 52285cuiiiiiiiiiiiiee ittt e esiee e esre e e e s e e s sabee e s ssabeeeesssbeeessnaseeessnssenesssnseens 36
22, TErA0AtA LISEENEI .. ettt ettt et ettt e s bt e she e s ae e sa bt st e et e e b e e bt e sbeesheeeat e et e enbeenheesheesatenas 36
23. SQL Data Definition Language Detailed TOPICSuuiiicuiiieeiiieie et e ecitee e esie e e eesive e e e e ate e e e eeabeeeeesaseeesenaseeeeennsaneeesnnenas 36
24. SQL Data Definition Language Syntax and EXAMPIESccccuveieiiiiieieiiieec ettt e ree e e ate e e e e save e e s e eabae e e e ensaee e e eaneeas 38
25. SQL Data Definition Language, Syntax and EXamMPIEScccuviiiiiiiiiiiiiiiec ettt see e s e s e s sabae e e s enaeeas 39
ALTER PROCEDURE (SQL FOIM) ..uttttitiniieitenteeiteitesteete st steete st este st satetesbesatestesbeesesbeestenbesbeemsesbeeasesbeemeebesbeensenbesaeenes 39
Attributes Changed by ALTER PROCEDURE (SQL FOIM)ceitiiiteientirienienieeientesitesiesieestenbe st e sreese st smeesnesreemeennesaeenes 39
Attributes Not Changed by ALTER PROCEDURE (SQL FOIM) ...ueiiiiiiiiieiiieecesesteeeteeeseteeste e sveessteessvaeesneessnvaeesnseeenns 40
26. SQL Request and TranSaCtion PrOCESSINGciiiccuuiiieeeeeeeeiititeeeeeeeeeiitttrreeeeeeessabasereeeessesassssansasessesassssssneseessesannssnn 40
ADOUT LOCKING LEVEISoeeeeeeeiieee ettt ettt e ettt e e e et e e e e ettt e e e e ebteeeesabtaeeeesteeaesssaeaesstaaasastaeasestaeasaassanaeannes 40
27.SQL Request and TranSaCtion PrOCESSING......uuiuiuuiiiiiiieeeiiitteeeeiiteeeesiteeeesstteeeesssreeeesssseeessssseeessssseeessssseeessssseeesssseees 43
28. SQL Request and TranSaCtion PrOCESSING......uuiiiuiiteiiiiieeeiiitteeeeiiteeeessreeeesstteeeessareeeesssbeeessssseeeesssseeessssseeessssenesssseees 46
29. SQL Request and TranSaCtion PrOCESSING......uiiicuuieeiiiieeeeiireeeeiiteeeesireeeesitreeeesssraeesssabeeeeassseeeeassseaessssseeessssseneessssees 50
I B = o = S B =T 1= o IS UEURR Pt 56
31. Teradata Database SECUIILYuueeiiii it e e e e e e et e e e e e e e e e e s aabeeaeeeeeessasssesaeeaeessassssseneeasessnnnsnns 56
Y Yol VT VAN [YT o 11 A1 4 o] IS USURRE 59
Using Teradata Wallet to Store and Retrieve LOgoNn El@MENTScciiiiiiiiiciiiee ettt e 59
21T T) T PP P PP PRUSRUPROPRO 59
L O [P P PO P 59
LTy o T o1 o O PO P TP 59
=TT [LY 60

I BT Yol U T VAN [YT o 11 {1 4 o] o IS RURRRE 60

CHAPTER 11 Implementing ROW LEVEI SECUIILY ...cciiiiiiiiiiiiie ettt ettt ssee e e e e s sbee e e s sbee e s s saveeeesnaneeas 60
ADOUL ROW LEVEI SECUITLYuviiiiiiiieeceitee et ettt e et e e e et ae e e e e aaaae e e abaaeesassbeeeeassseeeeesaraeeeensbaaeeennseeeesnnseeeeennseeas 60
Row Level Security Compared to View and Column Access CONIOlS........coccuviiiiiiieeiiiiiie et 60
Related INTOMMIATION .eueiiiiiei ettt et e b e s b e s at e st e s bt e bt e s b e e s beesmeeeneeenbeenbeesbeesanenas 60
Elements Of ROW LEVEI SECUILYuviiiiiiiiiie ittt ettt e e e st e e e st e e s s st e e e e sabee e e essbeeeessabeeeesnsseeesennsenas 61
Row Level Security IMplementation PrOCESSiiiciiiiiieiiiei ittt ceiee et e ettt e e s stee e s s sbee e e s sbee e s s sbee e e s ssbeeeessabeeessnasenas 61
FA oo U Y =T ol U AV 1= o T=] £ TP SPR 62
Defining Security Labels fOr USErs @Nd ROWScuuiiiiiiiiiiiciiee e cciiee ettt e e eette e eette e e e ebte e e eebaee e s sabaeesesnbaeeesenseeesennsenas 62

34. Implementing TEradata SECUINE ZONESccccuveeiieiieeeeeiieeeeecteeeeeitteeeesteeeeeeteeeeesbeeeeaasbesaeessbeeeeesasesseassteeesaseneessnsenns 63
OVEBIVIBW.....eeiii ittt ettt et e s et e s e b e et e s e b e et e s e s be e e e s b b et e e e bt et e e e bb et e s s mba e e e s mba e e e s b aeeesanbaeeesannneeesas 63
TEradata SECUIME ZONES DVEIVIEWcc.utiiiuieiiiieerteeeriteestee sttt esbeesbteesateesabteesubeesabeesbaeesabeesabeesasseesaseeesaseessaesnsseesasesanns 63
Yol U Lo LI @] o =Tt £ TSRS 63
Y =Tol U gl o] T U LYY G IV o 1= LRt 64

35. Usage Considerations: Summary Data and Detail Datac.cceeeevieieeciiee e e 65
Observing the Effects of SUMMATiZAtiONcooiiiii et e e e e et e e e e s be e e e e saaaeeeseasaeeesansaeeeeanssaeenan 65
Information Value of SUMMAry Datacooiiiii ittt et e e e st e e e et ee e e s sabee e e e sabaeeeesabaeeesnnseeas 67

36. Teradata MUITILOA ...c..eeeiieieeeeee ettt st st sttt e bt e s b e e s ae e satesanesr e e r e e reesmeesmeeeneeenreen 68

37. Teradata Parallel Transporter USEr GUITE.ciiiuieeiieiiee e cciiee e eetee e ertee e eeee e e stre e e e ebee e e e sbte e e e sabeeesssabaeeeesabaeeesnnneeas 70

Note: The numbering in this document is solely
provided to separate contents and for ease of use.
Please also note that internal Teradata linked
information is also available in Reference documents
1 and 2 for all exam candidates.

1. Foreign Keys

Relational databases permit data values to associate across more than one entity. A Foreign Key (FK) value identifies
table relationships.

On the next frame you will see that the employee table has three FK attributes, one of which models the relationship
between employees and their departments. A second FK attributes models the relationship between employees and
their jobs.

A third FK attributes is used to model the relationship between employees and each other. This is called a recursive
relationship.

Foreign Key Rules
* Duplicate values are allowed in a FK attribute.
* NULLs are allowed in a FK attribute.
* Values may be changed in a FK attribute.
* Each FK must exist elsewhere as a Primary Key.
Note that Department_Number is the Primary Key for the DEPARTMENT entity.

Remember, these terms are not Teradata specific - they are just general relational concepts.

EMPLOYEE (partial listing)
—
MANAGER
EMPLOYEE |JEMPLOYEE|DEPARTMENT | JOB | LAST FIRST HIRE | BIRTH [SALARY Forei n Ke
NUMBER NUMBER [NUMBER CODE| NAME NAME DATE | DATE |AMOUNT g y
PK FK FK FK (FK) values
Job 1006 1019 301 312101 Stein John 861015| 631015 |3945000 mOdel
Code 1008 1019 301 312102 Kanieski | Carol 870201 | 680517 3925000 relationshi s
Table 1005 0801 403 431100| Ryan Loretta |861015| 650910 |4120000 p *
1004 1003 401 412101| Johnson | Darlene |861015| 560423 (4630000
1007 Villegas | Arnando [870102| 470131 |5970000
1003 0801 401 411100| Trader James |860731(570619 |4785000
N
* Foreign Keys (FK) are optional. DEPARTMENT
. N
* A entity may have more than one FK. MANAGER
. DEPARTMENT| DEPARTMENT BUDGET [EMPLOYEE
* A FK may consist of more than one NUMBER NAME AMOUNT |NUMBER
attribute. PK FK
. 501 marketing sales 80050000 | 1017
* FKvalues may be dupllcated. 301 research and development |46560000 | 1019
302 product planning 22600000 [1016
* FK values may be null. 403 education 93200000 | 1005
402 software support 30800000 | 1011
* FK values may be changed. 401 customer support 98230000 | 1003
. 201 technical operations 29380000 | 1025
* FK values must exist elsewhere as a
PK.

2. Whatis a Database?

A database is a collection of permanently stored data that is used by an application or enterprise.

A database contains logically related data, which means that the database was created with a specific purpose in
mind. A database supports shared access by many users. One characteristic of a database is that many people use
it, often for many different purposes. A database is protected to control access and managed to retain its value and
integrity.

One example of a database is payroll data that includes the names of the employees, their employee numbers, and
their salary history. This database is logically related—it's all about payroll. It must have shared access, since it will
be used by the payroll department to generate checks, and also by management to make decisions. This database
must be protected; much of the information is confidential and must be managed to ensure the accuracy of the
records.

The Teradata Database is a relational database. Relational databases are based on the relational model, which is
founded on mathematical Set Theory. The relational model uses and extends many principles of Set Theory to
provide a disciplined approach to data management. Users and applications access data in an RDBMS using industry-
standard SQL statements. SQL is a set-oriented language for relational database management.

Later in this course we will provide another definition of database that is specific to the Teradata Database.

A database is a collection of permanently stored data that is:

Logically related - the data relates to other data (tables to tables).

Shared - many users may access the data.

Protected - access to data is controlled.

Managed - the data has integrity and value.

3. Dimensional Modeling, Star, and Snowflake
Schemas Definition of Dimensional Modeling

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique
that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is
inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.
Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller
tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of
the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a
fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Division Department Class
Division | | Dept
Number Number Class
PK PK K
Product
Division | Dept Item
Number | Number Class |Subclass| UPS Number Column_1
PK
FK FK FK FK FK FK FK
tem uPC Subclass
Item e UPC e Subclass
Pk PK PK

Fact Tables and Dimension Tables The structure of a dimension model somewhat resembles that of a crude drawing
of a star or snowflake (see the following graphics). In a dimensional model, fact tables always represent M:M
relationships (see Many-to-Many Relationships). According to the model, a fact table should contain one or more
numerical measures (the “facts” of the fact table) that occur for the combination of keys that define each tuple in the
table. Dimension tables are satellites of the central fact table. They typically contain textual information that
describes the attributes of the fact table.

Star Schema The following graphic illustrates the classical star schema:

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique
that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is
inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.
Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller
tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of
the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a
fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Fact Tables and Dimension Tables

The structure of a dimension model somewhat resembles that of a crude drawing of a star or snowflake (see the
graphics “Star Schema” on page 188 and “Snowflake Schema” on page 189). In a dimensional model, fact tables
always represent M:M relationships (see “Many-to-Many Relationships” on page 70). According to the model, a fact
table should contain one or more numerical measures (the “facts” of the fact table) that occur for the combination of
keys that define each tuple in the table. Dimension tables are satellites of the central fact table. They typically
contain textual information that describes the attributes of the fact table. Star Schema The following graphic
illustrates the classical star schema:

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique
that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is
inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.
Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller
tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of
the components of the multipart key in the fact table” (Kimball, 1997). The graphic indicates a simplified example of a
fact table (Product) and its associated dimension tables (Division, Department, Class, Item, UPC, and Subclass).

Division Department Class
Division | _ . Dept
Number Number Class
PK PK oK
Product
Division | Dept Item
Number | Number Class |Subclass| UPS Number Column_1
PK
FK FK FK FK FK FK FK
tem uPC Subclass
Item - UPC - Subclass
PK PK PK

Fact Tables and Dimension Tables The structure of a dimension model somewhat resembles that of a crude drawing
of a star or snowflake (see the following graphics). In a dimensional model, fact tables always represent M:M
relationships (see Many-to-Many Relationships). According to the model, a fact table should contain one or more
numerical measures (the “facts” of the fact table) that occur for the combination of keys that define each tuple in the

table. Dimension tables are satellites of the central fact table. They typically contain textual information that
describes the attributes of the fact table.

Star Schema The following graphic illustrates the classical star schema:

f/-\\|
N

Snowflake Schema

The following graphic illustrates the classical snowflake schema

4. Prejoin with Aggregation

The following example creates a prejoin view with aggregation. Note that you can create a functionally identical
object as a join index

REPLACE VIEW LargeTableSpaceTotal
(DBname, Acctname, Tabname, CurrentPermSum, PeakPermSum, NumVprocs)
AS SELECT DatabaseName,AccountName,TableName,
SUM (CurrentPerm)(FORMAT '---,---,---,--9"),
SUM (PeakPerm)(FORMAT '---,---,---,--9"),
COUNT(*) (FORMAT "ZZ79")
FROM DBC.TablesizeV
GROUP BY 1, 2, 3
HAVING SUM (currentperm) > 18E9;
SELECT DatabaseName (CHAR{1@), TITLE 'DbName'),
AccountName (CHAR(18),TITLE "AcctName'),
TableName (CHAR(16),TITLE 'TableName'), Vproc,

CurrentPerm (FORMAT '---,---,---,--9"),

CurrentPerm * 108.8 / EurrentpermSum (AS PctDist, TITLE * % //
Distrib' , FORMAT 'Z279.999'),PctDist * Numvprucs

(AS Pctufnyg,TITLE "% of //AVG ', FORMAT 'ZZ9.9')

FROM LargeTableSpaceTotal, DBC.TablesizeV
WHERE DBname TablesizeV.DatabaseName
AND AcctName TablesizeV.AccountName
AND TabName TablesizeV.TableName
AND PctofAvg > 125.8

ORDER BY 1, 2, 3, 4;

Dimensional Views

A dimensional view is a virtual star or snowflake schema layered over detail data maintained in fullynormalized base
tables. Not only does such a view provide high performance, but it does so without incurring the update anomalies
caused by a physically denormalized database schema. The following illustration, adapted from a report by the
Hurwitz Group (1999), graphs the capability of various data modeling approaches to solve ad hoc and data mining
queries as a function of ease-of navigation of the database. As you can see, a dimensional view of a normalized
database schema optimizes both the capability of the database to handle ad hoc queries and the navigational ease of
use desired by many end users.

10

5. CHAPTER 6 Denormalizing the Physical Schema

Pages 99 — 114 — Database Design — TD 16.00

Overview

This chapter describes some of the common ways to denormalize the physical implementation of a fully normalized
model. The chapter also briefly describing the popular technique of dimensional modeling and shows how the most
useful attributes of a dimensional model can be emulated for a fully-normalized or partially-normalized physical
database implementation through the careful use of dimensional views. The term denormalization describes any
number of physical implementation techniques that enhance performance by reducing or eliminating the isomorphic
mapping of the logical database design on the physical implementation of that design. The result of these operations
is usually a violation of the design goal of making databases application-neutral. In other words, a “denormalized”
database favors one or a few applications at the expense of all other possible applications. Strictly speaking, these
operations are not denormalization at all. The concept of database schema normalization is logical, not physical.
Logical denormalization should be avoided. Develop a fully normalized design and then, if necessary, adjust the
semantic layer of your physical implementation to provide the desired performance enhancement. Finally, use views
to tailor the external schema to the usability needs of users and to limit their direct access to base tables (see
Denormalizing Through Views).

Denormalization, Data Marts, and Data Warehouses

The following quotation is taken from the web site of Bill Inmon, who coined the term data warehousing. It supports
the position argued here: the more general the analyses undertaken on the warehouse data store, the more
important the requirement that the data be normalized. The audience size issue he raises is a reflection of the
diversity of analysis anticipated and the need to support any and all potential explorations of the data. “The generic
data model represents a logical structuring of data. Depending on whether the modeler is building the model for a
data mart or a data warehouse the data modeler will wish to engage in some degree of denormalization.
Denormalization of the logical data model serves the purpose of making the data more efficient to access. In the case
of a data mart, a high degree of denormalization can be practiced. In the case of a data warehouse a low degree of
denormalization is in order. “The degree of denormalization that is applicable is a function of how many people are
being served. The smaller the audience being served, the greater the degree of denormalization. The larger the
audience being served, the lower the degree of denormalization.”

Denormalization Issues

The effects of denormalization on database performance are unpredictable: as many applications can be affected
negatively by denormalization as are optimized. If you decide to denormalize your database, make sure you always
complete your normalized logical model first. Document the pure logical model and keep your documentation of the
physical model current as well. Denormalize the implementation of the logical model only after you have thoroughly
analyzed the costs and benefits, and only after you have completed a normalized logical design. Consider the
following list of effects of denormalization before you decide to undertake design changes:

* Adenormalized physical implementation can increase hardware costs.

11

The rows of a denormalized table are always wider than the rows of a fully normalized table. A row cannot
span data blocks; therefore, there is a high probability that you will be forced to use a larger data block size
for a denormalized table. The greater the degree of a table, the larger the impact on storage space. This
impact can be severe in many cases.

Row width also affects the transfer rate for all I/O operations; not just for disk access, but also for
transmission across the BYNET and to the requesting client.

* While denormalization benefits the applications it is specifically designed to enhance, it often decreases the
performance of other applications, thus contravening the goal of maintaining application neutrality for the
database.

* Acorollary to this observation is the fact that a denormalized database makes it more difficult to implement
new, high-performing applications unless the new applications rely on the same denormalized schema
components as existing applications.

* Because of the previous two effects, denormalization often increases the cost and complexity of
programming.

* Denormalization introduces update anomalies to the database. Remember that the original impetus behind
normalization theory was to eliminate update anomalies.

The following graphic uses a simple database to illustrate some common problems encountered with
denormalization:

Normalized

Sales Reps

‘ Sales ID ‘ Sales Name ‘ District ‘

Customers \

‘ Cust ID ‘ Cust Name ‘Sales ID ‘

Invoices
‘ Cust ID ‘ Inv. # | Date ‘

Denormalized

Sales Reps
‘ Sales ID ‘ Sales Name ‘ District ‘

5

Customers D

‘ Cust ID ‘ Cust Name ‘ Sales ID ‘ Sales Name ‘
X X

Invoices 4 ‘4

[Cust ID ‘ Inv. # | Date [Sales Namel District ‘

12

Consider the denormalized schema. Notice that the name of the salesman has been duplicated in the Customers and
Invoices tables in addition to being in the Sales Reps table, which is its sole location in the normalized form of the
database.

This particular denormalization has all of the following impacts:

* When a sales person is reassigned to a different customer, then all accounts represented by that individual
must be updated, either individually or by reloading the table with the new sales person added to the
accounts in place of the former representative.

Because the Customers, or account, table is relatively small (fewer than a million rows), either method of
updating it is a minor cost in most cases.

* At the same time, because the ID and name for the sales person also appear in every Invoice transaction for
the account, each transaction in the database must also be updated with the information for the new sales
person. This update would probably touch many millions of rows in the Invoice table, and even a reload of
the table could easily take several days to complete. This is a very costly operation from any perspective.

* Denormalized rows are always wider rows. The greater the degree of a table, the larger the impact on
storage space. This impact can be severe in many cases.

Row width also affects the transfer rate for all /O operations; not just for disk access, but also for
transmission across the BYNET and to the requesting client.

Evaluate all these factors carefully before you decide to denormalize large tables. Smaller tables can be denormalized
with fewer penalties in those cases where the denormalization significantly improves the performance of frequently
performed queries.

Commonly Performed Denormalizations
The following items are typical of the denormalizations that can sometimes be exploited to optimize performance:

* Repeating groups
* Prejoins
» Derived data (fields) and summary tables (column aggregations)

Alternatives to Denormalization
Teradata continues to introduce functions and facilities that permit you to achieve the performance benefits of

denormalization while running under a direct physical implementation of your fully normalized logical model.

Among the available alternatives are the following:
* Views
* Hash and join indexes
* Aggregate join indexes
* Global temporary and volatile tables

Denormalizing with Repeating Groups

Repeating groups are attributes of a non-1NF relation that would be converted to individual tuples in a normalized
relation.

13

Example: Denormalizing with Repeating Groups
For example, this relation has six attributes of sales amounts, one for each of the past six months:

Sales_History

EmpNum Sales Figures for Last 6 Months (US Dollars)

Database Design, Release 16.00

Chapter 6: Denormalizing the Physical Schema

Denormalizing Through Prejoins
Sales_History
PK Sales Sales Sales Sales Sales Sales
FK
UPI
2518 32,389 21,405 18,200 27,200 29,785 35,710

When normalized, the Sales History relation has six tuples that correspond to the same six months of sales expressed
by the denormalized relation:

Table 15: Sales_History

Sales_History

EmpNum SalesPeriod SalesAmount (US Dollars)
PK

FK

NUPI

2518 20011031 31,389
2518 20011130 21,405
2518 20011231 18,200
2518 20010131 27,590
2518 20010228 29,785
2518 20010331 35,710

Reasons to Denormalize With Repeating Groups
The following items are all possible reasons for denormalizing with repeating groups:
* Saves disk space
* Reduces query and load time
* Makes comparisons among values within the repeating group easier
* Many 3GLs and third party query tools work well with this structure

Reasons Not to Denormalize With Repeating Groups
The following items all mitigate the use of repeating groups:
* Makes it difficult to detect which month an attribute corresponds to

14

* Makes it impossible to compare periods other than months
* Changing the number of columns requires both DDL and application modifications

Denormalizing Through Prejoins
A prejoin moves frequently joined attributes to the same base relation in order to eliminate join processing. Some

vendors refer to prejoins as materialized views.

Example: Denormalizing through Prejoins

The following example first indicates two normalized relations, Job and Employee, and then shows how the
attributes of the minor relation Job can be carried to the parent relation Employee in order to enhance join
processing:

Table 16: Job
JobCode JobDesc
PK NN, ND
UPI
1015 Programmer
1023 Analyst

Table 17: Employee

EmpNum EmpName JobCaode
PK, SA FK

UPL

22416 Jones 1023
30547 Smith 1015

This is the denormalized, prejoin form of the same data. This relation violates 2NF:

Employee

EmpNum EmpName JobCode JobDesc

PK, SA FK

UPI

22416 Jones 1023 Analyst
30547 Smith 1015 Programmer

Reasons to Denormalize Using Prejoins

The following items are all possible reasons for denormalizing with prejoins:

e Performance can be enhanced significantly.

¢ The method is a good way to handle situations where there are tables having fewer rows than there are AMPs in
the configuration.

e The minor entity is retained in the prejoin so anomalies are avoided and data consistency is maintained.

Reasons Not to Denormalize Using Prejoins

You can achieve the same results obtained with prejoins without denormalizing your database schema by using any
of the following methods:

¢ Views with joins (see Denormalizing Through Views)

15

¢ Join indexes (see Denormalizing through Join Indexes)
* Global temporary tables (see Denormalizing Through Global Temporary and Volatile Tables)

Denormalizing through Join Indexes
Join indexes provide the performance benefits of prejoin tables without incurring update anomalies and without

denormalizing your logical or physical database schemas.

Although join indexes create and manage prejoins and, optionally, aggregates, they do not denormalize the physical
implementation of your normalized logical model because they are not a component of the fully normalized physical
model.

Remember: normalization is a logical concept, not a physical concept.

Example: Denormalizing through Join Indexes
Consider the prejoin example in Denormalizing Through Prejoins. You can obtain the same performance benefits this
denormalization offers without incurring any of its negative effects by creating a join index.

CREATE JOIN INDEX Employeelob
AS SELECT (JobCode, JobDescription), (EmployeeNumber, EmployeeName)
FROM Job JOIN Employee ON JobCode;

This join index not only eliminates the possibility for update anomalies, it also reduces storage by row compressing
redundant Job table information.

Reasons to Denormalize Using Join Indexes

The following items are all reasons to use join indexes to “denormalize” your database by optimizing join and

aggregate processing:

¢ Update anomalies are eliminated because the system handles all updates to the join index for you, ensuring the
integrity of your database.

e Aggregates are also supported for join indexes and can be used to replace base summary tables. Related
Information Join and Hash Indexes

Derived Data Aftributes

Derived attributes are attributes that are not atomic. Their data can be derived from atomic attributes in the
database. Because they are not atomic, they violate the rules of normalization.

Derived attributes fall into these basic types:
* Summary (aggregate) data
* Data that can be directly derived from other attributes

Approaches to Handling Standalone Derived Data

There are occasions when you might want to denormalize standalone calculations for performance reasons. Base the
decision to denormalize on the following demographic information, all of which is derived through the ATM process.
e Number of tables and rows involved

* Access frequency

¢ Data volatility

¢ Data change schedule

16

Guidelines for Handling Standalone Derived Data
As a general rule, using an aggregate join index or a global temporary table is preferable to denormalizing the
physical implementation of the fully normalized logical model.

The following table provides guidelines on handling standalone derived data attributes by denormalization. The
decisions are all based on the demographics of the particular data. When more than one recommended approach is
given, and one is preferable to the other, the entries are ranked in order of preference.

Access Frequency Change Rating Update Frequency Recommended
Approach
High High Dynamic 1. Use an aggregate join

index or global
temporary table.

2. Denormalize the
physical
implementation of
the model.

High High Scheduled Use an aggregate join
index or global
temporary table.

High Low Dynamic Use an aggregate join
index or global
temporary table.

High Low Scheduled » Use an aggregate join
index or global
temporary table.

» Produce a batch
report that calculates
the aggregates
whenever it is run.

Low Unknown Unknown Calculate the information
on demand rather than
storing it in the database.

Any time the number of tables and rows involved is small, calculate the derived information on demand.

Any time the number of tables and rows involved is small, calculate the derived information on demand.

Reasons Not to Denormalize Using Derived Data

The following items deal with the issues of derived data without denormalizing user base data tables:
e Aggregate join index (see Aggregate Join Indexes)

* Global temporary table with derived column definitions

* View with derived column definitions

Denormalizing Through Global Temporary and Volatile Tables
Global temporary tables have a persistent stored definition just like any base table. The difference is that a global

temporary table is materialized only when it is accessed by a DML request for the first time in a session and then
remains materialized for the duration of the session unless explicitly dropped. At the close of the session, all rows in
the table are dropped. Keep in mind that the containing database or user for a global temporary table must have a
minimum of 512 bytes of PERM space per AMP in order to contain the table header. This means that the minimum

17

amount of permanent space per global temporary table for the database is 512 bytes for each times the number of
AMPs on your system.

Analogously, volatile tables can have a persistent stored definition if that definition is contained within a macro.
When used in this manner, the properties of global temporary and volatile tables are largely identical in regard to
persistence of the definition (see “CREATE TABLE” in SQL Data Definition Language Detailed Topics for other
distinctions and differences).

Global temporary tables, like join and hash indexes, are not part of the logical model. Because of this, they can be
denormalized to any degree desired, enhancing the performance of targeted applications without affecting the
physically implemented normalization of the underlying database schema. The logical model is not affected, but all
the benefits of physical schema denormalization are accrued.

It is important to remember that a materialized instance of a global temporary table and a volatile table are local to
the session from which they are materialized or created, and only that session can access its materialized instance.

This also means that multiple sessions can simultaneously materialize instances of a global temporary table definition
(or volatile tables) that are private to those sessions.

Using Global Temporary Tables and Volatile Tables to Avoid Denormalization
You can use global temporary and volatile tables to avoid the following denormalizations you might otherwise
consider:

* Prejoins

* Summary tables and other derived data

This final point is important as an alternative for applications that do not require persistent storage of summary
results as offered, for example, by aggregate join indexes.

Using Global Temporary and Volatile Tables to Enhance Performance

You can use global temporary tables to enhance performance in the following ways:
* Simplify application code
* Reduce spool usage
* Eliminate large numbers of joins

This final point is important as an alternative for applications that do not require persistent storage of prejoin results
as offered, for example, by join indexes.

Example: Simple Denormalization for Batch Processing
The following global temporary table serves 500 different transactions that create the output it defines. These
transactions collectively run over one million times per year, but 95% of them run only on a monthly batch schedule.

With the following table definition stored in the dictionary, the table itself, which violates 2NF, is materialized only
when one of those batch transactions accesses it for the first time in a session:

18

Table 18: TemporaryBatchOutput

DeptNum EmpNum DeptName LastName FirstName
PK
FK FK

Example: Aggregate Summary Table
The following global temporary table definition, if used infrequently and is not shared, might be an alternative to

using an aggregate join index to define the equivalent summary table:

Table 19: DepartmentAggregations

DeptNum Period SumSalary AvgSalary EmpCount
PK

FK

NUPI

Example: Prejoin
Prejoins are a form of derived relationship among tables. The following table definition, if used infrequently, might
be an alternative to using a join index to define the equivalent prejoin table.

This particular table saves the cost of having to join the Order, Location, and Customer tables:

Table 20: OrderCustomer

OrdNum CustNum OrdCost
PK FK
FK NUPI

Denormalizing Through Views
You cannot denormalize a physical database using views, though views can be used to provide the appearance of

denormalizing base relations without actually implementing the apparent denormalizations they simulate.

Denormalized views can be a particularly useful solution to the conflicting goals of dimensional and normalized
models because it is possible to maintain a fully-normalized physical database while at the same time presenting a
virtual multidimensional database to users through the use of a semantic layer based on dimensional views (see
"Dimensional Views" below and Denormalized Physical Schemas and Ambiguity).

Prejoin with Aggregation
The following example creates a prejoin view with aggregation. Note that you can create a functionally identical

object as a join index.

19

REPLACE VIEW LargeTableSpaceTotal
(DBname, Acctname, Tabname, CurrentPermSum, PeakPermSum, NumVprocs)
AS SELECT DatabaseName,AccountName,TableName,
SUM (CurrentPerm)(FORMAT "---,---,---,--9"),
SUM (PeakPerm) (FORMAT '=--,---,-=-, --9"),
COUNT(*) (FORMAT 'ZZ9')
FROM DBC.TablesizeV
GROUP BY 1, 2, 3
HAVING SUM (currentperm) > 18E9;
SELECT DatabaseName (CHAR(1@), TITLE 'DbName'),
AccountName (CHAR(1@),TITLE 'AcctName'),
TableName (CHAR(16),TITLE 'TableName'), Vproc,
CurrentPerm (FORMAT '---,---,---,--9"),
CurrentPerm * 180.8 / CurrentpermSum (AS PctDist, TITLE ' % //
Distrib',FORMAT 'Z79.999'),PctDist * NumVprocs
(AS PctofAvg,TITLE '% of //AVG ', FORMAT 'ZZ9.9'")
FROM LargeTableSpaceTotal, DBC.TablesizeV
WHERE DBname = TablesizeV.DatabaseName
AND AcctName = TablesizeV.AccountName
AND TabName = TablesizeV.TableName
AND PctofAvg > 125.@
ORDER BY 1, 2, 3, 4;

Dimensional Views

A dimensional view is a virtual star or snowflake schema layered over detail data maintained in fullynormalized base
tables. Not only does such a view provide high performance, but it does so without incurring the update anomalies
caused by a physically denormalized database schema.

The following illustration, adapted from a report by the Hurwitz Group (1999), graphs the capability of various data
modeling approaches to solve ad hoc and data mining queries as a function of ease-of navigation of the database. As
you can see, a dimensional view of a normalized database schema optimizes both the capability of the database to
handle ad hoc queries and the navigational ease of use desired by many end users.

LTI ngiany iUy YIsma

ER model with

— OPure ER model) . ;
dimensional view

Ability to handle unplanned queries
|

: Pure

- O Nonrelational dimensional O'
model : model

Ease of end user navigation

20

Many third party reporting and query tools are designed to access data that has been configured in a star schema
(see Dimensional Modeling, Star, and Snowflake Schemas). Dimensional views combine the strengths of the E-R and
dimensional models by providing the interface for which these reporting and query tools are optimized.

Access to the data through standard applications, or by unsophisticated end users, can also be accomplished by
means of dimensional views. More sophisticated applications, such as ad hoc tactical and strategic queries and data
mining explorations can analyze the normalized data either directly or by means of views on the normalized
database.

The following procedure outlines a hybrid methodology for developing dimensional views in the context of
traditional database design techniques:

1. Develop parallel logical database models. It makes no difference which model is developed first, nor does it make
a difference if the two models are developed in parallel. The order of steps in the following procedure is
arbitrary:

* Develop an enterprise E-R model.
* Develop an enterprise DM model.

2. Develop an enterprise physical model based on the E-R model developed in step 1.

3. Implement the physical model designed in step 2.

4. Implement dimensional views to emulate the enterprise DM model developed in step 1 as desired

Several Teradata customers use this hybrid methodology to provide a high-performing, flexible design that benefits
data manipulation while simultaneously being user- and third-party-tool friendly.

Martyn (2004) examines dimensional views from a research-oriented perspective and concludes that dimensional
views are an optimal means for overcoming the objections to normalized databases visa-a-vis DM models.

Dimensional Modeling, Star, and Snowflake Schemas

Definition of Dimensional Modeling

According to Ralph Kimball, the creator of the dimensional modeling methodology, “DM is a logical design technique
that seeks to present the data in a standard, intuitive framework that allows for high-performance access. It is
inherently dimensional, and it adheres to a discipline that uses the relational model with some important restrictions.
Every dimensional model is composed of one table with a multipart key, called the fact table, and a set of smaller
tables called dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of
the components of the multipart key in the fact table” (Kimball, 1997).

The graphic indicates a simplified example of a fact table (Product) and its associated dimension tables (Division,
Department, Class, Item, UPC, and Subclass).

21

Division Departmeant Class

Division | Dept
Number Number Class
PK PK PK

Product

Division | Dept ltam

Number | Number Class |Subclass| UPS Number Column_1

PK
FK FK FK FK FK FK FK
ltem uPC Subclass

Iltem T UpPC Cee Subclass
PK PK PK

Fact Tables and Dimension Tables
The structure of a dimension model somewhat resembles that of a crude drawing of a star or snowflake (see the
following graphics).

In a dimensional model, fact tables always represent M:M relationships (see Many-to-Many Relationships). According
to the model, a fact table should contain one or more numerical measures (the “facts” of the fact table) that occur
for the combination of keys that define each tuple in the table.

Dimension tables are satellites of the central fact table. They typically contain textual information that describes the
attributes of the fact table.

22

Snowflake Schema
The following graphic illustrates the classical snowflake schema:

The E-R Model Versus the DM Model

While a table in a normalized E-R-derived database represents an entity and its relevant atomic descriptors, tables in
a DM-derived database represent dimensions of the business rules of the enterprise. The meaning of business rule
here is somewhat different from that used by writers in the business rules community, where the term applies to the
declarative domain, range, uniqueness, referential, and other constraints you can specify in the database.

While advocates of implementing a normalized physical schema emphasize the flexibility of the model for answering
previously undefined questions, DM advocates emphasize its usability because the tables in a DM database are
configured in a structure more akin to their business use.

The E-R model for an enterprise is always more complex than a DM model for the same enterprise. While the E-R
model might have hundreds of individual relations, the comparable DM model typically has dozens of star join
schemas. The dimension tables of the typical DM-derived database are often shared to some extent among the
various fact tables in the database.

23

6. NoPI Tables, Column-Partitioned NoPI Tables, and
Column-Partitioned NoPI Join Indexes

A NoPI object is a table or join index that does not have a primary index or a primary AMP index and always has a
table kind of MULTISET.

The basic types of NoPI objects are:

o Nonpartitioned NoPI tables
e Column-partitioned NoPI tables and NoPI join indexes (these may also have row partitioning)

The chief purpose of nonpartitioned NoPI tables is as staging tables. FastLoad can efficiently load data into empty
nonpartitioned NoPI staging tables because NoPI tables do not have the overhead of row distribution among the
AMPs and sorting the rows on the AMPs by rowhash.

Nonpartitioned NoPI tables are also critical to support Extended MultiLoad Protocol (MLOADX). A nonpartitioned
NoPI staging table is used for each MLOADX job.

The optimal method of loading rows into any type of column-partitioned table from an external client is to use
FastLoad to insert the rows into a staging table, then use an INSERT ... SELECT request to load the rows from the
source staging table into the column-partitioned target table.

You can also use Teradata Parallel Data Pump array INSERT operations to load rows into a column-partitioned table.

Global temporary trace tables are, strictly speaking, also a type of NoPI table because they do not have a primary
index, though they are generally not treated as NoPI tables.

Because there is no primary index or a primary AMP index for the rows of a NoPI table, its rows are not hashed to an
AMP based on their primary index or a primary AMP index value. Instead, Teradata Database either hashes on the
Query ID for a row, or it uses a different algorithm to assign the row to its home AMP (see Hash-Based Table
Partitioning to AMPs).

Teradata Database then generates a RowID for each row in a NoPI table by using a hash bucket that an AMP owns
(see Indexes and Partitioning and Hash-Based Table Partitioning to AMPs). This strategy makes fallback and index
maintenance very similar to their maintenance on a Pl table.

Global temporary tables and volatile tables can be defined as nonpartitioned NoPI tables but not as partitioned NoP!I
tables. Column-partitioned tables and column-partitioned join indexes can also be defined without a primary index
but can have a primary index or a primary AMP index. See Column-Partitioned NoPI Tables and Join Indexes for
details about column partitioning and NoPI tables and join indexes.

INSERT... SELECT into NoPI and Column-Partitioned NoPI Tables

When the target table of an INSERT ... SELECT request is a NoPI table, Teradata Database inserts the data from the
source table locally into the target table, whether it comes directly from the source table or from an intermediate
spool. This is very efficient because it avoids a redistribution and sort. However, if the source table or the resulting
spool is skewed, the target table can also be skewed. In this case, you can specify a HASH BY clause to redistribute
the data from the source before Teradata Database executes the local copy operation.

24

Consider using hash expressions that provide good distribution and, if appropriate, improve the effectiveness of
autocompression for the insertion of rows into the target table. Alternatively, you can specify HASH BY RANDOM to
achieve good distribution if there is not a clear choice for the expressions to hash on.

When inserting into a column-partitioned NoPI table, also consider specifying a LOCAL ORDER BY clause with the
INSERT ... SELECT request to improve the effectiveness of autocompression.

Uses for Nonpartitioned NoPI Tables

Nonpartitioned NoPI tables are particularly useful as staging tables for bulk data loads. When a table has no primary
index or a primary AMP index, its rows can be dispatched to any given AMP arbitrarily and the rows do not need to
be sorted, so the system can load data into a staging table faster and more efficiently using FastLoad or Teradata
Parallel Data Pump array INSERT operations. You can only use FastLoad to load rows into a NoPI table when it is
unpopulated, not partitioned, and there are no USls.

You must use Teradata Parallel Data Pump array INSERT operations to load rows into NoPI tables that are already
populated. If a NoPI table is defined with a USI, Teradata Database checks for an already existing row with the same
value for the USI column (to prevent duplicate rows) when you use Teradata Parallel Data Pump array INSERT
operations to insert rows into it.

By storing bulk loaded rows on any arbitrary AMP, the performance impact for both CPU and I/O is reduced
significantly. After having been received by Teradata Database all of the rows can be appended to anonpartitioned or
column-partitioned NoPI table without needing to be redistributed to their hash-owning AMPs.

Because there is no requirement for such tables to maintain their rows in any particular order, the system need not
sort them. The performance advantage realized from NoPI tables is achieved optimally for applications that load data
into a staging table, which must first undergo a conversion to some other form, and then be redistributed before
they are stored in a secondary staging table or the target table.

Using a nonpartitioned NoPI table as a staging table for such applications avoids the row redistribution and sorting
required for primary-indexed staging tables. Another advantage of nonpartitioned NoPI tables is that you can quickly
load data into them and be finished with the acquisition phase of the utility operation, which frees client resources
for other applications.

Both NoPI and column-partitioned NoPI tables are also useful as so-called sandbox tables when an appropriate
primary index has not yet been defined for the primary-indexed table they will eventually populate. This use of a
NoPI table enables you to experiment with several different primary index possibilities before deciding on the most
optimal choice for your particular application workloads.

25

/. Teradata Reference Information Architecture

Data Layers

The RIA can be further clarified via a series of data layers. The data layers within the Reference Information
Architecture are depicted below. Each data layer has a specific purpose. There are many terms used for
these layers, some of which are ambiguous. A few of the most common terms are provided.

Data Movement
Ingest Prepare Consume
. Governance & Security _—

Sources e —— Consumers
Metadata Operational Technical Business
B = / Reference Information Architecture N\ (Analytic Methods I
Business
Acquisition Integration Access Reporting
L Acquire data Perform Optimize
_ from one or transformations on data for m
e @ more sources some of the data access in
LT and do very to aidin cases where "“"I‘,'“' Language
minimalwork generation, reuse it is frequently ocessng
some of it cross-functional make access
s [=< consumable usage through easier and
Interaction ' @ 9 Statistical Analysis
common faster.
7 relationships. Data Mining
Relevant terms: Relevant terms: Relevant terms:
B e) Ingest, Landing, Generalized Core, Business Specific,
Machine Staging, Buffer, Extensible Layer, Data Semantic Layer, ‘
Data Lake, Product, Foundation, Data Mart, Facts,
Facts, Evenfs Facts, Relationships KPIs Optimization

L]

NP
—C,
N

AN

Figure 1 — Analytic Ecosystem — Data Layers

The reference information architecture is broken down into 3 major data layers, i.e. acquisition, integration
and access. These are logical layers and do not infer specific technologies or vendor products, simply the
capabilities they enable. The acquisition layer focuses on acquiring raw data from source systems and
performing basic standardizations.

The integration layer is primarily responsible for integrating from multiple systems both normalized and
potential de-normalized. It also may create common metrics and summaries which are widely used within

an organization.

The access layer’s primary responsibility is to provide user-friendly data access which will perform
according to service level agreements (SLAs). Each of the data layers are can be broken down further.

26

8. Teradata Reference Information Architecture

Data Tiers

Data layers are further broken down into data tiers. Data tiers provide a finer grain of how data progresses
through the data layers.

Data Movement

Ingest
..

Prepare

Governance & Security

Consume

Sources Consumers
Metadata Operational | Technical Business
= = s Reference Information Architecture (Analytic Methods)
AUSInESs Acquisition Integration Access

Reporting

L J

e B ¢

Human NaturalLanguage

Processing

L J

8 [€

Visualizing

Statistical Analysis

Interaction

Derived Values
Common Summaries
Optimized Structures

Standardization

P | Data Mining

Machine

Shared Views & Services

Optimization

L]

o —
G,
N

Figure 2 — Analytic Ecosystem — Data Tiers

Not all the data tiers are used for every feed coming in from a data source. For example there may not be a
business need for derived values. Or if performance is not an issue, common summaries and/or optimized
structures data tiers would not be needed. However, if these types of needs surface, these data tiers are
specifically designed to address them. Below is a list of definitions for each of the data tiers within the data
layers.

This tier is the initial repository of data within data architecture. It is used to house data in its

Landing raw, unprocessed format at the lowest level of granularity enabling reconstitution of any
view, aggregation or modification of data processed throughout the data architecture.
Acquisition This tier processes data ingested into the Landing tier into a “consumable” format. The
extensible, reusable format is necessary for further processing. Very light standardization
Standardization occurs, such as values that are made to be consistent (e.g. gender codes, medical codes,

etc. are standardized). Standardization may include optimization of the physical layout, e.g.
indexing, (re-)partitioning, compression.

27

Common Keys

Integration
Derived Values
Common
Summaries
Optimized
Structures
Consumption

Shared Views &
Services

This tier standardizes heavily reused keys that are the basis for connecting subject areas.
We use the term common to express a highest order of denomination — such as
‘customer_id”, “product_id”, “order_id", “session_id” and the like. This is not about defining
every primary and foreign key for all data. In general, we'd expect < 20 common keys for a
large enterprise. Point is, at this stage, invest in common keys to enable connecting the
dots across subject areas, but don’t go too far in standardizing every key such that it slows
the overall deployment to a grinding halt.

This tier is where enterprise, governed Key Performance Indicators (KPIs) are defined and
automated.

This tier is where summarization occurs, not just for performance, but for consistency (e.g.
Total Revenue may be a complex calculation involving SKU level roll ups and tax
implications, less returns)

This tier in the Access Layer is about performance, where a variety of schemes (such as
indexing and partitioning) are used to optimize resource utilization and query speed. This is
common use for autonomous applications.

This tier in the Access Layer is about ease of use, whereby techniques such as materialized
views and metadata services are created to assist users in navigating and consuming the
data.

Figure 3 — Data Tiers Definitions

Data tiers can be further broken down into sub-tiers. As processing patterns emerge, sub-tiers help to

clarify repeatable steps and improve manageability. More details on sub-tiers are provided in the section

“Bringing the RIA Concepts Together”.

28

9. Increase Insights while Reducing Costs and
Complexity with Teradata’s Unified Data Architecture

http://assets.teradata.com/resourceCenter/downloads/Brochures/EB6732.pdf?processed=1,

10.Teradata IntelliCloud

http://www.teradata.com/products-and-services/intellicloud/

11. Hybrid Cloud Solutions — Analytics Should be
Everywhere

http://www.teradata.com/Solutions-and-Industries/hybrid-cloud-solutions

12. What is a Hybrid Cloud?

http://www.teradata.com/Resources/Videos/What-is-a-Hybrid-Cloud/

13. Data Marts

Data Marts

A data mart is generally a relatively small application- or function-specific subset of the data warehouse
database created to optimize application performance for a narrowly defined user population.

Data marts are often categorized into three different types:

eIndependent data marts

Independent data marts are isolated entities, entirely separate from the enterprise data warehouse. Their data derives
from independent sources and they should be viewed as data pirates in the context of the enterprise data warehouse
because their independent inputs, which are entirely separate from the enterprise data warehouse, have a high
likelihood of producing data that does not match that of the warehouse.

These independent data marts are sometimes referred to as , and Teradata strongly discourages their use.

eDependent data marts

Dependent data marts are derived from the enterprise data warehouse. Depending on how a dependent data mart is
configured, it might or might not be useful.

The recommended process uses only data that is derived from the enterprise data warehouse data store and also
permits its users to have full access to the enterprise data store when the need to investigate more enterprise-wide
issues arises.

The less useful forms of dependent data mart are sometimes referred to as .

e|ogical data marts

The logical mart is a form of dependent data mart that is constructed virtually from the physical data warehouse. Data
is presented to users of the mart using a series of SQL views that make it appear that a physical data mart underlies
the data available for analysis.

Independent Data Marts

29

http://assets.teradata.com/resourceCenter/downloads/Brochures/EB6732.pdf?processed=1
http://www.teradata.com/products-and-services/intellicloud/
http://www.teradata.com/Solutions-and-Industries/hybrid-cloud-solutions

An independent data mart has neither a relationship with the enterprise data warehouse nor with any
other data mart. Its data is input separately and its analyses are conducted autonomously. Because the
data is not derived from the central warehouse, the likelihood that it does not match the enterprise data is
high. Which version of reality is correct? How can a user know?

Teradata often discourages the use of independent data marts, sometimes referred to disparagingly as
“data basements.” Implementation of independent data marts is antithetical to the motivation for building
a data warehouse in the first place: to have a consistent, centralized store of enterprise data that can be
analyzed in a multiplicity of ways by multiple users with different interests seeking widely varying
information.

A data basement is a collection of independent data marts. Suppose you have parts that you decide to
store in your basement. There is no particular rhyme or reason to what part is stored or where it is stored
other than convenience. Continuing the analogy, what is stored in the basement depends on what any
family member decides needs to be stored there. If you need to locate a part that you think might have
been stored in the basement, you ask everybody in the family if they have seen it recently and then you
make your search based on their recollections. If you need to visit more than one basement to find your
parts, it is unlikely they will be compatible even if you are able to find them.

This method of storing data is essentially the same as the mix of paper databases and mixed hierarchical
and relational online databases spread among multiple departments that supports many businesses today.
It is the sort of situation that businesses generally want to escape, not automate.

Dependent Data Marts

If you need to develop one or more physical data marts in the Teradata environment, you should strongly
consider configuring them as dependent data marts. Dependent data marts can be built in one of two
ways: either where a user can access both the data mart and the complete data warehouse, depending on
need, or where access is limited exclusively to the data mart. The latter approach is not optimal and the
type of data mart it produces is sometimes referred to as a data junkyard.

In the data junkyard, all data begins with a common source (in this analogy, “cars”), but they are scrapped,
rearranged, and generally junked to get some common parts that the yard operator believes are useful to
his customers. The parts collection in the junkyard relates more to what has been useful in the past:
previous supply and demand determines what the user can access.

Continuing the analogy, you, as a user, visit the junkyard and search through the various wrecks you
encounter in hopes of finding the part you need. To find your part (to answer your question), you will
probably need to scavenge through several different junkyards.

The approach results in a decision support environment molded, and compromised, from a specific, well
known set of questions and responses rather than around your ever-changing business needs.

Logical Data Marts

Perhaps the ideal approach to incorporating the data mart concept into your data warehouse is to
construct one or more logical, or virtual, data marts. By using a system of carefully constructed views on
the detail data of the warehouse, you can design multiple user- or department-specific virtual data marts
that provide the same sort of highly tailored information a physical data mart would without the need for
massive data loads, cleansing, and other necessary transformations.

http://info.teradata.com/htmlpubs/DB TTU 16 00/index.html#page/Database Management%2FB035-1094-
160K%2Fwwv1472240583884.htm1%23

30

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/Database_Management%2FB035-1094-160K%2Fwwv1472240583884.html%23
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/Database_Management%2FB035-1094-160K%2Fwwv1472240583884.html%23

14. Overview of the Data Warehouse

Overview of the Data Warehouse

Initially, the data warehouse was a historical database, enterprise-wide and centralized, containing data
derived from an operational database.

The data in the data warehouse was:

e Subject-oriented

e Integrated

e Usually identified by a timestamp

e Nonvolatile, that is, nothing was added or removed

Rows in the tables supporting the operational database were loaded into the data warehouse (the
historical database) after they exceeded some well-defined date.

Data could be queried, but the responses returned only reflected historical information. In this sense, a
data warehouse was initially static, and even if a historical data warehouse contained data that was being
updated, it would still not be an active data warehouse.

http://info.teradata.com/htmlpubs/DB TTU 16 00/index.html#page/General Reference/B035-1091-
160K/kxc1472241424495.html

15. Teradata Active Solutions

In an active data warehouse, Teradata provides both strategic intelligence and operational
intelligence.
e Strategic intelligence entails delivering intelligence through tools and utilities and query
mechanisms that support strategic decision-making.
This includes, for example, providing users with simple as well as complex reports throughout the
day which indicate the business trends that have occurred and that are occurring, which show why
such trends occurred, and which predict if they will continue to occur.
e Operational intelligence entails delivering intelligence through tools and utilities and query
mechanisms that support front-line or operational decision-making.
This includes, for example, ensuring aggressive Service Level Goals (SLGs) with respect to high
performance, data freshness, and system availability.

Active Load

Teradata is able to load data actively and in a non-disruptive manner and, at the same time, process other workloads.

Teradata delivers Active Load through methods that support continuous data loading. These include streaming from
a queue, more frequent batch updates, and moving changed data from another database platform to Teradata.

These methods exercise such Teradata Database features as queue tables and triggers, and use FastLoad, MultiLoad,
TPump, standalone utilities, and Teradata Parallel Transporter.

Teradata can effectively manage a complex workload environment on a “single version of the business.”

31

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/General_Reference/B035-1091-160K/kxc1472241424495.html
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/General_Reference/B035-1091-160K/kxc1472241424495.html

Active Access

Teradata is able to access analytical intelligence quickly and consistently in support of operational business
processes.

But the benefit of Active Access entails more than just speeding up user and customer requests. Active Access
provides intelligence for operational and customer interactions consistently.

Active Access queries, also referred to as tactical queries, support tactical decision-making at the front-line. Such
queries can be informational, such as simply retrieving a customer record or transaction, or they may include
complex analytics.

Active Events

Teradata is able to detect a business event automatically, apply business rules against current and historical data, and
initiate operational actions when appropriate. This enables enterprises to reduce the latency between the
identification of an event and taking action with respect to it. Active Events entails more than event detection.

When notified of something important, Teradata presents users with recommendations for appropriate action. The
analysis done for users may prescribe the best course of action or give them alternatives from which to choose.

Active Workload Management

Teradata is able to manage mixed workloads dynamically and to optimize system resource utilization to meet
business goals.

Teradata Active System Management (TASM) is a portfolio of products that enables real-time system management.

TASM assists the database administrator in analyzing and establishing workloads and resource allocation to meet
business needs. TASM facilitates monitoring workload requests to ensure that resources are used efficiently and that
dynamic workloads are prioritized automatically.

TASM also provides state-of-the-art techniques to visualize the current operational environment and to analyze long-
term trends. TASM enables database administrators to set SLGs, to monitor adherence to them, and to take any
necessary steps to reallocate resources to meet business objectives.

Active Enterprise Integration

Teradata is able to integrate itself into enterprise business and technical architectures, especially those that support
business users, partners, and customers. This simplifies the task of coordinating enterprise applications and business
processes.

For example, a Teradata event, generated from a database trigger, calls a stored procedure, which inserts a row into
a queue table and publishes a message via the Teradata JMS Provider. The message is delivered to a JMS queue on a
WebLogic, SAP NetWeaver, or other JMScompatible application server. SAP Customer Relationship Management
receives the message, notifies the user, and takes an action.

Active Availability

Teradata is able to meet business objectives for its own availability. Moreover, it assists customers in identifying
application-specific availability, recoverability, and performance requirements based on the impact of enterprise
downtime. Teradata can also recommend strategies for achieving system availability goals.

32

16. Recovering a Specific AMP

When restoring a nonfallback table with after-image journaling to a specific AMP after a disk failure, use a
ROLLFORWARD statement followed by a BUILD statement of the nonfallback table.

If the nonfallback table has unique indexes, rollforward time may be improved by using the PRIMARY DATA option.
This option instructs the rollforward process to skip unique secondary index change images in the journal. These
indexes would be invalid from the specific-AMP restore operation, therefore the PRIMARY DATA option might save a
significant amount of I/O. Revalidate the indexes following the rollforward with the BUILD statement.

Copying Objects

Teradata ARC can copy (or restore) an object to a different Teradata Database environment. Use the COPY statement
to:

e Replace an object in a target database

e Create an object in a target database

e Move an archived file to a different Teradata Database other than the one from which the archive was made
e Move an archived file to the same Teradata Database from which the archive was made

Note: The ability to copy all objects as individual objects is a feature of TTU 13.00.00 and later. Triggers cannot be
copied. For a complete list of objects supported by Teradata ARC, see “Appendix A Database Objects” on page 271.

Copy vs. Restore
The difference between copy and restore depends on the kind of operation being performed:

e A restore operation moves data from archived files back to the same Teradata Database from which it was
archived or moves data to a different Teradata Database so long as database DBC is already restored.

e A copy operation moves data from an archived file to any existing Teradata Database and creates a new
object if one does not already exist on that target database. (The target object does not have to exist,
however, the database must already exist.)

When selected partitions are copied, the table must exist and be a table that was previously copied as a full-
table copy

33

17. Analytic Architecture Modernization

Reference Information Architecture
A Familiar (But Modernized) Framework

Reference Information Architecture

Field-Based Architecture Examples

Sta nada nd zat lan

Use the Reference Information Architecture to:

- Help make sense of big data frends and concepts in the marketplace
« Architect modern day business solutions using big data sources
» Position new technologies as part of an analytic ecosystem

34

18. Teradata Aster AppCenter

http://www.teradata.com/products-and-services/appcenter

19. Reduce Big Data Complexity to Bring Better
Visibility to Your Business

http://www.teradata.com/Solutions-and-Industries/unified-data-architecture

20. Teradata Everywhere Sales Introduction — 55751

Direct link to the course:
https://university.teradata.com/learning/user/deeplink redirect.jsp?linkId=ITEM DETAILS&componentID=55751&componentTyp
eID=RECORDED-WEBCAST&revisionDate=1472851800000

Slides 4 and 5, 02:13 to 05:04

Teradata Everywhere

Teradota Workload- Teradota Virfual Teradata Terodata
Specific Platform Fomily Machine Edition Managed Catabase on ...
Cloud

‘?“fhﬁ ey Gy G

On-Premises Appliance Private Cloud Managed Cloud Public Cloud

» Deployment flexibility
— Fully featured Teradata Database
— Same database across platforms
— MPP scalability

» Design for data gravity
— Co-locate with source data fo minimize data movement and duplication

» Employ mulii-system architectures
— High availability, disaster recovery, workload distribution and shifting

» As your business changes, so can your deployment choice

. TERADATA

35

http://www.teradata.com/products-and-services/appcenter
http://www.teradata.com/Solutions-and-Industries/unified-data-architecture
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=55751&componentTypeID=RECORDED-WEBCAST&revisionDate=1472851800000
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=55751&componentTypeID=RECORDED-WEBCAST&revisionDate=1472851800000

Flexibility

™ € >
Terq d aia E Veryw h e re Teradata Workload- Teradata Virtual Teradata Teradatia
Specific Platform Family Machine Edition Managed Cloud Daotabase on ...
Same Database, Regardless ' ' ! ™ Wi
s vmware OzZaa
of Deployment Choice y| - Sipazen.
On-Premises Private Cloud Managed Cloud Public Cloud
< >

Performance

On-Premises
* Teradata IntelliFlex™
* Teradata Virtual Machine Edition

Managed Cloud
*Teradata Cloud

Public Cloud
« Amazon Web Services
* Microsoft Azure

w

21. Teradata QueryGrid Overview — course 52285

Direct link to the course:
https://university.teradata.com/learning/user/deeplink redirect.jsp?linkld=ITEM DETAILS&component|D=52285&co
mponentTypelD=RECORDED-WEBCAST&revisionDate=1420477200000

Teradata QueryGrid Overview 52285 - Part 1: Introduction (9 minutes), 00:00 to 05:30

22. Teradata Listener

http://www.teradata.com/products-and-services/listener

23. SQL Data Definition Language Detailed Topics
ALTER TABLE, Fallback, and Block Level Compression of Fallback Tables

The effect on block level compression of altering a table defined with block level compression to have fallback falls into two general
categories.

The ALTER TABLE request alters the specified table in some way, but does not add fallback.
In this case, the table retains the block level compression it had before the request was submitted.

*The ALTER TABLE request adds fallback to the table. Whether the table definition is otherwise altered makes no difference.

36

https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=52285&componentTypeID=RECORDED-WEBCAST&revisionDate=1420477200000
https://university.teradata.com/learning/user/deeplink_redirect.jsp?linkId=ITEM_DETAILS&componentID=52285&componentTypeID=RECORDED-WEBCAST&revisionDate=1420477200000
http://www.teradata.com/products-and-services/listener

In this case, the primary table retains the block level compression it had before the request was submitted, but the newly created
fallback table does not inherit the block level compression from its primary table by default.

There are two possible actions for this case.
*You do nothing to override the system defaults for data block compression.

In this case, the block level compression assigned to the new fallback table depends on the system defaults that have been defined
for your site using the compression fields of the DBS Control record (see Utilities: Volume 1 (A-K)) and whether you submit a SET
QUERY_BAND ... FOR SESSION request that overrides those defaults.

*You submit a SET QUERY_BAND request to override the system defaults for data block compression.

If you submit the ALTER TABLE request with a SET QUERY_BAND ... FOR SESSION request that specifies BlockCompression=Y
(see "Storage Management Query Bands”), Teradata Database creates the fallback table with block level compression regardless
of the settings of the compression fields of the DBS Control record.

You must specify the query band FOR SESSION, not FOR TRANSACTION, because both SET QUERY_BAND and ALTER
TABLE are DDL statements, and you cannot specify more than one DDL statement per transaction.

The following table explains how Teradata Database does or does not assign block level compression to a newly created fallback
table for this case.

IF you submit an ALTER
TABLE request that changes
the table definition, adds
fallback, and ... THEN the FALLBACK table ...

ses block level compression if the value for BlockCompression is set
toy.

oes not use block level compression if the value for
BlockCompression is set to N.

also specifies the
BlockCompression query band

do not also specify the defaults to the system-wide compression characteristics for your site
BlockCompression query band | as defined by the compression fields of the DBS Control record
(see Utilities: Volume 1 (A-K)).

Copyright © 1998-2013 by Teradata Corporation. All Rights Reserved.

http://www.info.teradata.com/HTMLPubs/DB TTU 13 10/index.html#page/SQL Reference/B035 1184 109A/Alter
Function-Details.03.038.html

37

http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/SQL_Reference/B035_1184_109A/End_Logging-Details.10.093.html#ww14673937
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1184_109A/Alter_Function-Details.03.038.html
http://www.info.teradata.com/HTMLPubs/DB_TTU_13_10/index.html#page/SQL_Reference/B035_1184_109A/Alter_Function-Details.03.038.html

24. SQL Data Definition Language Syntax and
Examples

Teradata Database, Tools and Utilities — Release 16.--
Table Kind
Table Kind option, CREATE TABLE SQL statement.

The kind of table determines duplicate row control. See SQL Data Definition Language - Detailed Topics,
B035-1184 for details. The table can be created as a global temporary table or a volatile table. If you do not
specify global temporary or volatile, then the table is defined as a persistent user data table, also referred
to as base tables. Hash and join index tables are also considered base tables.

If you do not explicitly specify SET or MULTISET, the table kind assignment depends on the session mode:

Session Mode Default
ANSI MULTISET
Teradata SET

The session mode default is in effect, except for when you:

e Copy a table definition using the non-subquery form of the CREATE TABLE ... AS syntax. The default
table kind is the table kind of the source table, regardless of the current session mode.
Create a column-partitioned table. The default table kind is always MULTISET, regardless of the
session mode or the setting of the DBS Control parameter PrimarylndexDefault.

MULTISET

Duplicate rows are permitted, in compliance with the ANSI SQL:2011 standard. If there are uniqueness
constraints on any column or set of columns in the table definition, then the table cannot have duplicate
rows even if it is declared as MULTISET. Teradata Database creates NoPI and column-partitioned tables as
MULTISET tables by default.

Some client utilities have restrictions regarding MULTISET tables. See the appropriate documentation:

e oTeradata FastLoad Reference
e oTeradata Archive/Recovery Utility Reference
e oTeradata Parallel Data Pump Reference

SET
Duplicate rows are not permitted. You cannot create the following kinds of tables as SET tables:

e oTemporal
e <Column-partitioned
e °NoPI

GLOBAL TEMPORARY

A temporary table definition is created and stored in the data dictionary for future materialization. You can
create global temporary tables by copying a table WITH NO DATA, but not by copying a table WITH DATA.

You cannot create a column-partitioned global temporary table.

38

You cannot create a global temporary table with row-level security constraint columns.
VOLATILE

Create a volatile table. The definition is of a volatile table is retained in memory only for the duration of the
session in which it is defined. Space usage is charged to the login user spool space. Because volatile tables
are private to the session that creates them, the system does not check the creation, access, modification,
and drop privileges. A single session can materialize up to 1,000 volatile tables.

The contents and the definition of a volatile table are dropped when a system reset occurs.

If you frequently reuse particular volatile table definitions, consider writing a macro that contains the
CREATE TABLE text for those volatile tables.

You cannot create a column-partitioned volatile table or normalized volatile table.
You cannot create secondary, hash, or join indexes on a volatile table.
You cannot create a volatile table with row-level security constraint columns.

For further information about volatile tables, see SQL Data Definition Language - Detailed Topics, BO35-
1184

http://info.teradata.com/htmlpubs/DB TTU 16 00/index.html#tpage/SQL Reference/B035-1144-
160K/gmh1472241477693.html

25. SQL Data Definition Language, Syntax and
Examples
ALTER PROCEDURE (SQL Form)

Invocation Restrictions

Valid for SQL procedures only.
Not valid inside a procedure body.
Limitations

You cannot use ALTER PROCEDURE to change the DDL definition of an SQL procedure, that is, to REPLACE the
procedure. To replace the definition on an SQL procedure, you must submit a REPLACE PROCEDURE request (see
CREATE PROCEDURE and REPLACE PROCEDURE (SQL Form)).

Attributes Changed by ALTER PROCEDURE (SQL Form)
ALTER PROCEDURE can alter the following attributes of the recompiled SQL procedure.

* Platform.
This is an implicit change and cannot be specified by an ALTER PROCEDURE request.
e TDSP version number.

This is an implicit change and cannot be specified by an ALTER PROCEDURE request. For information about
procedure version numbers, see HELP PROCEDURE.

39

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference/B035-1144-160K/qmh1472241477693.html
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference/B035-1144-160K/qmh1472241477693.html

* Creation time zone.
This is an explicit change that you specify using the AT TIME ZONE option.
You can also change one or all of the following attributes:
 SPLto NO SPL.
You cannot change NO SPL back to SPL.
* WARNING to NO WARNING and vice versa.

Attributes Not Changed by ALTER PROCEDURE (SQL Form)
The creator and the immediate owner of a procedure are not changed after recompilation.

ALTER PROCEDURE (SQL Form) also does not change the following attributes of the procedure being recompiled.

* Session mode

* Creator character set

* Creator character type

* Default database

* Privileges granted to the procedure

26. SQL Request and Transaction Processing

About Locking Levels
The hierarchy of locking levels for a database management system is a function of the available granularities of

locking, with database-level locks having the coarsest granularity and rowkey-level locks having the finest granularity.
Depending on the request being processed, the system places a certain default lock level on the object of the
request, which can be one of the following database objects:

e Database
e Table

See Proxy Locks for a description of a special category of table-level locking.

e View
e Partition
e RowHash

e RowkKey (Partition and RowHash)

40

What is Locked

Database

all rows of all tables in the specified database and their associated secondary
index subtables.

Table

all rows in the specified base table and in any secondary index and fallback
subtables associated with it.

View

all underlying tables accessed by the spr:ciﬁcd view.

Partition

the primary and fallback copy of rows in a partition for the specified table or
single-table view. The table must be row partitioned.

This lock permits other users to access the data in the table that are not in the
same partition.

PartitionRange

the primary and fallback copy of rows in a range of partitions for the
specified table or single-table view. The table must be row partitioned.

This lock permits other users to access the data in the table that are outside
the specified partition range.

RowHash

the specified primary or fallback copy of rows sharing the same row hash
value for the specified table or single-table view. For a row-partitioned table,
this lock level applies to the row hash value for all partitions.

The rowhash-level lock permits other users to access the data in the table that
do not have the same rowhash.

The rowhash-level lock applies to a set of rows that shares the same hash
code. It does not necessarily lock only a single row, since multiple rows may
have the same rowhash.

= A rowhash-level lock is applied whenever a non-row-partitioned table is
accessed by using a unique primary index (UPI) or a nonunigue primary
index (NUPI).

= For an update or delete that accesses a data row by using a unique
secondary index (USI), the appropriate rowhash of the USI subtable is
locked, as well as the indexed data rowhash or rowkey.

« Rowhash locks on a table’s nonunique secondary index (NUSI) subtables
are usually not needed. First, a query or DML that uses a NUSI access path
locks the whole table. Second, DML that does not lock the whole table

41

Lock Level ... What is Locked

uses task locks rather than rowhash locks on any NUSI subtables that
require index maintenance.

RowHash in a the specified primary or fallback copy of rows sharing the same row hash
PartitionRange value for the specified table or single-table view in a range of partitions. The
table must be row partitioned.
This lock permits other users to access other data in the table that do not have
the same rowhash or are outside the specified partition range.
The rowhash-level lock applies to a set of rows that shares the same hash
code. It does not necessarily lock only one row since multiple rows may have
the same rowhash in the same partition or in more than one partition in the
partition range.
This lock level is not used on rows in a USI or NUSI index subtable, as these
subtables are never partitioned.

RowKey the specified primary or fallback copy of rows sharing the same rowkey
(partition and row hash value) for the specified table or single-table view. The
table must be row partitioned.

A rowkey-level lock permits other users to access other data in the table that
do not have the same rowhash or partition value.

A rowkey-level lock applies to a set of rows that shares the same partition and
rowhash. [t does not necessarily lock only one row since there could be
multiple rows with the same rowhash in a partition.

» A rowkey-level lock is applied whenever a row-partitioned table with a
primary index (UPI or NUPI) is accessed by specifying the primary index
and partitioning column values.

+ The rowkey-level lock is not used on rows in a USI or NUSI subtable, as
these subtables are never partitioned.

The locking level determines whether other users can access the target object.

Locking severities and locking levels combine to exert various locking granularities. The less granular the
combination, the greater the impact on concurrency and system performance, and the greater the delay in
processing time.

42

27.SQL Request and Transaction Processing

Notation Definition

A database object-locking severity requested pair.
lock(<object>,<lock requested:)

Each database object has an associated locking queune (and list of currently held locks L. All requests
perform a locking operation before they access any database objects.

IF lock(<object>,<lock requested>) is ... THEN ...

queued for any lock in L the transaction is placed in () and waits there as long
as lock(<object>,<lock requested:)is
queued.

A request in this state is said to be blocked (see
Blocked Requests).

granted lock(<object>,<lock requested:) isadded
to L with <lock requested> and the transaction
resumes processing.

After the transaction finishes with an object by either committing or rolling back, its lock is removed from L.

The table on the following page summarizes the action taken when a requested locking severity competes
with an existing locking severity.

43

Severity of Severity of Held Lock
Requested Lock None ACCESS READ WRITE EXCLUSIVE
CHECKSUM
ACCESS Lack Lock Granted Lock Granted Lock Granted Request Queued
CHECKSUM Granted If you specify a
LOCKING FOR ...
NOWAIT request
modifier, the
transaction aborts if
it is blocked instead
of queueing.
READ Lock Lock Granted Lock Granted Request Request Queued
Granted Queued If you specify a
If you specifya LOCKING FOR ...
LOCKING NOWAIT request
FOR ... modifier, the
NOWAIT transaction aborts if
request it is blocked instead
modifier, the of queueing.
transaction
aborts if it is
blocked instead
of queueing.

S0L Request and Transaction Processing, Release 16.00

44

579

AT LRI LSRR AR e s

Severity of Severity of Held Lock

RequestedLock "Ngne AcCESS READ WRITE EXCLUSIVE
CHECKSUM
WRITE Lock Lock Granted Request Queued Request Request Queued
Granted If you specify a Queued If you specify a

LOCKINGFOR ... Ifyouspecifya LOCKING FOR ...
NOWAIT request LOCKING NOWAIT request

maodifier, the FOR ... modifier, the
transaction aborts if NOWAIT transaction aborts if
it is blocked instead request it is blocked instead
of queueing. modifier, the of queueing.
transaction
aborts if it is
blocked instead
of queueing.
EXCLUSIVE Lock Request Request Quened Request Request Queued
Granted Queued If you specify a Queued If you specify a

If you specifya LOCKING FOR ... Ifyouspecifya LOCKING FOR ...
LOCKING NOWAIT request LOCKING NOWAIT request

FOR ... modifier, the FOR ... maodifier, the
NOWAIT transaction aborts if NOWAIT transaction aborts if
request it is blocked instead request it is blocked instead
modifier, the of queueing. modifier, the of queueing.
transaction transaction

aborts if it is aborts if it is

blocked instead blocked instead

of queueing. of queueing.

Because other client utilities such as BTEQ, FastExport, FastLoad, MultiLoad, Teradata Parallel Data Pump,
and Teradata Parallel Transporter use standard database locks, the interactions of those locking severities
with those of other database locks are identical. See the following manuals for details of the locks set by those
utilities:

45

28. SQL Request and Transaction Processing

Chapter 6: Transaction Processing
Database Locks, Two-Phase Locking, and Serializability

Teradata Database provides methods for allowing the possibility at two different levels: the individual
request and the session.

TO set the default read-only USE this method ...

locking severity for this level ...

individual request LOCKING request modifier.
See SQL Data Manipulation Language for details of the syntax and
usage of this request modifier.

session SET SESSION CHARACTERISTICS AS TRANSACTION

ISOLATION LEVEL statement.

See SQL Data Definition Language for details of the syntax and usage
of this statement.

Note that the global application of ACCESS locking for read operations when SET SESSION

CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL is set to READ UNCOMMITED depends
on the setting of the DBS Control field AccessLockForUncomRead.

When the field is set FALSE, SELECT operations within INSERT, DELETE, MERGE, and UPDATE requests
set READ locks, while when the field is set TRUE, the same SELECT operations set ACCESS locks. See

Utilities and “SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL” in SQL Data
Definition Language for details.

46

Retrievals With an ACCESS Lock

Because an ACCESS lock is compatible with all locking severities except EXCLUSIVE, a user requesting an
ACCESS lock might be allowed to read an object on which a WRITE lock is being held, a situation that is
referred to as a dirty read. This means that data could be retrieved by an application holding an ACCESS
lock while that same data is simultaneously being modified by an application holding a WRITE lock.
Therefore, any query that places an ACCESS lock can return incorrect or inconsistent results.

For example, assume that a SELECT request that uses a secondary index constraint is submitted with a
LOCKING FOR ACCESS phrase.

If the ACCESS lock is granted on an object being held for WRITE by another user, the column value could
change between the time the secondary index subtable key is located and the time the data row is retrieved
(such a change is possible because a satisfied SELECT index constraint is not always double-checked against
the base data row). This type of inconsistency might occur even if the data is changed only momentarily by a
transaction that is later backed out.

The normal policy for ACCESS lock Read operations is that Teradata Database guarantees to return all rows
that were not being updated at the time of the ACCESS lock Read operation to the requestor. For rows that
are being updated, rows may be returned, possibly in an inconsistent state, or not returned.

This generalizes to ACCESS lock Read operations on a geospatial NUSI as follows: if while attempting to
perform an ACCESS locked Read on a geospatial index, Teradata Database discovers that the current state of
the Hilbert R-Tree for the index does not permit all rows not being updated to be returned to the requestor,
it returns a retryable error to that requestor.

Considerations for Specifying LOCKING FOR ACCESS

A READ lock is normally placed on an object for a SELECT operation, which causes the request to be
queued if the object is already locked for WRITE.

S0L Request and Transaction Processing, Release 16.00

47

LALILALI UL, RPLTAT; 1 TR B] P AP P P L RSy

If an ad hoc query has no concern for data consistency, the LOCKING request modifier can be used to
override the default READ lock with an ACCESS lock. For example:

LOCKING TABLE tablename FOR ACCESS
SELECT ...
FROM tablename ...;

Be aware that the effect of LOCKING FOR ACCESS is that of reading while writing, so dirty reads can occur
with this lock. The best approach to specifying ACCESS locks is to use them only when you are interested in
a broad, statistical snapshot of the data in question, not when you require precise results. On load-isolated
tables, however, LOCKING FOR LOAD COMMITTED may be used to obtain committed data even while
concurrent isolated writes occur simultaneously on the table.

ACCESS locking can result in incorrect or inconsistent data being returned to a requestor, as detailed in the
following points:

» A SELECT with an ACCESS lock can retrieve data from the target object even when another request is
maodifying that same object.

Therefore, results from a request that applies an ACCESS lock can be inconsistent.

If this occurs while you are using an ACCESS lock to read data from a geospatial NUSI column and the
current state of the Hilbert R-tree for that NUSI does not permit all of the unmodified rows to be
returned to you, Teradata Database returns a retryable error to you

+ The possibility of an inconsistent return is especially high when the request applying the ACCESS lock
uses a secondary index value in a conditional expression.

If the ACCESS lock is granted on an object being held for WRITE, the constraint value could change
between the time the secondary index subtable is located and the time the data row is retrieved.

Such a change is possible because a satisfied SELECT index constraint is not always double-checked
against the base data row.

The LOCKING ROW request modifier cannot be used to lock multiple row hashes. If LOCKING ROW
FOR ACCESS is specified with multiple row hashes, the declaration implicitly converts to LOCKING
TABLE FOR ACCESS.

48

Using the LOCKING Request Modifier: An Example

The possibility of an inconsistent return is especially high when an ACCESS request uses a secondary index
value in a conditional expression, because satisfied index constraints are not always rechecked against the
retrieved data row.

For example, assuming that qualify_accnt is defined as a secondary index, the following request could return
the result that follows the request text:

LOCKING TABLE accnt_rec FOR ACCESS
SELECT accnt_no, qualify accnt
FROM accnt_rec

WHERE qualify accnt = 1587;
Accnt_No Qualify Accnt

30L Request and Transaction Processing, Release 16.00 565

Chapter 6: Transaction Processing

Load Isolation
In this case, the value 1587 was found in the secondary index subtable, and the corresponding data row was
selected and returned. However, the data for account 1761 had been changed by the other user while this
selection was in progress.

Returns such as this are possible even if the data is changed or deleted only momentarily by a transaction
that is subsequently aborted.

This type of inconsistency can occur even if the data is changed only momentarily by a transaction that is
later backed out. Note that for load isolated tables, you can avoid such inconsistency by using the LOCKING
FOR LOAD COMMITTED modifier. Refer to Load Isolation and SQL Data Manipulation Language.

49

29. SQL Request and Transaction Processing

50

¢ o e i e o i e

Lock Severity

Description

EXCLUSIVE

EXCLUSIVE locks are placed only on a database or table when the
object is undergoing structural changes (for example, a column is
being created or dropped).

You can also place an EXCLUSIVE lock explicitly using the LOCKING
request modifier (see “LOCKING Request Modifier” in SQL Data
Manipulation Language).

WRITE

Placed in response to an INSERT, UPDATE, or DELETE request.

A WRITE lock restricts access by other users (except for applications
that are not concerned with data consistency and choose to override
the automatically applied WRITE lock by specifving a less restrictive
ACCESS lock).

You can also place this lock explicitly using the LOCKING request
modifier (see “LOCKING Request Modifier” in SQL Data
Manipulation Language).

READ

A READ lock is placed in response to a SELECT request and restricts
access by users who require EXCLUSIVE or WERITE locks.

Several users can hold READ locks on a resource, during which the
system permits no modification of that resource. READ locks ensure
consistency during READ operations such as those that occur during a
SELECT statement.

You can also place the READ lock explicitly using the LOCKING
request modifier (see “LOCKING Request Modifier” in SQL Data
Manipulation Language).

The CHECEKSUM and ACCESS locking severities are all at the same level in the restrictiveness hierarchy.

CHECEKSUM

Placed in response to a user-defined LOCKING FOR CHECKSUM
maodifier (see “LOCKING Request Modifier” in SQL Data
Manipulation Language) when using cursors in embedded SQL.
CHECEKSUM locking is identical to ACCESS locking except that it
adds checksums to the rows of a spool to allow a test of whether a row
in the cursor has been modified by another user or session at the time
an update is being made through the cursor.

See also Cursor Locking Modes, SQL Dafa Manipulation Language,
and SQL Stored Procedures and Embedded SQL.

ACCESS

Placed in response to a user-defined LOCKING FOR ACCESS
modifier (see “LOCKING Request Modifier” in SQL Data
Manipulation Language), or by setting the session default isolation
level to READ UNCOMMITTED using the SET SESSION
CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
statement (see SQL Data Definition Language).

Permits a user to have a form of read access to an object that might
already be locked for READ or WRITE. An ACCESS lock does not
restrict access by another user except when an EXCLUSIVE lock is
required; therefore it is sometimes referred to as a dirfy READ lock.
An ACCESS lock Read operation on a geospatial NUSL If Teradata
Database discovers while attempting to perform an ACCESS locked

51

Chapter 6: Transaction Processing
Teradata Database Locking Levels and Seventies

Lock Severity

Description

Read operation that the current state of the Hilbert R-Tree for the
WUSI does not permit all non-updated rows to be returned to the
requestor, it returns a retrvable error to that requestor.

See SQL Geospatial Types.

The global application of ACCESS locking for read operations when
SET SESSION CHARACTERISTICS AS TRANSACTION
ISOLATION LEVEL is set to READ UNCOMMITED depends on the
setting of the DBS Control field AccessLockForlUncomRead.

When the parameter is set FALSE, SELECT operations within
INSERT, DELETE, MERGE, and UPDATE requests set READ locks,
while when the parameter is set TRUE, the same SELECT operations
set ACCESS locks.

A user requesting an ACCESS lock disregards all data consistency
issues. Because ACCESS and WRITE locks are compatible, the data
might be undergoing updates while the user who requested the access
is reading it. Therefore, any query that requests an ACCESS lock might
return incorrect or inconsistent results.

An ACCESS lock is also placed in response to a user-defined LOAD
COMMITTED locking modifier.

See “LOCKING Request Modifier” in SQL Dafa Manipulation
Language.

For information about designating tables for ISOLATED LOADING,
see SQL Data Definition Language Synfax and Examples.

For a load-isolated table, this modifier allows users to read from
committed rows in tables, even while the table is being loaded with
data. If the table that is being read is not a load-isolated table, this
severity results in an ACCESS lock,

For information about load isolation, see Load Isolation.

Least Restrictive

Compatibility Among Locking Severities

The Teradata Lock Manager controls the interaction of following types of lock, when placed at specific

levels:

« ACCESS.

» CHECKSUM.
« READ.

« WRITE.

« EXCLUSIVE.

For information about HUT locks, see Teradata Archive/Recovery Ultility Reference.

The following notation is used to describe the locking severity compatibilities:

Notation Definition
Q A locking queue associated with a database object.
L A list of locks currently held.

52

Chapter 6: Transaction Processing
Teradata Database Locking Levels and Seventies

Notation Definition

A database object-locking severity requested pair.
lock(<object>,<lock requested>)

Each database object has an associated locking queue (0 and list of currently held locks L. All requests
perform a locking operation before they access any database objects.

IF lock(=object=,<lock requested=) is ... THEN ...

queued for any lock in L the transaction is placed in () and waits there as long
as lock(<object>, <lock requested>)is
queued.

A request in this state is said to be blocked (see
Blocked Requests).

granted lock{<objects, <lock requested:>) isadded
to L with <lock reguested? and the transaction
resumes processing.

After the transaction finishes with an object by either committing or rolling back, its lock is removed from L.

The table on the following page summarizes the action taken when a requested locking severity competes
with an existing locking severity.

Severity of Severity of Held Lock
Requested Lock None ACCESS READ WRITE EXCLUSIVE
CHECESUM

ACCESS Lock Lock Granted Lock Granted Lock Granted Request Queued

CHECKSUM Granted If you specify a
LOCKING FOR. ...
NOWAIT request
maodifier, the
transaction aborts if
it is blocked instead
of queueing.

READ Lock Lock Granted Lock Granted Request Request Queued

Granted Queued If you specify a

If you specifya LOCEKING FOR ...
LOCKING NOWAIT request

FOR ... maodifier, the
NOWAIT transaction aborts if
request it is blocked instead
modifier, the of queueing.
transaction

aborts if it is

blocked instead

of queueing.

53

Chapter b: Transaction Processing
Teradata Database Locking Levels and Sevenfies

Severity of Severity of Held Lock
D Nome ACCESS READ WRITE EXCLUSIVE
CHECKSUM
WRITE Lock Lock Granted Request Queued Request Request Queued
Granted If vou specify a Queued If you specify a
LOCKING FOR ... Ifyouspecifya LOCKINGFOR ...
NOWAIT request LOCKING MNOWAIT request
modifier, the FOR ... maodifier, the
transaction aborts if NOWAIT transaction aborts if
it is blocked instead request it is blocked instead
of queueing. modifier, the of queueing.
transaction
aborts if it is
blocked instead
of queueing.
EXCLUSIVE Lock Request Request Queued Request Request Queued
Granted Queued If you specify a Queuved If you specify a
If you specifya LOCKING FOR ... Ifyvouspecifya LOCEINGFOR ...
LOCKING NOWAIT request LOCKING MNOWAIT request
FOR ... maodifier, the FOR ... maodifier, the
NOWAIT transaction aborts if NOWAIT transaction aborts if
request it is blocked instead request it is blocked instead
modifier, the of queueing. modifier, the of queueing.
transaction transaction
aborts if it is aborts if it is
blocked instead blocked instead
of queueing. of queueing.

Because other client utilities such as BTEQ), FastExport, FastLoad, MultiLoad, Teradata Parallel Data Pump,
and Teradata Paralle] Transporter use standard database locks, the interactions of those locking severities
with those of other database locks are identical. See the following manuals for details of the locks set by those

utilities:

» Basic Teradata Query Reference

» Teradata FastExport Reference

+ Teradata FastLoad Reference

s Teradata MultiLoad Reference

« Teradata Parallel Data Pump Reference
+ Teradata Parallel Transporier Reference

A queued request is in an I/O wait state and is said to be blocked (see Blocked Requests).

A WRITE or EXCLUSIVE lock on a database, table, or view restricts all requests or transactions except the
one holding the lock from accessing data within the domain of that object.

Because a lock on an entire database can restrict access to a large quantity of data, the Parser ensures that
default database locks are applied at the lowest possible level and severity required to secure the integrity of
the database while simultaneously maximizing concurrency.

54

Chapter b: Transaction Processing
Client Uility Locks and Teradata Database
Table-level WRITE locks on dictionary tables prevent contending tasks from accessing the dictionary, so the
Parser attempts to lock dictionary tables at the rowhash or rowkey (partition and rowhash) level whenever
possible.

For information about how load isolation affects compatibility among locking severities, see Load [solation.

Using the NOWAIT Option for the SQIL LOCKING Reqguest Modifier

When you specify the NOWAIT option for the SQL LOCKING request modifier, Teradata Database aborts
a transaction that makes a lock request that cannot be fulfilled immediately. For details on how to use the
NOWAIT option with the LOCEING request modifier, see “LOCEKING Request Modifier” in SQL Data
Manipulation Language.

Teradata Database uses a slight variation of this code internally to avoid blocking on DDL operations.
Instead of aborting the request, the system instead downgrades rowhash lock severities from READ to
ACCESS. See DDL and DCL Requests, Dictionary Access, and Locks.

AMP-Based Utilities and Logging
Following are the utilities related to logging:
o Lock Viewer Viewpoint portlet

This portlet produces a report of miscellaneous database lock delay information that you can use to
detect blocked transactions and global deadlocks. Teradata Database extracts the data reported by the
Lock Viewer portlet from various DBQL transaction logs.

« Show Locks

This utility produces a report on the various Host Utility (HUT) locks. For more information about HUT
locks, see Teradata Archive/Recovery Utility Reference.

55

30. Database Design

There are 44 pages of material identified.

Teradata Database: 16.00, B035-1094-160K (see separate reference document)

Or, Information Products site that has the link to the referenced document — Teradata employees only:.
http://www.info.teradata.com/doclist.cfm?Prod=1060&ProdName=Teradata%20Database

31. Teradata Database Security

Teradata Database security is based on the following concepts.

Security Element Description

User An individual or group of individuals represented by a single user
identity.

Privileges The database privileges explicitly or automatically granted to a user or
database.

Logon The process of submitting user credentials when requesting access to

the database.

Authentication

The process by which the user identified in the logon is verified.

Authorization

The process that determines the database privileges available to the
user.

Security Mechanism

A method that provides specific authentication, confidentiality, and
integrity services for a database session.

Network Traffic
Protection

The process for protecting message traffic between Teradata Database
and mainframe-attached and workstation-attached clients against
interception, theft, or other form of attack.

Message Integrity

Checks data sent across the network against what was received to
ensure no data was lost or changed.

Access Logs

Logs that provide the history of users accessing the database and the
database objects accessed.

For detailed information on these topics, see Security Administration.

Users

Users that access Teradata Database must be defined in the database or a supported directory.

Permanent Database Users

The CREATE USER statement defines permanent database users. Teradata recommends that
the username represent an individual. Each username must be unique in the database.

56

Directory-based Users

Directory-based users that access the database must be defined in a supported directory.
Creation of a matching database user may or may not be required, depending upon
implementation. One or more configuration tasks must be completed before directory users
can access the database.

Proxy Users

Proxy users are end users who access Teradata Database through a middle-tier application set
up for trusted sessions. They are authenticated by the application rather than the database.
The GRANT CONNECT THROUGH statement assigns role-based database privileges to
proxy users. To establish privileges for a particular connection to the database, the application
submits the SET QUERY _BAND statement when it connects the user. The SET
QUERY_BAND statement and the rules for how it is applied to each proxy user must be coded
into the application as part of setup for trusted sessions.

Database Privileges

Users can access only database objects on which they have privileges. The following table lists
the types of database privileges and describes how they are acquired by a user.

Privil Descrioti
Implicit (Ownership) Privileges implicitly granted by the database to the owner of the space in
which database objects are created.

Automatic Privileges automatically provided by the system to:

* The creator of a database, user, or other database object.
* A newly created user or database.

Inherited Privileges that are passed on indirectly to a user based on its relationship
to another user or role to which the privileges were granted directly.

* Directory users inherit the privileges of the database users to which
they are mapped. Directory users who are members of groups also
inherit the privileges defined in external roles to which the groups
are mapped.

* All users inherit the privileges of PUBLIC, the default database user,
whether or not they have any other privileges.

Explicit (GRANT) Privileges granted explicitly to a user or database in one of the following
ways:

= GRANT directly to a user or database.

* GRANT to a role, then GRANT the role to one or more users.

57

Directly Granted Privileges

Roles

Privileges can be directly given to users with the GRANT statement. Administrators
GRANTIng a privilege must have been previously granted the privilege they are granting, as
well as the WITH GRANT OPTION privilege on the privilege.

For additional information on how to use SQL statements to GEANT and REVOKE
privileges, see SQL Data Control Language.

Roles can be used to define privileges on database objects for groups of users with similar
needs, rather than granting the privileges to individual users. Roles also require less dictionary
space than individually granted privileges. Use the CREATE ROLE statement to define each
role, then use the GRANT statement to grant roles to users. The CREATE USER statement
must also specify the default role for the user. The MODIFY USER statement can be used to
assign additional user roles.

A member of a role may access all objects to which a role has privileges. Users can employ the
SET ROLE statement to switch from the default to any alternate role of which the user isa
member, or use SET ROLE ALL to access all roles.

For more information on use of roles, see Database Administration.

Roles for Proxy Users

Proxy users are users that access the database through a middle-tier application set up to offer
trusted sessions. Proxy users are limited to privileges defined in roles that are assigned to them
using the GRANT CONNECT THROUGH statement.

For details on using GRANT CONNECT THROUGH, see Security Adminisiration and SQL
Data Control Language.

External Roles

Profiles

Use external roles to assign role privileges to directory users. External roles are created exactly
like database roles; however, they cannot be granted to directory users because these users do
not exist in the database. Instead, directory users must be members of groups that are mapped
to external roles in the directory.

Directory users mapped to multiple external roles have access to all of them at logon to the
database.

For information on mapping directory users to database objects, see Security Administration.

To simplify user management, an administrator can define a profile and assign it to a group of
users who share similar values for the following types of parameters:

+ Default database assignment
* Spool space capacity

58

Chapter 16 Teradata Database Security
User Authentication

» Temporary space capacity

* Account strings permitted

* Password security attributes
* (Query band

For further information on profiles, see Database Administration.

32. Security Administration

Using Teradata Wallet to Store and Retrieve Logon Elements

Users can optionally store usernames and passwords on a Teradata client computer or application server running
Teradata Tools and Utilities 14.0 and up, using the included Teradata Wallet software, and then retrieve the needed
data when logging on to any compatible Teradata Database system.

Benefits

Teradata Wallet storage is especially beneficial for easy retrieval of passwords on application servers or other shared
computers that host multiple users and connect to multiple databases. Users wanting to use retrieved data in logon
strings must have a personal Teradata Wallet instance on each computer through which they access Teradata
Database.

Passwords and other data are securely stored in protected form. See Encryption.

Each user can store data only in their own wallet, which is not accessible by other users. The system retrieves data
only from the wallet belonging to the logged on user.

Teradata Wallet substitution strings are accepted by both the .logon and .logdata statements in the logon string, and
by the corresponding logon functions in ODBC (14.10 and up only) and CLI applications and scripts.

Use Cases
Users running scripted applications can embed password retrieval syntax into scripts instead of compromising
security by including a password.

Users accessing multiple Teradata Database systems can automatically retrieve the correct username and password
for a system (tdpid) instead of having to remember the information or look it up.

Restrictions

¢ On Windows, using the Credential Manager to modify Teradata Wallet string values is not supported because it
corrupts the values and they must be deleted and re-added using the tdwallet command-line tool.

¢ When multiple users log on to the database from a single computer, each user must be uniquely identified on the
computer so retrieval of wallet data is user-specific and private.

e Teradata Database authenticated users (TD2 mechanism) must reset passwords stored in Teradata Wallet to
conform to any changes required by database password controls, for example, PasswordExpire. See Working
with Password Controls.

59

Prerequisites

The topics that follow, showing how to use Teradata Wallet to store and retrieve logon string information, assume
that Teradata Wallet is installed and configured on a Teradata client. For detailed information on Teradata Wallet
installation and setup options, see the Teradata Tools and Utilities Installation Guide for the client operating system.

33. Security Administration

CHAPTER 11 Implementing Row Level Security

About Row Level Security

Access to Teradata Database objects is controlled primarily by object level user privileges. Object level privileges are
discretionary, that is, object owners automatically have the right to grant access on any owned object to any other
user.

In addition to object level privileges, you can use row level security (RLS) to control user access by table row and by
SQL operation. RLS access rules are based on the comparison of the RLS access capabilities of each user and the RLS
access requirements for each row.

Object owners do not have discretionary privileges to grant row access to other users. Only users with security
constraint administrative privileges can manage row level access controls.

When multiple Teradata Database systems are managed by Unity, the same row level security constraints and access
privileges should exist on all database systems.

Row Level Security Compared to View and Column Access Controls

Implementation of row level security can be complicated compared to standard discretionary access controls. Before
you commit to using row level security, determine whether or not you can meet access control needs by more
conventional means, for example:

e Grant user access to views that do not include columns with sensitive data, instead of granting user privileges on
the entire base table.
e Grant or revoke access privileges only on selected columns in the base table.

When comparing access control methods, consider that view and column level access controls:

¢ Are usually adequate for controlling SELECT statements, but users cannot execute INSERT, UPDATE, and DELETE
statements on columns they cannot see, and must revert to accessing the base tables for these operations.
e Arediscretionary, that is, the object owner can grant access to any user.

Related Information
For additional information on the use of view and column level privileges, see Other Options for Limiting Database
Access.

60

Elements of Row Level Security

Element Description

Security classification A set of labels (access levels or compartments) used to define user access

category capabilities and row access requirements.

Security CONSTRAINT » A CONSTRAINT object named for a security classification system,
which:

o Defines the range of valid label values for the classification system
o Specifies 1 to 4 security constraint UDFs
o Can be assigned to users to define their row access capabilities
» A table column named for a CONSTRAINT object, in which the column
value for each row determines the row access requirement

Security constraint user Defines and enforces RLS policy on each incoming INSERT, SELECT,
defined function (UDF) UPDATE, or DELETE statement.

The drawing shows the components required to define row-level security.

Tabletlame: ARCRAFTS SampleDala
i Couniry CHAR[E0) Couniry | Arcraft_Type | Arcra®_Cound | Ar_Base | Coordinalas | Classification_Lavel
Chiggireal tabils
definitian Aarcraft_Type CHAR[15) Ligs, Figghes 5
Airgralt_Cound INTEGER l] CAMADA | Halicogiar]
Air_Base CHAR[ZD) Ligs, Tariue: 4
Coordinates CHAR[ZS5) CAMADA, | Fightesr 4
 — Classification_Level | CONSTRAINT CHIPA Tarkes 5
Added a colemn
1 apecily acceas
consiraing
UDFName: Inserilevel Constramiame: Classification_Level
[whara access pelicy for insert oparation is defined |] TopSecrals,
Sacrald,
. Confidersal3.
UDFHarme: el el
me: Upde Raglniclad 2,
[wwnars access pelicy for upeats operatian i dafined | Unclagaifiod:
Thie defined UDF(s) - —
isfare raferenced in INSERT S¥5LIB. IrseriLevel, v valBE SO e
UDFMarna: Delstelavel e corstraint definitian UPCATE SYSLIB. UpdateLevel, :ﬂ:ﬂa’fu"m";iﬂn”
‘Where apoess policy for delete oporafion s defined DELETE 5Y5LIB.Deletelaval
| ! | SELECT SYSLIB.SelectLevel Classitcation_Leval colen
defined n the AIRCRAFTS tadle
UDFMame: SeleciLevel
| ‘Where acoess policy for select aperation = defined |

A constraint value
can be assigned ko
ausar or prafle

Row Level Security Implementation Process

1. Create the security classifications that define security labels for users and data rows. See Defining Security Labels
for Users and Rows.

2. Create user-defined functions to define and enforce row level security restrictions. Creating Row Level Security
UDFs.

3. Grant the necessary administrator privileges for working with row level security constraints. See Granting

Security Constraint Administrative Privileges.

Create security constraint objects. See Working with Security Constraints.

Assign security constraints and constraint values to database users. See Working with Constraint Assignments.

Create/Alter tables to define security constraint columns. See Working with Security Constraint Columns.

No vk

Assign constraint OVERRIDE privileges to users who need to bypass the enforcement of security constraints. See
Working with Constraint OVERRIDE Privileges.

61

8. Evaluate database objects and processes that interface with RLS tables, and where necessary, rework them to
ensure conformance with RLS requirements. See Working with Row Level Security Effects.

9. Learn how the system derives the session constraint values under various conditions, and how to set alternate
values. See Determining the Session Constraint Values.

10. Enable logging of user attempts to access RLS tables, views, and administrative functions. Using Access Logging
with Row Level Security.

11. Access system tables and views that contain security constraint information. See About Constraint Related
System Tables and Views.

12. Examples are provided on an external website. See Examples - Row Level Security.

About Security Labels
You must set up a system of labels for each security classification category you want to use in defining user access
levels and row access requirements.

A security classification system consists of:

* The name of the classification.
e The valid labels for use in classification, where each label is a name:value pair

The labels within a classification system may represent a value hierarchy, or they may be a series of compartments
with no hierarchical relationship, for example:

e Security clearance (hierarchical): Top Secret, Secret, Classified, Unclassified
* User function (non-hierarchical): Administrator, Programmer, Batch User, End User
e Division/location (non-hierarchical): Canada, China, France, Germany, United States

Each classification system is the basis for:

* Asecurity CONSTRAINT object, which defines a set of applicable access restrictions
* Asecurity constraint column, which apply the restrictions defined in the corresponding CONSTRAINT object to
each table in which the column appears

Defining Security Labels for Users and Rows
Before implementing row level security, you should define the security classification systems and associated labels
required to support your site security policy.

1. Define each classification system and identify the labels in the system.

Each system is the basis for a security CONSTRAINT object, which defines a set of access controls. Each user can
be assigned up to 6 hierarchical and 2 non-hierarchical constraints.

2. For each table requiring RLS protection, determine which of the classification system (security constraints) should
apply to the range of users who access the table.

A table can contain up to 5 constraint columns.

3. Identify how security labels for each system should apply to table rows, and define the user access level required
to perform each SQL operation (INSERT, SELECT, UPDATE, and DELETE).

You can use this analysis to help:

¢ Determine the level of protection required for each row
e Define the SQL access rules used in creating security constraint UDFs

62

* Determine which UDFs should be used in a security CONSTRAINT object

34. Implementing Teradata Secure Zones

Overview
Secure zones separate the access to data from the database administration duties in an exclusive database hierarchy
inside a Teradata database system.

Teradata Secure Zones Overview

The Teradata Secure Zones feature allows you to create one or more exclusive database hierarchies, called zones,
within a single Teradata database system. Access to the data in each zone and the database administration is handled
separately from the Teradata database system and from other zones.

Secure zones are useful in situations where the access to data must be tightly controlled and restricted. You can also
use secure zones to support some regulatory compliance requirements for the separation of data access from
database administration duties.

For example, consider the following use of secure zones. Suppose you have a multinational company or
conglomerate enterprise with many subsidiaries. You can create a separate zone for each of the subsidiaries. If your
company has divisions in different countries, you can create separate zones for each country to restrict data access to
the personnel that are citizens of that country. Your corporate personnel can manage and access data across multiple
zones while the subsidiary personnel in each zone have no access to data or objects in the other zones. A system-
level zone administrator can manage the subsidiary zones and object administration can be done by either corporate
DBAs or zone DBAs, as required.

With Teradata Secure Zones, you can ensure the following:

e Users in one subsidiary have no access or visibility to objects in other subsidiaries.
e Corporate-level users may have access to objects across any or all subsidiaries.

Another typical scenario is the case of cloud companies that host multiple data customers as tenants. Companies that
offer cloud-based database services can host multiple tenants within a single a Teradata Database system, using
zones to isolate the tenants from each other as if they were running on physically segregated systems. Zone DBAs can
administer the objects in their own zone as required. The tenant zones can be managed by a system-level zone
administrator.

With Teradata Secure Zones, you can ensure the following:

* Users in a tenant zone have no access or visibility to objects within other zones.
e Users in a tenant zone cannot grant rights on any objects in the zone to any other users, databases, or roles of
other zones within the system.

Secure Zone Objects

Zone objects are created, modified, and dropped in the same way as any other Teradata database object; an object
exists only inside its own zone. Tables, triggers, and macros that are created inside a zone are zone objects. Objects
such as roles and profiles, which are not qualified by database names, are only accessible inside the zone in which
they are created. Security constraints are an exception. Security constraints that are created outside a zone can be

63

assigned to zone users. Security constraints that are created inside a zone can be assigned to users who are outside

the zone.

Secure Zone User Types
The following list describes the different types of users that are associated with a zone:

zone creator

Creates zones and assigns a user or a database as the zone root. Zone creators cannot access the objects or data
in the zones that they create. Any user who has the ZONE rights with the WITH GRANT OPTION privilege can
grant CREATE ZONE and DROP ZONE privileges.

Only the zone’s creator can add a root and primary DBA to a zone or drop a root and primary DBA from a zone.

If the zone creator creates the zone with a user as root, then the zone creator must have DROP USER privilege on
that user. Once the root is assigned to a zone, all privileges on the root user are revoked from the zone creator.

If the zone creator creates the zone with a database as root, then the zone creator must have CREATE USER
privilege on the database that becomes a root. Once the root is assigned to a zone, all privileges except CREATE
USER privilege on the root database are revoked from the zone creator.

A zone creator may grant zone access to users or roles that exist outside of the zone and is also responsible for
revoking access to the zone.

A zone creator must have CREATE ZONE and DROP ZONE privileges. A zone creator cannot be dropped until the
zone itself is dropped.

zone root
The empty database or user on which the zone creator creates a zone.

A zone creator creates the zone and associates a database or a user as its root. The zone root database or user
must be empty. It cannot have any objects, users, databases, roles, or profiles associated with it. It also cannot
have privileges on any other user. Similarly, no user should have any privileges on root except for the zone
creator, owner of the root, and creator of the root.

If the zone root is a database, the zone creator must subsequently assign a primary DBA to the zone. If the zone
root is a user, that user automatically becomes the primary DBA for the zone.

primary zone DBA
A primary zone DBA acts as the zone’s database administrator.

The zone creator creates the primary zone DBA. The primary zone DBA can create zone users, databases, objects,
and zone-level objects such as roles and profiles.

Zzone user

A permanent database user with privileges in a zone. A zone user is a user that is created by another user in the
zone, under the hierarchy of the zone root. Zone users are created using the existing CREATE USER syntax. A zone
user cannot be a zone guest of another zone.

Only zone users can grant privileges on database objects within the zone to zone guests.

zone guest

64

A zone guest is a role or user that is located outside of the zone but is granted privileges to create and access
objects in the zone where he is a guest. A zone can have many zone guests and a user or a role can be a guest of
more than one zone.

Zone guests cannot grant privileges on zone objects to other users.

To make an external LDAP user a zone guest, the zone creator can use the GRANT ZONE syntax to grant zone
access privilege to an external role. External users that log on with that role are able to access the zone objects
that they have privileges on.

Only the zone users can grant privileges on database objects in a zone to zone guests. Zone users cannot grant
privileges to zone guests with the WITH GRANT OPTION privilege.

Zone guests with the required privileges can create users, databases, and TVM objects inside the zone but they
cannot add another guest to the zone.

Zone guests can create views, triggers, and macros on the zone objects in their perm space

35. Usage Considerations: Summary Data and Detail
Data

This topic examines the nature of the data you keep in your data warehouse and attempts to indicate why storing
detail data is a better idea, particularly for ad hoc tactical and decision support queries and data mining explorations.

Observing the Effects of Summarization

Suppose we have an application that gathers check stand scanner data and stores it in relational tables. The raw
detail data captured by the scanner includes a system-generated transaction number, codes for the individual items
purchased as part of the transaction, and the number of each item purchased. The table that contains this detail data
is named Scanner Data in the following graphic:

65

Scanner Data Store ltem Daily Sales Store ltem Weekly Sales

Chackout Store | [tem Quantity Store | [tem | Week Cruantity
Transaction | [tem || Quantity M. M, Date Sold M, M, | Ending || Sold
M. Mo, Sold = =
PK FK MM, DD FE MM, DD
FK FK NN ——
1234001 1563 12 1 2 Jun 01 1107 K] Jun 07 1363
1234001 807 1 1 2 Jun 02 126 L. L.
[7234001 z T J—a11 Z Jun 03 127 | /
1234001 1459 4 1 2 Jun Od 144 > [2 2 Jun 07 456]
1 Z Jun 05 102
1 2 Jun 06 344
1234005 402 3 1 2 Jun 07 410 _J
| | 14348005 2 2
2 2 Jun 01 50
1234027 2 3 2 2 Jun 02 47
[7254037 [Kl | 12 z Jun 03 kil
o o o Z - Jun 04 2
2 2 Jun 05 ar
12340486 177 [+ 2 2 Jun 0B 144
1234046 207 1 2 2 Jun 07 126 _)
[T 1234046 Z 3|
[] 1&5355 2 11
TX34638 TrF T

The middle table, store_item_daily_sales, illustrates a first level summary of the data in scanner_data. Notice that
where we knew which items sold at which store at which time of day in scanner_data, now we only know the
guantity of an item sold for an entire business day. The clarity of the detail data has been replaced by a more fuzzy
snapshot. Potential insights have been lost.

The right most table, store_item_weekly_sales, illustrates a further abstraction of the detail data. Now all we have is
the quantity of each item sold by each store for an entire week. Still fewer insights can be garnered from the data.

Of course, the data could be further abstracted. Summarization can occur at many levels. The important lesson to be
learned from this study is that summaries hide valuable information. Worse still, it is not possible to reverse
summarize the data in order to regain the original detail. The sharper granularity is lost forever.

Consider this simple, and highly logical, query that an analyst might ask of the sales data: How effective was the mid-
week promotion we ran on sales for an item on Tuesday and Wednesday? If the only data available for analysis is a
unit volume by week entity, then it is not possible to answer the question. The answer to the question is to be found
in the detail, and the analyst has no way to determine the effectiveness of the promotion.

Other basic questions that cannot be answered by summary data include the following:

¢ What is the daily sales pattern for item 2 at any given store?
¢ When a customer purchases item 2, what other items are most frequently purchased with it?
e What is the profile of a customer who purchases item 2?

66

Information Value of Summary Data

The information value of summary data is extremely limited. As we have seen, summary data cannot answer
guestions about daily sales patterns by store, nor can it reveal what additional purchases were made in the same
market basket, nor can it tell you anything at all about the individual customer who made the purchase.

What summary data can provide is summary answers and nothing more. This puts you in the position of always being
reactive rather than proactive. Two classic retail dilemmas posed by this summary-only situation indicate that both
extremes of a given problem can be caused by only having access to summary data:

¢ An out-of-stock situation has only been discovered after it is too late to remedy the problem.
* There is too much stock on hand, forcing an unplanned price reduction promotion to eliminate the unwanted
inventories.

67

36. Teradata MultiLoad

Chapter 3: Teradata Multiload Commands
DML LABEL

DML LABEL

Purpose
The DML LABEL command defines a label and error-treatment options for one or more
immediately following INSERT, UPDATE, and DELETE statements.
Note: When using both UPDATE and INSERT statements, the resulting operation is referred
Lo as an upsert.
Syntax
DML LABEL fabel (&)
® —
H—MARK DUPLICATE ROWS
—IGNORE —INSERT —
—UFPDATE —
MISSING
— UPDATE —
—DELETE—
—D0O INSERT FOR |_ J
MISSING UPDATE 2408A0
where:
Syntax Element Description
DO INSERT FOR | An upsert may be implemented by subsequent UPDATE and INSERT statements for:
« ROWS
+ MISSING UPDATE ROWS
label

The unique name of the label that is used for the immediately following set of one or more INSERT,
UUPDATE, or DELETE statements

The label name must obey the same construction rules as Teradata SQL column names.

The label name in the APPLY clause of an IMPORT command can be referenced.

68

Chapter 3: Teradata Multiload Commands
DML LABEL

Teradata Multiload either places (MARK) or does not place (IGNORE) rows in the tname4 error table
for the type of entry specified:

« DUPLICATE

* DUPLICATE INSERT

+ DUPLICATE UPDATE

« MISSING

+ MISSING UPDATE

+ MISSING DELETE

MARK/IGNORE DUPLICATE ROWS has no effect if the table is a multiset table (which allows
duplicate rows).

IGNORE DUPLICATE ROWS has no effect if the table has a unique primary index. Since a duplicate
row implies a uniqueness violation in this case, the row is logged to the uniqueness violation table.

In the case of an upsert operation, both the insert and update portions must fail for an error to be
recorded. In this case, the mark rows for the missing update operations then have nulls for the target
table columns.

If either INSERT or UPDATE with DUPLICATE is specified, then the MARK or IGNORE
specification applies to both insert and update operations.

Similarly, if either UPDATE or DELETE with MISSING is not specified, then the MARK or IGNORE
specification applies to both update and delete operations.

Note: MARK is the default for all actions except MISSING UPDATE for an upsert operation.

Usage Notes
Table 39 describes the things to consider when using the DML LABEL command.

Bypassing the Duplicate row checking is not performed if the table is a multiset table (which allows duplicate rows)
Duplicate Row or if the table has a unique primary index (the uniqueness test takes the place of the duplicate row
Check check).

DO INSERT FOR | By following the rules for upsert operations, a number of uses for the DO INSERT ROWS option can
ROWS Option be found.

With an upsert operation, Teradata Multiload needs only one pass of the data to both:

+ Update the rows that need to be updated.

« Insert the rows that need to be inserted.

The alternative would be to either:

+ Presort the data for the update and insert operations.

« First use an UPDATE statement with all of the data, and then use an INSERT statement with the
data that failed the update operation.

69

37. Teradata Parallel Transporter User Guide

loads and extracts and perform inline updating of data. Teradata PT maximizes
throughput performance through scalability and parallelism.

* The use of data streams: Teradata PT distributes data into data streams shared with
multiple instances of operators to scale up data parallelism. Data streaming eliminates the
need for intermediate data storage: data is streamed through the process without being
written to disk.

* Asingle SQL-like scripting language: Unlike the traditional standalone utilities that each
use their own scripting language, Teradata PT uses a single script language to specify
extraction, loading, and updating operations.

* Anapplication programming interface (API): Teradata PT can be invoked with scripts or
with the Teradata PT set of open APIs. Using the Teradata PT open APIs allows third-party
applications to execute Teradata PT operators directly. This makes Teradata PT extensible.

* A GUI-based Teradata PT Wizard: The Teradata PT Wizard helps you generate simple
Teradata PT job scripts.

Teradata PT and the Teradata Utilities

Teradata PT replaces the Teradata Utilities. For example, instead of running FastLoad,
Teradata PT uses the Load operator. Instead of running MultiLoad, Teradata PT uses the
Update operator.

Table 1 compares Teradata PT operators with Teradata utilities.

Table 1: Cormparison of Teradata PT Operators and Teradata Utiies

Teradata PT Operator

DataConnector operator

Utility Equivalent
Data Connector (PIOM)

Purpose

Reads data from and writes data to flat files

DataConnector operator with
WebSphere MQ® Access Module

same with Data Connector
[PIOM)

Reads data from IBM WebSphere MO

DataConnector operator with Mamed
Pipes Access Module

same with Data Connector

(PIOM)

Reads data from a named pipe

DDL operator BTECQ Executes DDL, DCL, and self-contained DML SQL
statements
Export operator FastExport Exports data from Teradata Database (high-volume

export)

FastExport OUTMOD Adapter
operator

FastExport OUTMOD
Routine

Preprocesses exported data with a FastExport
OUTMOD routine before writing the data to a file

FastLoad INMOD Adapter operator

FastLoad INMOD Eoutine

Reads and preprocesses data from a FastLoad
INMOD data source

Load operator FastLoad Loads an empty table (high-volume load)
MultiLoad INMOD Adapter operator | MultiLoad INMOD Reads and preprocesses data from a MultiLoad
Routine INMOD data source

ODBC operator

OLE DB Access Module

Exports data from any non-Teradata Database that
has an ODBC driver

70

Table 1: Companson of Teradata PT Operators and Teradata Lities (continuad)

High-Level Description

Teradata PT Operator Utility Equivalent Purpose
0% Command operator Client host operating Executes host operating system commands
system

SOL Inserter operator BTED Inzerts data into a Teradata table using SQL
protocol

SOL Selector operator BTEQ Selects data from a Teradata table using SQL
prutucu]

Stream operator TPump Continuously loads Teradata tables using SQL
prutucu]

Update operator MultiLoad Updates, inserts, and deletes rows

Platforms

For a detailed list of supported platform environments for Teradata PT, as well as other

Teradata Tools and Utilities Teradara Tools and Utilities ##. & Supported Platforms and Product
Versions. For information about how to access this and other related publications “Supported
Releases™ on page 3.

Note: The 16.00 Teradata PT products are compiled on the AIX 6.1 using the x1C version 11
and must run on the AIX machine with the same level or higher C4++ runtime library version
and C runtime library version é.1.

Compatibilities

Observe the following information about job script compatibility.

Scripts written for the former Teradata Warehouse Builder work with Teradata PT without
modification, but Teradata Warehouse Builder scripts cannot employ new Teradata PT
features. Teradata recommends that all new scripts be written using the Teradata PT

scripting language.

Scripts written for Teradata standalone utilities are incompatible with Teradata PT.
Teradata recommends that existing standalone utility scripts be reworked using Teradata
PT scripting language. Contact Professional Services for help.

Other Vendors

ETL vendor products can be used with Teradata PT to generate scripts for load operations or
to make API calls:

Extract, Transform, and Load (ETL) vendors add value by performing:

+ Data extractions and transformations prior to loading Teradata Database. Teradata PT
provides the ability to condition, condense, and filter data from multiple sources
through the Teradata PT SELECT statement.

+ Data extractions and loading, but leaving all the complex SQL processing of data to
occur inside the Teradata Database itself. Like ETL vendors, Teradata PT can
condition, condense, and filter data from multiple sources into files.

Teradata Parallel Transporter User Guide, Release 16.00

71

29

Chapter 1: Infroduction to Teradata PT
Basic Processing

* The Teradata PT API provides additional advantages for third-party ETL/ELT vendors.
For more information, see the Teradata Parallel Transporter Application Programuning
Interface Programmer Guide.

72

