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Abstract 

Garbage collection is important in object- 
oriented databases to free the programmer 
from explicitly deallocating memory. In this 
paper, we present a garbage collection al- 
gorithm, called Transactional Cyclic Refer- 
ence Counting (TCRC), for object oriented 
databases. The algorithm is based on a vari- 
ant of a reference counting algorithm pro- 
posed for functional programming languages 
The algorithm keeps track of auxiliary refer- 
ence count information to detect and collect 
cyclic garbage. The algorithm works correctly 
in the presence of concurrently running trans- 
actions, and system failures. It does not ob- 
t,ain any long term locks, thereby minimizing 
interference with transaction processing. It 
uses recovery subsystem logs to detect pointer 
updates; thus, existing code need not be re- 
writt#en. Finally, it exploit,s schema informa- 
tion, if available, to reduce costs. We have im- 
plemented the TCRC algorithm and present 
results of a performance study of the imple- 
mentation. 

* Currently at the University of Wisconsin, Madison 

Permission to copy without fee all 01‘ part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission ojthe Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission jrom the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

1 Introduction 

Object oriented databases (OODBs), unlike relational 
databases, support the notion of object identity, and 
objects can refer to other objects via object identifi- 
ers. Requiring the programmer to write code to track 
objects and their references, and to delete objects that 
are no longer referenced, is error prone and leads to 
common programming errors such as memory leaks 
(garbage objects that are not referred to from any- 
where, and haven’t been deleted) and dangling ref- 
erences. While these problems are present in tradi- 
tional programming languages, the effect of a memory 
leak is limited to individual runs of programs, since 
all garbage is implicitly collected when the program 
terminates. The problem becomes more serious in per- 
sistent object stores, since objects outlive the programs 
that create and access them. Automated garbage col- 
lection is essential in an object oriented database to 
protect from the errors mentioned above. In fact, 
the Smalltalk binding for the ODMG object database 
standard requires automated garbage collection. 

We model an OODB in the standard way as an ob- 
ject graph, wherein the nodes are the objects and the 
arcs are the references between objects. The graph has 
a persistent root. All objects that are reachable from 
the persistent root or from the transient program state 
of an on-going transaction are live; while the rest are 
garbage. We often call object references as pointers. 

There have been two approaches to garbage collec- 
tion in object oriented databases: Copying Collector 
based [YNY94] and Mark and Sweep based [AFGQ5]. 
The copying collector algorithm traverses the entire ob- 
ject graph and copies live objects into a new space; the 
entire old space is then reclaimed. In contrast, the 
Mark and Sweep algorithm marks all live objects by 
traversing the object graph and then traverses (sweeps) 
the entire database and deletes all objects that are un- 
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marked. The copying collector algorithm reclusters ob- 
jects dynamically; the reclustering can improve locality 
of reference in some cases, but may destroy program- 
mer specified clustering resulting in worse performance 
in other cases. The garbage collection algorithms of 
[YNY94] as well as [AFG95] handle concurrency con- 
trol and recovery issues. 

With both the above algorithms, the cost of tra- 
versing the entire object graph can be prohibitively 
expensive for databases larger than the memory size, 
particularly if there are many cross-page references. 
In the worst case, when the buffer size is a small frac- 
tion of the database size and objects in a page refer to 
objects in other pages only, there may be an I/O for 
every pointer in the database. To alleviate this prob- 
lem, earlier work [YNY94, AFG95] has attempted to 
divide the database into partitions consisting of a few 
pages. Each partition stores inter-partition references, 
that is references to objects in the partition from ob- 
jects in other partitions, in a persistent data structure. 
Objects referred to from other partitions are treated 
as if they are reachable from the persistent root, and 
are not garbage collected even if they are not referred 
to from within the partition. Each partition is garbage 
collected independent of other partitions; references to 
objects in other partitions are not followed. Thus, par- 
titioning makes the traversal more efficient; the smal- 
ler the partition, the more efficient the traversal, with 
maximum efficiency occurring if the whole partition fits 
into the buffer space. 

Unfortunately, small partitions increase the probab- 
ility of self-referential cycles of garbage that cross par- 
tition boundaries; such cyclic garbage is not detected 
by the partitioned garbage collection algorithms. Pre- 
vious work has maintained that such cross cycle struc- 
tures will be few, and will “probably” not be a prob- 
lem. However, simulations by [CWZ94] showed that 
even small increases in database connectivity can pro- 
duce significant amounts of such garbage. Therefore, 
it is not clear that partition sizes can be made very 
small without either failing to collect large amounts 
of garbage or employing special (and expensive) tech- 
niques to detect such cyclic garbage. 

A natural alternative is Reference Counting. Refer- 
ence Counting is based on the idea of keeping a count of 
the number of pointers pointing to each object. When 
the reference count of the object becomes zero, it is 
garbage and eligible for collection. Reference count- 
ing has the attractive properties of localized and in- 
cremental processing. Unfortunately, basic reference 
counting cannot deal with self-referential cycles of ob- 
jects; each object could have a positive reference count, 
yet all the objects in the cycle may be unreachable from 
the persistent root, and therefore be garbage. However, 
a number of extensions of the basic referencing count- 

ing algorithm to handle cyclic data have been proposed 
in the programming language community, including: 
[Bro85, Bro84, PvEP88]. More recent work in this 
area includes [Lingo, MWLSO, JL91]. 

In this paper, we consider a version of reference 
counting, proposed by Brownbridge [Bro85, Bro84] 
for functional programming languages, which handles 
self referential cycles of garbage. We present an al- 
gorithm, called Transactional Cyclic Reference Count- 
ing (TCRC), based on Brownbridge’s algorithm, which 
is suitable for garbage collection in an OODB. The sa- 
lient features of the TCRC algorithm are: 

l It detects all self referential cycles of garbage un- 
like basic reference counting, and the partitioned 
garbage collection algorithms. 

l It performs a very localized version of mark-and- 
sweep to handle cyclic data, with each mark-and- 
sweep likely to access far fewer objects than a 
global mark-and-sweep. Thus it does not have 
to examine the entire database while collecting 
garbage, except in the worst case. 

l It allows transactions to run concurrently, and 
does not obtain any long term locks, thereby min- 
imizing interference with transaction processing. 

l It is integrated with recovery algorithms, and 
works correctly in spite of system crashes. It also 
uses recovery subsystem logs to detect pointer up- 
dates; thus, existing application code need not be 
rewritten. 

l It exploits schema information, if available, to re- 
duce costs. In particular, if the schema graph is 
acyclic, no cyclic references are possible in the 
database and TCRC behaves identically to refer- 
ence counting. 

A proof of correctness of the TCRC algorithm is 
presented in [ARS+97]. Designing a cyclic referencing 
counting algorithm which allows concurrent updates 
and handles system crashes is rather non-trivial, and 
to our knowledge has not been done before; we believe 
this is one of the central contributions of our paper. 

A problem often cited against reference counting 
schemes is the overhead of updating reference counts. 
However, each pointer update can only result in at 
most one reference count being updated. This over- 
head will have only a small impact on performance if, 
as we expect is true in any realistic scenario, pointer 
updates are only a small fraction of the overall up- 
dates. For TCRC, moreover, the overhead is offset by 
the reduced cost of traversals while collecting garbage. 

We have implemented a prototype of the TCRC al- 
gorithm as well as the partitioned mark and sweep 
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algorithm on a storage manager called Brahmii de- 
veloped in IIT Bombay. We present a performance 
study of TCRC based on the implementation; the study 
clearly illustrates the benefits of TCRC. 

2 Brownbridge’s Cyclic Reference 
Counting Algorithm 

Our Transactional Cyclic Reference Counting al- 
gorithm is based on the Cyclic Reference Counting 
(CRC) algorithm proposed by Brownbridge [Bro84, 
Bro85], in the context of functional programming lan- 
guages. 

The basic idea behind the Cyclic Reference Count- 
ing (CRC) algorithm of Brownbridge [Bro84, Bro85] is 
to label edges in the object graph as strong or weak. 
The labelling is done such that a cycle in the object 
graph cannot consist of strong edges alone - it must 
have at least one weak edge. Two separate reference 
counts for strong and for weak edges (denoted SRefC 
and WRefC respectively) are maintained per object. It 
is not possible in general to cheaply determine whether 
labelling a new edge as strong creates a cycle of strong 
edges or not. Hence, in the absence of further informa- 
tion, the algorithm takes the conservative view that la- 
belling a new edge strong could create a cycle of strong 
edges, and labels the new edge weak. 

The SRefC and WRefC are updated as edges are 
created and deleted. If for an object S, the SrefC as 
well as WrefC is zero, then S is garbage and S and 
the edges from it are deleted. If the SrefC is zero, but 
WrefC is non-zero, there is a chance that S is involved 
in a self referential cycle of garbage. If the SrefC of 
an object S is greater than zero, then S is guaranteed 
to be reachable from the root (however, our TCRC 
algorithm does not guarantee this last property). 

If the object graph did not have any garbage be- 
fore the deletion of an edge to S, then the only poten- 
tial candidates for becoming garbage are S and objects 
reachable from S. If SrefC of S is zero and WrefC of 
S is nonzero, a localized mark and sweep algorithm 
detects whether S and any of the objects reachable 
from S are indeed garbage. The localized mark and 
sweep performs a traversal from S and identifies all 
objects reachable from S and colours them red. Let 
us denote the above set by R. It then colours green 
every object in R that has a reference from an object 
outside R (detected using reference counts). It also 
colours green all objects reachable from any green ob- 
ject. During this green marking phase some pointer 
strengths are updated to ensure that every object has 
at least one strong pointer to it. We will describe this 
pointer strength update in detail in the context of our 
transactional cyclic reference counting algorithm. At 
the end, all objects in R not marked green are garbage 

and are deleted. 
However, prior cyclic reference counting algorithms, 

including Brownbridge’s algorithm, were designed for 
a single user system. They cannot be used in a multi- 
user environment with concurrent updates to objects, 
and do not deal with persistent data and failures. Our 
contributions lie in extending Brownbridge’s algorithm 
to (a) use logs of updates to detect changes to object 
references, (b) to work in an environment with con- 
current updates, (c) t,o work on persistent da.ta. in the 
presence of system failures and transaction aborts, (d) 
handle a batch of updates at a time rather than one up- 
date at a time, and (e) optimize the localized mark and 
sweep significantly by following only strong pointers. 

3 System Model and Assumptions 

In this section, we describe our system model and 
outline the architectural assumptions on which our 
garbage collector is based, which is very similar to the 
model and assumptions in [AFG95]. 

In our model, transactions log undo and redo in- 
formation for all updates. Undo and redo records 
are represented as undo(tid, oid, offset, old-value), and 

redo(tid, oid, offset, new-value), where tid denotes a 
transaction identifier and oid an object identifier. Ob- 
ject creation is logged as object-allocation(tid, oid). The 
commit log is represented as commit(tid); and the 
abort log is represented as abort(tid). We require that 
from the oid we can identify the type of the object (per- 
haps by first fetching the object), and from the offset 
we can determine if the value that has been updated 
is a pointer field. These requirements are sa,tisfied by 
most database systems. 

We make the following important assumption about 
transactions: 

Assumption 3.1 Transactions follow strict two- 
phase locking on objects. That is, transactions acquire 
read or write locks on objects as appropriate, and hold 
read as well as write locks until end of transaction. 0 

As with any other garbage collection scheme, we as- 
sume that an object identifier is valid only if it is either 
a persistent root, or is present in a pointer field of an 
object in the database, or is in the transient memory 
(program variables or registers) of an active transac- 
tion that read the value from an object in the database. 
Note that this precludes transactions from passing oids 
to other transactions, and from storing oids in external 
persistent storage. 

Our algorithms can be used in centralized as well 
as client-server settings. Let us consider first the cent- 
ralized setting. 

Assumption 3.2 In the centralized setting we as- 
sume that transactions follow strict WAL, that is, 
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they log both the undo and the redo value before actu- 
ally performing the update. 0 

Our algorithms also work in a data-shipping client- 
server environment, under the following assumptions 

Assumption 3.3 In the client-server setting we as- 
sume that clients follow: 

1. strict WAL with respect to the server. That is, 
before any data is received by the server, the undo 
as well as redo information for the data must have 
already been received by the server. 

2. force with respect to the server. That is, be- 
fore the transaction commits, all the updated data 
must have been received by the server. 0 

These assumptions make the client transaction be- 
have, as far as the server is concerned, just like a local 
transaction that follows strict WAL. 

Our techniques are not affected by the unit of data 
shipping (such as page or object) and whether or not 
data is cached at the client. The clients can retain 
copies of updated data after it has been sent to the 
server. 

Most of the assumptions above are satisfied by typ- 
ical storage managers for object-oriented databases. 
Our client server assumptions are also very similar to 
those of [AFG95]. 

4 Transactional Cyclic Reference 
Counting 

We will now describe the Transactional Cyclic Refer- 
ence Counting (TCRC) algorithm. We first describe 
the data structures needed by the transactional cyclic 
reference counting algorithm. 

4.1 Data Structures 

Associated with each object, we persistently maintain 
a strong reference count (SRefC) giving the number of 
strong pointers pointing to the object, a weak refer- 
ence count (WRefC) giving the number of weak point- 
ers pointing to the object, and a strength bit for the 
object. Each pointer also has a strength bit. Both 
strength bits are persistent. The pointer is strong if 
the strength bit in the pointer and the strength bit in 
the object pointed to have the same value; otherwise 
the pointer is weak. This representation of strength 
using two bits is an important implementation trick, 
from Brownbridge [Bro85, Bro84]. It makes very effi- 
cient the operation of flipping the strength of all point- 
ers to an object, that is making all strong pointers to 
the object weak, and all weak pointers to the object 
strong. All that need be done is to flip the value of the 
strength bit in the object. 

The TCRC algorithm also maintains a persistent 
table, the Weak Reference Table (WRT), which con- 
tains oids for the objects which have a zero SRefC, i.e. 
no strong pointers incident on them. The persistent 
root is never put into the WRT. 

All the above information can be constructed from 
the object graph and therefore it could be made tran- 
sient. However, we would then have to reconstruct the 
information after a system crash by scanning the entire 
database, which would be expensive. Hence we make 
it persistent. Updates to SRefC and WRefC, update 
of the strength bit of an object or of a pointer, and the 
insert or delete of entries from the WRT are logged as 
part of the transaction whose pointer update caused 
the information to be updated/inserted/deleted. 

There is also a non-persistent table which is used 
during garbage collection: the Red Reference Table 
(RRT); this table associates with (some) objects a 
strong red reference count (SRedRefC), a weak red ref- 
erence count (WRedRefC), and a bit that indicates 
whether the colour of the object is red or green. This 
table is stored on disk since the size of this table could 
be large in the worst case, but updates to this table are 
not logged. 

Finally, similar to [AFG95] TCRC maintains an 
non-persistent in-memory table called the Temporary 
Reference Table (TRT), which contains all those oids 
such that a reference to the object was added or de- 
leted by an active transaction, or the object wa.s cre- 
ated by the transaction. Such an oid may be stored in 
the transient memory of an active transaction although 
the object may not be referenced by any other object. 
in the database. An object whose oid is in TRT may 
not be garbage even if it is unreachable from any other 
object, since the transaction may store a reference to 
the object back in the database. Updates to TRT are 
also not logged. The TRT also provides a simple way 
of handling the persistent root - its oid is entered in 
the TRT at system start up, and is never removed. 
This prevents the garbage collector from collecting the 
persistent root. 

4.2 The Algorithm 

TCRC consists of two distinct algorithms, run by 
different processes. The first is the log-analyzer al- 
gorithm. The second algorithm is the actual garbage 
collection algorithm. We describe them below. 

4.2.1 Log analyzer 

The log-analyzer algorithm analyzes log records gener- 
ated by the transaction, and performs various actions 
based on the log records. As part of its actions, it may 
also insert records into the log. We shall assume it is 
run as part of the transaction itself, is invoked each 
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time a log record is appended to the system log tail, 
and is atomic with respect to the appending of the log 
record. 

In the actual implementation, it is possible to run 
the log-analyzer as a separate thread, and when a 
transaction appends a log record to the system log, it 
actually only delivers it to the log-analyzer, which then 
appends the log record to the system log. In particu- 
lar, in the client-server implementation the log-analyzer 
process is run at the server end, not at the client. 

The log-analyzer makes use of the following proced- 
ures. Procedure DeletePointer decrements the WRefC 
or SRefC for an object when a pointer to the object 
is deleted. If the SRefC falls to zero after the decre- 
ment then the object’s oid is put into WRT. Procedure 
AddPointer, by default, sets the strength of the pointer 
to be weak and increments the WRefC of the object 
pointed to. The strength is set to weak so that cycles 
of strong edges are not created; however, we will see 
in Section 5 that we may be able to make some new 
pointers strong. 

The procedure LogAnalyzer works as follows. First 
it obtains the log-analyzer-latch (which is also acquired 
by the garbage collection thread) to establish a con- 
sistent point, in the log. The latch is obtained for the 
duration of the procedure. The log is analyzed by the 
log analyzer and depending on the type of the log re- 
cord various actions as outlined below are taken. For 
undo/redo log records caused by pointer updates, the 
reference counts for the affected objects are updated. 
This is done by DeletePointer in case of undo logs, and 
AddPointer in case of redo logs. For log records cor- 
responding to the allocation of objects, the reference 
counts for the new object are initialized to zero, and 
the oid of the object is inserted into the WRT. In all 
the above cases (i.e., for pointer updates and object al- 
location), the oid of the affected object is inserted into 
the TRT with the tid of the transaction that generated 
the record. 

For end-of-transaction (commit or abort) log re- 
cords, the algorithm first tries to get the gcLatch. If the 
latch is obt,ained immediately, then garbage collection 
is not in progress and all the oid entries for the termin- 
ating transaction from the TRT are removed and the 
gcLatch released thereafter. However, if the gcLatch 
cannot be obtained immediately then a garbage col- 
lection is in progress concurrently. In this case, the 
oid entries for the terminating transaction are not re- 
moved, but instead flagged for later removal by the 
garbage collector. 

All operations on pointer strengths and reference 
counts are protected by a latch on the object poin- 
ted to, although not explicitly mentioned in our al- 
gorithms. Access to WRT and TRT are also protected 
by latches. 

Procedure CollectGarbage { 
acquire gcLatch 
RRT = {} 

Sl: for each oid in WRT that is not in TRT 
RedTraverse(oid) 

S2: for each oid E RRT 
latch the reference count entry of oid 
if SRefC,id + WRefC,id > 

SRedRefC,id + WRedRefC,id 
mark oid as green; 

unlatch reference count entry of oid 
for each oid E RRT that is marked green 

if SRefC,id == SRedRefC,,id 
/* all external pointers 

to the object are weak */ 
if SRefC,,id == 0 /* oid is in WRT */ 

remove oid from WRT 
flip the strength of all pointers to oid 
swap SRefC,id and WRefC,id 

GreenTraverse(oid) 
done = FALSE 

S3: while done == FALSE 
done = TRUE 
acquire log-analyzer-latch 

s4: for each oid E RRT that is marked red 
if oid E TRT 

release log-analyzer-latch 
GreenTraverse(oid) 
done = FALSE 
acquire log-analyzer-latch 

release log-analyzer-latch 
S5: for each oid E RRT that is marked red 

Collect(oid) 
release gcLatch 
remove all flagged entries from TRT 

1 

Procedure GreenTraverse(oid) { 
starting with oid as the root do a 

depth-first traversal restricted to 
the objects marked red in RRT 

when visiting an object during the traversal : 
mark the object green 
make strong all pointers from the object 

to any red object (not yet visited) 
make weak all pointer from the object to 

any green object (already visited) 

Figure 1: Pseudo Code for Garbage Collector 



4.2.2 Garbage Collector 

The garbage collection algorithm is activated periodic- 
ally (possibly depending on availability of free space). 
The algorithm makes use of the following support func- 
tions. Procedure Collect actually deletes an object; 
before doing so, it deletes all pointers out of the ob- 
ject, updating the stored reference counts of the ob- 
jects pointed to. It also deletes the object from RR? 
and WRT. 

Procedure RedTraverse performs a reachability scan 
from the specified object, following only strong point- 
ers, and marks all reachable objects red and put,s 
them in RRT. RedTraverse also maintains for each 
object present in RRT, two counts: SRedRefC and 
WRedRefC, giving respectively the number of strong 
and weak pointers to the object from all other objects 
present in RRT. These counts are maintained on the 
fly during the traversal; in order to do so, RedTraverse 

also maintains these counts for objects that are reach- 
able by a single weak edge from objects in RRT, since 
such objects may be added to RRT later in the scan. 

The garbage collection algorithm is implemented by 
Procedure CollectGarbage, shown in Figure 1. Initially, 
all nodes reachable from objects in WRT using only t,he 
strong pointers are coloured red and put in RRT by 
calling RedTraverse. This function performs a fuzzy 
localized traversal of the object graph during which 
no locks are obtained on the objects being traversed. 
Short term latches may be obtained on objects or pages 
to ensure physical consistency. 

After this, in Step S2 some nodes are marked green 
based on the values of their WRefC+SRefC and WR.e- 
dRefC+SRedRefC. WRedRefC is the number of weak 
pointers pointing to an object amongst pointers from 
objects in RRT. Similarly, SRedRefC is the number of 
strong pointers pointing to an object amongst point- 
ers from objects in RRT. The expression WRedRefC 
+ SRedRefC counts how many pointers to a node s 
are from nodes in RRT. If this count is less than the 
total number of pointers to node s, there must be an 
external (to objects in RRT) pointer to s, and s is 
not garbage. Such objects are marked green in Step 
S2. The Procedure GreenTraverse called in Procedure 
CollectGarbage can be found in Figure 1. 

Next, in Step S4, any objects in RRT that are in 
TRT are also marked green since their references may 
still be stored in an ongoing transaction and stored 
back in the database. Objects that are reachable from 
t,he above objects are also marked green, by invoking 
GreenTraverse. The reason for performing Step S4 re- 
peatedly (in the while loop at Step S3) is to establish 
a consistent point in the log at which no object in the 
RRT is in TRT; this helps simplify the proof of correct- 
ness. Let us denote the time instant when we acquire 

the log-analyzer-latch for the last time in the while loop 
at, step S3 as T5. This guarantees that all objects in 
RRT that are marked red at step S5 are not in TRT 
according to log at T5. 

4.2.3 Support for Logical Undo by the Recov- 
ery Manager 

The TCRC algorithm needs some support from t,he re- 
covery manger in the form of supporting logical undos 
t,o ensure correctness. There are some actions whose 
undos have to be performed logically and not phys- 
ically. We discuss them below and discuss what the 
logical undo should do in each case: 

Pointer Deletion and Strength Update: Undo 
of a pointer deletion or strength update, if performed 
naively, may introduce strong cycles in the graph, 
which can affect the correctness of the algorithm. The 
right way to undo a pointer deletion is to reinsert t,he 
pointer with the strength set to be weak (even if it 
was strong earlier). Similarly, the undo of a. pointer 
strength update (done in case of system crash during 
the garbage collection phase) is t,o set t,he strength 
of the pointer as weak (irrespective of the original 
strength). 

Reference Counts Update: The reference counts 
of a,n object 0 can be concurrently updated by multiple 
transactions (including the garbage collector) through 
different objects which are locked by the transactions. 
The object 0 itself need not be locked since only a ref- 
erence to it is being updated. Only short term latches 
are necessary for maintaining physical consistency. If a 
transaction that updated the reference count of an ob- 
ject aborts, it should be logically undone: the undo of 
a reference count increment is a decrement of t,he same 
reference count, while the undo of a reference count, 
decrement is always an increment of WRefC since a 
reinserted pointer is always weak. 

4.3 Correctness 

Theorem 4.1 The TCRC algorithm 

1. eventually collects any object that is garbage. 

2. does not incorrectly reclaim live objects as 
garbage. 0 

The above theorem establishes the correctness of the 
TCRC algorithm; a proof is presented in [ARS+97]. 
The theorem holds in the presence of concurrent trans- 
actions and system failures. 

An interesting point to note is that RedTraverse fol- 
lows only strong pointers, and not weak pointers, in 
contrast to Mark-and-Sweep. Our proof of correctness 
shows that every garbage object is either in WRT or 
is reachable by a sequence of strong edges from an 

371 



object in WRT, and thus RedTraverse finds all garbage 
objects. We also show that all non-garbage objects col- 
oured red are later coloured green by a call on Green- 

Traverse, even though GreenTraverse only follows edges 
through red objects. 

Another interesting point is that although our 
traversals (both RedTraverse and GreenTraverse) are 
fuzzy, that is they do not acquire any long term locks. 
the algorithms are still correct. The TRT (also used 
by [AFG95]) plays an important role here, since any 
pointers that are added or deleted during the traversal 
are inserted into the TRT. Objects reachable from 
TRT are not garbage collected. 

A badly designed garbage collection algorithm could 
create infinite work for itself, by leaving oids in WRT 
which will be traversed by another garbage collection 
phase, which in turn leaves oids in WRT, ad infinitum. 
We now state a theorem which guarantees that this 
does not happen; that is, in the absence of updates, 
the system eventually reaches a state where garbage 
collection thread does no more work. 

Theorem 4.2 If there are no updates from the begin- 
ning of one garbage collection phase to the end of the 
next garbage collection phase no object will be in WRT 
at the end of the second garbage collection phase. 0 

The proof is presented in [ARS+97]. 

5 Using the Schema Graph 

We now see how to use information from the data- 
base schema to optimize TCRC. The schema graph is 
a directed graph in which the the nodes are the classes 
in the schema. An edge from node i to node j in the 
schema graph denotes that Class i has an attribute that 
is a reference to Class j. The pointers in the schema 
graph thus form a template for the pointers between 
the actual instances of the objects. If an edge E in 
a schema graph is not involved in a cycle, then neither 
ca.n an edge e in the object graph for which E is the 
template. 

We label edges which are not part of a cycle in the 
schema graph as acyclic and the others as cyclic. When 
adding an edge e to the object graph, if its correspond- 
ing template edge in the schema graph is acyclic, the 
strength of e is set to be strong. During garbage col- 
lection, in RedTraverse, we do not follow strong edges 
whose template edge is acyclic. In the extreme case 
where the schema graph is acyclic, no edges are tra- 
versed, and TCRC behaves just like reference counting, 
reducing the cost significantly. 

6 Performance Evaluation 

We implemented the TCRC algorithm and the Parti- 
tioned Mark and Sweep (PM’S) algorithm on an ob- 

ject manager called Brahms developed at IIT Bom- 
ba.y. Brahmci supports concurrent transactions using 
two phase locking and a complete implementation of 
the ARIES recovery algorithm. It provides extend- 
ible hash indices as well as B+-tree indices as addi- 
tional access mechanisms. 

The WRT is implemented as a persistent extendible 
hash table indexed on the oid while the TRT is an 
in-memory hash table indexed separately on the oid 
and the transact,ion id (to allow easy deletion of all 
entries of a transaction). The reference counts SRefC 
and WRefC are stored with the object itself. The 
only persistent structures required by PMS are one 
Incoming Reference List (IRL) per partition which is 
maintained as a persistent Bt-tree. 

Our performance study in this section is based on 
the standard 007 benchmark [CDN93]. In particular, 
we worked on the standard small-9 dataset in 007 
which was also used in [YNY94] for their simulation 
study. The 007 parameters and their values for t,his 
dataset are given in Table 1 and are explained below. 

The 007 dataset is composed of a number of m.od- 
ules, specified by NUMMODULES. Each module con- 
sists of a tree of objects called assemblies. The tree 
is a complete tree with a fanout of NUMASSMPER- 
ASSM and has NUMASSMLEVELS levels. The last 
level of the tree is called a base assembly while the 
upper levels are called complex assemblies. In a,ddi- 
t,ion, each module consists of NUMCOMPPERMOD- 
ULE composite objects. The base assemblies point 
to NUMCOMPPERASSM of these composite objects. 
Many base assemblies may share a composite object. 

Each composite object points to: (a) a privat,e set of 
NUMATOMICPERCOMP atomic objects, (b) a dis- 
tinguished atomic object (called the composite root), 
and (c) a document object. An atomic object has a 
fixed number of connections (specified by NUMCON- 
NPERATOMIC) out of it, to other atomic objects in 
the same set. A connection is itself modeled as an 
object (called a connection object) pointed to by the 
source of the connection and in turn points to the des- 
tination of the connection. The connections connect 
the atomic objects into a cycle with chords. We will 
call a composite object along with its private set of 
atomic objects, connection objects and the document 
object together as an object composite. All object ref- 
erences in the benchmark have inverses and we always 
insert or delete references in pairs (the reference and 
its inverse). 

The dataset consisted of 104280 objects occupying 
4.7 megabytes of space. Each object composite con- 
sisted of 202 objects and had a size of 9160 bytes. Dur- 
ing the course of experiments, the size was maintained 
constant by adding and deleting the same amount of 
data. The object manager used a buffer pool consisting 
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Parameter Value 

NUMMODULES 1 
NUMCOMPPERMODULE 500 
NUMCONNPERATOMIC 9 
NUMATOMICPERCOMP 20 
NUMCOMPPERASSM 3 
NUMASSMPERASSM 3 
NUMASSMLEVELS 7 

Table 1: Parameters for the 007 benchmark 
of 500 4KB pages. The I/O cost is measured in terms 
of the number of 4KB pages read from or written to 
the disk. All the complex and base assemblies form- 
ing the tree structure were clustered together. We also 
clustered together all the objects created for a compos- 
ite. 

For PMS, the data was divided into 4 partitions; 
each partition fits in memory. The inter-partition ref- 
erences were kept very small. All the complex and 
base assemblies forming the tree structure were put in 
the same partition. Approximately one out of every 50 
composites spanned partitions. 

We conducted two sets of experiments, the first was 
based on structure modifications suggested in the 007 
benchmark while the second modifies complex assem- 
blies. We discuss each in turn. 

6.1 Structure Modifications 

The workload in this experiment consisted of re- 
peatedly inserting five object composites and attaching 
each composite to a distinct base assembly object, and 
then pruning the newly created references to the same 
five object composites - we call this whole set of in- 
serts and deletes an update pass. This corresponds 
to the structure modification operations of the 007 
benchmark. This workload represents the case when 
an application creates a number of temporary objects 
during execution and disposes them at the end of the 
execution. The results presented are over 90 update 
passes interspersed with garbage collection; garbage 
collection is invoked when the database size crosses 
5MB (recall the steady state database size is 4.7MB). 

We first present the cumulative overheads (cost dur- 
ing during normal processing as well as the overhead 
due to the garbage collection thread) for this workload. 

Metric TCRC PMS 

Logs (MB) 143.97 110.52 
I/O:Read+Write 355+53701 31033$44833 

Although the amount of logs generated by the 
TCRC algorithm is more than that of the PMS al- 
gorithm, the overall I/O performance (including the 
I/O’s for logs) of TCRC is about 50% better than 

PMS for this workload. Three factors contribute to 
the overall performance: the frequency of invocation 
of the garbage collector, the overhead during a garbage 
collection pass, and the overhead due to normal pro- 
cessing. We study these three factors in detail now. 

6.1.1 Invocation Frequency 

We checked the database size at the end of every update 
pass and invoked the garbage collector if the database 
size exceeded 5 MB. TCRC collects all garbage and 
therefore the amount of garbage, which is generated at 
the rate of 45800 bytes per update pass, exceeded 0.3 
MB (and thus the total database size exceeded 5 MB) 
after seven update passes. Thus, garbage collection in 
case of TCRC is consistently invoked after every seven 
update passes. 

The pattern is more interesting in the case of PMS. 
Approximately one out of fifty composites spanned par- 
titions; such a composite (which is cyclic) is never col- 
lected. This caused the database size to increase with 
time. Since the threshold remained fixed at 5 MB, this 
caused the garbage collection to be invoked more fre- 
quently as time progressed. During the course of the 90 
update passes, TCRC garbage collector was invoked 12 
times, while PMS was invoked 14 times. Initially, the 
PMS collector was invoked every seven update passes, 
then every six update passes and by the end of the 90 
update passes every five update passes. By the end of 
the 90 update passes, there were 73280 byt,es of uncol- 
lected garbage for PMS. 

6.1.2 Overhead of a Garbage Collection Pass 

The table below gives the average I/O overhead and 
the amount of logs generated by TCRC and PMS for 
an invocation of the collector. To get the total cost the 
figures have to be multiplied by the number of invoca- 
tions (which is 14 for PMS and 12 for TCRC). 

Metric TCRC PMS 

Logs (MB) 1.40 1.07 
I/O:Read+Write 0+514 2007+5G8 

Since garbage collection was invoked right after the 
insertions, TCRC found all the objects that it had to 
traverse in the cache and incurred no reads. PMS 
needed to make a reachability scan from the root and 
therefore had to visit all of the 104280 objects in the 
dataset. This accounts for the excessive reads incurred 
by PMS. The logs generated by TCRC is however big- 
ger than PMS since (i) the size of an object is bigger 
(due to the presence of reference counts) and therefore 
the logs corresponding to the deletion of garbage ob- 
jects are larger and (ii) the garbage objects are deleted 
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from WRT and these delet,ions have to be logged (re- 
call that all newly created objects will be in WRT since 
all new pointers are weak). 

6.1.3 Normal Processing Overheads 

The following table shows the amount of I/O performed 
and the amount of logs generated during normal pro- 
cessing (when the collector is not running) over the 
course of the 90 update passes. 

Metric TCRC PMS 
Logs (MB) 127.17 97.33 
I/O:Read+Write 355+47533 2941+37274 

The algorithms have to maintain the persistent data 
structures consistrent with the data during normal pro- 
cessing. In the case of PMS, the only persistent data 
structure is the IRL which is updated quite rarely. On 
the other hand, in the case of TCRC, the reference 
counts as well as the WRT may be updated. The 
amounts of log generated show the additional logging 
that has to be performed by TCRC for maintaining 
t,hese persistent structures. The additional logs ac- 
count for about 8000 extra writes for TCRC. The rest 
of the extra writes performed by TCRC (about 2000) 
are due to writing parts of WRT back as a result of 
normal cache replacement. The amount of reads per- 
formed by TCRC is significantly smaller that PMS be- 
cause the cache is not disturbed much by the garbage 
collection thread in the case of TCRC. In the case of 
PMS, at the end of the collection pass the cache could 
contain many objects from the assembly tree which are 
not required during normal processing. 

6.2 Updating Complex Assemblies 

In this set of experiments, we updated the assembly 
hierarchy tree by replacing a subtree rooted at a com- 
plex assembly by a different one. The lowest level base 
assemblies in the new hierarchy tree pointed to the 
same composite objects. In this experiment, we modi- 
fied the 007 benchmark by removing the back pointers 
to t#he base assembly objects from the composite ob- 
jects. This provides acyclic data which enables us to 
test our schema graph optimization. It also limits the 
t,raversal of TCRC. 

We varied the level of the root of the the subtree 
that we were replacing. The level was varied from two 
t,o six (level n corresponds to the level which is the nth 
level upwards from the base assemblies). Notice that 
the subtree that was replaced is garbage after this up- 
date. After such a update we invoked the garbage col- 
lector. The higher the level of the root of the subtree 
being replaced, the more the number of object com- 
posites reachable, and therefore the more the number 

of object,s TCRC had to traverse. In this experiment, 
we report only on the overheads of the garbage collec- 
tion pass. The normal processing overheads are very 
similar to the previous experiment since we are creat- 
ing some number of objects and pruning references to 
others like the previous experiment. The cost of the 
garbage collection phase for TCRC is tabulated below: 

Metric Level of Root of Subtree 
2 3 4 5 6 

Logs (MB) 0.00 0.01 0.05 0.16 0.49 
I/O:Read 77 356 10291 21209 32388 
I/O:Write 8 35 177 376 1309 

The cost of the garbage collection phase for PMS is 
tabulated below: 

Metric Level of Root of Subtree 
21 31 41 51 6 

I 

Logs(MB) 0.00 0.00 0.00 0.02 0.05 
I/O:Read 1736 1736 1736 1737 1742 
I/O:Write 10 13 18 27 31 

The results show that number of reads by TCRC is 
smaller than the number of reads by PMS for modifica- 
tions at the lower levels but degrades for modifications 
higher up the hierarchy. This is expected since TCRC 
performs a local traversal. The number of reads for 
PMS is the same for modifications at all levels. No- 
tice however that even though PMS traverses the en- 
tire graph, the cost of TCRC is significantly higher 
than PMS for modifications higher up the hierarchy. 
There are two reasons for this. The first is that TCRC 
reads all objects as it encounters their references dur- 
ing the traversals unlike PMS which follows only intra- 
partition references. This results in excessive read 
overhead since there is a lot of cache conflicts for ob- 
jects on different pages. Secondly, the RRT is disk res- 
ident and as its size grows, there is extra I/O overhead 
for accessing RRT. In contrast, our implementation of 
PMS assumes information about which objects in a 
partition have been marked during the mark phase can 
be maintained in memory itself. 

The amount of logs generated by TCRC (a 0.00 for 
the amount of logs generated indicates that the amount 
of logs generated is less than 10KB) grows in compar- 
ison to the logs generated by PMS as the level number 
grows since GreenTraverse updates pointer strengths 
of objects, which are also logged. The more the ob- 
jects traversed, the more the number of pointers whose 
strengths get changed. In fact, most of the informa- 
tion in the logs generated by the TCRC is very small 
(either a pointer strength update, an update to WRT 
or an update to the reference count). However, each 
of these logs has a significant log header overhead in 
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the Brahms system. In a system which can club all 
these logs under a single log header along with the log 
for the actual pointer update, the overheads will come 
down drastically. We are currently modifying the log 
subsystem in Brahmti to do this. 

The TCRC algorithm can be optimized by using se- 
mantics available from the schema graph. Notice that 
the template for the pointer from a complex assembly 
to a base assembly is acyclic and therefore need not 
be traversed by the RedTraverse algorithm thus pre- 
venting TCRC from unnecessarily traversing the ob- 
ject composites. The cost of the TCRC garbage collec- 
tion pass when the experiment was repeated with this 
schema-based optimization are tabulated below. It can 
be seen that TCRC with the optimization outperforms 
the basic TCRC as well as the PMS algorithm. 

Metric Level of Root of Subtree 
2 3 4 5 6 

Logs(MB) 0.00 0.01 0.02 0.06 0.17 
I/O:Read 0 0 0 0 2 
I/O:Write 8 9 12 27 67 

7 Conclusions and Future Work 

We have presented a garbage collection algorithm, 
called TCRC, based on cyclic reference counting and 
proved it correct in the face of concurrent updates and 
system failures. We have implemented and tested the 
algorithm. 

Our performance results indicate that TCRC can 
be much cheaper, at least in certain cases, than par- 
titioned mark-and-sweep since it can concentrate on 
local cycles of garbage. We believe our algorithm will 
lay the foundation for cyclic reference counting in data- 
base systems. 

We plan to explore several optimizations of the 
TCRC algorithm in the future. For instance, we 
have observed that just after creation of the datasets, 
garbage collection has to perform extra work to convert 
weak pointers into strong pointers. However, once the 
conversion has been performed, a good set of strong 
pointers is established, and the further cost of garbage 
collection is quite low. It would be interesting to de- 
velop bulk-loading techniques for reducing the cost of 
setting up pointer strengths. 

We plan to optimize RedTraverse by only following 
a. strong pointer into an object if all other strong point- 
ers into that object have been already encountered. 
This will greatly reduce the number of objects tra- 
versed and may lead to significant performance be- 
nefits. Finally, another interesting extension of the 
TCRC algorithm would be to develop a partitioned 
TCRC algorithm in which during a local mark and 
sweep only intra-partition edges are traversed. 
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