
Enabling the Temporal Data Warehouse

By Gregory Sannik,
Principal Consultant,
Teradata Corporation

Fred Daniels,
Senior Consultant,
Teradata Corporation

Data Warehousing > Database

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 2 OF 22

Executive Overview

The temporal capabilities in Teradata® Database 13.10 can be con-

sidered game changers for both customers who have just begun

their temporal journey and those who have been struggling for

years with expensive, often inefficient homegrown solutions to

managing slowly changing dimension and time series data. This

white paper consists of three sections that offer practical advice,

templates, and best practices to implement Teradata Database’s

temporal features for the first time or to upgrade from existing

pre-temporal data structures, extract, transform and load (ETL)

processes, and data access algorithms.

The first section presents a period data type attribute known as

TRANSACTIONTIME, that reflects when data is added to or modi-

fied in the database. The second section looks at VALIDTIME, a

second time dimension that records when facts are true in the real

world as represented in the database. The final section discusses

the nature of primary and foreign keys in bi-temporal tables, and

the options in Teradata Database 13.10 for implementing entity

and referential integrity constraints.

The topics covered include the period data type, temporal quali-

fiers, characteristics of temporal and bi-temporal tables, data

maintenance, data navigation, and enforcement of data integrity.

A case study approach will be used to frame best practices within

a unified and coherent problem space. Practical examples and sug-

gestions for using the native temporal support delivered in Teradata

Database 13.10 will be provided.

Executive Overview 2

Managing Time 3

Adding the VALIDTIME Dimension 9

Defining Primary and Foreign Key
Constraints in a Temporal Data
Warehouse Architecture 16

Conclusion 21

About the Authors 22

References 22

Table of Contents

http://www.teradata.com

Managing Time

Teradata Database 13.10, released in September of 2010, comes

with a number of fully integrated, in-database data attributes,

qualifiers, and predicates that are extremely useful for automating

the management of time-varying data. This release also comes

with a number of powerful functions to enable native time series

analysis and comparison of periods of time. By optimizing tempo-

ral database capabilities for a massively parallel processing

platform, this release allows organizations to gather, manage, and

analyze “time varying” data more effectively.

Teradata Database 13.10 temporal capabilities rely on two period

data type attributes, which are TRANSACTIONTIME and VALID-

TIME. In a sense, these are the keys to data warehouse time travel.

They allow the reproduction of a report that ran previously, such

as six months ago, even though numerous changes have been

made to the underlying data. This ability can be vital when

responding to inquiries from regulators who want to know what

information organizations had and when they had it.

Using TRANSACTIONTIME
A TRANSACTIONTIME column allows the data warehouse to

capture changing attribute values in a sequence of versions of

data rows. Begin and end timestamp values are maintained

automatically and sourced directly from the Teradata Database

using temporal qualifiers in data manipulation language (DML)

statements.

Figure 1 shows a row instance diagram of a temporal table called

Policy_TT that has a TRANSACTIONTIME column called

policy_obs_pd. Three rows are currently in the table for two

policies. However, only rows 2 and 3 are considered “open,”

because the second timestamp value of their policy_type_obs

column is 9999-12-31 23:59:59.999999, indicating that they are

open or correct until the end of time. Row 1 is how Policy 1

looked until 10:09:21.443214 on Aug. 3, 2007, when it was closed,

as shown in Row 2.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 3 OF 22

policy_id policy_holder_id policy_type policy_obs_pd

1 1 ‘HOME’ (‘2007-02-19 20:25:00.812367’,
‘2007-08-03 10:09:21.443214’)

1 1 ‘HOME+AUTO’ (‘2007-08-03 10:09:21.443214’,
‘9999-12-31 23:59:59.999999’)

2 2 ‘AUTO’ (‘2011-01-05 10:30:00.568900’,
‘9999-12-31 23:59:59.999999’)

Figure 1. Temporal table, row instance diagram.

http://www.teradata.com

Simplified Processes
Teradata Database 13.10 allows a SQL UPDATE to close existing

and insert new open row versions. This lets extract, load and

transform (ELT) developers process changed rows without execut-

ing both UPDATE and INSERT statements. Here is an example of

a multi-statement Update/Insert request:

UPDATE Policy_TT

from Policy_WRK WRK

set

policy_type = WRK.policy_type

where Policy_TT.policy_id = WRK.policy_id

and trans_type = ‘Change’

;INSERT into Policy_TT

(policy_id, policy_holder_id, policy_type)

select

policy_id,policy_holder_id, policy_type

from

Policy_WRK

where trans_type in (‘Add’);

Alternatively, the multi-statement request could be re-coded as a

single ANSI merge statement. In that case, a performance benefit

may be realized by passing through the changed rows only once.

As in previous releases, the preferred method for applying mini-

batch updates is through use of a work or staging table with a

trans_type column that identifies new rows as “Add” and updates

existing rows as “Change” requests. The latest version also offers

these advantages:

> Implementation does not require specification of the TRANS-

ACTIONTIME column’s high watermark value to confine the

scope of the update to open rows. Teradata Database 13.10 will

only include open rows in any DML operation.

> The update statement is similar to a more traditional format

that is typically used on a non-temporal table. The end value of

the existing row’s TRANSACTIONTIME is automatically set to

the current time by Teradata Database 13.10 to indicate that this

version has become obsolete. Succeeding versions of existing

rows are inserted automatically as part of the update statement.

> “Insert only” is performed on new rows that need to be added,

with the value of the TRANACTIONTIME period populated

automatically.

> ELT performance on temporal tables is improved by reducing

passes through staging data.

These options offer greater ETL process simplicity, rigor and

consistency by centralizing the maintenance of the TRANS-

ACTIONTIME column in the database management system

engine rather than embedding it in each and every load script.

Data Navigation Advantages
Users will also find benefits relating to data navigation. For

example, SQL SELECT syntax used to access current row instances

in a temporal table need not be different from the syntax used to

access a non-temporal table because current TRANSACTION-

TIME and current VALIDTIME have been implemented as the

default session temporal qualifiers in Teradata Database 13.10.

This allows the deployment of the temporal capability to proceed

with controlled impact on existing application code. Figure 2

shows examples of SQL selects that can be used to ask both

current time and past time questions of a temporal table.

Other data navigation features include:

> An “as of” qualifier can be used to apply a single specific

transaction time context to all tables participating in the query,

or it can be specified on a table-by-table basis for mix-and-

match time contexts.

> In general, SQL requests are more succinct and therefore more

easily understood than in previous versions. This offers greater

opportunity for simplifying semantic layer design by reducing

the amount of SQL required for temporal navigation.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 4 OF 22

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 5 OF 22

Question SQL Select Result Set

Current Query
Example

select policy_id, policy_type

from Policy_TT; or

CURRENT TRANSACTIONTIME

select policy_id, policy_type

from Policy_TT;

Policy_id

1

2

policy_type

HOME+AUTO

AUTO

As of Query
Example

TRANSACTIONTIME as of TIMESTAMP ‘2010-06-21

12:21:20.260000-08:00’

select policy_id, policy_type

from Policy_TT;

Policy_id

1

policy_type

HOME+AUTO

Mix and
Match Join
Query
Example

select polholdr.policy_holder_name,

pol.policy_id, pol.policy_type

from Policy_TT

TRANSACTIONTIME as of TIMESTAMP ‘2011-01-10

12:21:20.260000-08:00’ pol

inner join Policy_Holder_TT

TRANSACTIONTIME as of TIMESTAMP ‘2011-01-06

23:59:59.999999-08:00’ polholdr

on polholdr.policy_holder_id = pol.policy_holder_id;

policy_holder_name

Gregory Sannik

Fred Daniels

policy_id

1

2

policy_type

HOME+AUTO

AUTO

Figure 2. Sample SQL select statements.

Maintaining Temporal Tables
Figure 3 shows the data definition language (DDL) for pre- and

current Teradata Database 13.10 TRANSACTIONTIME tables

called Policy and Policy_TT, which hold information about

insurance policies. Structurally, the only difference between the

two tables is that Policy requires two timestamp columns while

Policy_TT requires a single period data type column called

policy_obs_pd defined as TIMESTAMP(6) WITH TIME ZONE.

Furthermore, policy_obs_pd has been further defined with ‘AS

TRANSACTIONTIME’ keywords.

Figure 4 shows SQL that can be used to maintain the pre- and

current Teradata Database 13.10 tables. Notice that both imple-

mentations make use of a work or staging table with a trans_type

column that identifies new rows as “Add” requests and updates to

existing rows as “Change” requests.

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 6 OF 22

Pre Teradata Database 13.10 Implementation Teradata Database 13.10 Implementation

CREATE MULTISET TABLE Policy(

policy_id INTEGER,

policy_holder_id INTEGER,

policy_type CHAR(2) NOT NULL,

policy_obs_beg_ts TIMESTAMP(6) WITH TIME ZONE,

policy_obs_end_ts TIMESTAMP(6) WITH TIME ZONE

)

PRIMARY INDEX(policy_id);

CREATE MULTISET TABLE Policy_TT(

policy_id INTEGER,

policy_holder_id INTEGER,

policy_type CHAR(2) NOT NULL,

policy_obs_pd PERIOD

(TIMESTAMP(6) WITH TIME ZONE) NOT NULL AS

TRANSACTIONTIME)

PRIMARY INDEX(policy_id);

Figure 3. Pre and current Teradata Database 13.10 DDL.

Pre Teradata Database 13.10 Implementation Teradata Database 13.10 Implementation

UPDATE Policy

from Policy_WRK WRK

set

policy_obs_end_ts = Current_TimeStamp

where

Policy.policy_id = WRK.policy_id

and trans_type = ‘Change’

and Policy.policy_obs_end_ts = ‘9999-12-31

23:59:59.999999’

;INSERT into Policy

(policy_id , policy_holder_id, policy_type,

policy_obs_beg_ts, policy_obs_end_ts)

select

policy_id, policy_holder_id, policy_type, trans_ts, --

policy_obs_beg_ts

‘9999-12-31 23:59:59.999999’ --policy_obs_end_ts

from Policy_WRK

where trans_type in (‘Add’, ‘Change’);

UPDATE Policy_TT

from Policy_WRK WRK

set

policy_type = WRK.policy_type

where Policy_TT.policy_id = WRK.policy_id

and trans_type = ‘Change’

;INSERT into Policy_TT

(policy_id, policy_holder_id, policy_type)

select

policy_id,policy_holder_id, policy_type

from

Policy_WRK

where trans_type in (‘Add’);

Figure 4. SQL to maintain the Policy and Policy_TT tables.

http://www.teradata.com

Each uses a multi-statement update/insert to “close” the policy

observation period of preceding versions and to insert succeeding

versions of expired rows as well as brand new rows. Although

functionally equivalent, there are some important differences:

> The Teradata Database 13.10 implementation does not

require specification of the TRANSACTIONTIME column

high water-mark value to confine the scope of the update to

open rows.

> The update statement looks like a traditional update

statement on a non-temporal table. The end value of the

TRANSACTIONTIME column is automatically set to the

current time by the database management system (DBMS)

to indicate that this version has become obsolete.

> The Teradata Database 13.10 implementation performs the

“insert only” on new rows that need to be added. The insert

of new versions of existing rows is handled automatically

as part of the update statement. This statement could also

have been coded as an ANSI merge statement.

The Teradata Database 13.10 implementation that encapsulates

the TRANSACTIONTIME column update offers greater rigor and

consistency in data versioning. In addition, it provides a potential

performance benefit by passing through the changed rows only once.

Querying Temporal Tables
As already stated, Teradata Database 13.10 also offers benefits to

temporal data warehouse architecture from a data access per-

spective including the ability to encapsulate a table’s temporal

properties. For example, the SQL SELECT syntax to access current

row instances of a temporal table does not need to differ from

that used to access a non-temporal table. Because of this, deploy-

ment of the temporal capability can proceed with controlled

impact on existing application code.

Figures 5 and 6 show row instance diagrams for the two TRANS-

ACTIONTIME tables, Policy_TT and Policy_Holder_TT. The

pre-Teradata Database 13.10 table definitions implement the policy

and policy holder observation periods as period data types each

holding begin and end timestamp(6) values.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 7 OF 22

policy_id policy_holder_id policy_type policy_obs_pd

1 1 ‘HOME’ (‘2007-02-19 20:25:00.812367’,
‘2007-08-03 10:09:21.443214’)

1 1 ‘HOME+AUTO’ (‘2007-08-03 10:09:21.443214’,
‘9999-12-31 23:59:59.999999’)

2 2 ‘AUTO’ (‘2011-01-05 10:30:00.568900’,
‘9999-12-31 23:59:59.999999’)

Figure 5. Contents of Policy_TT.

policy_holder_id policy_holder_name policy_obs_pd

1 ‘Greg Sannik’ (‘2007-02-19 20:25:00.812367’,
‘2007-08-03 10:09:21.443214’)

1 ‘Greg Sannik’ (‘2007-08-03 10:09:21.443214’,
‘9999-12-31 23:59:59.999999’)

2 ‘Fred Daniels’ (‘2011-01-05 10:30:00.568900’,
‘9999-12-31 23:59:59.999999’)

Figure 6. Contents of Policy_Holder_TT.

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 8 OF 22

Figure 7. Business questions with temporal focus.

Figure 7 shows SQL SELECT statements that support business

questions having a “current” and “as of” temporal focus on the

pre- and current Teradata Database 13.10 versions of the tables.

There are several things worth noting:

> Queries that have a current temporal focus do not need a

temporal statement qualifier.

> A Teradata Database 13.10 “AS OF” qualifier can be used to

apply a single specific transaction time context to all tables

participating in the query. Alternatively, “AS OF” qualifiers can

be specified on a table-by-table basis in the from clause, thereby

providing a means to mix and match temporal contexts.

Question Pre-Teradata Database
13.10 Implementation

Teradata Database
13.10 Implementation Result Set

Current
Query
Example

select policy_id, policy_type
from Policy
where
policy_obs_end_ts = ‘9999-12-31
23:59:59.999999’;

select policy_id, policy_type
from Policy_TT; or

CURRENT TRANSACTIONTIME
select policy_id, policy_type
from Policy_TT;

Policy_id policy_type

1 HOME+AUTO

2 AUTO

As of
Query
Example

select policy_id, policy_type
from Policy
where
TIMESTAMP ‘2010-06-21
12:21:20.260000-08:00’
>= policy_obs_beg_ts and

TIMESTAMP ‘2010-06-21
12:21:20.260000-08:00’
< policy_obs_end_ts;

TRANSACTIONTIME as of
TIMESTAMP ‘2010-06-21
12:21:20.260000-08:00’
select policy_id, policy_type
from Policy_TT;

Policy_id policy_type

1 HOME+AUTO

Mix and
Match Join
Query
Example

select
polholdr.policy_holder_name,
pol.policy_id, pol.policy_type
from Policy pol
inner join Policy_holder polholdr
on polholdr.policy_holder_id =
pol.policy_holder_id
where ‘2011-01-10
12:21:20.260000-08:00’ >=
pol.policy_obs_beg_ts
and ‘2010-01-10
12:21:20.260000-08:00’ <
pol.policy_obs_end_ts
and ‘2011-01-06 23:59:59.999999-
08:00’ >=
polholdr.Policy_holder_obs_beg_ts
and ‘2011-01-06 23:59:59.999999-
08:00’ <
polholdr.Policy_holder_obs_end_ts ;

select
polholdr.policy_holder_name,
pol.policy_id, pol.policy_type
from Policy_TT
TRANSACTIONTIME as of
TIMESTAMP ‘2011-01-10
12:21:20.260000-08:00’ pol
inner join Policy_Holder_TT
TRANSACTIONTIME as of
TIMESTAMP ‘2011-01-06
23:59:59.999999-08:00’
polholdr
on polholdr.policy_holder_id =
pol.policy_holder_id;

policy_ policy_ policy_
holder id type
_name

Gregory 1 HOME+
Sannik AUTO

Fred 2 AUTO
Daniels

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 9 OF 22

> In general, the Teradata Database 13.10 SQL requests tend to

be more succinct than requests in previous versions. In the

past, “AS OF” queries, particularly those involving joins

between multiple tables, were especially verbose because the

temporal context needed to be restated for each temporal table

participating in the query.

Adding the VALIDTIME Dimension

Let’s now consider the scenario of a table that records information

about insurance policies, and notes when attributes such as

coverage amount and policy type were in effect. The values of

these attributes could be different at different times, and knowing

the values that were applicable at each point in time is critical in

processing claims that may be filed much later.

In Teradata Database 13.10, a period data type is used to store this

temporal information, and would be given a VALIDTIME attribute

in the DDL. Unlike TRANSACTIONTIME periods that must be

defined as TIMESTAMP(6) WITH TIMEZONE, VALIDTIME

periods can be defined using DATEs or TIMESTAMPs, with or

without TIMEZONE, and with different precision to the right of the

decimal point. Also, unlike TRANSACTIONTIME columns which

are maintained entirely by the database, the period of validity of

each row must come from the business context. Some VALIDTIME

tables may have rows whose attribute values only apply to a specific

period. In other cases, the end of the period of validity may not be

known in advance so it is considered good till the end of time. In

these cases, a value of ‘9999-12-31’ is used to reflect that.

The rows in the VALIDTIME table can be divided into current,

history and future rows, depending on the relationship between

the current date/time and the period of validity of each row. Below

are row instance diagrams of two VALIDTIME tables called

Policy_VT and Policy_Holder_VT.

Policy_VT has a VALIDTIME column called policy_buseff_pd.

As of December 31, 2010, there are six rows in the Policy_VT table

for three different policies (See Figure 8).

policy_id policy_holder_id policy_type policy_buseff_pd

1 1 HOME (‘2010-02-19’, ‘2010-08-24’)

1 1 HOME+AUTO (‘2010-08-24’, ‘9999-12-31’)

2 2 AUTO (‘2010-12-31’, ‘9999-12-31’)

2 2 AUTO (‘2010-08-03’, ‘2010-10-05’)

2 2 AUTO+BOAT (‘2010-10-05’, ‘2010-12-31’)

3 3 HOME+AUTO (‘2011-01-15’, ‘9999-12-31’)

Figure 8. Contents of Policy_VT.

http://www.teradata.com

These rows would be categorized from a VALIDTIME perspective

as follows on December 31, 2010:

> Rows 1 and 4 are history rows since the ends of the policy_

buseff_pd periods are both less than December 31, 2010.

> Rows 2 and 3 are current rows because the beginning of the

policy_buseff_pd periods is less than or equal to December 31,

2010, and end dates are ‘9999-12-31’.

> Row 5 is about to become a history row since its end date is

‘2010-12-31’

> Row 6 is a future row since the beginning of the

policy_buseff_pd is greater than December 31, 2010.

Policy_Holder_VT also has a VALIDTIME column called policy_

holder_buseff_pd. As of December 31, 2010, there are 4 rows in

the Policy_Holder_VT table for three different policy holders.

> Row 2 is a history row since the end of the policy_holder_

buseff_pd period is ‘2007-08-03 which is less than December

31, 2010.

> Rows 1 and 4 are considered current rows because the begin-

ning of the policy_buseff_pd periods is less than December 31,

2010, and the end dates are ‘9999-12-31’.

> Row 3 is a future row since the beginning of the policy_holder_

buseff_pd period is ‘2011-01-05’ which is greater than Decem-

ber 31, 2010.

The Teradata Database 13.10 CREATE TABLE syntax to support

our two VALIDTIME temporal tables is:

CREATE MULTISET TABLE Policy_VT(

policy_id INTEGER,

policy_holder_id INTEGER,

policy_type CHAR(8) NOT NULL,

policy_buseff_pd PERIOD (DATE) NOT NULL AS VALIDTIME

)

PRIMARY INDEX(policy_id);

CREATE MULTISET TABLE Policy_Holder_VT, NO FALLBACK,

NO BEFORE JOURNAL,

NO AFTER JOURNAL,

CHECKSUM = DEFAULT,

DEFAULT MERGEBLOCKRATIO
(

policy_holder_id INTEGER,

policy_holder_name VARCHAR(30) CHARACTER SET
LATIN NOT CASESPECIFIC NOT NULL,

policy_holder_buseff_pd PERIOD(DATE) NOT NULL AS
VALIDTIME

)

PRIMARY INDEX (policy_holder_id);

(Notice that the VALIDTIME columns are defined at a date grain.)

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 10 OF 22

policy_holder_id policy_holder_name policy_holder_buseff_pd

1 Greg Sannik (‘2007-08-03’, ‘9999-12-31’)

1 Greg Sannik (‘2007-02-19’, ‘2007-08-03’)

2 Fred Daniels (‘2011-01-05’, ‘9999-12-31’)

3 Corky Sannik (‘2010-08-03’, ‘9999-12-31’)

Figure 9. Contents Policy_Holder_VT.

http://www.teradata.com

Navigating a VALIDTIME Temporal Table
Just as a TRANSACTIONTIME column can be used to reflect a

piece of information as it was recorded at an earlier point in time

in the data warehouse, a VALIDTIME column can be used to

reflect information applicable to different points in time in the

business world including those in the future. Once again, the SQL

SELECT syntax to access current row instances of a VALIDTIME

table need not differ from those of a non-temporal table based

on interrogation of a table’s VALIDTIME column because its

temporal qualifier is current.

Figure 10 shows examples of SQL SELECT statements used to

query our two VALIDTIME temporal tables previously described.

The queries have been structured to answer business questions

having either a current, as of, or a sequenced temporal focus.

The resulting answer sets are shown for each question assuming

that the selects are executed on December 31, 2010.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 11 OF 22

Question SQL Statement Result Set

Current Query
Example

select policy_id, policy_type from
Policy_VT; or

CURRENT VALIDTIME select
policy_id,
policy_type from Policy_VT; or

policy_id

1

2

policy_type

HOME+AUTO

AUTO

As of Query
Example

VALIDTIME as of DATE ‘2010-06-21’

select policy_id, policy_type from
Policy_VT;

Policy_id

1

policy_type

HOME+AUTO

Mix and Match
Join Query
Example

select polhold.policy_holder_name,
pol.policy_id, pol.policy_type
from Policy_VT
VALIDTIME as of DATE ‘2011-01-15’ pol
inner join Policy_Holder_VT
VALIDTIME as of DATE ‘2011-01-06’
polhold
on polhold.policy_holder_id =
pol.policy_holder_id
order by pol.policy_id;

policy_holder_name

Gregory Sannik

Fred Daniels

Corky Sannik

policy_id

1

2

3

policy_type

HOME+AUTO

AUTO+BOAT

HOME+AUTO

Sequenced
ValidTime Join
Example

SEQUENCED VALIDTIME
select polhold.policy_holder_name,
pol.policy_id, pol.policy_type
from Policy_VT pol
inner join Policy_Holder_VT
polhold

on polhold.policy_holder_id =
pol.policy_holder_id
order by pol.policy_id;

policy_holder_name

Gregory Sannik

Gregory Sannik

Fred Daniels

Corky Sannik

policy_id

1

1

2

3

policy_type

HOME

HOME+AUTO

AUTO

HOME+AUTO

VALIDTIME

(‘2010-02-19’,
‘2010-08-24’)

(‘2010-08-24’,
‘9999-12-31’)

(‘2011-01-05’,
‘9999-12-31’)

(‘2011-01-15’,
‘9999-12-31’)

Figure 10. VALIDTIME temporal table data access.

http://www.teradata.com

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 12 OF 22

There are a few things worth noting about the examples in Figure 10.

> There are strong similarities between data navigation of

VALIDTIME and TRANSACTIONTIME tables as described in

the prior section of this paper.

> Since the default session VALIDTIME qualifier is current, an

explicit qualifier is not needed when the rows requested are

current. As was the case with a TRANSACTIONTIME table, it

is easy to insulate existing applications and users from the

VALIDTIME temporal dimension of a table if they are not able

or not interested in seeing the past or future.

> Different date or timestamp values can be used on each

VALIDTIME table to mix and match temporal orientation of

the query.

> A sequenced VALIDTIME query results in a VALIDTIME

result set meaning the VALIDTIME column is exposed. The

VALIDTIME period for each row is given the column heading

‘VALIDTIME’ and is the overlap of the Policy_VT row’s valid-

time and its associated Policy_Holder_VT row’s valid-time.

Notice also that rows for all policies are returned including a

Policy 3’s future row.

Data Maintenance
As in the case of a TRANSACTIONTIME update described in

section one, updates to VALIDTIME tables are applied via a work

table called Policy_VT_Wrk though a multi-statement request:

SEQUENCED VALIDTIME

DELETE Policy_VT

from Policy_VT_WRK WRK

where

POLICY_VT.policy_id = WRK.policy_id

and POLICY_VT.policy_holder_id =
WRK.policy_holder_id

and WRK.trans_type = ‘Change’

;NONSEQUENCED VALIDTIME INSERT into Policy_VT

(policy_id, policy_holder_id, policy_buseff_pd, pol-
icy_type)

select

policy_id, policy_holder_id, policy_buseff_pd,
policy_type

from

Policy_VT_WRK

Where trans_type in (‘Add’, ‘Change’);

However, unlike the TRANSACTIONTIME table example that

used a simple, multi-statement UPDATE/INSERT, this request

first performs a SEQUENCED VALIDTIME DELETE followed

by a NONSEQUENCED VALIDTIME insert. The keywords

SEQUENCED and NONSEQUENCED are temporal qualifiers.

The SEQUENCED VALIDTIME qualifier is used in conjunction

with the DELETE to qualify rows from the Policy table in the

VALIDTIME dimension.

The NONSEQUENCED VALIDTIME qualifier is necessary for

the INSERT statement because we are providing the values of

the inserted rows from a SELECT statement that references the

VALIDTIME column from the Policy_VT_WRK table. Had we

provided the value for policy_buseff_pd via a variable or literal

such period ‘(2010-10-05, 2010-12-31)’, a SEQUENCED VALID-

TIME qualifier would have worked.

Although it initially may appear unusual, a DELETE is required

instead of the familiar UPDATE operator to expire the prior

policy_buseff_pd and automatically create one or more revised

periods of validity.

http://www.teradata.com

Figure 11. Impact of updating the period of validity of a VALIDTIME temporal table for two fictitious insurance policies.

policy_id policy_holder_id policy_type policy_buseff_pd

1 1 HOME (‘2010-02-19’, ‘2010-08-24’)

1 1 HOME+AUTO (‘2010-08-24’, ‘9999-12-31’)

2 2 AUTO (‘2010-08-03’, ‘2010-10-05’)

2 2 AUTO+BOAT (‘2010-10-05’, ‘2010-12-31’)

2 2 AUTO (‘2010-12-31’, ‘9999-12-31’)

Contents of policy table after temporal update

policy_id policy_holder_id policy_type policy_buseff_pd trans_type

1 1 HOME+AUTO (‘2010-08-03’, ‘UNTIL CHANGED’) Change

2 2 AUTO+BOAT (‘2010-10-05’, ‘2010-12-31’) Change

Execute temporal update (DELETE – INSERT)

Impact of Updating a VALIDTIME Table
Figure 11 depicts the impact of updating the period of validity of

a VALIDTIME temporal table for two fictitious insurance policies

using a SEQUENCED DELETE/NONSEQUENCED INSERT

statement. The intent of these temporal updates is to reflect the

following results:

1. Policy 1’s policy_type is changed from ‘HOME’ to ‘HOME+

AUTO’ to commence on August 3, 2010, valid till the end of

time as indicated by use of the keyword UNTIL_CHANGED

that translates into ‘9999-12-31’ and

2. Policy 2’s policy_type is changed from ‘AUTO’ to ‘AUTO+

BOAT’ from October 5, 2010, to December 30, 2010, and then

is changed back to ‘AUTO’ on December 31, 2010, valid till

the end of time perhaps resulting from the policy holder’s

discovery that a boat was more trouble than it was worth.

The DELETE/INSERT request is used in favor of an UPDATE/INSERT

because in addition to updating a policy’s type, we are attempting

to end the period of validity of an existing row and create new

row(s) with different periods of validity.

In the case of Policy 1, the SEQUENCED VALIDTIME DELETE

request sets the original row’s policy_buseff_pd end timestamp to

‘2010-08-24’. The NONSEQUENCED VALIDTIME INSERT is

responsible for the creation of the second instance of Policy 1.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 13 OF 22

policy_id policy_holder_id policy_type policy_buseff_pd

1 1 HOME (‘2010-02-19’, ‘9999-12-31’)

2 2 AUTO (‘2010-08-03’, ‘9999-12-31’)

Contents of policy table before temporal update

http://www.teradata.com

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

Before

PA

After

In the case of Policy 2, the DELETE did a couple of things. First, it

set the end timestamp of the original row to ‘2010-10-05’. Second,

it created another ‘Auto’ policy_type row with policy_buseff_pd

starting ‘2010-12-31’ valid through the end of time or ‘9999-12-31’.

The NONSEQUENCED VALIDTIME INSERT is responsible for

another new row that reflected a policy type change from ‘AUTO’

to ‘AUTO+BOAT’ effective ‘2010-10-05’ thru ‘2010-12-30’. Note

that this row is effective from ‘2010-10-05’ thru ‘2010-12-30’ and

not thru ‘2010-12-31’ because period data type columns use an

inclusive-exclusive representation to define time ranges.

These two policy update scenarios illustrate examples of what Dr.

Richard T. Snodgrass, professor of Computer Science at the

University of Arizona, calls ‘overlap’ and ‘during’ period opera-

tions. These are two of the possible operations for modifying the

business periods held in a VALIDTIME column. Additional

details of period operations can be found in his book Developing

Time-Oriented Database Applications in SQL.

Possible Outcomes of a VALIDTIME Table
Update
According to Snodgrass, when a change is made to a row in a

VALIDTIME table, multiple events may have to occur, depending

on the relationship between the period of validity (PV) of the old

version of the row and the period of applicability (PA) of the

new information. In the past each possible event had to be coded

separately in multiple lines of complex, error-prone SQL statements.

With the advent of Teradata Database 13.10, the application

developer can rely on powerful sequenced DML statements that

move the complex decision and processing sequence into the

database engine.

Figure 12 shows before and after images that result from

sequenced updates (left) and sequenced deletes (right). It depicts

five possible relationships between the PA of the new information

(red) and PV of the old information (blue): PA precedes PV, PA

overlaps with the beginning of PV, PA is contained in PV, PA

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 14 OF 22

Figure 12. Sequenced update (left) and delete (right) with a specified period of applicability (PA).

Update
Day Day Day Day Day Day Day

Delete
Day Day Day Day Day Day Day

http://www.teradata.com

overlaps with the end of PV, and PA contains PV. It should be

noted that in each case any parts of the PA that do not overlap

with the PV are ignored. An important concept to grasp when

designing jobs to maintain VALIDTIME tables is that in contrast

with non-temporal tables, an update is not necessarily identical

to a delete followed by an insert.

For a non-temporal table the preferred practice is to use a single

update rather than a delete followed by an insert. However, for a

VALIDTIME table, the update may not produce the complete

result. Therefore, a two-step delete/insert process is the recom-

mended approach for maintaining a VALIDTIME table.

To summarize our consideration of VALIDTIME columns, they

offer even greater capability in tracking the validity of information

as it is known to the business at various points of time. They

share some, but not all characteristics of TRANSACTIONTIME

columns. Also, they require a somewhat different approach

to applying temporal updates than do other technologies and

pre-13.10 releases of Teradata Database. Although it may initially

be unfamiliar, it makes sense after considering the properties

of a VALIDTIME column that go beyond a simple non-key

attribute of a table.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 15 OF 22

Characteristic TRANSACTIONTIME Column VALIDTIME Column

Use/meaning When the data warehouse first became
aware of a piece of information, and when it
is considered to be expired

When the business considers a piece
of information to have been valid.

Data Type Period Period

Number Allowed in a Table One One

Permitted Temporal Grains (TIMESTAMP(6) WITH TIME ZONE) Date,

Timestamp(0) through Timestamp(6)

with or without time zone

Nullability Not Null Both Null and Not Null permitted

Sample Syntax TT_Column PERIOD

(TIMESTAMP(6) WITH TIME ZONE) NOT

NULL AS TRANSACTIONTIME

VT_Column PERIOD(DATE)

NOT NULL AS VALIDTIME

How Values Sourced Teradata DBMS Engine Business World

How Maintained Completely Automated Part Manual/Part Automated

End Boundary Function Literal UNTIL_CLOSED UNTIL_CHANGED

Default Session Temporal
Qualifier

CURRENT CURRENT

Figure 13. Compare and contrast of VALIDTIME and TRANSACTIONTIME columns.

http://www.teradata.com

Defining Primary and Foreign Key
Constraints in a Temporal Data
Warehouse Architecture

Relational database systems use primary keys to uniquely identify

rows in a table and enforce entity integrity. A row in a child table

that refers to a row in a parent table will include the primary key

column(s) of the parent together with a foreign key constraint in

the DDL to enforce referential integrity. These concepts are familiar

in the context of non-temporal tables, but they need to be general-

ized when applied to temporal tables.

Let’s consider the simple case of a TRANSACTIONTIME table

that may contain multiple versions of the same row. Only one

version of a row can be open at a time, but there can be multiple

closed versions of a row. A uniqueness constraint on a TRANS-

ACTIONTIME table requires a current TRANSACTIONTIME

temporal qualifier. This constraint will ignore all the logically

deleted closed rows and only be enforced against the open rows.

Thus TRANSACTIONTIME primary key (PK) and foreign key

(FK) constraints are very similar to the corresponding constraints

on non-temporal tables.

VALIDTIME tables are more complicated because there may be

more than one row with the same PK values with different periods

of validity for the non-key attributes. Foreign key relations between

VALIDTIME tables must require that one or more parent rows

exist whose period(s) of validity covers the period of validity of

the child row.

Defining Temporal Primary Keys
There are many options in defining a primary key constraint on a

temporal or bi-temporal table. For instance the primary key can

include specification of the TRANSACTIONTIME and/or VALID-

TIME column. Any of the three temporal qualifiers found in

Figure 14 can be used to set the constraint’s VALIDTIME temporal

scope. However, the TRANSACTIONTIME qualifier must always

be set to current.

Figure 15 shows the syntax that can be used to define a primary

key on a TRANSACTIONTIME, a VALIDTIME and a bi-temporal

table using modified Policy_Holder_TT, Policy_Holder_VT table

definitions from the first two sections of the this paper as well as a

new definition for a bi-temporal table called Policy_Holder_VT_TT.

For simplicity, CURRENT TRANSACTIONTIME and CURRENT

VALIDTIME qualifiers have been used. As stated earlier, there were

other temporal combinations possible, although this scenario

might be considered one of the more common.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 16 OF 22

Primary Key Qualifier Implication/Consideration

None

CURRENT VALIDTIME Current or future rows that have overlapping periods can
not have the same key value

SEQUENCED VALIDTIME Current, future or history rows that have overlapping
periods can not have the same key value

NON-SEQUENCED VALIDTIME No two rows, irrespective of temporal state, can have the
same key value

Figure 14. Temporal table primary key qualifiers.

http://www.teradata.com

Primary keys defined on temporal tables are implemented as

system-generated join indexes. Here is an example of the resulting

system-generated join index as a result of defining the primary key

constraint on Policy_Holder_VT_TT.

CREATE SYSTEM_DEFINED JOIN INDEX
Policy_Holder_VT_TT_TJI004

,NO FALLBACK,CHECKSUM = DEFAULT AS CURRENT
VALIDTIME AND CURRENT TRANSACTIONTIME

SELECT

Policy_Holder_VT_TT.ROWID

,Policy_Holder_VT_TT.policy_holder_id

,Policy_Holder_VT_TT.policy_holder_buseff_pd

,Policy_Holder_VT_TT.policy_holder_obs_pd

FROM Policy_Holder_VT_TT

PRIMARY INDEX (policy_holder_id);

Notice the new keyword SYSTEM_DEFINED and the ROWID

column that supports a join back to the rows of the base Pol-

icy_Holder_VT_TT table. Also, the join index has a non-unique as

opposed to a unique primary index. The reason for this is because

both the SEQUENCED and CURRENT temporal qualifiers do not

prevent rows irrespective of temporal state from having the same

key value. If a NONSEQUENCED temporal qualifier had been

used, this would have been prevented and would have caused the

system-generated join index to be defined with a unique primary

index.

One final note, PK constraints can either be defined when the

table is initially created or later via an ALTER TABLE statement.

Since they are system generated, they are automatically dropped

when either the constraint or the table is dropped.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 17 OF 22

TRANSACTIONTIME Table VALIDTIME Table Bi-temporal Table

CREATE MULTISET TABLE

Policy_Holder_TT

(

policy_holder_id INTEGER NOT

NULL,

policy_holder_name

VARCHAR(30) CHARACTER SET

LATIN NOT CASESPECIFIC NOT

NULL,

policy_holder_obs_pd PERIOD

(TIMESTAMP(6) WITH TIME ZONE)

NOT NULL AS TRANSACTIONTIME,

CONSTRAINT

XPK_Policy_Holder_TT CURRENT

TRANSACTIONTIME PRIMARY KEY (

policy_holder_id))

PRIMARY INDEX(policy_holder_id);

CREATE MULTISET TABLE

Policy_Holder_VT

(

policy_holder_id INTEGER NOT

NULL,

policy_holder_name

VARCHAR(30) CHARACTER SET LATIN

NOT CASESPECIFIC NOT NULL,

policy_holder_buseff_pd PERIOD

(DATE) NOT NULL AS VALIDTIME ,

CONSTRAINT

XPK_Policy_Holder_VT CURRENT

VALIDTIME PRIMARY KEY (

policy_holder_id))

PRIMARY INDEX(policy_holder_id);

CREATE MULTISET TABLE
Policy_Holder_VT_TT

(

policy_holder_id INTEGER NOT
NULL,

policy_holder_name
VARCHAR(30) CHARACTER SET LATIN
NOT CASESPECIFIC NOT NULL,

policy_holder_buseff_pd PERIOD
(DATE) NOT NULL AS VALIDTIME ,

policy_holder_obs_pd
PERIOD(TIMESTAMP(6) WITH TIME
ZONE) NOT NULL AS TRANSACTION-
TIME,

CONSTRAINT XPK_Agreement CUR-
RENT VALIDTIME AND CURRENT
TRANSACTIONTIME PRIMARY KEY (
policy_holder_id))

PRIMARY INDEX(policy_holder_id);

Figure 15. Examples of primary key constraint definitions.

http://www.teradata.com

Defining Temporal Foreign Keys
Just as referential constraints can be defined between a non-

temporal child and parent table, Teradata Database 13.10 offers the

ability to define referential constraints between temporal tables or

between a non-temporal child and a temporal parent.

As you might imagine, given the possible VALIDTIME and

TRANSACTIONTIME temporal qualifier combinations for

defining a primary key on a temporal table, there is an even

greater number of possible combinations for defining a referential

integrity (RI) constraint between two temporal tables.

Figure 16 shows options for defining foreign key constraints on

VALIDTIME and TRANSACTIONTIME.

Currently, hard RI constraints are not supported on temporal

tables. The implication is that the ETL developer and Data Quality

Analyst are responsible for maintaining referential integrity

between tables. Appendix D of the Temporal Support Manual

provides SQL code that can be used to validate temporal referen-

tial integrity.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 18 OF 22

Figure 16. Options for defining RI constraints on temporal tables.

Parent Table Type

NT VT TT VTTT

Child
Table
Type

NT RRI TRC RRI TRC on open
parent rows

VT NRI in VT
dimension

CRI, SRI in
VT dimension Invalid CRI, SRI in VT

dimension

TT NRI in TT
dimension

TRC, NRI in
TT dimension

CRI, SRI in
TT dimension

TRC, CRI/SRI
in

TT dimension

VTTT

NRI in
both
the

dimensions

CRI, SRI in
VT dimension,

NRI in TT
dimension

NRI in VT
dimension,
CRI, SRI in

TT dimension

CRI, SRI
in both

the
dimensions

NT – Non temporal table

VT – ValidTime table

TT – TransactionTime table

TT – TransactionTime table

VTTT – Table with both
dimensions

CRI – CURRENT RI

SRI – SEQUENCED RI

NRI – NONSEQUENCED RI

RRI – Regular RI (i.e., no
temporal semantics applicable

TRC – Temporal Relationship
Constraint

http://www.teradata.com

Here is an example of the syntax used to define a SEQUENCED

VALIDTIME and CURRENT TRANSACTIONTIME foreign key

from the Policy_VT_TT table to the Policy_Holder_VT_TT tables.

ALTER TABLE Policy_VT_TT

ADD CONSTRAINT Policy_HOLDER_VT_TT_FK

CURRENT TRANSACTIONTIME AND SEQUENCED VALIDTIME

FOREIGN KEY (Policy_Holder_Id)

REFERENCES WITH NO CHECK OPTION

Policy_Holder_VT_TT (Policy_Holder_Id);

Other than the VALIDTIME and TRANSACTIONTIME clause,

this resembles a constraint between two non-temporal tables. In

this particular case, a SEQUENCED VALIDTIME and CURRENT

TRANSACTIONTIME qualifier was used.

So far we have described how to define relationships between

temporal tables. It is also possible to define a temporal referential

constraint between a non-temporal child and a temporal parent like

between a fact table and a slowly changing dimension. This type of

constraint is called a Temporal Relationship Constraint (TRC).

A TRC is a special form of temporal constraint defined between a

non-temporal table with a date or time column and a temporal

table that can be either a VALIDTIME (VT) or a bi-temporal table.

A common use case would be to support join elimination from a

large event or transaction table to its lookup tables that translate

text into code values for row filtering and code values into text for

answer set display.

Soft-RI/Join Elimination
The Teradata Database feature known as Soft-RI/Join elimination

has been available for many years. However, it may be one of the

least understood aspects of the Teradata Database. First, it is the

basis for eliminating table joins in views. These joins can be

defined in support of traditional one-to-many parent-child table

relationships, as well as a one-to-one sibling relationship among

two or more vertical partitions of what otherwise would be a very

wide table. Second, RI constraints can also be used to encourage

greater optimizer aggressiveness with query plans and even help

increase the chances of join index use.

Unfortunately prior to Teradata Database 13.10, RI constraints

could not be defined on the ‘begin’ and ‘end’ columns of slowly

changing dimensions (SCD). More specifically, the syntax neither

supported the specification that a date or timestamp in a fact table

was between the ‘begin’ and ‘end’ columns of the SCD (inclusive-

inclusive constraint) nor date or timestamp column in a fact table

was greater than or equal to the ‘begin’ and less than the ‘end’

column of the SCD as an inclusive-exclusive constraint. This all

changes as a result of Teradata Database 13.10 temporal features.

Using this release, temporal-based soft RI can now be defined,

thereby enabling join elimination.

There are differences in the way join elimination takes place

between a child table that can be either non-temporal, temporal,

or bi-temporal and a temporal or bi-temporal parent or between

a similar child table and a non-temporal parent. These differences

are reflected in the explain plan when join elimination takes

place. When the parent table is non-temporal, the absence of

references to the parent table indicates that join elimination will

occur. When the parent table is either temporal or bi-temporal,

reference to the system-generated join index indicates that join

elimination will occur.

This view executes two explain requests on two select statements.

The first references the policy_holder_name column from

policy_holder. The second does not reference any columns

from the policy_holder table.

create view Policy_Policy_Holder as

(current VALIDTIME select

pol.policy_id,

pol.policy_holder_id,

pol.policy_type,

polhldr.policy_holder_name

from

Policy_VT_TT pol,

Policy_HOLDER_VT_TT polhldr

where polhldr.policy_holder_id = pol.policy_holder_id);

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 19 OF 22

http://www.teradata.com

Figure 17 provides a side-by-side comparison of selected steps

from the two explains. The intent is to focus on those steps that

indicate whether join elimination is going to occur.

As you can see, the system-generated join index called POL-

ICY_HOLDER_VT_TT_TJI004 plays a prominent role in the join

plan on the left, replacing access to the POLICY_HOLDER_

VT_TT table that occurs in the non-elimination scenario on the

right side of Figure 17. This is also noteworthy since it is different

from an explain where join elimination occurs between a child

table and a non-temporal parent. In that case the only evidence

that join elimination will occur is the absence of any references to

the parent table in the explain text or absence of the parent table

in the DBQLOBJTBL after execution.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 20 OF 22

Scenario
Join Elimination of
Policy_Holder_VT_TT

No Join Elimination of
Policy_Holder

Select select

policy_type from

Policy_Policy_Holder

Select

policy_holder_name from

Policy_Policy_Holder

Explain
Statement

…
2) Next, we lock a distinct “pseudo table” for
read on a RowHash to prevent global deadlock
for POLICY_HOLDER_VT_TT_TJI004.
3) We lock pol in view Policy_Policy_Holder for
read, and we lock
POLICY_HOLDER_VT_TT_TJI004 in view
Policy_Policy_Holder for read.
…
5) We do an all-AMPs JOIN step from
POLICY_HOLDER_VT_TT_TJI004
in view Policy_Policy_Holder by way of a
RowHash match scan with a condition of
(“((END(POLICY_HOLDER_VT_TT_TJI004 in view
Policy_Policy_Holder.policy_holder_buseff_pd
))>= DATE ‘2011-04-25’) AND
((BEGIN(POLICY_HOLDER_VT_TT_TJI004 in view
Policy_Policy_Holder.policy_holder_buseff_pd
))<= DATE ‘2011-04-24’)”), which is joined to
Spool 3 (Last Use) by way of a RowHash match
scan. POLICY_HOLDER_VT_TT_TJI004 and Spool
3 are joined using a merge join, with a join
condition of (
“POLICY_HOLDER_VT_TT_TJI004.policy_holder_i
d = policy_holder_id”). …

…
2) Next, we lock a distinct “pseudo table” for

read on a RowHash to prevent global deadlock for
polhldr.

3) We lock pol in view Policy_Policy_Holder for
read, and we lock polhldr in view
Policy_Policy_Holder for read.
…

5) We do an all-AMPs JOIN step from polhldr in
view Policy_Policy_Holder (with temporal qualifier
as “CURRENT VALIDTIME AND CURRENT
TRANSACTIONTIME”) by way of a RowHash match
scan with a condition of (“((BEGIN(polhldr in view
Policy_Policy_Holder.policy_holder_buseff_pd))<=
DATE ‘2011-04-24’) AND (((END(polhldr in view
Policy_Policy_Holder.policy_holder_obs_pd))=
TIMESTAMP ‘9999-12-31
23:59:59.999999+00:00’) AND ((END(polhldr in
View Policy_Policy_Holder.policy_holder_buseff_pd
))>= DATE ‘2011-04-25’))”), which is joined to
Spool 3 (Last Use) by way of a RowHash match
scan. polhldr and Spool 3 are joined using a merge
join, with a join condition of (
“polhldr.policy_holder_id = policy_holder_id”).
…

Figure 17. Comparison of explains with and without temporal join elimination.

http://www.teradata.com

The ability to define primary key constraints on temporal tables

offers numerous opportunities for automatically ensuring

row uniqueness without costly post-ETL primary key checks.

In the current Teradata Database release, validating referential

integrity remains the responsibility of the ETL developer/QA

analyst. However the support for join elimination between tempo-

ral or bi-temporal tables will provide significant performance

benefits when accessing complex, join views. These features

will benefit customers who have not previously implemented

temporal data warehouses, as well as those who have done so

using non-temporal SQL.

Conclusion

The temporal capabilities in Teradata Database 13.10 offer several

advantages to organizations that need to track history in their data

warehouse:

> Improves consistency and efficiency in complying with external

regulatory requirements.

> Provides stronger, more centralized control of reference data

versioning.

> Protects against data loss and outages caused by accidental or

malicious DELETE ALL FROM TABLE requests since a tempo-

ral delete expires rather than removes rows.

> Enables ANSI Merge operator for temporal updates, even if

target table is partitioned on the end points of VALIDTIME

and/or TRANSACTIONTIME columns.

> Optimizes query performance through soft-RI/join elimination

and join indexing for bi-temporal tables.

> Simplifies semantic layer design as a result of the reduced

amount of SQL required for temporal navigation.

> Ensures integrity of temporal data through proper, time aware

primary key constraints.

Whether organizations are using temporal data for the first time

or have been working with it for years, Teradata Database 13.10

can offer an effective means to gather, manage and analyze data

that changes over time.

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 21 OF 22

Ten Steps to Start Using
Temporal Capabilities

To begin using Teradata Database 13.10
temporal capabilities:

1. Research temporal database functionality by
downloading the Teradata Database 13.10
Temporal Table Support Manual on
Teradata.com.

2. Order the Teradata Express evaluation and
development software to experiment with
period data types on Teradata.com, or visit
the Teradata Developer Exchange at
http://developer.teradata.com.

3. Determine your organization’s temporal support
needs from both regulatory and business intelli-
gence (BI) perspectives.

4. Determine the volatility of reference data.

5. Understand the abilities, limitations and costs
of the current architecture to support a temporal
requirement.

6. Develop a design that supports reference data
versioning (at least as an exercise).

7. Take inventory of the temporal mechanisms in
the enterprise resource planning and online
transaction processing environments.

8. Conduct a data profiling initiative to assess the
business date availability and quality.

9. Base the initial design on expressed needs, and
then pilot it (adjust it based on ongoing cost and
benefit assessments).

10. Collect changes in the reference data now
because the depth of the temporal tables is
based on when collecting change begins.

http://www.teradata.com

About the Authors

Gregory J. Sannik is a principal consultant with Teradata

Professional Services. He has worked in IT since 1978 and is a

data warehousing expert in the financial services, insurance,

and healthcare industries.

Fred Daniels is a senior consultant with Teradata Professional

Services. He has worked in IT since 1991.

References

Developing Time-Oriented Database Applications in SQL,

Snodgrass, Richard T., Morgan Kaufmann Publishers, 1997.

http://www.cs.arizona.edu/people/rts/tdbbook.pdf

Temporal Table Support Release 13.10 B035-1182-109A

September 2010

Enabling the Temporal Data Warehouse

EB-6425 > 0911 > PAGE 22 OF 22

Teradata.com

Teradata and the Teradata logo are registered trademarks of Teradata Corporation and/or its affiliates in the U.S. and worldwide. Teradata continually improves
products as new technologies and components become available. Teradata, therefore, reserves the right to change specifications without prior notice. All features,
functions, and operations described herein may not be marketed in all parts of the world. Consult your Teradata representative or Teradata.com for more information.

Copyright © 2011 by Teradata Corporation All Rights Reserved. Produced in U.S.A.

http://www.cs.arizona.edu/people/rts/tdbbook.pdf
http://www.teradata.com
http://www.teradata.com

