
Teradata Database

 Introduction to Teradata
Release 15.10

B035-1091-151K
June 2015

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, Active Data Warehousing, Active Enterprise Intelligence, Applications-Within, Aprimo Marketing Studio, Aster, BYNET, Claraview,
DecisionCast, Gridscale, MyCommerce, QueryGrid, SQL-MapReduce, Teradata Decision Experts, "Teradata Labs" logo, Teradata ServiceConnect,
Teradata Source Experts, WebAnalyst, and Xkoto are trademarks or registered trademarks of Teradata Corporation or its affiliates in the United
States and other countries.
Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.
AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.
Apache, Apache Avro, Apache Hadoop, Apache Hive, Hadoop, and the yellow elephant logo are either registered trademarks or trademarks of
the Apache Software Foundation in the United States and/or other countries.
Apple, Mac, and OS X all are registered trademarks of Apple Inc.
Axeda is a registered trademark of Axeda Corporation. Axeda Agents, Axeda Applications, Axeda Policy Manager, Axeda Enterprise, Axeda Access,
Axeda Software Management, Axeda Service, Axeda ServiceLink, and Firewall-Friendly are trademarks and Maximum Results and Maximum
Support are servicemarks of Axeda Corporation.
Data Domain, EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.
GoldenGate is a trademark of Oracle.
Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.
Hortonworks, the Hortonworks logo and other Hortonworks trademarks are trademarks of Hortonworks Inc. in the United States and other
countries.
Intel, Pentium, and XEON are registered trademarks of Intel Corporation.
IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business Machines Corporation.
Linux is a registered trademark of Linus Torvalds.
LSI is a registered trademark of LSI Corporation.
Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United States
and other countries.
NetVault is a trademark or registered trademark of Dell Inc. in the United States and/or other countries.
Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.
Oracle, Java, and Solaris are registered trademarks of Oracle and/or its affiliates.
QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.
Quantum and the Quantum logo are trademarks of Quantum Corporation, registered in the U.S.A. and other countries.
Red Hat is a trademark of Red Hat, Inc., registered in the U.S. and other countries. Used under license.
SAP is the trademark or registered trademark of SAP AG in Germany and in several other countries.
SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.
SPARC is a registered trademark of SPARC International, Inc.
Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States and
other countries.
Unicode is a registered trademark of Unicode, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are not
announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features, functions,
products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions, products, or
services available in your country.
Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any time
without notice.
To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this document.
Please email: teradata-books@lists.teradata.com.
Any comments or materials (collectively referred to as "Feedback") sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 2000-2015 by Teradata. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

Introduction to Teradata 3

Preface

Purpose

This book provides an introduction to Teradata covering the following broad topics:

• The data warehouse and active Teradata

• The relational model and Teradata Database architecture

• Teradata Database hardware and software architecture

• Teradata Database RASUI (reliability, availability, serviceability, usability, and
installability)

• Communication between the client and Teradata Database

• Data definitions and data manipulation using SQL

• SQL application development

• Data distribution and data access methods

• Concurrent control and transaction recovery

• The Data Dictionary

• International character support

• Query and database analysis tools

• Database security and system administration

• Managing and monitoring Teradata Database

Audience

This book is intended for users interested in a broad overview of Teradata. Such individuals
may include database users or administrators.

Supported Software Releases and Operating
Systems

This book supports Teradata® Database 15.10.

Teradata Database 15.10 is supported on:

• SUSE Linux Enterprise Server 10 SP3

• SUSE Linux Enterprise Server 11 SP1

Preface
Prerequisites

4 Introduction to Teradata

Teradata Database client applications support other operating systems.

Prerequisites

To gain an understanding of Teradata, you should be familiar with the following:

• Basic computer and relational database technology

• System hardware

Changes to This Book

Product Safety Information

This document may contain information addressing product safety practices related to data or
property damage, identified by the word Notice. A notice indicates a situation which, if not
avoided, could result in damage to property, such as equipment or data, but not related to
personal injury.

Example:

Notice: Improper use of the Reconfiguration utility can result in data loss.

Release Description

Teradata Database
15.10

June 2015

Incorporated the following new features:

• R integration

• TDNEGO security mechanism

• Columnar Primary AMP Index and Primary Index

• Add Default Queryband as Profile Option

Removed OLE DB Provider and Transparency Series/Application
Programming Interface (TS/API), which are no longer supported.

Removed references to 30-character limits for object names. Teradata
Database supports object names up to 128 characters long in most cases.
For more information on object naming see SQL Fundamentals.

Preface
Additional Information

Introduction to Teradata 5

Additional Information

To maintain the quality of our products and services, we would like your comments on the
accuracy, clarity, organization, and value of this document. Please email teradata-
books@lists.teradata.com.

Teradata Database Optional Features

This book may include descriptions of the following optional Teradata Database features and
products:

• In-Memory Optimization

• Secure Zones

• Teradata Columnar

URL Description

www.info.teradata.com/ Use the Teradata Information Products Publishing Library site
to:

• View or download a manual:

1 Under Online Publications, select General Search.

2 Enter your search criteria and click Search.

• Download a documentation CD-ROM:

1 Under Online Publications, select General Search.

2 In the Title or Keyword field, enter CD-ROM, and click
Search.

www.teradata.com The Teradata home page provides links to numerous sources of
information about Teradata. Links include:

• Executive reports, white papers, case studies of customer
experiences with Teradata, and thought leadership

• Technical information, solutions, and expert advice

• Press releases, mentions and media resources

www.teradata.com/t/TEN/ Teradata Customer Education delivers training that builds skills
and capabilities for our customers, enabling them to maximize
their Teradata investment.

https://tays.teradata.com/ Use Teradata @ Your Service to access Orange Books, technical
alerts, and knowledge repositories, view and join forums, and
download software patches.

developer.teradata.com/ Teradata Developer Exchange provides articles on using
Teradata products, technical discussion forums, and code
downloads.

http://www.info.teradata.com
http://www.teradata.com
http://www.teradata.com/t/TEN/
http://tays.teradata.com/
http://developer.teradata.com/
mailto:teradata-books@lists.teradata.com
mailto:teradata-books@lists.teradata.com

Preface
Teradata Database Optional Features

6 Introduction to Teradata

• Teradata QueryGrid: Teradata Database-to-Hadoop

• Teradata QueryGrid: Teradata Database-to-Oracle Database

• Teradata QueryGrid: Teradata Database-to-Teradata Database

• Teradata Row Level Security

• Teradata Temporal

• Teradata Virtual Storage (VS)

You may not use these features without the appropriate licenses. The fact that these features
may be included in product media or downloads, or described in documentation that you
receive, does not authorize you to use them without the appropriate licenses.

Contact your Teradata sales representative to purchase and enable optional features.

Introduction to Teradata 7

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Software Releases and Operating Systems .3

Prerequisites .4

Changes to This Book. .4

Product Safety Information .4

Additional Information .5

Teradata Database Optional Features .5

Chapter 1: Introduction: The Data Warehouse. 17

The Active Data Warehouse. 17

Strategic Queries . 17

 Tactical Queries. 18

Teradata Active Solutions. 18

Active Load . 18

Active Access. 18

Active Events . 19

Active Workload Management . 19

Active Enterprise Integration . 19

Active Availability . 19

SECTION 1 Teradata Overview

Chapter 2: Teradata Database and Tools . 23

Teradata Database Design and Architecture . 23

Attachment Methods . 23

Character Support. 23

Table of Contents

8 Introduction to Teradata

Single Data Store .24

Teradata Database Capabilities .24

Teradata Database Software .25

Software Installation .26

Teradata Tools and Utilities. .26

Supported Platforms .26

Installation Guides for Teradata Tools and Utilities. .26

Application Programming Interfaces. .26

Mainframe-Attached Connectivity Tools .27

Language Preprocessors. .27

Load and Unload Utilities .28

Teradata Active System Management .29

Teradata Analyst Pack .30

Teradata Database Management Tools .30

Teradata Viewpoint .31

Teradata Meta Data Services .31

Storage Management Utilities. .31

Chapter 3: Teradata Database Model .35

Relational Model .35

Relational Database. .35

Set Theory and Relational Database Terminology .35

Tables, Rows, and Columns. .36

Table Constraints .36

Rows and Columns .36

SECTION 2 Teradata Database Architecture

Chapter 4: Teradata Database Hardware and Software
Architecture .39

SMP and MPP Platforms .39

The BYNET. .40

Boardless BYNET .40

Disk Arrays .40

Logical Units. .40

Table of Contents

Introduction to Teradata 9

Vdisks . 40

Cliques . 41

Hot Standby Nodes. 42

Virtual Processors . 42

Access Module Processor . 43

AMP Clusters . 44

Parsing Engine . 44

Request Processing . 45

The Dispatcher . 46

The AMPs . 46

Example: SQL Request. 47

Parallel Database Extensions . 48

Teradata Database File System. 49

Teradata Database Window . 49

How Database Window Communicates with Teradata Database. 49

Running DBW . 49

Teradata Generic Security Service . 49

Chapter 5: Teradata Database RASUI . 51

Software Fault Tolerance . 51

Vproc Migration. 51

Fallback Tables . 52

AMP Clusters . 53

One-Cluster Configuration. 53

Smaller Cluster Configuration . 53

Journaling . 54

Backup Archive and Recovery . 55

Table Rebuild Utility . 56

Hardware Fault Tolerance . 56

Chapter 6: Client Communication with Teradata Database . 59

Workstation Attachment Methods . 59

.NET Data Provider for Teradata . 59

Java Database Connectivity . 60

Open Database Connectivity . 60

Teradata CLIv2 for Workstation-Attached Systems . 60

Mainframe Attachment Method . 61

Table of Contents

10 Introduction to Teradata

Teradata CLIv2 for Mainframe-Attached Systems .61

Teradata Director Program. .62

Teradata Database Server .62

SECTION 3 Using Teradata Database

Chapter 7: Database Objects, Databases, and Users 67

Tables .67

Table Types. .67

Views .68

Creating Views .69

Benefits of Using Views .69

Restrictions on Using Views .69

SQL Stored Procedures. .69

Using SQL Stored Procedures. .69

Elements of an SQL Stored Procedure .70

External Stored Procedures .71

Macros .71

SQL Statements Related to Macros .71

Single-User and Multi-User Macros .71

Macro Processing .72

Triggers .72

Types of Triggers .72

When to Fire Triggers .73

ANSI/ISO-Specified Order .73

Using Triggers .73

User-Defined Functions .74

SQL UDFs .74

External UDFs .74

User-Defined Methods .75

Instance Methods. .75

Constructor Methods .76

User-Defined Types .76

UDT Types .76

Databases and Users .77

Creating Databases and Users. .77

Example: Creating a Finance and Administration Database .77

Table of Contents

Introduction to Teradata 11

Chapter 8: SQL . 81

Teradata SQL. 81

Using SQL . 81

Types of SQL Statements . 81

Data Definition Language Statements . 82

Data Control Language Statements . 83

Data Manipulation Language Statements . 83

SQL Statement Syntax . 84

Statement Execution . 85

Statement Punctuation. 85

The SELECT Statement . 86

SELECT Statement and Set Operators . 86

SELECT Statement and Joins . 86

SQL Data Types. 87

Data Types . 87

Data Type Phrase . 89

Data Type Attributes . 89

Teradata Database Recursive Query . 90

SQL Functions. 90

Scalar Functions . 91

Aggregate Functions . 91

Ordered Analytical Functions . 91

Cursors . 92

Chapter 9: SQL Application Development . 95

Client Applications . 95

Embedded SQL Applications . 95

Using Embedded SQL . 95

Supported Languages and Platforms . 96

Macros as SQL Applications . 96

SQL Used to Create a Macro. 96

Macro Usage . 97

SQL Used to Modify a Macro . 97

SQL Used to Delete a Macro . 97

SQL Stored Procedures as SQL Applications . 98

SQL Used to Create Stored Procedures . 98

SQL Stored Procedure Example . 98

Table of Contents

12 Introduction to Teradata

SQL Used to Execute a Stored Procedure .99

DDL Statements with Stored Procedures .99

The EXPLAIN Request Modifier .100

How EXPLAIN Works. .100

Benefits of Using EXPLAIN .100

Simple EXPLAIN Example .101

Third-Party Development .103

Compatible Third-Party Software Products .103

Workload Management Application Programming Interface. .103

Chapter 10: Scripting and Language Support 107

About Scripting Capabilities .107

About Using R with Teradata Database .107

Chapter 11: Data Distribution and Data Access Methods109

Teradata Database Indexes. .109

Primary Indexes .109

Secondary Indexes .111

Join Indexes .112

Comparison of Index Types .113

Partitioned Tables .115

Multilevel Partitioned Tables .116

Hashing .116

Identity Columns .116

Normalization .117

Normal Forms .117

First, Second, and Third Normal Forms .117

Referential Integrity .118

Referential Integrity Terminology .118

Referencing (Child) Table. .119

Referenced (Parent) Table. .119

Importance of Referential Integrity .119

Table of Contents

Introduction to Teradata 13

Chapter 12: Concurrency Control and Transaction
Recovery . 123

About Concurrency Control . 123

Transactions . 123

Definition of a Transaction . 123

Definition of Serializability . 123

ANSI Mode Transactions . 124

Teradata Mode Transactions . 125

Locks. 125

Overview of Teradata Database Locking . 125

Host Utility Locks . 125

Recovery and Transactions . 126

System and Media Recovery. 126

System Restarts. 126

Transaction Recovery . 126

Down AMP Recovery . 127

Down Subtable Recovery. 127

Two-Phase Commit Protocol . 127

Chapter 13: The Data Dictionary . 129

Data Dictionary Views . 133

Users of Data Dictionary Views . 134

SQL Access to the Data Dictionary . 134

Chapter 14: International Language Support 137

Character Representation. 137

External and Internal Character Sets. 137

Character Data Translation. 138

What Teradata Database Supports . 138

Teradata Database Character Data Storage . 138

Internal Server Character Sets. 138

User Data . 139

Object Names in the Data Dictionary . 139

Language Support Modes. 139

Overriding the Default Character Set for User Data. 140

Table of Contents

14 Introduction to Teradata

Standard Language Support Mode .140

LATIN Character Set .140

Compatible Languages .140

Japanese Language Support Mode .141

Advantages of Storing User Data Using UNICODE. .141

User DBC Default Character Set .141

Extended Support .141

Chapter 15: Query and Database Analysis Tools 143

Teradata Visual Explain .143

Teradata System Emulation Tool .144

Teradata Index Wizard .144

Demographics .145

Query Capture Facility .145

Target Level Emulation .145

Database Query Log .146

Database Object Use Count .147

Chapter 16: Teradata Database Security .149

Users. .149

Permanent Database Users .149

Directory-based Users .150

Proxy Users. .150

Database Privileges .150

Directly Granted Privileges .151

Roles .151

External Roles. .151

Profiles .151

User Authentication .152

Authentication Method. .152

Logon Format. .153

Logon Controls .154

Password Format Requirements. .154

Password Controls .154

User Authorization .154

Authorization of Permanent Database Users .155

Authorization of Directory-Based Users .155

Table of Contents

Introduction to Teradata 15

Authorization of Middle-tier Application Users. 155

Data Protection . 156

Directory Management of Users . 156

Supported Directories . 156

Database Security Monitoring . 157

Security Monitoring. 157

Defining a Security Policy . 158

Publishing a Security Policy . 158

SECTION 4 Managing and Monitoring Teradata Database

Chapter 17: System Administration. 163

Session Management . 163

Session Requests . 163

Establishing a Session . 163

Logon Operands. 164

Administrative and Maintenance Utilities . 164

Chapter 18: Database Management Tools and Utilities 167

Data Archiving Utilities . 167

Teradata Parallel Transporter . 167

Teradata Parallel Transporter Application Programming Interface 168

Standalone Data Load and Unload Utilities . 168

Teradata FastExport. 168

Teradata FastLoad . 169

Teradata MultiLoad . 169

Teradata Parallel Data Pump . 169

Access Modules . 170

Basic Teradata Query . 170

Session and Configuration Management Tools . 171

System Resource and Workload Management Tools and Protocols 172

Write Ahead Logging . 172

Ferret Utility . 172

Priority Scheduler . 173

Table of Contents

16 Introduction to Teradata

Teradata Active System Management .173

Teradata SQL Assistant. .177

Teradata Studio .178

Chapter 19: System Monitoring .181

Teradata Viewpoint .181

QUERY STATE Command .182

Resource Usage Monitoring. .182

Resource Usage Data Reporting .183

How to Control Logging of ResUsage Data. .183

ResUsage Tables and Views. .183

ResUsage Data Categories .183

ResUsage Macros .184

Summary Mode .184

Performance Monitoring .184

Account String Expansion. .184

The TDPTMON. .185

System Management Facility .185

Chapter 20: Teradata Meta Data Services .187

About Metadata. .187

Types of Metadata. .187

Teradata Meta Data Services .189

Creating Teradata Meta Data Repository .189

Connecting to Teradata Meta Data Repository. .190

Glossary .191

Index .195

Introduction to Teradata 17

CHAPTER 1 Introduction: The Data Warehouse

Initially, the data warehouse was a historical database, enterprise-wide and centralized,
containing data derived from an operational database.

The data in the data warehouse was:

• Subject-oriented

• Integrated

• Usually identified by a timestamp

• Nonvolatile, that is, nothing was added or removed

Rows in the tables supporting the operational database were loaded into the data warehouse
(the historical database) after they exceeded some well-defined date.

Data could be queried, but the responses returned only reflected historical information. In
this sense, a data warehouse was initially static, and even if a historical data warehouse
contained data that was being updated, it would still not be an active data warehouse.

The Active Data Warehouse

An active data warehouse:

• Provides a single up-to-date view of the enterprise on one platform.

• Represents a logically consistent store of detailed data available for strategic, tactical, and
event driven business decision making.

• Relies on timely updates to the critical data (as close to real time as needed).

• Supports short, tactical queries that return in seconds, alongside of traditional decision
support.

Strategic Queries

Strategic queries represent business questions that are intended to draw strategic advantage
from large stores of data.

Strategic queries are often complex, involving aggregations and joins across multiple tables in
the database. They are sometimes long-running and tend not to have a strict service level
expectation.

Strategic queries are often ad hoc. They may require significant database resources to execute,
they are often submitted from third-party tools, and they can take advantage of session
pooling.

Chapter 1: Introduction: The Data Warehouse
Teradata Active Solutions

18 Introduction to Teradata

 Tactical Queries

Tactical queries are short, highly tuned queries that facilitate action-taking or decision-
making in a time-sensitive environment. They usually come with a clear service level
expectation and consume a very small percentage of the overall system resources.

Tactical queries are usually repetitively executed and take advantage of techniques such as
request (query plan) caching and session-pooling.

Teradata Active Solutions

In an active data warehouse, Teradata provides both strategic intelligence and operational
intelligence.

• Strategic intelligence entails delivering intelligence through tools and utilities and query
mechanisms that support strategic decision-making.

This includes, for example, providing users with simple as well as complex reports
throughout the day which indicate the business trends that have occurred and that are
occurring, which show why such trends occurred, and which predict if they will continue
to occur.

• Operational intelligence entails delivering intelligence through tools and utilities and
query mechanisms that support front-line or operational decision-making.

This includes, for example, ensuring aggressive Service Level Goals (SLGs) with respect to
high performance, data freshness, and system availability.

Active Load

Teradata is able to load data actively and in a non-disruptive manner and, at the same time,
process other workloads.

Teradata delivers Active Load through methods that support continuous data loading. These
include streaming from a queue, more frequent batch updates, and moving changed data from
another database platform to Teradata.

These methods exercise such Teradata Database features as queue tables and triggers, and use
FastLoad, MultiLoad, TPump, standalone utilities, and Teradata Parallel Transporter.

Teradata can effectively manage a complex workload environment on a “single version of the
business.”

Active Access

Teradata is able to access analytical intelligence quickly and consistently in support of
operational business processes.

But the benefit of Active Access entails more than just speeding up user and customer
requests. Active Access provides intelligence for operational and customer interactions
consistently.

Chapter 1: Introduction: The Data Warehouse
Teradata Active Solutions

Introduction to Teradata 19

Active Access queries, also referred to as tactical queries, support tactical decision-making at
the front-line. Such queries can be informational, such as simply retrieving a customer record
or transaction, or they may include complex analytics.

Active Events

Teradata is able to detect a business event automatically, apply business rules against current
and historical data, and initiate operational actions when appropriate. This enables
enterprises to reduce the latency between the identification of an event and taking action with
respect to it. Active Events entails more than event detection.

When notified of something important, Teradata presents users with recommendations for
appropriate action. The analysis done for users may prescribe the best course of action or give
them alternatives from which to choose.

Active Workload Management

Teradata is able to manage mixed workloads dynamically and to optimize system resource
utilization to meet business goals.

Teradata Active System Management (TASM) is a portfolio of products that enables real-time
system management.

TASM assists the database administrator in analyzing and establishing workloads and resource
allocation to meet business needs. TASM facilitates monitoring workload requests to ensure
that resources are used efficiently and that dynamic workloads are prioritized automatically.

TASM also provides state-of-the-art techniques to visualize the current operational
environment and to analyze long-term trends. TASM enables database administrators to set
SLGs, to monitor adherence to them, and to take any necessary steps to reallocate resources to
meet business objectives.

Active Enterprise Integration

Teradata is able to integrate itself into enterprise business and technical architectures,
especially those that support business users, partners, and customers. This simplifies the task
of coordinating enterprise applications and business processes.

For example, a Teradata event, generated from a database trigger, calls a stored procedure,
which inserts a row into a queue table and publishes a message via the Teradata JMS Provider.
The message is delivered to a JMS queue on a WebLogic, SAP NetWeaver, or other JMS-
compatible application server. SAP Customer Relationship Management receives the message,
notifies the user, and takes an action.

Active Availability

Teradata is able to meet business objectives for its own availability. Moreover, it assists
customers in identifying application-specific availability, recoverability, and performance
requirements based on the impact of enterprise downtime. Teradata can also recommend
strategies for achieving system availability goals.

Chapter 1: Introduction: The Data Warehouse
Teradata Active Solutions

20 Introduction to Teradata

Introduction to Teradata 21

SECTION 1 Teradata Overview

22 Introduction to Teradata

Introduction to Teradata 23

CHAPTER 2 Teradata Database and Tools

Teradata Database is an information repository supported by tools and utilities that make it a
complete and active relational database management system.

Teradata Database Design and Architecture

Teradata developers designed Teradata Database from mostly off-the-shelf hardware
components. The result was an inexpensive, high-quality system that exceeded the
performance of conventional relational database management systems. The hardware
components of Teradata Database evolved from those of a simple parallel database computer
into those of a general-purpose, massively parallel computer running the database.

The architecture supports both single-node, Symmetric Multiprocessing (SMP) systems and
multinode, Massively Parallel Processing (MPP) systems in which the distributed functions
communicate by means of a fast interconnect structure. The interconnect structure is the
BYNET for MPP systems and the boardless BYNET for SMP systems.

Attachment Methods

To support its role in the active warehouse environment, Teradata Database can use either of
two attachment methods to connect to other operational computer systems as illustrated in
the following table.

Character Support

Teradata Database has an international customer base. To accommodate communications in
different languages, Teradata Database supports non-Latin character sets, including KANJI,
KANJISJIS, and UNICODE.

For detailed information about international character set support, see Chapter 14:
“International Language Support.”

This attachment method… Allows the system to be attached…

workstation to intelligent workstations through a TCP/IP-based
network.

mainframe to an IBM mainframe computer.

Chapter 2: Teradata Database and Tools
Single Data Store

24 Introduction to Teradata

Single Data Store

A design goal of Teradata Database was to provide a single data store for a variety of client
architectures. This approach greatly reduces data duplication and inaccuracies that can creep
into data that is maintained in multiple stores.

This approach to data storage is known as the single version of the business, and Teradata
Database implements this through heterogeneous client access. Clients can access a single
copy of enterprise data and Teradata Database takes care of such things as data type
translation, connections, concurrency, and workload management.

The following figure illustrates the idea of heterogeneous client access, where mainframe-
attached and workstation-attached systems can access and manipulate the same database
simultaneously. In this figure, the mainframe is attached via channel connections and other
systems are attached via network connections.

Teradata Database Capabilities

Teradata Database allows users to view and manage large amounts of data as a collection of
related tables. Some of the capabilities of Teradata Database are listed in the following table.

Local Area Network
Channel

Teradata Database
(Single Data Store)

1091H001

UNIX
Workstation

Windows
Workstation

IBM
Mainframe

Linux
Workstation

Teradata Database provides… That…

capacity includes:

• Scaling from gigabytes to terabytes to petabytes
of detailed data stored in billions of rows.

• Scaling to millions of millions of instructions
per second (MIPS) to process data.

parallel processing makes Teradata Database faster than other
relational systems.

Chapter 2: Teradata Database and Tools
Teradata Database Software

Introduction to Teradata 25

Teradata Database Software

Teradata Database software resides on the platform and implements the relational database
environment. The platform software includes the following functional modules.

single data store • can be accessed by workstation-attached and
mainframe-attached systems.

• supports the requirements of many diverse
clients.

fault tolerance automatically detects and recovers from hardware
failures.

data integrity ensures that transactions either complete or
rollback to a consistent state if a fault occurs.

scalable growth allows expansion without sacrificing performance.

SQL serves as a standard access language for relational
database communication. SQL enables users to
control data.

Teradata Database provides… That…

This module… Provides…

Database Window a tool that you can use to control the operation of
Teradata Database.

Teradata Gateway communications support.

The Gateway software validates messages from
clients that generate sessions over the network and
it controls encryption.

Parallel Database Extensions (PDE) a software interface layer that lies between the
operating system and database. PDE enables the
database to operate in a parallel environment.

For more information about PDE, see “Parallel
Database Extensions” on page 48.

Teradata Database management software the following modules:

• Parsing Engine (PE)

• Access module processor (AMP)

• Teradata Database file system

For more information about Teradata Database file
system, see “Teradata Database File System” on
page 49.

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

26 Introduction to Teradata

Software Installation

The Parallel Upgrade Tool (PUT) automates much of the installation process for Teradata
Database software. There are two major operational modes for PUT.

Teradata Tools and Utilities

Teradata Tools and Utilities is a comprehensive suite of tools and utilities designed to operate
in the client environment used to access Teradata Database.

Supported Platforms

Teradata Tools and Utilities applications are supported on a wide variety of operating
platforms. For a list of supported platforms and product versions, see Teradata Tools and
Utilities ##.# Supported Platforms and Product Versions, which is available from http://
www.info.teradata.com/.

Installation Guides for Teradata Tools and Utilities

To learn how to install Teradata Tools and Utilities, see the following installation guides:

• Teradata Tools and Utilities for IBM z/OS Installation Guide

• Teradata Tools and Utilities Installation Guide for UNIX® and Linux®

• Teradata Tools and Utilities for Microsoft Windows Installation Guide

Application Programming Interfaces

Teradata provides a number of standardized interfaces to facilitate easy development of
applications that access Teradata Database. The following table describes Teradata Application
Programming Interfaces (APIs) and what each provides.

The operational mode… Does the following…

Major upgrade upgrades one or more software products to the next
version.

Patch upgrade applies patch packages to one or more software
products.

This utility... Provides…

.NET Data Provider for Teradata access to Teradata Database for .NET Framework
applications. The Data Provider conforms to the
ADO.NET specification. The ADO.NET specification is
available from the Microsoft Developer Network
(MSDN).

http://www.info.teradata.com
http://www.info.teradata.com

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

Introduction to Teradata 27

Mainframe-Attached Connectivity Tools

The following table describes tools and utilities on channel-attached clients and what each
tool or utility provides.

Language Preprocessors

Language preprocessors enable applications to access Teradata Database by interpreting SQL
statements in C, COBOL, or Programming Language 1 (PL/I) programs. The following table
describes the available Teradata preprocessors.

ODBC Driver for Teradata access to Teradata Database from various tools,
increasing the portability of access.

Teradata Call-Level Interface version 2
(CLIv2)

a Teradata proprietary API and library used by
applications to communicate with Teradata Database.

Teradata Data Connector a block-level I/O interface to one or more access
modules that interface to hardware storage devices,
software messaging systems.

Teradata JDBC Driver platform-independent, Java-application access to
Teradata Database from various tools increasing
portability of data.

This utility... Provides…

This utility for mainframe-attached
clients… Provides…

Host Utility Console (HUTCNS) access to a number of AMP-based utilities.

IBM® Customer Information Control
System (CICS) Interface for Teradata

an interface that enables CICS macro or
command-level application programs to access
Teradata Database resources.

IBM IMS Interface for Teradata an Information Management System (IMS) interface to
Teradata Database.

Teradata CLIv2 a Teradata proprietary API and library used by
applications to communicate with Teradata Database.

Teradata Director Program (TDP) a high-performance interface for messages sent
between the client and Teradata Database.

This preprocessor… Provides a mechanism for… For…

Teradata C Preprocessor embedding SQL in C programs mainframe-attached and workstation-
attached clients.

Teradata COBOL Preprocessor embedding SQL in COBOL programs mainframe-attached and some
workstation-attached clients.

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

28 Introduction to Teradata

Load and Unload Utilities

Teradata load and unload utilities offer a powerful solution for managing all your data load
requirements from batch to real-time. Teradata load and unload utilities are fully parallel to
provide optimal and scalable performance for getting data in and out of your Teradata
Database. In addition, you can import and export data to and from host-based and
client-resident data sources, including mainframe host databases, enterprise server databases
or departmental data marts. The following table describes Teradata load and unload utilities.

Teradata Access Modules

Access modules are adapters that allow all Teradata load and unload utilities to interface with a
variety of data sources through standards-based interfaces. These standards-based modules let

Teradata PL/I Preprocessor embedding SQL in PL/I programs mainframe-attached clients.

This preprocessor… Provides a mechanism for… For…

This utility… Provides…

Basic Teradata Query (BTEQ) a general-purpose, command-based tool that enables
you to communicate with a Teradata Database. BTEQ
provides an interactive or batch interface that allows
you to submit SQL statements, import and export
data, and generate reports.

Teradata FastExport a means of reading large volumes of data from
Teradata Database.

Teradata FastLoad high-performance data loading from client files into
empty tables.

Teradata MultiLoad high-performance data maintenance, including
inserts, updates, and deletions to existing tables.

Teradata Parallel Data Pump (TPump) continuous update of tables; performs insert, update,
and delete operations or a combination of those
operations on multiple tables using the same source
feed.

Teradata Parallel Transporter
(Teradata PT)

a means to load data into and unload data from any
accessible table in Teradata Database or from any other
data stores for which an access operator or an access
module exists.

Teradata Parallel Transporter Application
Programming Interface (Teradata PT
API)

a set of programming interfaces for loading and
unloading data to and from Teradata Database
systems. Teradata PT API enables an application to
access the Teradata Database using proprietary
Teradata load and export protocols. Because Teradata
PT API is a functional library that is part of your client
applications, it provides more control during the load
and unload processes.

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

Introduction to Teradata 29

you read from a given data source as if you were reading from a flat file. The following table
describes Teradata access modules.

Teradata Active System Management

Teradata Active System Management (TASM) is a portfolio of products designed for the
analysis, organization and control of workloads inside the Teradata solution. These products
help you keep pace with your increasingly complex production workloads, especially those
dealing with critical business intelligence, analytics, or tactical queries. The following table
describes Teradata Tools and Utilities products that are part of TASM and what each tool
provides.

This utility… Provides…

Named Pipes Access Module an inter-process communication link between a writer
process, such as Teradata FastExport, and a reader
process, such as Teradata FastLoad.

Teradata Access Module for JMS a fast, asynchronous method to import and export
data between Teradata Database and any JMS-enabled
messaging system. Teradata Access Module for JMS
can be invoked by Teradata load and unload utilities.

Teradata OLE DB Access Module a dynamic link library (DLL) that acts as an interface
between Teradata load and export utilities and data
sources for which an OLE DB provider is available.
The access module quickly moves data between an
OLE DB data source and Teradata Database without
requiring intermediate storage.

Teradata Data Connector a software layer between a client utility and an access
module. It establishes, maintains, and monitors the
connection between a client utility and an access
module by being statically linked to the client and
dynamically linked to the access module.

Teradata WebSphere MQ Access Module Teradata utilities to import data using IBM WebSphere
MQ message queuing middleware.

This tool for workstation-attached clients… Provides…

Teradata Viewpoint a means to set up rules (including workload limits on
accounts, users, and objects, such as databases and
tables) that manage database access, increase database
efficiency, and enhance workload capacity.

Teradata Workload Analyzer (Teradata
WA)

recommendations on workload definitions and
operating rules to ensure that database performance
meets Service Level Goals (SLGs).

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

30 Introduction to Teradata

Teradata Analyst Pack

As application environments expand to include mixed workloads for both decision support
and near-real-time analytic processing, maximizing the performance of the Teradata Database
becomes more challenging. Teradata provides the Teradata Analyst Pack to enable you to
analyze and tune your database queries for better performance. The Teradata Analyst Pack
simplifies your DBA and query planner's jobs by automating the steps required to analyze and
optimize your Teradata Databases. The following table describes the Teradata Analyst Pack
tools and what each tool provides.

Teradata Database Management Tools

You must ensure that your database can keep pace with changing requirements and the
addition of new users and business applications. Teradata Database has a rich collection of
tools and facilities to control database operation, administration, and maintenance.

The following table describes database management tools and what each tool provides.

This tool for workstation-attached clients… Provides…

Teradata Index Wizard analyses of various SQL query workloads and suggests
candidate indexes to enhance performance of those
queries.

Teradata System Emulation Tool
(Teradata SET)

the capability to examine the query plans generated by
the test system Optimizer as if the queries were
processed on the production system.

Teradata Visual Explain (Teradata VE) provides a graphical depiction of the execution plan of
complex SQL statements.

This tool for workstation-attached clients… Provides…

Teradata Administrator an interface that you can use to perform database
administration tasks.

Unity Director a program that routes sessions for high availability
purposes.

Teradata Query Scheduler (QS) a means to manage requests input to Teradata
Database and keep the database running at optimum
performance levels. The product consists of client,
platform, and administrator components, plus a
separate database within Teradata Database.

Chapter 2: Teradata Database and Tools
Teradata Tools and Utilities

Introduction to Teradata 31

Teradata Viewpoint

In addition to the Teradata Tools and Utilities database management tools, Teradata
Viewpoint provides a suite of web-based applications that enable you to monitor and manage
Teradata Database system performance from anywhere using a standard browser. For more
information, see “Teradata Viewpoint” on page 181.

Teradata Meta Data Services

Teradata Meta Data Services (MDS) is a comprehensive solution for managing metadata in
data warehouse environments. This solution enables you to locate, consolidate, manage, and
navigate warehouse metadata. Teradata’s single, unified approach makes sense to technical
and business users alike, helping you reduce training and development costs while increasing
end-user self-sufficiency, system utilization, and productivity.

The Teradata MDS utility for workstation-attached clients, provides an infrastructure for
Teradata metadata and for creating tools to interchange metadata with external operational
systems, Extraction Transformation and Load (ETL) tools, business intelligence tools,
database modeling tools, and any other metadata sources.

Storage Management Utilities

The following table describes storage management utilities and what each utility provides.

Teradata SQL Assistant a means of information storage, manipulation, and
discovery in Teradata Database (or other database that
provides an ODBC interface). Teradata SQL Assistant
also supports connectivity using .NET Data Provider
for Teradata.

Teradata SQL Assistant Java Edition runs on any
platform that supports Java. It can connect to any
JDBC-compliant database.

Teradata Studio an interface that includes the functionality of Teradata
Administrator and Teradata SQL Assistant.

This tool for workstation-attached clients… Provides…

This utility for mainframe- and workstation-attached
clients… Provides…

Archive/Recovery (Teradata ARC) a means of archiving data to tape and disk
and restoring data to Teradata Database.

Teradata Data Stream Architecture (DSA) similar functionality to Teradata ARC, but
generally provides improved performance.

Chapter 2: Teradata Database and Tools
For More Information

32 Introduction to Teradata

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

Backup Application Software includes the following:

• NetVault® Plug-in for Teradata

• NetBackup™ Teradata Extension

• Tivoli® Storage Manager Teradata Extension

open architecture products for backup and
restore functions for Windows and Linux
clients.

This utility for mainframe- and workstation-attached
clients… Provides…

IF you want to learn more about… See…

Archive/Recovery utility Teradata Archive/Recovery Utility Reference

Data Stream Architecture Data Stream Architecture documentation

Backup/Archive/Recovery
(BAR), including BAR
framework products

Teradata BAR Solutions Guide

Teradata BTEQ Basic Teradata Query Reference

CICS Interface for Teradata IBM CICS Interface for Teradata Reference

Teradata CLIv2 • Teradata Call-Level Interface Version 2 Reference for
Mainframe-Attached Systems

• Teradata Call-Level Interface Version 2 Reference for
Workstation-Attached Systems

Host utility console • Utilities

• Database Administration

IMS/DC Interface for Teradata IBM IMS/DC Interface for Teradata Reference

Teradata JDBC Driver Teradata JDBC Driver User Guide

Load and export utilities • Teradata FastExport Reference

• Teradata FastLoad Referencee

• Teradata MultiLoad Reference

• Teradata Parallel Data Pump Reference

Teradata ODBC Driver ODBC Driver for Teradata User Guide

SQL SQL Fundamentals

Teradata Administrator Teradata Administrator User Guide

Teradata Database architecture Database Design

Chapter 2: Teradata Database and Tools
For More Information

Introduction to Teradata 33

Teradata Data Connector Teradata Tools and Utilities Access Module Reference

Teradata Director Program Teradata Director Program Reference

Teradata Index Wizard Teradata Index Wizard User Guide

Teradata Meta Data Services • Teradata Meta Data Services Administrator Guide

• Teradata Meta Data Services Programmer Guide

.NET Data Provider for Teradata .NET Data Provider for Teradata Developers Guide and
Reference, which is available from the Teradata Developer
Exchange website (http://developer.teradata.com).

Teradata Parallel Transporter,
including Teradata Parallel
Transport Application
Programming Interface

• Teradata Parallel Transporter Application Programming
Interface Programmer Guide

• Teradata Parallel Transporter Operator Programmer Guide

• Teradata Parallel Transporter Reference

• Teradata Parallel Transporter User Guide

Teradata Preprocessor2 for
Embedded SQL

• Teradata Preprocessor2 for Embedded SQL Programmer Guide

• SQL Stored Procedures and Embedded SQL

Unity Director Teradata Unity User Guide

Teradata Query Scheduler • Teradata Query Scheduler Administrator Guide

• Teradata Query Scheduler User Guide

Teradata SQL Assistant • Teradata SQL Assistant for Microsoft Windows User Guide

• Teradata SQL Assistant Java Edition Release Definition

Teradata Studio Teradata Studio documentation

Teradata System Emulation Tool • Database Administration

• Teradata System Emulation Tool User Guide

Teradata Access Modules • Teradata Tools and Utilities Access Module Programmer Guide

• Teradata Tools and Utilities Access Module Reference

Teradata Visual Explain Teradata Visual Explain User Guide

Teradata Workload Analyzer Teradata Workload Analyzer User Guide

Teradata Studio products Teradata Studio documentation

IF you want to learn more about… See…

http://developer.teradata.com

Chapter 2: Teradata Database and Tools
For More Information

34 Introduction to Teradata

Introduction to Teradata 35

CHAPTER 3 Teradata Database Model

This chapter describes the concepts on which relational databases are modeled, and discusses
some of the objects that are part of a relational database.

Relational Model

The relational model for database management is based on concepts derived from the
mathematical theory of sets. Basically, set theory defines a table as a relation. The number of
rows is the cardinality of the relation, and the number of columns is the degree. Any
manipulation of a table in a relational database has a consistent, predictable outcome, because
the mathematical operations on relations are well-defined.

By way of comparison, database management products based on hierarchical, network, or
object-oriented architectures are not built on rigorous theoretical foundations. Therefore, the
behavior of such products is not as predictable or as flexible as that of relational products.

The SQL Optimizer in the database builds the most efficient access path to requested data.
The Optimizer can readily adapt to changes in system variables by rebuilding access paths
without programmer intervention. This adaptability is necessary because database definitions
and data demographics can change.

Relational Database

Users perceive a relational database as a collection of objects, that is, as tables, views, macros,
stored procedures, and triggers that are easily manipulated using SQL directly or specifically
developed applications.

Set Theory and Relational Database Terminology

Relational databases are a generalization of the mathematics of set theory relations. Thus, the
correspondences between set theory and relational databases are not always direct. The
following table notes the correspondence between set theory and relational database terms.

Set Theory Term Relational Database Term

Relation Table

Tuple Row

Attribute Column

Chapter 3: Teradata Database Model
Tables, Rows, and Columns

36 Introduction to Teradata

Tables, Rows, and Columns

Tables are two-dimensional objects consisting of rows and columns. Data is organized in
tabular format and presented to the users of a relational database. References between tables
define the relationships and constraints of data inside the tables themselves. For more
information on different types of tables, see “Tables” on page 67.

Table Constraints

You can define conditions that must be met before Teradata Database writes a given value to a
column in a table. These conditions are called constraints. Constraints can include value
ranges, equality or inequality conditions, and intercolumn dependencies. Teradata Database
supports constraints at both the column and table levels.

During table creation and modification, you can specify constraints on single-column values
as part of a column definition or on multiple columns using the CREATE and ALTER TABLE
statements.

Rows and Columns

A column always contains the same kind of information. For example, a table that has
information about employees would have a column for last name and nothing other than the
employee last names should be placed in that column.

A row is one instance of all the columns in a table. For example, each row in the employee
table would contain, among other things, the first name and the last name for that employee.
The columns in a table represent entities, relationships, or attributes.

An entity is a person, place, or thing about which the table contains information. The table
mentioned in the previous paragraphs contains information about the employee entity. Each
table holds only one kind of row. The relational model requires that each row in a table be
uniquely identified. To accomplish this, you define a uniqueness constraint to identify each
row in the table. For more information about primary keys, see “Relationships Between
Primary Indexes and Primary Keys” on page 111.

For More Information

For more information on the topics presented in this chapter, see Database Design.

Introduction to Teradata 37

SECTION 2 Teradata Database Architecture

38 Introduction to Teradata

Introduction to Teradata 39

CHAPTER 4 Teradata Database Hardware and
Software Architecture

This chapter briefly describes Teradata Database hardware components and software
architecture.

SMP and MPP Platforms

The hardware that supports Teradata Database software is based on Symmetric
Multiprocessing (SMP) technology. The hardware can be combined with a communications
network that connects the SMP systems to form Massively Parallel Processing (MPP) systems.
The components of the SMP and MPP hardware platforms include the following.

These platforms use virtual processors (vprocs) that run a set of software processes on a node
under the Parallel Database Extensions (PDE). For information about PDE, see “Parallel
Database Extensions” on page 48.

Component Description Function

Processor Node A hardware assembly containing
several, tightly coupled, central
processing units (CPUs) in an SMP
configuration. An SMP node is
connected to one or more disk arrays
with the following installed on the
node:

• Teradata Database software

• Client interface software

• Operating system

• Multiple processors with shared-
memory

• Failsafe power provisions

An MPP configuration is a
configuration of two or more loosely
coupled SMP nodes.

Serves as the hardware platform
upon which the database
software operates.

BYNET Hardware interprocessor network to
link nodes on an MPP system.

Note: Single-node SMP systems use a
software-configured virtual BYNET
driver to implement BYNET services.

Implements broadcast, multicast,
or point-to-point
communication between
processors, depending on the
situation.

Chapter 4: Teradata Database Hardware and Software Architecture
Disk Arrays

40 Introduction to Teradata

Vprocs provide the parallel environment that enables Teradata Database to run on SMP and
MPP systems. For more information on vprocs, see “Virtual Processors” on page 42.

The BYNET

At the most elementary level, you can look at the BYNET as a switched fabric that loosely
couples all the SMP nodes in a multinode system. But the BYNET has capabilities that range
far beyond those of a simple system bus.

The BYNET possesses high-speed logic that provides bi-directional broadcast, multicast, and
point-to-point communication and merge functions.

A multinode system has at least two BYNETs. This creates a fault-tolerant environment and
enhances interprocessor communication. Load-balancing software optimizes transmission of
messages over the BYNETs. If one BYNET should fail, the second can handle the traffic.

Boardless BYNET

Single-node SMP systems use Boardless BYNET (or virtual BYNET) software to provide the
same functions without the presence of BYNET hardware.

Disk Arrays

Teradata Database employs Redundant Array of Independent Disks (RAID) storage
technology to provide data protection at the disk level. You use the RAID management
software to group disk drives into RAID LUNS (Logical Units) to ensure that data is available
in the event of a disk failure. Redundant implies that either data, functions, or components are
duplicated in the architecture of the array.

Logical Units

The RAID Manager uses drive groups. A drive group is a set of drives that have been
configured into one or more LUNs. Each LUN is uniquely identified.

The operating system recognizes a LUN as a disk and is not aware that it is actually writing to
spaces on multiple disk drives. This technique allows RAID technology to provide data
availability without affecting the operating system.

Vdisks

The group of cylinders currently assigned to an AMP is referred to as a vdisk, although the
actual physical storage may derive from several different storage devices. For information
about the role that AMPs play in Teradata Database architecture, see “Virtual Processors” on
page 42.

Chapter 4: Teradata Database Hardware and Software Architecture
Cliques

Introduction to Teradata 41

Cliques

The clique is a feature of some MPP systems that physically group nodes together by
multiported access to common disk array units. Inter-node disk array connections are made
using FibreChannel (FC) buses.

FC paths enable redundancy to ensure that loss of a processor node or disk controller does not
limit data availability.The nodes do not share data. They only share access to the disk arrays.
The following figure illustrates a four-node clique.

A clique is the mechanism that supports the migration of vprocs under PDE following a node
failure. If a node in a clique fails, then vprocs migrate to other nodes in the clique and
continue to operate while recovery occurs on their home node. For more detailed information
on vprocs see “Virtual Processors” on page 42.

PEs that manage TPA-hosted physical channel connections cannot migrate because they are
dependent on the hardware that is physically attached to the node to which they are assigned.

PEs for workstation-attached TCP/IP connections do migrate when a node failure occurs, as
do all AMPs.

4-Node Clique

Node 1

0 1 2 3 0 1 2 3

Node 2

0 1 2 3 0 1 2 3

Node 3

0 1 2 3 0 1 2 3

Node 4

0 1 2 3 0 1 2 3

A B

Array 1

0 1 0 1

I O I O I O I O

A B

Array 2

I O I O I O I O

A B

Array 3

I O I O I O I O

A B

Array 4

I O I O I O I O

1 to 4 Nodes

Point-to-point

Fibre Channel

Interconnect

1 to 4 Disk Arrays

1091B002

Chapter 4: Teradata Database Hardware and Software Architecture
Hot Standby Nodes

42 Introduction to Teradata

Hot Standby Nodes

Hot standby nodes allow spare nodes to be incorporated into the production environment.
Teradata Database can use spare nodes to improve availability and maintain performance
levels in the event of a node failure. A hot standby node is a node that:

• Is a member of a clique.

• Does not normally participate in Teradata Database operations.

• Can be brought in to participate in Teradata Database operations to compensate for the
loss of a node in the clique.

Configuring a hot standby node can eliminate the system-wide performance degradation
associated with the loss of a node. A hot standby node is added to each clique in the system.
When a node fails, all AMPs and all LAN-attached PEs on the failed node migrate to the node
designated as the hot standby. The hot standby node becomes a production node. When the
failed node returns to service, it becomes the new hot standby node.

Configuring hot standby nodes eliminates:

• Restarts that are required to bring a failed node back into service.

• Degraded service when vprocs have migrated to other nodes in a clique.

Virtual Processors

The versatility of Teradata Database is based on virtual processors (vprocs) that eliminate
dependency on specialized physical processors. Vprocs are a set of software processes that run
on a node under Teradata Parallel Database Extensions (PDE) within the multitasking
environment of the operating system.

The following table contains information about the different types of vprocs.

Vproc Type Description

AMP Access module processors perform database functions, such as executing database
queries. Each AMP owns a portion of the overall database storage.

GTW Gateway vprocs provide a socket interface to Teradata Database.

Node The node vproc handles PDE and operating system functions not directly related to
AMP and PE work. Node vprocs cannot be externally manipulated, and do not
appear in the output of the Vproc Manager utility.

PE Parsing engines perform session control, query parsing, security validation, query
optimization, and query dispatch.

RSG Relay Services Gateway provides a socket interface for relaying dictionary changes
to the Teradata Meta Data Services utility.

Chapter 4: Teradata Database Hardware and Software Architecture
Virtual Processors

Introduction to Teradata 43

A single system can support a maximum of 16,384 vprocs. The maximum number of vprocs
per node can be as high as 128, but is typically between 6 and 12.

Each vproc is a separate, independent copy of the processor software, isolated from other
vprocs, but sharing some of the physical resources of the node, such as memory and CPUs.
Multiple vprocs can run on an SMP platform or a node.

Vprocs and the tasks running under them communicate using unique-address messaging, as if
they were physically isolated from one another. This message communication is done using
the Boardless BYNET Driver software on single-node platforms or BYNET hardware and
BYNET Driver software on multinode platforms.

Access Module Processor

The AMP vproc manages Teradata Database interactions with the disk subsystem. Each AMP
manages a share of the disk storage.

Each AMP, as represented in the following figure, manages a portion of the physical disk
space. Each AMP stores its portion of each database table within that space.

TVS Manages Teradata Database storage. AMPs acquire their portions of database
storage through the TVS vproc.

Vproc Type Description

AMP functions include… For example…

database management tasks • Accounting

• Journaling

• Locking tables, rows, and databases

• Output data conversion

During query processing:

• Sorting

• Joining data rows

• Aggregation

file system management disk space management.

Chapter 4: Teradata Database Hardware and Software Architecture
Virtual Processors

44 Introduction to Teradata

AMP Clusters

AMPs are grouped into logical clusters to enhance the fault-tolerant capabilities of Teradata
Database. For more information on this method of creating additional fault tolerance in a
system see Chapter 5: “Teradata Database RASUI.”

Parsing Engine

The PE is the vproc that communicates with the client system on one side and with the AMPs
(via the BYNET) on the other side.

Each PE executes the database software that manages sessions, decomposes SQL statements
into steps, possibly in parallel, and returns the answer rows to the requesting client.

The PE software consists of the following elements.

1091C022

AMP

BYNET

Storage Storage Storage Storage

AMP AMP AMP

Parsing
Engine

Parsing
Engine

Parsing Engine Elements Process

Parser Decomposes SQL into relational data management
processing steps.

Optimizer Determines the most efficient path to access data.

Generator Generates and packages steps.

Chapter 4: Teradata Database Hardware and Software Architecture
Request Processing

Introduction to Teradata 45

Request Processing

SQL is the language that you use to make requests of Teradata Database, that is, you use SQL
to query Teradata Database.

The SQL parser handles all incoming SQL requests in the following sequence:

1 The Parser looks in the Request cache to determine if the request is already there.

2 The Syntaxer checks the syntax of an incoming request.

3 The Resolver adds information from the Data Dictionary (or cached copy of the
information) to convert database, table, view, stored procedure, and macro names to
internal identifiers.

Dispatcher Receives processing steps from the parser and
sends them to the appropriate AMPs via the
BYNET.

Monitors the completion of steps and handles
errors encountered during processing.

Session Control • Manages session activities, such as logon,
password validation, and logoff.

• Recovers sessions following client or server
failures.

Parsing Engine Elements Process

IF the request is… THEN the Parser…

in the Request cache reuses the plastic steps found in the cache and
passes them to gncApply. Go to step 8 after
checking privileges (step 4).

Plastic steps are directives to the database
management system that do not contain data
values.

not in the Request cache begins processing the request with the
Syntaxer.

IF there are… THEN the Syntaxer…

no errors converts the request to a parse tree and passes
it to the Resolver.

errors passes an error message back to the requestor
and stops.

Chapter 4: Teradata Database Hardware and Software Architecture
Request Processing

46 Introduction to Teradata

4 The security module checks privileges in the Data Dictionary.

5 The Optimizer determines the most effective way to implement the SQL request.

6 The Optimizer scans the request to determine where to place locks, then passes the
optimized parse tree to the Generator.

7 The Generator transforms the optimized parse tree into plastic steps, caches the steps if
appropriate, and passes them to gncApply.

8 gncApply takes the plastic steps produced by the Generator, binds in parameterized data if
it exists, and transforms the plastic steps into concrete steps.

Concrete steps are directives to the AMPs that contain any needed user- or session-specific
values and any needed data parcels.

9 gncApply passes the concrete steps to the Dispatcher.

The Dispatcher

The Dispatcher controls the sequence in which steps are executed. It also passes the steps to
the BYNET to be distributed to the AMP database management software as follows:

1 The Dispatcher receives concrete steps from gncApply.

2 The Dispatcher places the first step on the BYNET; tells the BYNET whether the step is for
one AMP, several AMPS, or all AMPs; and waits for a completion response.

Whenever possible, Teradata Database performs steps in parallel to enhance performance.
If there are no dependencies between a step and the following step, the following step can
be dispatched before the first step completes, and the two execute in parallel. If there is a
dependency, for example, the following step requires as input the data produced by the
first step, then the following step cannot be dispatched until the first step completes.

3 The Dispatcher receives a completion response from all expected AMPs and places the
next step on the BYNET. It continues to do this until all the AMP steps associated with a
request are done.

The AMPs

AMPs obtain the rows required to process the requests (assuming that the AMPs are
processing a SELECT statement). The BYNET transmits messages to and from the AMPS and
PEs. An AMP step can be sent to one of the following:

• One AMP

• A selected set of AMPs, called a dynamic BYNET group

• All AMPs in the system

IF the privileges are… THEN the Security module…

valid passes the request to the Optimizer.

not valid aborts the request and passes an error message
and stops.

Chapter 4: Teradata Database Hardware and Software Architecture
Request Processing

Introduction to Teradata 47

The following figure is based on the example in the next section. If access is through a primary
index and a request is for a single row, the PE transmits steps to a single AMP, as shown at PE1.
If the request is for many rows (an all-AMP request), the PE makes the BYNET broadcast the
steps to all AMPs, as shown in PE2. To minimize system overhead, the PE can send a step to a
subset of AMPs, when appropriate.

Example: SQL Request

As an example, consider the following Teradata SQL requests using a table containing
checking account information. The example assumes that AcctNo column is the unique
primary index for Table_01. For information about the types of indexes used by Teradata
Database, see Chapter 11: “Data Distribution and Data Access Methods.”

1. SELECT * FROM Table_01 WHERE AcctNo = 129317 ;
2. SELECT * FROM Table_01 WHERE AcctBal > 1000 ;

In this example:

• PEs 1 and 2 receive requests 1 and 2.

• The data for account 129317 is contained in table row R9 and stored on AMP1.

• Information about all account balances is distributed evenly among the disks of all four
AMPs.

1091A007

AMP 1 AMP 2 AMP 3 AMP 4

PE 2PE 1

Storage Storage Storage Storage

R1, R5, R9 R2, R6, R10 R3, R7, R11 R4, R8, R12

BYNET or Boardless BYNET

Chapter 4: Teradata Database Hardware and Software Architecture
Parallel Database Extensions

48 Introduction to Teradata

The sample Teradata SQL statement is processed in the following sequence:

1 PE 1 determines that the request is a primary index retrieval, which calls for the access and
return of one specific row.

2 The Dispatcher in PE 1 issues a message to the BYNET containing an appropriate read step
and R9/AMP 1 routing information. After AMP 1 returns the desired row, PE 1 transmits
the data to the client.

3 The PE 2 Parser determines that this is an all-AMPs request, then issues a message to the
BYNET containing the appropriate read step to be broadcast to all four AMPs.

4 After the AMPs return the results, PE 2 transmits the data to the client.

AMP steps are processed in the following sequence:

1 Lock—Serializes access in situations where concurrent access would compromise data
consistency.

For some simple requests using Unique Primary Index (UPI), Nonunique Primary Index
(NUPI), or Unique Secondary Index (USI) access, the lock step will be incorporated into
step 2. For information about indexes and their uses, see Chapter 11: “Data Distribution
and Data Access Methods.”

2 Operation—Performs the requested task. For complicated queries, there may be hundreds
of operation steps.

3 End transaction—Causes the locks acquired in step 1 or 2 to be released.

The end transaction step tells all AMPs that worked on the request that processing is
complete.

Parallel Database Extensions

Parallel Database Extensions (PDE) is a software interface layer that lies between the operating
system and Teradata Database. PDE supports the parallelism that gives Teradata Database its
speed and linear scalability. PDE provides Teradata Database with the ability to:

• Run in a parallel environment

• Execute vprocs

• Apply a flexible priority scheduler to Teradata Database sessions

• Consistently manage memory, I/O, and messaging system interfaces across multiple OS
platforms

PDE provides a series of parallel operating system services, which include:

• Facilities to manage parallel execution of database operations on multiple nodes.

• Dynamic distribution of database tasks.

• Coordination of task execution within and between nodes.

PDE enables MPP systems to take advantage of hardware features such as the BYNET and
shared disk arrays.

Chapter 4: Teradata Database Hardware and Software Architecture
Teradata Database File System

Introduction to Teradata 49

Teradata Database File System

The file system is a layer of software between Teradata Database and PDE. File system service
calls allow Teradata Database to store and retrieve data efficiently and with integrity without
being concerned about the specific low-level operating system interfaces.

Teradata Database Window

Teradata DBW allows database administrators, system operators, and support personnel to
control the operation of Teradata Database.

DBW is also the primary vehicle for starting and controlling the operation of Teradata
Database utilities.

How Database Window Communicates with Teradata Database

DBW provides a graphical user interface to the Teradata Console Subsystem (CNS). Use DBW
to issue database commands and run many of the database utilities. CNS is a part of the
Parallel Database Extensions (PDE) software upon which the database runs.

The following figure illustrates the logical relationship among DBW, CNS, and Teradata
Database.

Running DBW

You can run DBW from the following locations:

• System Console

• Remote workstation or computer

To learn more about the DBW interface, see “Database Window (xdbw)” in Utilities.

Teradata Generic Security Service

Network security for Teradata is provided by Teradata Generic Security Service (TDGSS)
software. It provides for secure communication between a workstation client and Teradata
Database.

CNS

1095D041

DBW Teradata
Database

Chapter 4: Teradata Database Hardware and Software Architecture
For More Information

50 Introduction to Teradata

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database books.

IF you want to learn more about… See…

Disk Arrays Database Administration

Cliques Database Administration

Hot Standby Nodes Database Administration

Virtual Processors • Database Design

• Database Administration

• SQL Request and Transaction Processing

Access Module Processor • Database Administration

• Support Utilities

Parsing Engine Database Administration

Request Processing SQL Request and Transaction Processing

Teradata Database File System Utilities

Teradata Database Window Utilities

Teradata General Security Service Security Administration

Introduction to Teradata 51

CHAPTER 5 Teradata Database RASUI

Teradata Database addresses the critical requirements of reliability, availability, serviceability,
usability, and installability (RASUI) by combining the following elements:

• Multiple microprocessors in a Symmetric Multi-Processing, (SMP) arrangement.

• RAID disk storage technology.

• Protection of Teradata Database from operating anomalies of the client platform.

Both hardware and software provide fault tolerance, some of which is mandatory and
some of which is optional.

Software Fault Tolerance

This section explains the following Teradata Database facilities for software fault tolerance:

• Vproc migration

• Fallback tables

• AMP clusters

• Journaling

• Backup/Archive/Recovery

• Table Rebuild utility

Vproc Migration

Because the Parsing Engine (PE) and Access Module Processor (AMP) are vprocs and,
therefore, software entities, they can migrate from their home node to another node within
the same hardware clique if the home node fails for any reason. Although the system normally
determines which vprocs migrate to which nodes, a user can configure preferred migratory
destinations.

Vproc migration permits the system to function completely during a node failure, with some
degradation of performance due to the non-functional hardware.

The following figure illustrates vproc migration, where the large X indicates a failed node, and
arrows pointing to nodes still running indicate the migration of AMP3, AMP4, and PE2.

Chapter 5: Teradata Database RASUI
Software Fault Tolerance

52 Introduction to Teradata

Note: PEs that manage TPA-hosted physical channel connections cannot migrate during a
node failure because they are dependent on the hardware that is physically attached to their
assigned node.

Fallback Tables

A fallback table is a duplicate copy of a primary table. Each fallback row in a fallback table is
stored on an AMP different from the one to which the primary row hashes. This storage
technique maintains availability should the system lose an AMP and its associated disk storage
in a cluster. In that event, the system would access data in the fallback rows.

The disadvantage of fallback is that this method doubles the storage space and the I/O (on
INSERT, UPDATE, and DELETE statements) for tables. One advantage is that data is almost
never unavailable because of one down AMP. Data is fully available during an AMP or disk
outage. Another advantage is that if there is a data read error, Teradata Database can repair the
primary copy of the data using the fallback copy.

Teradata Database permits the definition of fallback for individual tables. As a general rule,
you should run all tables critical to your enterprise in fallback mode. You can run other, non-
critical tables in nonfallback mode in order to maximize resource usage.

Even though RAID disk array technology may provide data access even when you have not
specified fallback, neither RAID1 nor RAID5 provides the same level of protection as fallback.

GG01A027

PE1 AMP1 AMP2 AMP3 PE2 AMP4 PE3 AMP5 AMP6

ARRAY

AMP2 AMP3 PE3
AMP6

AMP5

ARRAY

Normal

Recovery

PE1 AMP1 AMP4 PE2

Chapter 5: Teradata Database RASUI
Software Fault Tolerance

Introduction to Teradata 53

You specify whether a table is fallback or not using the CREATE TABLE (or ALTER TABLE)
statement. The default is not to create tables with fallback.

AMP Clusters

A cluster is a group of 2-8 AMPs that provide fallback capability for each other. A copy of each
row is stored on a separate AMP in the same cluster. In a large system, you would probably
create many AMP clusters. However, whether large or small, the concept of a cluster exists
even if all the AMPs are in one cluster.

One-Cluster Configuration

Pictures best explain AMP clustering. The following figure illustrates a situation in which
fallback is present with one cluster, which is essentially an unclustered system.

Note that the fallback copy of any row is always located on an AMP different from the AMP
which holds the primary copy. This is an entry-level fault tolerance strategy. In this example
which shows only a few rows, the data on AMP3 is fallback protected on AMPs 4, 5, and 6.
However, in practice, some of the data on AMP3 would be fallback protected on each of the
other AMPs in the system. The system becomes unavailable if two AMPs in a cluster go down.

Smaller Cluster Configuration

The following figure illustrates smaller clusters. Decreasing cluster size reduces the likelihood
that two AMP failures will occur in the same cluster. The illustration shows the same 8-AMP
configuration now partitioned into 2 AMP clusters of 4 AMPs each.

AMP1

1,9,17

21,22,15

AMP2

2,10,18

1,23,8

AMP3

3,11,19

9,2,16

AMP4

4,12,20

17,10,3

AMP5

5,13,21

18,11,4

AMP6

6,14,22

19,12,24

AMP7

7,15,23

20,5,6

AMP8

8,16,24

13,14,7

Primary copy area

Fallback copy area

Primary copy area

Fallback copy area

FG10A001

Chapter 5: Teradata Database RASUI
Software Fault Tolerance

54 Introduction to Teradata

Compare this clustered configuration with the earlier illustration of an unclustered AMP
configuration. In the example, the (primary) data on AMP3 is backed up on AMPs 1, 2, and 4
and the data on AMP6 is backed up on AMPs 5, 7, and 8.

If AMPs 3 and 6 fail at the same time, the system continues to function normally. Only if two
failures occur within the same cluster does the system halt.

Subpools are logical groupings of AMPs and disks for fault-tolerance. In a single-clique system
to ensure that a disk failure will not bring down both AMPs in a cluster, disks and AMPs are
divided into two subpools, and clustering is done across the subpools.

Journaling

Teradata Database supports tables that are devoted to journaling. A journal is a record of some
kind of activity. Teradata Database supports several kinds of journaling. The system does some
journaling on its own, while you can specify whether to perform other journaling.

AMP1

1,9,17

2,3,4

AMP2

2,10,18

1,11,12

AMP3

3,11,19

9,10,20

AMP4

4,12,20

17,18,19

AMP5

5,13,21

6,7,8

AMP6

6,14,22

5,15,16

AMP7

7,15,23

13,14,24

AMP8

8,16,24

21,22,23

Primary copy area

Fallback copy area

Primary copy area

Fallback copy area

FG10A002

Cluster A

Cluster B

Chapter 5: Teradata Database RASUI
Software Fault Tolerance

Introduction to Teradata 55

The following table explains the capabilities of the different Teradata Database journals.

Backup Archive and Recovery

To archive, restore, and recover data in Teradata Database, you can use either:

• Teradata Data Stream Architecture, which is accessible via the Viewpoint BAR Operations
portlet

• Teradata Archive and Recovery utility (ARC)

These programs can co-exist at a customer site; however, only the program that created the
archive can read it and restore it. Teradata Data Stream Architecture cannot restore an archive
created by ARC and vice versa.

For more information, see the documentation for Teradata Data Stream Architecture.

This type of
journal… Does the following… And Occurs …

Down AMP
recovery

• Is active during an AMP failure only

• Journals fallback tables only

• Is used to recover the AMP after the AMP is repaired,
then is discarded

always.

Transient • Logs BEFORE images for transactions

• Is used by system to roll back failed transactions
aborted either by the user or by the system

• Captures:

• Begin/End Transaction indicators

• Before row images for UPDATE and DELETE
statements

• Row IDs for INSERT statements

• Control records for CREATE, DROP, DELETE,
and ALTER statements

• Keeps each image on the same AMP as the row it
describes

• Discards images when the transaction or rollback
completes

always.

Permanent • Is available for tables or databases

• Can contain before images, which permit rollback, or
after images, which permit rollforward, or both
before and after images

• Provides rollforward recovery

• Provides rollback recovery

• Provides full recovery of nonfallback tables

• Reduces need for frequent, full-table archives

as specified by the
user.

Chapter 5: Teradata Database RASUI
Hardware Fault Tolerance

56 Introduction to Teradata

Table Rebuild Utility

Use the Table Rebuild utility to recreate a table, database, or entire disk on a single AMP under
the following conditions:

• The table structure or data is damaged because of a software problem, head crash, power
failure, or other malfunction.

• The affected tables are enabled for fallback protection.

Table rebuild can create all of the following on an AMP-by-AMP basis:

• Primary or fallback portions of a table.

• An entire table (both primary and fallback portions).

• All tables in a database.

• All tables on an individual AMP.

The Table Rebuild utility can also remove inconsistencies in stored procedure tables in a
database. A Teradata Database system engineer, field engineer, or system support
representative usually runs the Table Rebuild utility.

Hardware Fault Tolerance

Teradata Database provides the following facilities for hardware fault tolerance.

Facility Description

Multiple BYNETs Multinode Teradata Database servers are equipped with at least two BYNETs.
Interprocessor traffic is never stopped unless all BYNETs fail. Within a
BYNET, traffic can often be rerouted around failed components.

RAID disk units • Teradata Database servers use Redundant Arrays of Independent Disks
(RAIDs) configured for use as RAID1, RAID5, or RAIDS.

Non-array storage cannot use RAID technology.

• RAID1 arrays offer mirroring, the method of maintaining identical copies
of data.

• RAID5 or RAIDS protects data from single-disk failures with a 25%
increase in disk storage to provide parity.

• RAID1 provides better performance and data protection than RAID5/
RAIDS, but is more expensive.

Multiple client-server connections In a client-server environment, multiple connections between mainframe
and workstation-based clients ensure that most processing continues even if
one or several connections between the clients and server are not working.

Vproc migration is a software feature supporting this hardware issue.

Isolation from client hardware defects In a client-server environment, a server is isolated from many client
hardware defects and can continue processing in spite of such defects.

Power supplies and fans Each cabinet in a configuration has redundant power supplies and fans to
ensure fail-safe operation.

Chapter 5: Teradata Database RASUI
For More Information

Introduction to Teradata 57

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

Hot swap capability for node components Teradata Database can allow some components to be removed and replaced
while the system is running. This process is known as hot swap. Teradata
Database offers hot swap capability for the following:

• Disks within RAID arrays

• Fans

• Power supplies

Cliques • A clique is a group of nodes sharing access to the same disk arrays. The
nodes and disks are interconnected through FC buses and each node can
communicate directly to all disks. This architecture provides and balances
data availability in the case of a node failure.

• A clique supports the migration of vprocs following a node failure. If a
node in a clique fails, then its vprocs migrate to another node in the clique
and continue to operate while recovery occurs on their home node.
Migration minimizes the performance impact on the system.

• PEs that manage TPA-hosted physical channel connections cannot
migrate because they depend on the hardware that is physically attached
to the assigned node.

• PEs for workstation-attached connections do migrate when a node failure
occurs, as do all AMP vprocs.

• To ensure maximum fault tolerance, no more than one node in a clique is
placed in the same cabinet. Usually the battery backup feature makes this
precaution unnecessary, but if you want maximum fault tolerance, then
plan your cliques so the nodes are never in the same cabinet.

Facility Description

IF you want to learn more about… See…

Software Fault Tolerance, including:

• Vproc Migration and Fallback Tables

• Clusters (AMP clusters, one-cluster and
small cluster configurations)

• Journaling and Backup/Archive/Recovery
(online archiving)

• Table Rebuild Utility

• Database Administration

• Teradata Archive/Recovery Utility Reference

• SQL Data Definition Language

• Utilities

Hardware Fault Tolerance Database Design

Chapter 5: Teradata Database RASUI
For More Information

58 Introduction to Teradata

Introduction to Teradata 59

CHAPTER 6 Client Communication with
Teradata Database

Client applications can connect to Teradata Database using one of the following methods:

• Network-attached through a Local Area Network (LAN)

• Channel-attached through an IBM mainframe

Workstation Attachment Methods

Workstation-attached methods include:

• .NET Data Provider for Teradata

• Java Database Connectivity (JDBC)

• Microsoft OLE DB Provider for ODBC

• Open Database Connectivity (ODBC)

• Teradata CLIv2 for workstation-attached systems

The following figure illustrates the transparent connection between client applications and
Teradata Database.

.NET Data Provider for Teradata

The .NET Data Provider for Teradata conforms to the ADO.NET specifications. ADO.NET
provides a rich set of data access services to .NET Framework applications. The Data Provider
allows .NET applications to access Teradata Database from all .NET Framework languages
including C#, VB, F# and PowerShell.

Teradata
Database

Server

REQUESTS

RESPONSES

1091A006

Client
Application

Program

Client
Application

Program

Client
Application

Program

Client
Application

Program

.NET Data
Provider

JDBC ODBC CLI

Chapter 6: Client Communication with Teradata Database
Workstation Attachment Methods

60 Introduction to Teradata

Java Database Connectivity

JDBC is a specification for an API. The API allows platform-independent Java applications to
access Teradata Database using SQL and external stored procedures.

The JDBC API provides a standard set of interfaces for:

• Opening connections to databases

• Executing SQL statements

• Processing results

Teradata JDBC Driver provides access to Teradata Database using the Java language. Teradata
JDBC Driver is a type 4 (pure Java) JDBC Driver. It is a set of Java classes that use TCP/IP to
communicate directly with Teradata Database.

Open Database Connectivity

ODBC Driver for Teradata provides an interface to Teradata Databases using the industry
standard ODBC API. ODBC Driver for Teradata provides Core-level SQL and Extension-level
1 (with some Extension-level 2) function call capability using the Windows Sockets
(WinSock) Transmission Control Protocol/Internet Protocol (TCP/IP) communications
software interface. ODBC operates independently of CLI.

Teradata CLIv2 for Workstation-Attached Systems

Teradata CLIv2 for workstation-attached systems is a Teradata proprietary API and library
providing an interface between applications on a TCP/IP-connected client and Teradata
Database server. Teradata CLIv2 for workstation-attached systems can:

• Build parcels which are packaged by Micro Teradata Director Program (MTDP) and sent
to Teradata Database using the Micro Operating System Interface (MOSI).

• Manage all interactions between the application and Teradata Database.

• Provide an application with a pointer to data rows returned from Teradata Database.

MTDP

MTDP is the interface between Teradata CLIv2 for workstation-attached systems and MOSI.
Functions of MTDP include:

• Session initiation and termination

• Logging, verification, recovery, and restart

• Physical input to and output from the server

Note: MTDP does not control session balancing; session balancing on
workstation-attached systems is controlled by Teradata Database Gateway on the server.

MOSI

MOSI is the interface between MTDP and Teradata Database. MOSI is a library of service
routines providing operating system independence among clients that access Teradata
Database. With MOSI, only one version of MTDP is required to run on all
workstation-attached platforms.

Chapter 6: Client Communication with Teradata Database
Mainframe Attachment Method

Introduction to Teradata 61

Mainframe Attachment Method

Mainframe attachment uses Teradata CLIv2 for mainframe-attached systems.

Teradata CLIv2 for Mainframe-Attached Systems

Teradata CLIv2 for mainframe-attached systems is a collection of callable service routines
providing the interface between applications and the Teradata Director Program (TDP) on an
IBM mainframe client. Teradata CLIv2 for mainframe-attached systems can operate with all
versions of IBM operating systems, including Customer Information Control System (CICS),
Information Management System (IMS), and IBM System z Operating System.

By way of TDP, Teradata CLIv2 foraminifera-attached systems sends requests to the server and
provides client applications with responses from the server. Teradata CLIv2 for mainframe-
attached systems provides support for:

• Managing multiple serially executed requests in a session

• Managing multiple simultaneous sessions to the same or different servers

• Using cooperative processing so an application can perform operations on the client and
the server at the same time

• Generally insulating the application from the details of communicating with a server

MTDP

CLI

Application

2418B004

Teradata
Database

MOSI

R
eq

ue
st

R
es

po
ns

e

Chapter 6: Client Communication with Teradata Database
Mainframe Attachment Method

62 Introduction to Teradata

Teradata Director Program

TDP manages communications between Teradata CLIv2 for mainframe-attached systems and
the Teradata Database server. TDP executes on the same mainframe as Teradata CLIv2 for
mainframe-attached systems, but runs as a different job or virtual machine. Although an
individual TDP is associated with one logical server, any number of TDPs may operate and be
simultaneously accessed by Teradata CLIv2 for mainframe-attached systems on the same
mainframe. Each TDP is referred to by an application using an identifier called the TDPid that
is unique in a mainframe; for example, TDP2.

Functions of TDP include:

• Session initiation and termination

• Logging, verification, recovery, and restart

• Physical input to and output from the server, including session balancing and queue
maintenance

• Security

Teradata Database Server

A server implements the actual relational database that processes requests received from
Teradata CLIv2 for mainframe-attached systems by way of TDP. The following figure
illustrates the logical structure of the client-server interface on mainframe-attached systems.

Application
Program

CLIv2

TDP

Teradata
Database

Server

TDP

Teradata
Database

Server

TDP

Teradata
Database

Server

REQUESTS

RESPONSES

1091B004

Chapter 6: Client Communication with Teradata Database
For More Information

Introduction to Teradata 63

For More Information

For more information on the topics presented in this chapter, see the following Teradata Tools
and Utilities books.

IF you want to learn more about… See…

Workstation Attachment Methods:

• .NET Data Provider for Teradata

• Teradata CLIv2 for workstation-attached
systems

• Java Database Connectivity, including Java
language external stored procedures that
use JDBC

• Microsoft OLE DB Provider for ODBC

• Open Database Connectivity

• .NET Data Provider for Teradata Developers
Guide and Reference, which is available from
the Teradata Developer Exchange website
(http://developer.teradata.com).

• Teradata Call-Level Interface Version 2 Reference
for Workstation-Attached Systems

• Teradata JDBC Driver User Guide

• The Microsoft Developer Network (MSDN)

• ODBC Driver for Teradata User Guide

Mainframe Attachment Methods:

• Teradata CLIv2 for mainframe-attached
systems

• Teradata Director Program

• Teradata Call-Level Interface Version 2 Reference
for Mainframe-Attached Systems

• Teradata Director Program Reference

http://developer.teradata.com

Chapter 6: Client Communication with Teradata Database
For More Information

64 Introduction to Teradata

Introduction to Teradata 65

SECTION 3 Using Teradata Database

66 Introduction to Teradata

Introduction to Teradata 67

CHAPTER 7 Database Objects, Databases, and
Users

This chapter provides information about Teradata Database database objects and space
allocation for databases and users.

Tables

Tables are two-dimensional objects consisting of rows and columns. Data is organized in table
format and presented to the users of a relational database.

Table Types

Table Type Description

ANSI Temporal ANSI-compliant support for temporal tables. Using temporal tables, Teradata
Database can process statements and queries that include time-based
reasoning. Temporal tables record both system time (the time period when the
information was recorded in the database) and valid time (the time period
when the information is in effect or true in a real-world application).

Derived A derived table:

• Is a type of temporary table obtained from one or more other tables
as the result of a subquery.

• Is specified in an SQL SELECT statement.

• Avoids the need to use the CREATE and DROP TABLE statements for
storing retrieved information.

• Is useful when you are coding more sophisticated, complex queries.

Error Logging Error logging tables:

• Store information about errors on an associated permanent table.

• Log information about insert and update errors.

Global Temporary Global temporary tables:

• Are private to the session.

• Are dropped automatically at the end of a session.

• Have a persistent table definition stored in the Data Dictionary. The saved
definition may be shared by multiple users and sessions with each session
getting its own instance of the table.

Chapter 7: Database Objects, Databases, and Users
Views

68 Introduction to Teradata

For more information about table types, see SQL Data Definition Language and Database
Design.

Views

Database views are actually virtual tables that you can use as if they were physical tables to
retrieve data defining columns from underlying views or tables, or from both.

A view does not contain data and is not materialized until a DML statement references it.
View definitions are stored in the Data Dictionary.

Global Temporary
Trace

Global temporary trace tables:

• Store trace output for the length of the session.

• Have a persistent table definition stored in the Data Dictionary.

• Are useful for debugging SQL stored procedures (via a call to an external
stored procedure written to the trace output) and external routines (UDFs,
UDMs, and external stored procedures).

NoPI NoPI tables are permanent tables that do not have primary indexes defined on
them.

They provide a performance advantage when used as staging tables to load
data from FastLoad or TPump Array INSERT.

They can have secondary indexes defined on them to avoid full-table scans
during row access.

Permanent Permanent tables allow different sessions and users to share table content.

Queue Queue tables:

• Are permanent tables with a timestamp column. The timestamp indicates
when each row was inserted into the table.

• Establish first-in first-out (FIFO) ordering of table contents, which is
needed for customer applications requiring event processing.

Volatile Volatile tables are used when:

• Only one session needs the table.

• Only the creator needs to access the table.

• You want better performance than a global temporary table.

• You do not need the table definition after the session ends.

Note: The definition of a volatile table can survive across a system restart if it is
contained in a macro.

Table Type Description

Chapter 7: Database Objects, Databases, and Users
SQL Stored Procedures

Introduction to Teradata 69

Creating Views

A view is created from one or more base tables or from other views.

In fact, you can create hierarchies of views in which views are created from other views. This
can be useful, but be aware that deleting any of the lower-level views invalidates dependencies
of higher-level views in the hierarchy.

A view usually presents only a subset of the columns and rows in the base table or tables.

Moreover, some view columns do not exist in the underlying base tables. For example, it is
possible to present data summaries in a view (for example, an average), which you cannot
directly obtain from a base table.

Benefits of Using Views

There are at least four reasons to use views. Views provide:

• A user view of data in the database.

• Security for restricting table access and updates.

• Well-defined, well-tested, high-performance access to data.

• Logical data independence.

Restrictions on Using Views

You can use views as if they were tables in SELECT statements. Views are subject to some
restrictions regarding INSERT, UPDATE, MERGE, and DELETE statements. For more
information, see “SQL Access to the Data Dictionary” on page 134.

SQL Stored Procedures

SQL stored procedures are executed on Teradata Database server space. It is a combination of
procedural control statements, SQL statements, and control declarations that provide a
procedural interface to Teradata Database.

Using SQL Stored Procedures

Using SQL stored procedures, you can build large and complex database applications. In
addition to a set of SQL control statements and condition handling statements, an SQL stored
procedure can contain the following:

• Multiple input and output parameters.

• Local variables and cursors.

• SQL DDL, DCL, and DML statements, including dynamic SQL, with a few exceptions.

Dynamic SQL is a method of invoking an SQL statement by creating and submitting it at
runtime from within a stored procedure.

Applications based on SQL stored procedures provide the following benefits. They:

Chapter 7: Database Objects, Databases, and Users
SQL Stored Procedures

70 Introduction to Teradata

• Reduce network traffic in the client-server environment because stored procedures reside
and execute on the server.

• Allow encapsulation and enforcement of business rules on the server, contributing to
improved application maintenance.

• Provide better transaction control.

• Provide better security. The data access clause of an SQL stored procedure can restrict
access to the database.

• Provide better security by granting the user access to the procedures rather than to the data
tables.

• Provide an exception handling mechanism to handle the runtime conditions generated by
the application.

• Allow all the SQL and SQL control statements embedded in an SQL stored procedure to be
executed by submitting one CALL statement. Nested CALL statements further extend the
versatility.

Elements of an SQL Stored Procedure

An SQL stored procedure contains some or all of the following elements.

For more information, see “SQL Stored Procedures as SQL Applications” on page 98.

This element… Includes…

SQL control statements nested or non-nested compound statements.

Control declarations • Condition handlers in DECLARE HANDLER statements for
completion and exception conditions. Conditional handlers
can be:

• CONTINUE or EXIT type.

• Defined for a specific SQLSTATE code, the generic
exception condition SQLEXCEPTION, or generic
completion conditions NOT FOUND and
SQLWARNING.

• Cursor declarations in DECLARE CURSOR statements or
in FOR iteration statements.

Cursors can be either updatable or read only type.

Cursors can also be result set cursors for returning the result
of a SELECT statement executed in the stored procedure to
the caller or client applications

• Local variable declarations in DECLARE statements.

SQL transaction statements DDL, DCL, DML, and SELECT statements, including dynamic
SQL statements, with a few exceptions.

LOCKING modifiers with all supported SQL statements except CALL.

Comments bracketed and simple comments.

Note: Nested bracketed comments are not allowed.

Chapter 7: Database Objects, Databases, and Users
External Stored Procedures

Introduction to Teradata 71

External Stored Procedures

External stored procedures are written in the C, C++, or Java programming language,
installed on the database, and then executed like stored procedures.

Usage

Here is a synopsis of the steps you take to develop, compile, install, and use external stored
procedures:

1 Write, test, and debug the C, C++, or Java code for the procedure.

2 If you are using Java, place the class or classes for the external stored procedure in an
archive file (JAR or ZIP) and call the SQLJ.INSTALL_JAR external stored procedure to
register the archive file with the database.

3 Use CREATE PROCEDURE or REPLACE PROCEDURE for external stored procedures to
create a database object for the external stored procedure.

4 Use GRANT to grant privileges to users who are authorized to use the external stored
procedure.

5 Invoke the procedure using the CALL statement.

Macros

The macro database object consists of one or more SQL statements that can be executed by
performing a single request. Each time the macro is performed, one or more rows of data may
be returned.

SQL Statements Related to Macros

The following table lists the basic SQL statements that you can use with macros.

Single-User and Multi-User Macros

You can create a macro for your own use, or grant execution authorization to others. For
example, your macro might enable a user in another department to perform operations on the

Use this statement… To…

CREATE MACRO incorporate a frequently used SQL statement or series
of statements into a macro.

EXECUTE run a macro.

Note: A macro can also contain an EXECUTE
statement that executes another macro.

DROP MACRO delete a macro.

Chapter 7: Database Objects, Databases, and Users
Triggers

72 Introduction to Teradata

data in Teradata Database. When executing the macro, the user need not be aware of the
database access, the tables affected, or even the results.

Macro Processing

Regardless of the number of statements in a macro, Teradata Database treats it as a single
request. When you execute a macro, the system processes either all of the SQL statements, or
processes none of the statements. If a macro fails, the system aborts it, backs out any updates,
and returns the database to its original state.

Triggers

The trigger defines events that happen when some other event, called a triggering event,
occurs. This database object is essentially a stored SQL statement associated with a table called
a subject table.

Teradata Database implementation of triggers complies with ANSI SQL specifications and
provides extensions.

Triggers execute when any of the following modifies a specified column or columns in the
subject table:

• DELETE

• INSERT

• UPDATE

Typically, the stored SQL statements perform a DELETE, INSERT, UPDATE, or MERGE on a
table different from the subject table.

Types of Triggers

Teradata Database supports two types of triggers.

This type of trigger… Fires for each…

statement statement that modifies the subject table.

row row modified in the subject table.

Chapter 7: Database Objects, Databases, and Users
Triggers

Introduction to Teradata 73

When to Fire Triggers

You can specify when triggers fire.

Sometimes a request fires a trigger, which in turn, fires another trigger. Thus the outcome of
one triggering event can itself become another trigger. Teradata Database processes and
optimizes the triggered and triggering statements in parallel to maximize system performance.

ANSI/ISO-Specified Order

When you specify multiple triggers on a subject table, both BEFORE and AFTER triggers
execute in the order in which they were created as determined by the timestamp of each
trigger.

Triggers are sorted according to the preceding ANSI/ISO rule, unless you use the Teradata
Database extension, ORDER. This extension allows you to specify the order in which the
triggers execute, regardless of creation time stamp.

Using Triggers

You can use triggers to do various things:

• Define a trigger on the subject table to ensure that the UPDATE, INSERT, MERGE, and
DELETE statements performed to the subject table are propagated to another table.

• Use triggers for auditing. For example, you can define a trigger which causes the INSERT
statements in a log table when an employee receives a raise higher than 10%.

• Use a trigger to disallow massive UPDATE, INSERT, MERGE, or DELETE during business
hours.

• Use a trigger to set a threshold. For example, you can use triggers to set thresholds for
inventory of each item by store, to create a purchase order when the inventory drops below
a threshold, or to change a price if the daily volume does not meet expectations.

• Use a trigger to call SQL stored procedures and external stored procedures.

WHEN you specify… THEN the triggered action…

BEFORE executes before the completion of the triggering
event.

As specified in the ANSI/ISO SQL standard, a
BEFORE trigger cannot have data changing
statements in the triggered action.

AFTER executes after completion of the triggering event.

Note: To support stored procedures the CALL
statement is supported in the body of an AFTER
trigger. Both row and statement triggers can call
a stored procedure.

Chapter 7: Database Objects, Databases, and Users
User-Defined Functions

74 Introduction to Teradata

User-Defined Functions

SQL provides a set of useful functions, but they might not satisfy all of the particular
requirements you have to process your data.

Teradata Database supports two types of user-defined functions (UDFs) that allow you to
extend SQL by writing your own functions:

• SQL UDFs

• External UDFs

SQL UDFs

SQL UDFs allow you to encapsulate regular SQL expressions in functions and then use them
like standard SQL functions.

Rather than coding commonly used SQL expressions repeatedly in queries, you can objectize
the SQL expressions through SQL UDFs.

Moving complex SQL expressions from queries to SQL UDFs makes the queries more
readable and can reduce the client/server network traffic.

External UDFs

External UDFs allow you to write your own functions in the C, C++, or Java programming
language, install them on the database, and then use them like standard SQL functions.

You can also install external UDF objects or packages from third-party vendors.

Teradata Database supports three types of external UDFs.

Usage

To create and use an SQL UDF, follow these steps:

1 Use CREATE FUNCTION or REPLACE FUNCTION to define the UDF.

2 Use GRANT to grant privileges to users who are authorized to use the UDF.

3 Call the function.

UDF Type Description

Aggregate Aggregate functions produce summary results. They differ from scalar functions in
that they take grouped sets of relational data, make a pass over each group, and return
one result for the group. Some examples of standard SQL aggregate functions are AVG,
SUM, MAX, and MIN.

Scalar Scalar functions take input parameters and return a single value result. Examples of
standard SQL scalar functions are CHARACTER_LENGTH, POSITION, and TRIM.

Table A table function is invoked in the FROM clause of a SELECT statement and returns a
table to the statement.

Chapter 7: Database Objects, Databases, and Users
User-Defined Methods

Introduction to Teradata 75

Here is a synopsis of the steps you take to develop, compile, install, and use an external UDF:

1 Write, test, and debug the C, C++, or Java code for the UDF.

2 If you are using Java, place the class or classes for the UDF in an archive file (JAR or ZIP)
and call the SQLJ.INSTALL_JAR external stored procedure to register the archive file with
the database.

3 Use CREATE FUNCTION or REPLACE FUNCTION to create a database object for the
UDF.

4 Use GRANT to grant privileges to users who are authorized to use the UDF.

5 Call the function.

Related Topics

User-Defined Methods

A User-Defined Method (UDM) is a special kind of UDF that is associated with a UDT. The
term method and the acronym UDM are interchangeable.

Teradata Database supports two types of UDMs:

• Instance

• Constructor

Instance Methods

An instance method operates on a specific instance of a distinct or structured UDT. For
example, an instance method named area might calculate and return the area of an instance of
a structured UDT named circle that contains attributes x, y, and radius.

Instance methods can also provide transform, ordering, and cast functionality for a distinct or
structured UDT. Teradata Database uses this functionality during certain operations involving
the UDT.

For more information on … See …

writing, testing, and debugging source code for an
external UDF

SQL External Routine Programming.

data definition statements related to UDFs, including
CREATE FUNCTION and REPLACE FUNCTION

SQL Data Definition Language.

invoking a table function in the FROM clause of a
SELECT statement

SQL Data Manipulation Language.

archiving and restoring UDFs Teradata Archive/Recovery Utility Reference.

Chapter 7: Database Objects, Databases, and Users
User-Defined Types

76 Introduction to Teradata

Constructor Methods

A constructor method initializes an instance of a structured UDT.

A structured UDT can have more than one constructor method, each one providing different
initialization options.

User-Defined Types

SQL provides a set of predefined data types, such as INTEGER and VARCHAR, that you can
use to store the data that your application uses, but they might not satisfy all of the
requirements you have to model your data.

User-defined types (UDTs) allow you to extend SQL by creating your own data types and then
using them like predefined data types.

UDT Types

Teradata Database supports distinct and structured UDTs.

Distinct and structured UDTs can define methods that operate on the UDT. For example, a
distinct UDT named euro can define a method that converts the value to a US dollar amount.
Similarly, a structured UDT named circle can define a method that computes the area of the
circle using the radius attribute.

Teradata Database also supports a form of structured UDT called dynamic UDT. Instead of
using a CREATE TYPE statement to define the UDT, like you use to define a distinct or
structured type, you use the NEW VARIANT_TYPE expression to construct an instance of a
dynamic UDT and define the attributes of the UDT at run time.

Unlike distinct and structured UDTs, which can appear almost anywhere that you can specify
predefined types, you can only specify a dynamic UDT as the data type of (up to eight) input
parameters to external UDFs. The benefit of dynamic UDTs is that they significantly increase
the number of input arguments that you can pass in to external UDFs.

UDT Type Description Example

Distinct A UDT that is based on a single predefined
data type, such as INTEGER or
VARCHAR.

A distinct UDT named euro that is
based on a DECIMAL(8,2) data type
can store monetary data.

Structured A UDT that is a collection of one or more
fields called attributes, each of which is
defined as a predefined data type or other
UDT (which allows nesting).

A structured UDT named circle can
consist of x-coordinate, y-coordinate,
and radius attributes.

Chapter 7: Database Objects, Databases, and Users
Databases and Users

Introduction to Teradata 77

Databases and Users

While Teradata Database is a collection of related tables, views, stored procedures, macros,
and so on, it also contains databases and users.

A database and a user are almost identical in Teradata Database. The major difference is that a
user can log on to the system whereas the database cannot.

Creating Databases and Users

When Teradata Database is first installed on a server, one user exists on the system, that is,
User DBC exists. User DBC owns all other databases and users in the system, and initially owns
all the space in the entire system.

When Teradata Database is first installed on a server, User DBC is created. User DBC owns
(with some exceptions):

• All free space on the system

• All databases and users created after installation

The database administrator manages this user and assigns space from User DBC to all other
objects (or database and users).

To protect the security of system tables within Teradata Database, the database administrator
typically creates User System Administrator from User DBC. The usual procedure is to assign
all database disk space that system tables do not require to User System Administrator.

The database administrator then uses this user as a resource from which to allocate space to
other databases and users of the system.

For information on how to create databases and users, see Database Administration.

Example: Creating a Finance and Administration Database

Consider the following example: the database administrator needs to create a Finance and
Administration (F&A) department database with User Jones as a supervisory user, that is, as
database administrator within the F&A department.

The database administrator first creates F&A Database and then allocates space from it to User
Jones to act as the F&A database administrator. The database administrator also allocates space
from F&A to Jones for his personal use and for creating a Personnel Database, as well as other
databases and other user space allocations. The following figure illustrates the hierarchy
implicit in this relationship.

Chapter 7: Database Objects, Databases, and Users
Databases and Users

78 Introduction to Teradata

F&A Database owns Personnel Database and all the other department databases.

F&A Database also owns User Jones and all other users within the department.

Because User DBC ultimately owns all databases and users, it is the final owner of all the
databases and user space belonging to the organization.

This hierarchical ownership structure provides an owner of a database or user space with
complete control over the security of owned data. An owner can archive the database or
control access to it by granting or revoking privileges on it.

Note: There can only one immediate owner of a database or user.

1091A004

User DBC

System

Administrator

 User

Other

Department

Databases

F & A

Database

Other Users and

Databases for

the Department

User

Jones

Personnel

Database

• • •

• • •

Chapter 7: Database Objects, Databases, and Users
For More Information

Introduction to Teradata 79

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database books.

If you want to learn more about… See…

Tables • SQL Data Definition Language

• SQL Data Manipulation Language

Queue tables • SQL Data Definition Language

• SQL Data Manipulation Language

Views • SQL Data Definition Language

• Data Dictionary

SQL stored procedures • SQL Data Definition Language

• SQL Stored Procedures and Embedded SQL

SQL external stored procedures • SQL Data Definition Language

• SQL Stored Procedures and Embedded SQL

Macros SQL Data Definition Language

Triggers SQL Data Definition Language

User-Defined Functions • SQL Data Definition Language

• SQL External Routine Programming

User-Defined Methods • SQL Data Definition Language

• SQL External Routine Programming

User-Defined Types • SQL Data Definition Language

• SQL External Routine Programming

Databases and Users Database Administration

Chapter 7: Database Objects, Databases, and Users
For More Information

80 Introduction to Teradata

Introduction to Teradata 81

CHAPTER 8 SQL

SQL is the American National Standards Institute (ANSI) and International Organization for
Standardization (ISO) language for relational database management. All application
programming facilities ultimately make queries against Teradata Database using SQL.

Teradata SQL

Teradata Database conforms closely to the ANSI/ISO SQL standard while also supporting
unique extensions that enable users to take full advantage of the efficiency of Teradata
parallelism. This comprehensive language is called Teradata SQL. You can run transactions in
either Teradata or ANSI mode. For more information about Teradata SQL and how Teradata
implements ANSI/ISO SQL, see SQL Fundamentals.

Using SQL

SQL has the advantage of being the most commonly used language for relational database
management systems. Because of this, both the data structures in Teradata Database and the
commands for manipulating those structures are controlled using SQL. In addition, all
applications, including those written in a client language with embedded SQL, macros, and ad
hoc SQL queries, are written and executed using the same set of instructions and syntax.

Other database management systems use different languages for data definition and data
manipulation and may not permit ad-hoc queries of the database. Teradata Database lets you
use one language to define, query, and update your data.

Types of SQL Statements

The SQL language allows you, using SQL statements, to define database objects, to define user
access to those objects, and to manipulate the data stored.

These functions form the principal functional families of SQL statements:

• Data Definition Language (DDL) statements

• Data Control Language (DCL) statements

• Data Manipulation Language (DML) statements

Chapter 8: SQL
Types of SQL Statements

82 Introduction to Teradata

In addition, SQL provides HELP and SHOW statements that provide help about database
object definitions, sessions and statistics, the EXPLAIN request modifier, SQL statement
syntax, as well as displaying the SQL used to create tables.

The following sections contain information about the functional families of Teradata SQL.

Data Definition Language Statements

You use DDL statements to define the structure and instances of a database. DDL provides
statements for the definition and description of database objects.

The following table lists some basic DDL statements. The list is not exhaustive.

Successful execution of a DDL statement automatically creates, updates, or removes entries in
the Data Dictionary. For information about the contents of the Data Dictionary, see
Chapter 13: “The Data Dictionary.”

Statement Action

CREATE Defines a new database object, such as a database, user, table, view,
trigger, index, macro, stored procedure, user-defined type, user-defined
function, or user-defined macro, depending on the object of the
CREATE request.

DROP Removes a database object, such as a database, user, table, view, trigger,
index, macro, stored procedure, user-defined type, user-defined
function, user-defined method, depending on the object of the DROP
request.

ALTER Changes, for example, a table, column, referential constraint, trigger, or
index.

ALTER PROCEDURE Recompiles an external stored procedure.

MODIFY Changes a database or user definition.

RENAME Changes, for example, the names of tables, triggers, views, stored
procedures, and macros.

REPLACE Replaces, for example, macros, triggers, stored procedures, and views

SET Specifies, for example, time zones, the collation or character set for a
session.

COLLECT Collects optimizer or QCD statistics on, for example, a column, group of
columns, index.

DATABASE Specifies a default database.

COMMENT Inserts or retrieves a text comment for a database object.

Chapter 8: SQL
Types of SQL Statements

Introduction to Teradata 83

Data Control Language Statements

You use DCL statements to grant and revoke access to database objects and change ownership
of those objects from one user or database to another. The results of DCL statement
processing also are recorded in the Data Dictionary.

The following table lists some basic DCL statements. The list is not exhaustive.

Data Manipulation Language Statements

You use DML statements to manipulate and process database values. You can insert new rows
into a table, update one or more values in stored rows, or delete a row.

The following table list some basic DML statements. The list is not exhaustive.

Statement Action

GRANT/REVOKE Controls privileges of the users on an object.

GRANT LOGON/
REVOKE LOGON

Controls logon privileges to a host (client) or host group (if the special
security user is enabled).

GIVE Gives a database object to another database object.

Statement Action

CHECKPOINT Checkpoints a journal.

CHECKPOINT is a statement that defines a recovery point in the
journal that can later be used to restore the table contents to its state at a
point in time. This can be useful if, for example, the table contents
become incorrect due to hardware failure or an operational error.

DELETE Removes a row (or rows) from a table.

ECHO Echoes a string or command to a client.

INSERT Inserts new rows into a table.

For more information about a special case of INSERT, see Atomic Upsert
later in this table.

MERGE Combines both UPDATE and INSERT in a single SQL statement.
Supports primary index operations only, similar to Atomic Upsert but
with fewer constraints.

These statements:

• ABORT

• ROLLBACK

• COMMIT

• BEGIN
TRANSACTION

• END
TRANSACTION

Allows you to manage transactions.

Chapter 8: SQL
SQL Statement Syntax

84 Introduction to Teradata

SQL Statement Syntax

A typical SQL request consists of the following:

• A statement keyword

• One or more column names

• A database name

• A table name

• One or more optional clauses introduced by keywords

For example, in the following single-statement request, the statement keyword is SELECT:

SELECT deptno, name, salary
FROM personnel.employee
WHERE deptno IN(100, 500)
ORDER BY deptno, name
;

The select list and FROM clause for this statement is made up of the following names:

• Deptno, name, and salary (the column names)

• Personnel (the database name)

• Employee (the table name)

The search condition, or WHERE clause, is introduced by the keyword WHERE, as in:

WHERE deptno IN(100, 500)

The sort ordering, or ORDER BY clause, is introduced by the keywords ORDER BY, as in:

ORDER BY deptno, name

SELECT Returns specific row data in the form of a result table.

UPDATE Modifies data in one or more rows of a table.

For more information about a special case of UPDATE, see Atomic
Upsert later in this table.

Atomic Upsert

The upsert form of the UPDATE DML statement is a Teradata Database
extension of the ANSI/ISO SQL standard designed to enhance the
performance of TPump utility by allowing the statement to support
atomic upsert. For more information about how TPump operates, see
“Teradata Parallel Data Pump” on page 169.

This feature allows Teradata TPump and all other CLIv2-, ODBC-, and
JDBC-based applications to perform single-row upsert operations using
an optimally efficient single-pass strategy. This single-pass upsert is
called atomic to emphasize that its component UPDATE and INSERT
SQL statements are grouped together and performed as a single, or
atomic, SQL statement.

Statement Action

Chapter 8: SQL
Statement Execution

Introduction to Teradata 85

Statement Execution

Teradata Database offers the following ways to invoke an executable statement:

• Interactively from a terminal

• Embedded within an application program

• Dynamically created within an embedded application

• Embedded within a stored procedure or external stored procedure

• Dynamically created within an SQL stored procedure

• Via a trigger

• Embedded within a macro

Statement Punctuation

You can use punctuation to separate or identify the parts of an SQL statement.

To include an apostrophe or show possession in a title, double the apostrophes.

This syntax
element… Named… Performs this function in a SQL statement…

. period separates database names from table names and table names
from a particular column name (for example,
personnel.employee.deptno).

, comma separates and distinguishes column names in the select list,
or column names or parameters in an optional clause.

' apostrophe delimits the boundaries of character string constants.

(

)

left and right
parentheses

groups expressions or defines the limits of a phrase.

; semicolon separates statements in multi-statement requests and
terminates requests submitted via certain utilities such as
BTEQ.

" double
quotation
marks

identifies user names that might otherwise conflict with
SQL reserved words or that would not be valid names in the
absence of the double quotation marks.

: colon prefixes reference parameters or client system variables.

Chapter 8: SQL
The SELECT Statement

86 Introduction to Teradata

The SELECT Statement

SELECT is probably the most frequently used SQL statement. It specifies the table columns
from which to obtain the data you want, the corresponding database (if different from the
current default database), and the table or tables that you need to reference within that
database.

The SELECT statement further specifies how, in what format, and in what order the system
returns the set of result data.

You can use the following options, lists, and clauses with the SELECT statement to request
data from Teradata Database. The list is not exhaustive.

• DISTINCT option

• FROM clause

• WHERE clause, including subqueries

• GROUP BY clause

• HAVING clause

• QUALIFY clause

• ORDER BY clause

• CASESPECIFIC option

• International sort orders

• WITH clause

• Query expressions and set operators

Another variation is the SELECT INTO statement, which is used in embedded SQL and stored
procedures. This statement selects at most one row from a table and assigns the values in that
row to host variables in embedded SQL or to local variables or parameters in Teradata
Database stored procedures.

SELECT Statement and Set Operators

The SELECT statement can use the set operators UNION, INTERSECT, and MINUS/
EXCEPT. These set operators allow you to manipulate the answers to two or more queries by
combining the results of each query into a single result set.

You can use the set operators within, for example, the following operations:

• View definitions

• Derived tables

• Subqueries

SELECT Statement and Joins

A SELECT statement can reference data in two or more tables and the relational join combines
the data from the referenced tables.

Chapter 8: SQL
SQL Data Types

Introduction to Teradata 87

In this way, the SELECT statement defines a join of specified tables to retrieve data more
efficiently than without defining a join of tables.

You can specify both inner joins and outer joins:

• An inner join selects data from two or more tables that meet specific join conditions. Each
source must be named and the join condition, that is the common relationship among the
tables to be joined, can be on an ON clause or a WHERE clause.

• The outer join is an extension of the inner join that includes rows that qualify for a simple
inner join, as well as a specified set of rows that do not match the join conditions expressed
by the query.

SQL Data Types

Data Types

Every data value belongs to an SQL data type. For example, when you define a column in a
CREATE TABLE statement, you must specify the data type of the column. Teradata Database
supports the following categories of data types. For a complete list of supported data types
and detailed information about each data type, see SQL Data Types and Literals.

Data Type
Category Description Data Type Examples

ARRAY/
VARRAY

An ARRAY data type is used for storing and accessing
multidimensional data. The ARRAY data type can store many values
of the same specific data type in a sequential or matrix-like format.

• One-dimensional (1-D)
ARRAY

• Multidimensional (n-D)
ARRAY

Byte Byte data types store raw data as logical bit streams. These data types
are stored in the client system format and are not translated by
Teradata Database. The data is transmitted directly from the
memory of the client system.

• BYTE

• VARBYTE

• BLOB (Binary Large Object)

Character Character data types represent characters that belong to a given
character set. These data types represent character data.

• CHAR

• VARCHAR

• CLOB (Character Large
Object)

DateTime DateTime data types represent date, time, and timestamp values. • DATE

• TIME

• TIMESTAMP

• TIME WITH TIME ZONE

• TIMESTAMP WITH TIME
ZONE

Geospatial Geospatial data types represent geographic information and
provides a way for applications that manage, analyze, and display
geographic information to interface with Teradata Database.

• ST_Geometry

• MBR

Chapter 8: SQL
SQL Data Types

88 Introduction to Teradata

Interval Interval data types represent a span of time. For example, an interval
value can represent a time span that includes a number of years,
months, days, hours, minutes, or seconds.

• INTERVAL YEAR

• INTERVAL YEAR TO
MONTH

• INTERVAL MONTH

• INTERVAL DAY

• INTERVAL DAY TO HOUR

• INTERVAL DAY TO
MINUTE

• INTERVAL DAY TO
SECOND

• INTERVAL HOUR

• INTERVAL HOUR TO
MINUTE

• INTERVAL HOUR TO
SECOND

• INTERVAL MINUTE

• INTERVAL MINUTE TO
SECOND

• INTERVAL SECOND

JSON The JSON data type represents data that is in JSON (JavaScript
Object Notation) format.

JSON

Numeric Numeric data types represent a numeric value that is an exact
numeric number (integer or decimal) or an approximate numeric
number (floating point).

• BYTEINT

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL/NUMERIC

• FLOAT/REAL/DOUBLE
PRECISION

• NUMBER

Parameter Parameter data types are data types that can be used only with input
or result parameters in a function, method, stored procedure, or
external stored procedure.

• TD_ANYTYPE

• VARIANT_TYPE

Period A Period data type represents a time period, where a period is a set
of contiguous time granules that extends from a beginning bound
up to but not including an ending bound.

• PERIOD(DATE)

• PERIOD(TIME)

• PERIOD(TIME WITH
TIME ZONE)

• PERIOD(TIMESTAMP)

• PERIOD(TIMESTAMP
WITH TIME ZONE)

UDT UDT (User-Defined Type) data types are custom data types that you
define to model the structure and behavior of the data used by your
applications.

• Distinct

• Structured

Data Type
Category Description Data Type Examples

Chapter 8: SQL
SQL Data Types

Introduction to Teradata 89

Related Topics

For detailed information on data types and the related functions, procedures, methods, and
operators that operate on these types, see the following books:

• SQL Data Types and Literals

• SQL Geospatial Types

• Teradata JSON

• Teradata XML

• SQL Functions, Operators, Expressions, and Predicates

Data Type Phrase

A data type phrase does the following:

• Determines how data is stored on Teradata Database.

• Specifies how data is presented to the user.

Data Type Attributes

You can define the attributes of a data value.

Core data type attributes that Teradata Database supports include the following.

XML The XML data type represents XML content. The data is stored in a
compact binary form that preserves the information set of the XML
document, including the hierarchy information and type
information derived from XML validation.

XML

Data Type
Category Description Data Type Examples

Data Type Attribute Description

NOT NULL Specifies that the fields of a column must contain a value; they
cannot be null.

UPPERCASE Specifies that character data for a column is stored as uppercase.

[NOT] CASESPECIFIC Specifies case for character data comparisons and collations.

FORMAT Controls the display of expressions, column data, and conversions
between data types.

TITLE Defines a heading for displayed or printed results that is different
from the column name, which is used by default.

AS Assigns a temporary name to an expression.

NAMED Assigns a temporary name to an expression.

NAMED is a Teradata extension to the ANSI standard. For ANSI
compliance, use AS instead of NAMED.

Chapter 8: SQL
Teradata Database Recursive Query

90 Introduction to Teradata

For a complete list of supported data type attributes and detailed information about each
attribute, see SQL Data Types and Literals.

Teradata Database Recursive Query

A recursive query is a named query expression that references itself in its definition. The self-
referencing capability gives the user a simple way to search a table using iterative self-join and
set operations.

The recursive query feature benefits the user by reducing the complexity of the queries and
allowing a certain class of queries to execute more efficiently.

Recursive queries are implemented using the WITH RECURSIVE clause in the statement and
the RECURSIVE clause in the CREATE VIEW statement.

SQL Functions

The control statements of SQL stored procedures make SQL a computationally complete (that
is, procedural) language. You can write your own UDFs and external stored procedures in C,
C++, or Java to define what you want.

Procedural languages contain functions that perform complex operations. The usual SQL
statements do not support many functions. However, to reduce the reliance on ancillary
application code, SQL does support the following standard functions:

• Scalar

• Aggregate

• Ordered analytical

In addition, you can create scalar, aggregate, and table functions to meet specific needs.

DEFAULT Specifies that a user-defined default value is to be inserted in the
field when a value is not specified for a column in an INSERT
statement.

WITH DEFAULT Specifies that a system-defined default value is to be inserted in
the field when a value is not specified for a column in an INSERT
statement.

WITH TIME ZONE Used with the TIME or TIMESTAMP data type to specify a TIME
or TIMESTAMP value with a displacement from UTC as defined
for the system.

CHARACTER SET Specifies the server character set for a character column.

Data Type Attribute Description

Chapter 8: SQL
SQL Functions

Introduction to Teradata 91

Scalar Functions

A scalar function works on input parameters to create a result.

When it is part of an expression, the function is invoked as needed whenever expressions are
evaluated for an SQL statement. When a function completes, its result is used by the
expression in which the function was referenced.

For example, the following request returns the current date plus 13 years.

SELECT ADD_MONTHS (CURRENT_DATE, 12*13);

The following request returns the date 6 months ago.

SELECT ADD_MONTHS (CURRENT_DATE, -6);

Aggregate Functions

Sometimes the information you want can only be derived from data in a set of rows, instead of
individual rows.

Aggregate functions produce results from sets of relational data that you have grouped
(optionally) using a GROUP BY or ORDER BY clause. Aggregate functions process each set
and produce one result for each set.

The following table lists a few examples of aggregate functions.

Ordered Analytical Functions

Ordered analytical functions work over a range of data for a particular set of rows in some
specific order to produce a result for each row in the set.

Like aggregate functions, ordered analytical functions are called for each item in a set. But
unlike an aggregate function, an ordered analytical function produces a result for each detail
item.

Ordered analytical functions allow you to perform sophisticated data mining on the
information in your databases to get the answers to questions that SQL otherwise cannot
provide.

The following table lists two examples of ordered analytical functions.

The function… Returns the…

AVG arithmetic average of the values in a specified
column.

COUNT number of qualified rows.

MAX maximum column value for the specified
column.

MIN minimum column value for the specified
column.

SUM arithmetic sum of a specified column.

Chapter 8: SQL
Cursors

92 Introduction to Teradata

Cursors

Traditional application development languages cannot deal with result tables without some
kind of intermediary mechanism because SQL is a set-oriented language. The intermediary
mechanism is the cursor.

A cursor is a pointer that the application program uses to move through a result table.

You declare a cursor for a SELECT request, and then open the named cursor. The act of
opening the cursor executes the SQL request.

You use the FETCH... INTO... statement to individually fetch and write the rows into host
variables. The application can then use the host variables to do computations.

Teradata Preprocessor2 uses cursors to mark or tag the first row accessed by an SQL query.
Preprocessor2 then increments the cursor as needed.

SQL stored procedures use:

• Cursors to fetch one result row at a time and then to execute SQL and SQL control
statements as required for each row. Local variables or parameters from the stored
procedure can be used for computations.

• Result set cursors to return the result of a SELECT statement executed in the stored
procedure to the caller of the stored procedure or the client application.

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database books.

The following function… Returns the…

AVG arithmetic average of all values in the
specified expression for each row in the
group. The OVER() phrase must be specified
to make AVG an ordered analytical function.

RANK ordered ranking of rows based on the value
of the column being ranked.

If you want to learn more about… See…

SQL SQL Fundamentals

Types of SQL Statements • SQL Data Control Language

• SQL Data Definition Language

• SQL Data Manipulation Language

Chapter 8: SQL
For More Information

Introduction to Teradata 93

The SELECT Statement • SQL Data Manipulation Language

• SQL Functions, Operators, Expressions, and
Predicates

• SQL Fundamentals

SQL Data Types SQL Data Types and Literals

Teradata Database Recursive Query SQL Fundamentals

SQL Functions SQL Functions, Operators, Expressions, and
Predicates

Cursors • SQL Data Definition Language

• SQL Stored Procedures and Embedded SQL

Session Modes • SQL Fundamentals

• SQL Request and Transaction Processing

If you want to learn more about… See…

Chapter 8: SQL
For More Information

94 Introduction to Teradata

Introduction to Teradata 95

CHAPTER 9 SQL Application Development

This chapter describes the tools used to develop applications for Teradata Database and the
interfaces used to establish communications between the applications and Teradata Database.

Client Applications

Client applications can use the following APIs to communicate with Teradata Database:

• .NET Data Provider for Teradata

• Java Database Connectivity (JDBC)

• Open database Connectivity (ODBC)

For information on these APIs, see “Workstation Attachment Methods” on page 59.

Embedded SQL Applications

When you write applications using embedded SQL, you insert SQL requests into your
application program, which must be written in one of the supported programming languages
shown in “Supported Languages and Platforms” on page 96.

Because third-generation application development languages do not have facilities for dealing
with results sets, embedded SQL contains extensions to executable SQL that permit
declarations.

Embedded SQL declarations include:

• Code to encapsulate the SQL from the application language

• Cursor definition and manipulation

A cursor is a pointer device you use to read through a results table one record/row at a time.
For more information about cursors, see “Cursors” on page 92.

Using Embedded SQL

The client application languages that support embedded SQL are all compiled languages. SQL
is not defined for any of them. For this reason, you must precompile your embedded SQL
code to translate the SQL into native code before you can compile the source using a native
compiler.

The precompiler tool is called Preprocessor2 (PP2), and you use it to:

• Read your application source code to look for the defined SQL code fragments.

Chapter 9: SQL Application Development
Macros as SQL Applications

96 Introduction to Teradata

• Interpret the intent of the code after it isolates all the SQL code in the application and
translates it into Call-Level Interface (CLI) calls.

• Comment out all the SQL source.

The output of the precompiler is native language source code with CLI calls substituted for the
SQL source. After the precompiler generates the output, you can process the converted source
code with the native language compiler. For information about Call-Level Interface
communications interface, see Chapter 6: “Client Communication with Teradata Database.”

Supported Languages and Platforms

Preprocessor2 supports the following application development languages on the specified
platforms.

Macros as SQL Applications

Teradata Database macros are SQL statements that the server stores and executes. Macros
provide an easy way to execute frequently used SQL operations. Macros are particularly useful
for enforcing data integrity rules, providing data security, and improving performance.

SQL Used to Create a Macro

You use the CREATE MACRO statement to create Teradata Database macros.

For example, suppose you want to define a macro for adding new employees to the Employee
table and incrementing the EmpCount field in the Department table. The CREATE MACRO
statement looks like this:

CREATE MACRO NewEmp (name VARCHAR(12),
number INTEGER NOT NULL,
dept INTEGER DEFAULT 100

)
AS (INSERT INTO Employee (Name,

EmpNo,
DeptNo

)
VALUES (name,

number,
dept

Application Development Language Platform

C • IBM mainframe clients

• UNIX® operating system clients and some
other workstation clients

COBOL • IBM mainframe clients

• Some workstation clients

PL/I IBM mainframes

Chapter 9: SQL Application Development
Macros as SQL Applications

Introduction to Teradata 97

)
;
UPDATE Department
SET EmpCount=EmpCount+1
WHERE DeptNo=dept
;

)
;

This macro defines parameters that users must fill in each time they execute the macro. A
leading colon (:) indicates a reference to a parameter within the macro.

Macro Usage

The following example shows how to use the NewEmp macro to insert data into the Employee
and Department tables.

The information to be inserted is the name, employee number, and department number for
employee H. Goldsmith. The EXECUTE macro statement looks like this:

EXECUTE NewEmp (‘Goldsmith H’, 10015, 600);

SQL Used to Modify a Macro

The following example shows how to modify a macro. Suppose you want to change the
NewEmp macro so that the default department number is 300 instead of 100. The REPLACE
MACRO statement looks like this:

REPLACE MACRO NewEmp (name VARCHAR(12),
 number INTEGER NOT NULL,
 dept INTEGER DEFAULT 300)

AS (INSERT INTO Employee (Name,
EmpNo,
DeptNo)

VALUES (name,
number,
dept)

;
UPDATE Department
SET EmpCount=EmpCount+1
WHERE DeptNo=dept
;

)
;

SQL Used to Delete a Macro

The example that follows shows how to delete a macro. Suppose you want to drop the
NewEmp macro from the database. The DROP MACRO statement looks like this:

DROP MACRO NewEmp;

Chapter 9: SQL Application Development
SQL Stored Procedures as SQL Applications

98 Introduction to Teradata

SQL Stored Procedures as SQL Applications

SQL stored procedures are database applications created by combining SQL control
statements with other SQL elements and condition handlers. They provide a procedural
interface to Teradata Database and many of the same benefits as embedded SQL.

SQL stored procedures conform to the ANSI/ISO SQL standard with some exceptions.

SQL Used to Create Stored Procedures

Teradata SQL supports creating, modifying, dropping, renaming, and controlling privileges of
stored procedures through DDL and DCL statements.

You can create or replace an external stored procedure through the COMPILE command in
Basic Teradata Query (BTEQ), BTEQ for Microsoft Windows systems (BTEQWIN), Teradata
Studio, and SQL Assistant. You must specify a source file as input for the COMPILE
command.

Stored procedures do not need to be compiled, but external stored procedures do.

You can also create or modify a stored procedures using the CREATE PROCEDURE or
REPLACE PROCEDURE statement from CLIv2, ODBC, and JDBC applications.

SQL Stored Procedure Example

Assume you want to create an SQL stored procedure named NewProc that you can use to add
new employees to the Employee table and retrieve the department name of the department to
which the employee belongs. You can also report an error, in case the row that you are trying
to insert already exists, and handle that error condition.

The following SQL stored procedure definition includes nested, labeled compound
statements. The compound statement labeled L3 is nested within the outer compound
statement L1. Note that the compound statement labeled L2 is the handler action clause of the
condition handler.

This SQL stored procedure defines parameters that must be filled in each time it is called
(executed).

CREATE PROCEDURE NewProc (IN name CHAR(12),
IN num INTEGER,
IN dept INTEGER,
OUT dname CHAR(10),
INOUT p1 VARCHAR(30))

L1: BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE value '23505'
L2: BEGIN

SET p1='Duplicate Row'
;

END L2;
L3: BEGIN
INSERT INTO Employee (EmpName, EmpNo, DeptNo)
VALUES (name, num, dept)

;

Chapter 9: SQL Application Development
SQL Stored Procedures as SQL Applications

Introduction to Teradata 99

SELECT DeptName
INTO dname FROM Department
WHERE DeptNo = dept;
IF SQLCODE <> 0 THEN LEAVE L3;
...
END L3

 ;
END L1
;

SQL Used to Execute a Stored Procedure

After compiling an external stored procedure, procedures are stored as objects in Teradata
Database. You can execute stored procedures from Teradata Database client products using
the SQL CALL statement. Arguments for all input (IN or INOUT) parameters of the stored
procedure must be submitted with the CALL statement.

BTEQ and other Teradata Database client products support stored procedure execution and
DDL. These include:

• JDBC

• ODBC

• CLIv2

• PP2

• Teradata SQL Assistant

• Teradata Studio

• BTEQWIN (BTEQ for Windows)

DDL Statements with Stored Procedures

You can use the following DDL statements with stored procedures. The list is not exhaustive.

Use This Statement… To…

CREATE PROCEDURE direct the stored procedure compiler to create a procedure from the
SQL statements in the remainder of the statement text.

ALTER PROCEDURE direct the stored procedure compiler to recompile a stored procedure
created in an earlier version of Teradata Database without executing
SHOW PROCEDURE and REPLACE PROCEDURE statements.

DROP PROCEDURE drop a stored procedure.

RENAME PROCEDURE rename a procedure.

REPLACE PROCEDURE direct the stored procedure compiler to replace the definition of an
existing stored procedure. If the specified stored procedure does not
exist, create a new procedure by that name from the SQL statements
in the remainder of the source text.

Chapter 9: SQL Application Development
The EXPLAIN Request Modifier

100 Introduction to Teradata

The EXPLAIN Request Modifier

Teradata SQL supplies a very powerful EXPLAIN request modifier that allows you to see the
execution plan of a query.

The EXPLAIN request modifier not only explains how a request will be processed, but
provides an estimate of the number of rows involved as well as the performance impact of the
request. Teradata Database supports EXPLAIN request modifiers with detailed Optimizer
information including, for example, cost estimates for Insert, Update, Upsert, Merge, and
Delete steps, as well as spool size estimates.

How EXPLAIN Works

The EXPLAIN request modifier that precedes any SQL request causes Teradata Database to
display the execution plan for that request. The request itself is not submitted for execution.

When you perform an EXPLAIN against any SQL request, that request is parsed and
optimized. The access and join plans generated by the Optimizer are returned in the form of a
text file that explains the (possibly parallel) steps used in the execution of the request. Also
included is the relative cost required to complete the request given the statistics with which the
Optimizer had to work. If the statistics are not reasonably accurate, the cost estimate may not
be accurate.

Benefits of Using EXPLAIN

EXPLAIN helps you to evaluate complex queries and to develop alternative, more efficient,
processing strategies. You may be able to get a better plan by collecting more statistics on more
columns, or by defining additional indexes. Your knowledge of the actual demographics
information may allow you to identify row count estimates that seem badly wrong, and help
to pinpoint areas where additional statistics would be helpful.

HELP PROCEDURE …
ATTRIBUTES

view all the parameters and parameter attributes of a procedure, or
the creation time attributes of a procedure.

HELP ‘SPL’ display a list of all DDL and control statements associated with stored
procedures.

HELP ‘SPL’
command_name

display help about the command you have named.

SHOW PROCEDURE view the current definition (source text) of a procedure. The text is
returned in the same format as defined by the creator.

Use This Statement… To…

Chapter 9: SQL Application Development
The EXPLAIN Request Modifier

Introduction to Teradata 101

Simple EXPLAIN Example

The EXPLAIN example shown below results from joining tables with the following table
definitions:

CREATE TABLE customer
(c_custkey INTEGER,
c_name CHAR(26),
c_address VARCHAR(41),
c_nationkey INTEGER,
c_phone CHAR(16),
c_acctbal DECIMAL(13,2),
c_mktsegment CHAR(21),
c_comment VARCHAR(127))
UNIQUE PRIMARY INDEX(c_custkey);

 *** Table has been created.
 *** Total elapsed time was 1 second.

+---------+---------+---------+---------+---------+---------+---------+-

CREATE TABLE orders
(o_orderkey INTEGER NOT NULL,
o_custkey INTEGER,
o_orderstatus CHAR(1),
o_totalprice DECIMAL(13,2) NOT NULL,
o_orderdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
o_orderpriority CHAR(21),
o_clerk CHAR(16),
o_shippriority INTEGER,
o_commment VARCHAR(79))
UNIQUE PRIMARY INDEX(o_orderkey);

 *** Table has been created.
 *** Total elapsed time was 1 second.

+---------+---------+---------+---------+---------+---------+---------+-

CREATE TABLE lineitem
(l_orderkey INTEGER NOT NULL,
l_partkey INTEGER NOT NULL,
l_suppkey INTEGER,
l_linenumber INTEGER,
l_quantity INTEGER NOT NULL,
l_extendedprice DECIMAL(13,2) NOT NULL,
l_discount DECIMAL(13,2),
l_tax DECIMAL(13,2),
l_returnflag CHAR(1),
l_linestatus CHAR(1),
l_shipdate DATE FORMAT 'yyyy-mm-dd',
l_commitdate DATE FORMAT 'yyyy-mm-dd',
l_receiptdate DATE FORMAT 'yyyy-mm-dd',
l_shipinstruct VARCHAR(25),
l_shipmode VARCHAR(10),
l_comment VARCHAR(44))
PRIMARY INDEX(l_orderkey);

 *** Table has been created.
 *** Total elapsed time was 1 second.

Chapter 9: SQL Application Development
The EXPLAIN Request Modifier

102 Introduction to Teradata

+---------+---------+---------+---------+---------+---------+---------+-

collect stats orders index (o_orderkey) values
(0,0,1,10,1,1000000,1000000)
;

 *** Update completed. One row changed.
 *** Total elapsed time was 1 second.

+---------+---------+---------+---------+---------+---------+---------+-
collect stats lineitem index (l_orderkey) values
(0,0,1,10,1,500000,1000000
);

 *** Update completed. One row changed.
 *** Total elapsed time was 1 second.

The following statement defines a join index on these tables.

CREATE JOIN INDEX order_join_line AS
SELECT (l_orderkey, o_orderdate, o_custkey, o_totalprice),
(l_partkey, l_quantity, l_extendedprice, l_shipdate)
FROM lineitem
LEFT JOIN orders ON l_orderkey = o_orderkey
ORDER BY o_orderdate
PRIMARY INDEX (l_orderkey);

 *** Index has been created.
 *** Total elapsed time was 1 second

The following EXPLAIN shows that the Optimizer used the newly created join index,
order_join_line.

EXPLAIN
SELECT o_orderdate, o_custkey, l_partkey, l_quantity,
l_extendedprice
FROM lineitem , orders
WHERE l_orderkey = o_orderkey;

 *** Help information returned. 14 rows.
 *** Total elapsed time was 1 second.

Explanation
--
 1) First, we lock a distinct EXPLAINSAMPLE."pseudo table" for read on
 a RowHash to prevent global deadlock for
 EXPLAINSAMPLE.ORDER_JOIN_LINE.
 2) Next, we lock EXPLAINSAMPLE.ORDER_JOIN_LINE for read.
 3) We do an all-AMPs RETRIEVE step from EXPLAINSAMPLE.ORDER_JOIN_LINE
 by way of an all-rows scan with a condition of ("NOT
 (EXPLAINSAMPLE.ORDER_JOIN_LINE.o_orderdate IS NULL)") into Spool 1
 (group_amps), which is built locally on the AMPs. The size of
 Spool 1 is estimated with high confidence to be 36 rows. The
 estimated time for this step is 0.01 seconds.
 4) Finally, we send out an END TRANSACTION step to all AMPs involved
 in processing the request.
 -> The contents of Spool 1 are sent back to the user as the result of
 statement 1. The total estimated time is 0.01 seconds.

Chapter 9: SQL Application Development
Third-Party Development

Introduction to Teradata 103

The following statement drops the join index named order_join_line.

drop join index order_join_line;

 *** Index has been dropped.
 *** Total elapsed time was 1 second.

Third-Party Development

Teradata Database supports many third-party software products. The two general
components of supported products include those of the transparency series and the native
interface products.

Compatible Third-Party Software Products

Many third-party, interactive query products operate in conjunction with Teradata Database,
permitting queries formulated in a native query language to access Teradata Database.

The list of supported third-party products changes frequently. For a current list, contact your
Teradata sales office.

Workload Management Application Programming Interface

Workload management API consists of interfaces to PM/APIs and open APIs. You can use
these interfaces to:

• Monitor system and session-level activities.

• Monitor Teradata Active System Management (ASM) activity.

• Track system usage and manage task priorities.

• Retrieve data from the Priority Scheduler.

For more information about the APIs, see Application Programming Reference.

PM/API

PM/APIs provide access to PMPC routines resident in Teradata Database. The PMPC
subsystem is available through a logon partition called MONITOR, using a specialized PM/
API subset of CLIv2 or Teradata JDBC Driver.

PM/APIs have the following features:

• CLIv2 or Teradata JDBC Driver data is acquired in near real time, with less overhead and
minimal possibility of being blocked. These capabilities allow frequent in-process
performance analysis.

• CLIv2 request saves the raw data in an in-memory buffer where a client application
program can easily retrieve the data for real-time analysis or importing into custom
reports. The Teradata JDBC Driver returns the data as a JDBC ResultSet where a client
application program can easily retrieve the data.

Chapter 9: SQL Application Development
For More Information

104 Introduction to Teradata

• CLIv2 or Teradata JDBC Driver request provides access to data that the resource usage
does not. For example, session-level resource usage data, and data on application locks and
which application is being blocked.

Using PM/APIs may not be the right choice for all performance monitoring requirements.
Standard performance monitoring tools and reports, such as resource usage reports, may be
sufficient.

For details, see Application Programming Reference.

Open API

The workload management open API provides an SQL interface to the PMPC subsystem and
Teradata Database system through user-defined functions, embedded services functions, and
external stored procedures.

Most of the SQL interfaces available to the PMPC subsystem provide similar functionality to
the CLIv2 or Teradata JDBC Driver requests.

Note: Most open APIs do not follow transaction rules. If a transaction calls a UDF or external
stored procedure and the transaction rolls back, the action of the UDF or external stored
procedure is not rolled back. However, the external stored procedures that update the TDWM
database must follow the transaction rules. If a transaction calls one of these external stored

procedures and the transaction is aborted, the update will be rolled back.

For more information on the SQL interfaces described in this section and the differences
between the open API and PM/API, see Application Programming Reference.

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

IF you want to learn more about… See…

SQL Applications, including:

• Client Applications

• Embedded SQL Applications

• SQL Stored Procedures and Embedded SQL

• Teradata Preprocessor2 for Embedded SQL
Programmer Guide

Macros as SQL Applications • SQL Fundamentals

• SQL Data Definition Language

• SQL Data Manipulation Language

Teradata Database SQL stored procedures as
SQL applications

• SQL Fundamentals

• SQL Stored Procedures and Embedded SQL

The EXPLAIN Request Modifier • SQL Data Manipulation Language

• SQL Request and Transaction Processing

Chapter 9: SQL Application Development
For More Information

Introduction to Teradata 105

Third-Party Development, including:

• Workload Management APIs

• Application Programming Reference

IF you want to learn more about… See…

Chapter 9: SQL Application Development
For More Information

106 Introduction to Teradata

Introduction to Teradata 107

CHAPTER 10 Scripting and Language Support

Application developers can write functions and scripts in almost any programming language,
install and execute them inside Teradata Database, and run them in parallel for efficient
analysis of large data sets.

About Scripting Capabilities

Customers can:

• Write scripts in languages such as Ruby, Python, and Perl

• Install the scripts, database server configuration files, or flat files using a Teradata-supplied
external stored procedure

• Use the SCRIPT table operator to execute the scripts on all AMPs

• Use Teradata Database rows as input to the scripts

External stored procedures INSTALL_FILE, REPLACE_FILE, REMOVE_FILE, and
REDISTRIBUTE_FILE manage the user-installed files on all nodes.

Benefits

• Faster prototype creation.

• Enables customers to use the fastest, simplest solution for any task they need to perform.

• Eliminates unnecessary data movement and improves performance.

• Application developers can decide where in the architecture different parts of an
application run.

For More Information

For more information on running scripts in Teradata Database, see SQL Functions, Operators,
Expressions, and Predicates.

About Using R with Teradata Database

Data scientists use statistical models to predict future events based on current and historical
data. R is an open source programming language for statistical modeling and graphics. Users
can write scripts and table operators in R to run inside Teradata Database. Both methods
access data stored in Teradata Database and process the data using R data analysis tools. For

Chapter 10: Scripting and Language Support
About Using R with Teradata Database

108 Introduction to Teradata

more information on R table operators, see SQL External Routine Programming. For more
information on R scripts, see SQL Functions, Operators, Expressions, and Predicates.

Introduction to Teradata 109

CHAPTER 11 Data Distribution and Data Access
Methods

This chapter describes how Teradata Database distributes and organizes data. It discusses data
access methods, data normalization, and referential integrity.

Teradata Database Indexes

An index is a physical mechanism used to store and access the rows of a table. Indexes on
tables in a relational database function much like indexes in books, they speed up information
retrieval.

In general, Teradata Database uses indexes to:

• Distribute data rows.

• Locate data rows.

• Improve performance.

Indexed access is usually more efficient than searching all rows of a table.

• Ensure uniqueness of the index values.

Only one row of a table can have a particular value in the column or columns defined as a
unique index.

Teradata Database supports the following types of indexes:

• Primary

• Partitioned Primary

• Secondary

• Join

• Hash

• Special indexes for referential integrity

These indexes are discussed in the following sections.

Primary Indexes

You can create a table with a Unique Primary Index (UPI), a Non-Unique Primary Index
(NUPI), or No Primary Index (NoPI).

Chapter 11: Data Distribution and Data Access Methods
Teradata Database Indexes

110 Introduction to Teradata

Primary Indexes and Data Distribution

Unique Primary Indexes (UPIs) guarantee uniform distribution of table rows.

Nonunique Primary Indexes (NUPIs) can cause skewed data. While not a guarantor of
uniform row distribution, the degree of uniqueness of the index will determine the degree of
uniformity of the distribution. Because all rows with the same PI value are distributed to the
same AMP, columns with a small number of distinct values that are repeated frequently do not
make good PI candidates.

The most efficient access methods to get data in a table is through the PI. For this reason,
choosing a PI should take the following design goal into consideration: choosing a PI that
gives good distribution of data across the AMPs must be balanced against choosing a PI that
reflects the most common usage pattern of the table.

If you do not explicitly specify a primary index when a table is created, Teradata Database uses
the first column as the nonunique primary index by default.

User tables can also be created explicitly without a primary index. These NoPI tables are used
for special purposes. NoPI tables are typically used as staging tables to allow faster data
loading.

Primary Key

A Primary Key (PK), a term that comes from data modeling, defines a column, or columns,
that uniquely identify a row in a table. Because it is used for identification, a PK cannot be
null. There must be something in that column, or columns, that uniquely identify it.
Moreover, PK values should not be changed. Historical information, as well as relationships
with others tables, may be lost if a PK is changed or re-used.

A PK is a logical relational database concept. It may or may not be the best column, or
columns, to choose as a PI for a table.

Foreign Key

A Foreign Key (FK) identifies table relationships. They model the relationship between data
values across tables. Relational databases, like Teradata Database, permit data values to
associate across more than one table.

Thus each FK a table may have must exist somewhere as a PK. That is, there must be
referential integrity between FKs and PKs.

IF you create a table with... THEN...

a NUPI the PI is a column, or columns, that may have duplicate values.

a UPI the PI is a column, or columns, that has no duplicate values.

NoPI there is no PI column and rows are not hashed based on any
column values.

Chapter 11: Data Distribution and Data Access Methods
Teradata Database Indexes

Introduction to Teradata 111

Relationships Between Primary Indexes and Primary Keys

The following table describes some of the relationships between PKs and PIs.

The columns chosen for the UPI of a table are frequently the same columns identified as the
PK during the data modeling process, but no hard-and-fast rule makes this so. In fact, physical
database design considerations often lead to a choice of columns other than those of the
primary key for the PI of a table.

Secondary Indexes

Secondary Indexes (SIs) allow access to information in a table by alternate paths, and can
improve performance by avoiding full table scans.

Although SIs add to table overhead, in terms of disk space and maintenance, you can drop and
recreate SIs as needed.

SIs:

• Do not affect the distribution of rows across AMPs.

• Can be unique or nonunique.

• Can be created for complex data types, such as geospatial data.

• Are used by the Optimizer when the indexes can improve query performance.

• Can be useful for NoPI tables.

Primary Key Primary Index

Identifies a row uniquely. Distributes rows.

Does not imply access path. Defines most common access path.

Must be unique. May be unique or nonunique.

May not be null. May be null.

Causes a Unique Primary Index (UPI) or
Unique Secondary Index (USI) to be created.

N/A

Constraint used to ensure referential integrity. Physical access mechanism.

Required by Teradata Database only if
referential integrity checks are to be performed.

Defined for most production tables. Some
staging tables may not have a primary index
(NoPI table).

• If Teradata Database performs referential
integrity checks, then the column limit is 64.

• If Teradata Database performs no referential
integrity checks, then there is no arbitrary
column limit.

64-column limit.

Values should not be changed if you want to
maintain data integrity and preserve historical
relations among tables.

Values can be changed.

Chapter 11: Data Distribution and Data Access Methods
Teradata Database Indexes

112 Introduction to Teradata

Comparison of Primary and Secondary Indexes

The following table provides a brief comparison of PI and SI features.

Join Indexes

A Join Index (JI) is an indexing structure containing columns from one or more base tables.

Some queries can be satisfied by examining only the JI when all referenced columns are stored
in the index. Such queries are said to be covered by the JI. Other queries may use the JI to
qualify a few rows, then refer to the base tables to obtain requested columns that are not stored
in the JI. Such queries are said to be partially-covered by the index.

Because Teradata Database supports multitable, partially-covering JIs, all types of JIs, except
the aggregate JI, can be joined to their base tables to retrieve columns that are referenced by a
query but are not stored in the JI. Aggregate JIs can be defined for commonly-used
aggregation queries.

Much like SIs, JIs impose additional processing on insert and delete operations and update
operations which change the value of columns stored in the JI. The performance trade-off
considerations are similar to those for SIs.

Single-table Join Indexes

Join indexes are similar to base tables in that they support a primary index, which can be used
for direct access to one or a few rows.

A single-table JI is a an index structure that contains rows from only a single-table. This type
of structure has been found to be very useful by Teradata Database users because it provides
an alternative approach (primary index) to directly accessing data.

Multitable Join Indexes

When queries frequently request a particular join, it may be beneficial to predefine the join
with a multitable JI. The Optimizer can use the predefined join instead of performing the
same join repetitively.

Feature Primary Secondary

Can be unique or nonunique Both Both

Affects row distribution Yes No

Create and drop dynamically No Yes

Improves access Yes Yes

Create using multiple data
types

Yes Yes

Requires separate physical
structure

No Yes, a subtable

Requires extra processing
overhead

No Yes

Chapter 11: Data Distribution and Data Access Methods
Teradata Database Indexes

Introduction to Teradata 113

Aggregate Join Indexes

Aggregate operations calculate a single value from individual column values in several rows of
a table. Sums and averages calculated from sets of column values are examples of aggregate
operations. If the same aggregate operation is frequently performed on the same columns, an
aggregate JI can provide improved query performance because Teradata Database can use the
aggregate index to satisfy queries, rather than repeating the aggregate calculations for every
query. You can define aggregate JIs on one or more tables.

Sparse Join Indexes

Indexes include a subset of the columns of one or more tables. Typically, indexes include the
column values from all rows in the table. Sparse join indexes further limit the index to include
only a subset of the table rows, in addition to a subset of table columns. Sparse JIs can include
one or more tables, and can also be aggregate JIs.

If queries frequently are limited to a subset of the rows of a table, for example, rows with a
specific value in one column, a sparse JI that includes only those rows can improve
performance by providing a more limited data set to be queried.

Comparison of Index Types

Teradata Database does not require or allow users to explicitly dictate how indexes should be
used for a particular query. The Optimizer costs all of the reasonable alternatives and selects
the one that is estimated to be the least expensive.

The object of any query plan is to return accurate results as quickly as possible. Therefore, the
Optimizer uses an index or indexes only if the index speeds up query processing. In some
cases, the Optimizer processes the query without using any index.

Optimizer index selection for a query plan:

• Can have a direct impact on overall Teradata Database performance.

• Is not always a straightforward process.

• Is based partly on usage expectations.

The following table assumes execution of a simple SELECT statement and explains the
strengths and weaknesses of some of the various indexing methods.

This access method… Has the following strengths…
And the following possible
drawbacks…

Unique Primary Index (UPI) • is the most efficient access method
when the SQL statement contains
the PI value

• involves one AMP and one row

• requires no spool file (for a simple
SELECT)

• can obtain the most granular locks

none, in the context of a SELECT
statement specifying a PI value.
However, a poorly chosen PI can cause
poor overall performance in a large
workload.

Chapter 11: Data Distribution and Data Access Methods
Teradata Database Indexes

114 Introduction to Teradata

Nonunique Primary Index (NUPI) • provides efficient access when the
SQL statement contains the PI value

• involves one AMP

• can obtain granular locks

• may not require a spool file as long
as the number of rows returned is
small

• may slow down INSERTs for a SET
table with no USIs.

• may decrease the efficiency of
SELECTs containing the PI value
when some values are repeated in
many rows.

Unique Secondary Index (USI) • provides efficient access when the
SQL statement contains the USI
values, and you do not specify PI
values

• involves two AMPs and one row

• requires no spool file (for a simple
SELECT)

requires additional overhead for
INSERT, UPDATE, MERGE, and
DELETE statements.

Nonunique Secondary Index (NUSI) • provides efficient access when the
number of rows per value in the
table is relatively small

• involves all AMPS and probably
multiple rows

• provides access using information
that may be more readily available
than a UPI value, such as employee
last name, compared to an
employee number

• may require a spool file

• requires additional overhead for
INSERT, UPDATE, MERGE, and
DELETE statements.

• will not be used by the Optimizer if
the number of data blocks accessed
is a significant percentage of the
data blocks in the table because the
Optimizer will determine that a full
table scan is cheaper.

Full table scan • accesses each row only once

• provides access using any arbitrary
set of column conditions

• examines every row.

• usually requires a spool file possibly
as large as the base table.

Multitable join index (JI) • can eliminate the need to perform
certain joins and aggregates
repetitively

• may be able to satisfy a query
without referencing the base tables

• can have a different PI from that of
the base table

• can replace an NUSI or a USI

• requires additional overhead for
INSERT, UPDATE, MERGE, and
DELETE statements for any of the
base tables that contribute to the
multitable JI.

• usually is not suitable for data in
tables subjected to a large number
of daily INSERT, UPDATE,
MERGE, and DELETE statements.

• imposes some restrictions on
operations performed on the base
table.

This access method… Has the following strengths…
And the following possible
drawbacks…

Chapter 11: Data Distribution and Data Access Methods
Partitioned Tables

Introduction to Teradata 115

For More Information

For more information about indexing, types of indexes, and creating indexes, see Database
Design, SQL Data Definition Language, and SQL Geospatial Types.

Partitioned Tables

Partitioning stores related groups of data in physical proximity to improve the performance of
queries that are likely to require that data. To satisfy a query, Teradata Database can employ an
optimization called “partition elimination” to limit data searches to only those partitions
containing data relevant to the query.

A row-partitioned table assigns rows to a particular partition within an AMP based on a user-
defined partitioning expression that defines how the rows should be grouped for storage
(horizontal partitioning). The partitioning expression is defined when a table is created or
altered.

The rows of a row-partitioned table are assigned to an appropriate partition based on the
value of the partitioning expression.

Tables without primary indexes can also be partitioned by column (vertical partitioning).
Whereas row partitioning allows sets of rows to be stored in separate partitions based on a
partitioning expression, column partitioning allows sets of columns (including just a single
column) to be stored in separate partitions. Like row partitioning, column partitioning can
improve performance for some types of queries by allowing for partition elimination,

Single-table join index (JI)

or

hash index

• can isolate frequently used columns
(or their aggregates for JIs only)
from those that are seldom used

• can reduce number of physical I/Os
when only commonly used
columns are referenced

• can have a different PI from that of
the base table

• requires additional overhead for
INSERT, UPDATE, MERGE, and
DELETE statements.

• imposes some restrictions on
operations performed on the base
table.

Sparse join index (JI) • can be stored in less space than an
ordinary JI

• reduces the additional overhead
associated with INSERT, UPDATE,
MERGE, and DELETE statements
to the base table when compared
with an ordinary JI

• can exclude common values that
occur in many rows to help ensure
that the Optimizer chooses to use
the JI to access less common values

• requires additional overhead for
INSERT, UPDATE, MERGE, and
DELETE statements to the base
table.

• imposes some restrictions on
operations performed on the base
table.

This access method… Has the following strengths…
And the following possible
drawbacks…

Chapter 11: Data Distribution and Data Access Methods
Hashing

116 Introduction to Teradata

whereby only the column data relevant to a particular query is searched during the processing
of that query.

Multilevel Partitioned Tables

A table or join index may be column partitioned, row partitioned, or both, by using multilevel
partitioning. Multilevel partitioning allows each partition to be subpartitioned. Each level
must define at least two partitions.

For More Information

For more information about row and column partitioning, see Database Design and SQL Data
Definition Language.

Hashing

Teradata Database uses hashing to distribute data for tables with a PI to disk storage and uses
indexes to access the data.

Because the architecture of Teradata Database is massively parallel, it requires an efficient
means of distributing and retrieving its data. That efficient method is hashing. Virtually all
Teradata Database indexes are based on (or partially based on) row hash values rather than
table column values.

For PIs, Teradata Database obtains a row hash by hashing the values of the PI columns. The
row hash and a sequence number, which is assigned to distinguish between rows with the
same row hash within a table, are collectively called a row identifier and uniquely identify each
row in a table. A partition identifier is also part of the row identifier in the case of partitioned
tables. For more information on partitioned tables, see “Partitioned Tables” on page 115.

For SIs, Teradata Database computes a hash value using the hash of the values of the SI
columns. This value is used for access when an SI value is specified in the SQL. The SI subtable
records the hash value for the SI, the actual value of the index columns (for synonym
resolution), and a list of primary index row identifiers for the table being indexed.

Identity Columns

Identity columns are columns that have unique values for every row in the table. Because
those values confer uniqueness on every row, the system can use the values to identify each
row in a table. When a column is defined as an identity column, Teradata Database
automatically generates a unique numeric value for the column in every row that is added to
the table.

Identity columns can be used to generate unique values for UPI, USI, and primary key
columns. However, creating a UPI from combinations of frequently queried columns is
preferable to adding identity columns to tables to serve this function.

Chapter 11: Data Distribution and Data Access Methods
Normalization

Introduction to Teradata 117

For more information about indexes, see “Teradata Database Indexes” on page 109.

Normalization

Normalization is the process of reducing a complex database schema into a simple, stable one.
Generally this process involves removing redundant attributes, keys, and relationships from
the conceptual data model.

Normal Forms

Normalization theory is constructed around the concept of normal forms that define a system
of constraints. If a relation meets the constraints of a particular normal form, we say that
relation is in normal form.

By definition, a relational database is always normalized to first normal form, because the
column values are always atomic. That is, a column can contain one and only one value or
null.

But to simply leave it at that invites a number of problems including redundancy and potential
update anomalies. The higher normal forms were developed to correct those problems.

First, Second, and Third Normal Forms

First, second, and third normal forms are stepping stones to the Boyce-Codd normal form
and, when appropriate, the higher normal forms.

First Normal Form

First normal form (1NF) is definitive of a relational database. If we are to consider a database
relational, then all relations in the database are in 1NF.

We say a relation is in 1NF if all fields within that relation are atomic. We sometimes refer to
this concept as the elimination of repeating groups from a relation. Furthermore, first normal
form allows no hierarchies of data values.

Second Normal Form

Second normal form (2NF) deals with the elimination of circular dependencies from a
relation. We say a relation is in 2NF if it is in 1NF and if every non-key attribute is fully
dependent on the entire Primary Key.

A non-key attribute is any attribute that is not part of the Primary Key for the relation.

Third Normal Form

Third normal form (3NF) deals with the elimination of non-key attributes that do not
describe the Primary Key.

For a relation to be in 3NF, the relationship between any two non-Primary Key columns, or
groups of columns, in a relation must not be one-to-one in either direction.

Chapter 11: Data Distribution and Data Access Methods
Referential Integrity

118 Introduction to Teradata

We say attributes are mutually independent if none of them is functionally dependent on any
combination of the others. This mutual independence ensures that we can update individual
attributes without any danger of affecting any other attribute in a row.

The following list of benefits summarizes the advantages of implementing a normalized
logical model in 3NF.

• Greater number of relations

• More PI choices

• Optimal distribution of data

• Fewer full table scans

Referential Integrity

Traditional referential integrity is the concept of relationships between tables, based on the
definition of a primary key and a foreign key. The concept states that a row cannot exist in a
table with a value (not null) for a referencing column if an equal value does not exist in a
referenced column.

Using referential integrity, you can specify columns within a referencing table that are foreign
keys for columns in some other referenced table. You must define referenced columns as either
primary key columns or unique columns.

Referential integrity is a reliable mechanism that prevents accidental database inconsistencies
when you perform inserts, merges, updates, and deletes.

Referential Integrity Terminology

We use the following terms to explain the referential integrity concept.

Term Definition

Parent Table The table referred to by a Child table. Also called the “referenced table.”

Child Table A table in which the referential constraints are defined. Also called the
“referencing table.”

Parent Key A candidate key in the parent table.

Primary Key With respect to referential integrity, a primary key is a parent table column set
that is referred to by a foreign key column set in a child table.

Foreign Key With respect to referential integrity, a foreign key is a child table column set that
refers to a primary key column set in a parent table.

Chapter 11: Data Distribution and Data Access Methods
Referential Integrity

Introduction to Teradata 119

Referencing (Child) Table

We call the referencing table the Child table, and we call the specified Child table columns the
referencing columns. Referencing columns should be of the same number and have the same
data type as the referenced table key.

Referenced (Parent) Table

A Child table must have a parent table, and the referenced table is referred to as the Parent
table. The parent key columns are the referenced columns.

Importance of Referential Integrity

Referential integrity is important, because it keeps you from introducing errors into your
database. Suppose you have an Order Parts table like the following.

Part number and order number, each foreign keys in this relation, also form the composite
primary key.

Suppose you were to delete the row defined by the primary key value 1 in the PART NUMBER
table. The foreign key for the first and third rows in the ORDER PART table would now be
inconsistent, because there would be no row in the PART NUMBER table with a primary key
of 1 to support it. Such a situation shows a loss of referential integrity.

Teradata Database provides referential integrity to prevent this from happening. If you try to
delete a row from the PART NUMBER table for which you have specified referential integrity,
the database management system will not allow you to remove the row if the part number is
referenced in child tables.

Besides data integrity and data consistency, referential integrity provides these benefits.

Order Number Part Number Quantity

PK Not Null

FK FK

1 1 110

1 2 275

2 1 152

Benefit Description

Increases development productivity You do not need to code SQL statements to
enforce referential integrity constraints because
Teradata Database automatically enforces
referential integrity.

Chapter 11: Data Distribution and Data Access Methods
For More Information

120 Introduction to Teradata

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database books.

Requires fewer written programs All update activities are programmed to ensure
that referential integrity constraints are not
violated, because Teradata Database enforces
referential integrity in all environments.
Additional programs are not required.

Allows optimizations Referential integrity allows optimizations to
occur, such as join elimination.

Benefit Description

If you want to learn more about… See…

Teradata Database Indexes • Database Design

• SQL Fundamentals

Primary Indexes • Database Design

• Database Administration

• SQL Data Definition Language

• SQL Fundamentals

No Primary Index (NoPI) Tables • Database Design

• SQL Data Definition Language

• SQL Data Manipulation Language

• SQL Request and Transaction Processing

Row and Column Partitioning • Database Design

• SQL Data Definition Language

Secondary Indexes • Database Design

• Database Administration

• SQL Data Definition Language

• SQL Fundamentals

• SQL Request and Transaction Processing

Join Indexes

Hash Indexes • Database Design

• SQL Data Definition Language

Index Specification SQL Data Manipulation Language

Hashing • Database Design

• SQL Data Definition Language

• SQL Request and Transaction Processing

Chapter 11: Data Distribution and Data Access Methods
For More Information

Introduction to Teradata 121

Identity column SQL Data Definition Language

Normalization Database Design

Referential integrity

If you want to learn more about… See…

Chapter 11: Data Distribution and Data Access Methods
For More Information

122 Introduction to Teradata

Introduction to Teradata 123

CHAPTER 12 Concurrency Control and
Transaction Recovery

This chapter describes the concurrency control in relational database management systems
and how to use transaction journaling to recover lost data, or to restore an inconsistent
database to a consistent state.

About Concurrency Control

Concurrency control prevents concurrently running processes from improperly inserting,
deleting, or updating the same data. A system maintains concurrency control through two
mechanisms:

• Transactions

• Locks

Transactions

Transactions are a mandatory facility for maintaining the integrity of a database while
running multiple, concurrent operations.

Definition of a Transaction

A transaction is a logical unit of work and the unit of recovery. The requests nested within a
transaction must either all happen or not happen at all. Transactions are atomic. A partial
transaction cannot exist.

Definition of Serializability

A set of transactions is serializable if the set produces the same result as some arbitrary serial
execution of those same transactions for arbitrary input.

A set of transactions is correct only if it is serializable. The Two-Phase Locking (2PL) protocol
ensures the serializability of transactions.

The phases of the Two-Phase Locking protocol are described in the following table:

Chapter 12: Concurrency Control and Transaction Recovery
ANSI Mode Transactions

124 Introduction to Teradata

ANSI Mode Transactions

All ANSI transactions are implicitly opened. Either of the following events opens an ANSI
transaction:

• Execution of the first SQL request in a session.

• Execution of the first request following the close of a previous transaction.

Transactions close when the application performs a COMMIT, ROLLBACK, or ABORT
request.

When the transaction contains a DDL statement, including DATABASE and SET SESSION,
which are considered DDL statements in this context, the statement must be the last request in
the transaction other than the transaction closing statement.

A session executing under ANSI transaction semantics allows neither the BEGIN
TRANSACTION statement, the END TRANSACTION statement, nor the two-phase commit
protocol. When an application submits these statements in ANSI mode, the database software
generates an error.

In ANSI mode, the system rolls back the entire transaction if the current request:

• Results in a deadlock.

• Performs a DDL statement that aborts.

• Executes an explicit ROLLBACK or ABORT statement.

Teradata Database accepts the ABORT and ROLLBACK statements in ANSI mode, including
conditional forms of those statements. If the system detects an error for either a single or
multistatement request, it only rolls back that request, and the transaction remains open,
except in special circumstances.

Application-initiated, asynchronous aborts also cause full transaction rollback in ANSI mode.

In the… A transaction must…

growing phase acquire a lock on an object before operating on
it.

The Teradata Optimizer requests locks as close
to the beginning of the transaction as possible.

shrinking phase release the previously acquired lock and never
acquire any more locks after it has released a
lock.

Lock release is an all-or-none operation. Once
acquired, locks are not released until the
transaction has committed or is completely
rolled back.

Chapter 12: Concurrency Control and Transaction Recovery
Teradata Mode Transactions

Introduction to Teradata 125

Teradata Mode Transactions

Teradata mode transactions can be either implicit or explicit. An explicit, or user-generated,
transaction is a single set of BEGIN TRANSACTION/END TRANSACTION statements
surrounding one or more requests. All other requests are implicit transactions.

Consider the following transaction:

BEGIN TRANSACTION;
DELETE FROM Employee
WHERE Name = ‘Smith T’;
UPDATE Department
SET EmpCount=EmpCount-1
WHERE DeptNo=500;
END TRANSACTION;

If an error occurs during the processing of either the DELETE or UPDATE statement within
the BEGIN TRANSACTION and END TRANSACTION statements, the system restores both
Employee and Department tables to the states at which they were before the transaction
began. If an error occurs during a Teradata transaction, then the system rolls back the entire
transaction.

Locks

A lock is a means of controlling access to some resource. Teradata Database locks different
types of resources in several different ways.

Overview of Teradata Database Locking

Most locks used on Teradata Database resources are obtained automatically. Users can
upgrade the severity of a lock with the LOCKING request modifier but can not downgrade the
severity of a lock. The data integrity requirement of a request determines the type of lock that
the system uses.

A request for a resource that is locked by another user is queued (in the case of a conflicting
lock level) until the process using the resource releases its lock on that resource. A user can
specify that the request be aborted if the lock cannot be obtained immediately.

Host Utility Locks

The locking operation that the client-resident Teradata Archive/Recovery utility uses is
different from the locking operation that Teradata Database performs. Teradata Database
documentation and utilities frequently refer to archive locks as HUT (Host Utility) locks.

Chapter 12: Concurrency Control and Transaction Recovery
Recovery and Transactions

126 Introduction to Teradata

Recovery and Transactions

Recovery is a process by which an inconsistent database is brought back to a consistent state.

Transactions play the critical role in this process because they are used to “play back” (using
the term in its most general sense) a series of updates to the database, either taking it back to
some earlier state or bringing it forward to a current state.

System and Media Recovery

The following sections describe the behavior of Teradata Database when it encounters
different types of errors or failures.

System Restarts

Unscheduled restarts occur for one of the following reasons:

• AMP or disk failure

• Software failure

• Disk parity error

Failures and errors affect all software recovery in the same way. Hardware failures take the
affected component offline and it remains offline until repaired or replaced.

Transaction Recovery

Two types of automatic transaction recovery can occur:

• Single transaction recovery

• Database recovery

The following table details what happens when the two automatic recovery mechanisms take
place.

This recovery type… Happens when Teradata Database…

single transaction aborts a single transaction because of:

• Transaction deadlock

• User error

• User-initiated abort command

• An inconsistent data table

Single transaction recovery uses the transient journal to effect its data
restoration.

Chapter 12: Concurrency Control and Transaction Recovery
Two-Phase Commit Protocol

Introduction to Teradata 127

Down AMP Recovery

When an AMP fails to come online during system recovery, which is done using the down
AMP Recovery Journal, Teradata Database continues to process requests using fallback data.
When the down AMP comes back online, down AMP recovery procedures begin to bring the
data for the AMP up-to-date as follows.

After all updates are made, we consider the AMP to be fully recovered.

Down Subtable Recovery

Teradata Database can isolate some file system errors to a specific data or index subtable, or to
a contiguous range of rows (“region”) in a data or index subtable. In these cases, Teradata
Database marks only the affected subtable or region down. This improves system performance
and availability by allowing transactions that do not require access to the down subtable or
rows to proceed, without causing a database crash that would require a system restart.

In-progress transactions that require the down subtable or region are aborted. Subsequent
transactions that require access to the down subtable or region are not allowed until the
problem is fixed.

Two-Phase Commit Protocol

Two-phase commit (2PC) is a protocol for assuring update consistency across distributed
databases in which each participant in the transaction commit operation votes to either
commit or abort the changes. Participants wait before committing a change until they know
that all participants can commit.

A participant is a “database manager” that performs some work on behalf of the transaction
and that commits or aborts changes to the database. A participant can also be a coordinator of
participants at a lower level.

database performs a restart for one of the following reasons:

• Hardware failure

• Software failure

• User command

This recovery type… Happens when Teradata Database…

IF there are… THEN the AMP recovers…

a large number of rows to be processed offline.

only a few rows to be processed online.

Chapter 12: Concurrency Control and Transaction Recovery
For More Information

128 Introduction to Teradata

By voting to commit, a participant guarantees that it can either commit or roll back its part of
the transaction, even if it crashes before receiving the result of the vote.

The 2PC protocol allows the development of Customer Information Control System (CICS)
and Information Management System (IMS) applications that can update one or more
Teradata Database databases or databases, or both under some other DBMS in a synchronized
manner. The result is that all updates requested in a defined unit of work will either succeed or
fail.

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

IF you want to learn more about… See…

Host Utility Locks • SQL Request and Transaction Processing

• Teradata Archive/Recovery Utility Reference

• Database Administration

Locks • SQL Request and Transaction Processing

• Database Administration

System and Media Recovery • Database Administration

• Utilities

Transactions SQL Request and Transaction Processing

ANSI Mode Transactions

Teradata Mode Transactions

Two-phase Commit Protocol • Teradata Director Program Reference

• IBM CICS Interface for Teradata Reference

• IBM IMS/DC Interface for Teradata Reference

Introduction to Teradata 129

CHAPTER 13 The Data Dictionary

The Teradata Database Data Dictionary is composed of tables and views that reside in the
system user named DBC. The tables are reserved for use by the system and contain metadata
about the objects in the system, privileges, system events, and system usage. The views provide
access to the information in the tables. The tables contain current definitions, control
information, and general information about the following:

The Data Dictionary stores object definitions as well as details about objects.

• Authorization

• Accounts

• Character sets

• Columns

• Constraints

• Databases

• Disk Space

• End Users

• Events

• External stored procedures

• Indexes

• JAR and ZIP archive files

• Logs

• Macros

• Privileges

• Profiles

• Resource usage

• Roles

• Rules

• Sessions and session attributes

• Statistics

• Stored Procedures

• Tables

• Translations

• Triggers

• User-defined functions

• User-defined methods

• User-defined types

• Views

Object Details Stored

Table • Location, identification, version

• Database name, table name, creator name, and user names of all owners
in the hierarchy

• Each column in the table, including column name, data type, length,
and phrases

• User/creator access privileges

• Indexes

• Constraints

• Table backup and protection (including fallback and permanent
journaling status)

• Date and time the object was created

Chapter 13: The Data Dictionary

130 Introduction to Teradata

Database • Database name, creator name, owner name, and account name

• Space allocation (if any) including:

• Permanent

• Spool

• Temporary

• Number of fallback tables

• Collation type

• Creation timestamp

• Date and time the database was last altered and the name that altered it

• Role and profile names

• Revision numbers for the UDF library and any XSP libraries by
Application Category

View or macro • View or macro text

• Creation time attributes

• User and creator access privileges

Stored procedure • Creation time attributes

• Parameters, including parameter name, parameter type, data type, and
default format

• User and creator access privileges

External stored
procedure

• C/C++ source code and object code if its language is not Java

• External stored procedure name

• External name

• Data types of the parameters

• Source file language

• Data accessing characteristic

• Parameter passing convention

• Execution protection mode

• Character type

• Platform type

JAR • Java object code for the JAR

• JAR name

• External name

• Platform type

• Revision number

Object Details Stored

Chapter 13: The Data Dictionary

Introduction to Teradata 131

Java external stored
procedure

• Java external stored procedure name

• External file reference

• Data types of the parameters

• Source file language

• Data accessing characteristic

• Parameter passing convention

• Execution protection mode

• Character type

• Platform type

Java user-defined
function (UDF)

• Function call name

• Specific name

• External name

• Data types of the parameters

• Function class

• Source file language

• Data accessing characteristic

• Parameter passing convention

• Deterministic characteristic

• Null-call characteristic

• Execution protection mode

• Character type

• Platform type

Trigger • IDs of the:

• Table

• Trigger

• Database and subject table database

• User who created the trigger

• User who last updated the trigger

• Timestamp for the last update

• Indexes

• Trigger name and:

• Whether the trigger is enabled

• The event that fires the trigger

• The order in which triggers fire

• Default character set

• Creation text and time stamp

• Overflow text, that is, trigger text that exceeds a specified limit

• Fallback tables

Object Details Stored

Chapter 13: The Data Dictionary

132 Introduction to Teradata

UDF • C source code and object code if its language is not Java

• Function call name

• Specific name

• External name

• Data types of the parameters

• Function class

• Source file language

• Data accessing characteristic

• Parameter passing convention

• Deterministic characteristic

• Null-call characteristic

• Execution protection mode

• Character type

• Platform type

User-defined method
(UDM)

• C source code and object code

• Function call name

• Specific name

• External name

• Data types of the parameters

• Function class

• Source file language

• Data accessing characteristic

• Parameter passing convention

• Deterministic characteristic

• Null-call characteristic

• Execution protection mode

• Character type

• Platform type

Object Details Stored

Chapter 13: The Data Dictionary
Data Dictionary Views

Introduction to Teradata 133

Data Dictionary Views

You can examine the information about the system tables in database DBC directly or through
a series of views. Typically, you use views to obtain information on the objects in the Data
Dictionary rather than querying the actual tables, which can be very large. The database
administrator controls who has access to views.

User-defined type
(UDT)

DBC.UDTInfo - one entry per UDT

• Type name

• Type kind (Distinct or Structured)

• Whether the type is instantiable

• Default transform group (name)

• Ordering form (full ordering or equals only - distinct and structured
types are always full)

• Ordering category (map or relative - distinct and structured types are
always map)

• Ordering routine ID

• Cast count

DBC.UDTCast - one entry per cast for a UDT

• Whether cast is implicit assignment

• Cast routine ID

DBC.UDFInfo - one entry for the UDT's auto-generated default
constructor; entries are the same as for a regular (C/C++) UDF

DBC.UDTTransform - one entry for the UDT's transform

• Default transform group name

• ToSQL routine ID

• FromSQL routine ID

User • User name, creator name, and owner name

• Password string and password change date

• Space allocation, including:

• Permanent

• Spool

• Temporary

• Default account, database, collation, character type, and date form

• Creation timestamp

• Name and time stamp of the last alteration made to the user

• Role and profile name

Object Details Stored

Chapter 13: The Data Dictionary
SQL Access to the Data Dictionary

134 Introduction to Teradata

Users of Data Dictionary Views

Some Data Dictionary views may be restricted to special types of users, while others are
accessible by all users. The database administrator controls access to views by granting
privileges. The following table defines the information needs of various types of users.

SQL Access to the Data Dictionary

Every time you log on to Teradata Database, perform an SQL query, or type a password, you
are using the Data Dictionary.

For security and data integrity reasons, the only SQL DML command you can use on the Data
Dictionary is the SELECT statement. You cannot use the INSERT, UPDATE, MERGE, or
DELETE SQL statements to alter the Data Dictionary, except for some Data Dictionary tables,
such as the AccLogTbl table or the EventLog table.

The Data Dictionary contains Unicode system views. However, to maintain backwards
compatibility, Teradata provides compatibility system views to translate object names to the
Kanji1/Latin. For more information on Unicode and compatibility system views, see Data
Dictionary and Database Administration.

This type of user… Needs to know…

End • Objects to which the user has access

• Types of access available to the user

• The privileges the user has granted to other users

Supervisory • How to create and organize databases

• How to monitor space usage

• How to define new users

• How to allocate access privileges

• How to create indexes

• How to perform archiving operations

Database administrator • Performance

• Status and statistics

• Errors

• Accounting

Security administrator • Access logging rules generated by the execution of BEGIN LOGGING
statements

• Results of access checking events, logged as specified by the access
logging rules

Operations and
Recovery Control

Archive and recovery activities

Chapter 13: The Data Dictionary
For More Information

Introduction to Teradata 135

You can use SELECT to examine any view in the Data Dictionary to which your database
administrator has granted you access. For example, if you need to access information in the
Personnel database, then you can query the DBC.DatabasesV view as shown:

SELECT Databasename,
Creatorname,
Ownername,
Permspace

FROM DBC.DatabasesV
WHERE Databasename=’Personnel’
;

The query above produces a report like this:

Databasename Creatorname Ownername Permspace
Personnel Jones Jones1,000,000

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database book.

IF you want to learn more about… See…

Data Dictionary Data Dictionary

Data Dictionary Views

SQL Access to the Data Dictionary

Chapter 13: The Data Dictionary
For More Information

136 Introduction to Teradata

Introduction to Teradata 137

CHAPTER 14 International Language Support

A character set (sometimes called a code page) is simply a way of representing characters on a
computer. There are many ways to represent characters on a computer, so there are many
character sets in use today.

Because different characters are needed for different languages, character sets are often
designed to support a particular language. Even for the same language, many different
character sets may exist.

When computers or computer applications exchange character data, it is important that they
either use the same character set or properly convert the data from one character set to the
other during the transfer process. Otherwise, the data received by one machine may no longer
have the same meaning as it had before the transfer. The same issue exists for numeric data,
but there are fewer ways used to represent numbers, so it is not as big a problem.

A character set has a repertoire of characters it supports, a representation for character strings,
and an implied collation based on this representation.

Character Representation

Representing strings of characters is essentially a two-step process:

• Creating a mapping between each character required and an integer.

• Devising an encoding scheme for placing a sequence of numbers into memory.

The simplest systems map the required characters to small integers between 0 and 255, and
encode sequences of characters as sequences of bytes with the appropriate numeric values.

Representing characters for repertoires that require more than 256 characters, such as
Japanese, Chinese, and Korean, requires more complex schemes.

External and Internal Character Sets

Client systems communicate with Teradata Database using their own external format for
numbers and character strings.

Teradata Database converts numbers and strings to its own internal format when importing
the data, and converts numbers and strings back to the appropriate form for the client when
exporting the data.

This allows data to be exchanged between mutually incompatible client data formats. Take for
example, mainframe-attached clients using EBCDIC-based character sets and workstation-

Chapter 14: International Language Support
Teradata Database Character Data Storage

138 Introduction to Teradata

attached clients using ASCII-based character sets. Both clients can access and modify the same
data in Teradata Database.

Character Data Translation

Teradata Database translates the characters:

• Received from a client system into a form suitable for storage and processing on the server.

• Returned to a client into a form suitable for storage, display, printing, and processing on
that client.

Thus, the server communicates with each client in the language of that client without the need
for additional software. It is essential, for this process to work properly, for the database to be
informed of the correct character set used by each client.

What Teradata Database Supports

Teradata Database supports many external client character sets and allows each application to
choose the internal server character set best suited to each column of character data in
Teradata Database. Because of automatic translation, it is normally the repertoire of characters
required that determines the server character set to use.

No matter which server character set you chose, communication with the client is always in
the client character set (also known as the session charset).

Teradata Database Character Data Storage

Teradata Database uses internal server character sets to represent user data and data in the
Data Dictionary within the system.

Internal Server Character Sets

Server character sets include:

• LATIN

• UNICODE

• KANJISJIS

• GRAPHIC

• KANJI1

Notice: KANJI1 support is deprecated. KANJI1 is not allowed as a default character set. The system
changes the KANJI1 default character set to the UNICODE character set. Creation of new
KANJI1 objects is highly restricted. Although many KANJI1 queries and applications may
continue to operate, sites using KANJI1 should convert to another character set as soon as
possible.

Chapter 14: International Language Support
Language Support Modes

Introduction to Teradata 139

User Data

User data refers to character data that you store in a character data type column on Teradata
Database.

Object Names in the Data Dictionary

Teradata Database stores a variety of character data in the Data Dictionary, including the
names of the following objects:

Language Support Modes

During system initialization (sysinit) the database administrator can optimize Teradata
Database for one of two language support modes:

• Standard

• Japanese

The language support mode determines the:

• Character set that Teradata Database uses to store system dictionary data.

• Default character set for user data.

• Tables

• Databases

• Users

• Columns

• Views

• Macros

• Triggers

• JAR and ZIP archive files

• Join indexes

• Hash indexes

• Stored procedures

• External stored procedures

• User-defined functions

• User-defined types

• User-defined methods

• Authorizations

IF you enable this language
support mode …

THEN Teradata Database stores object
names using this character set …

AND stores character data
other than object names
using this character set …

Standard UNICODE

For backward compatibility, object
names are processed internally as
LATIN

LATIN.

Japanese UNICODE

For backward compatibility, object
names are processed internally as
KANJI1

UNICODE.

Chapter 14: International Language Support
Standard Language Support Mode

140 Introduction to Teradata

Overriding the Default Character Set for User Data

The language support mode sets the default server character set for a user if the DEFAULT
CHARACTER SET clause does not appear in the CREATE USER or MODIFY USER
statement.

To override the default character set for a user, you can use the DEFAULT CHARACTER SET
clause in a CREATE USER statement. You can also specify a server character set for a character
column when you created the table.

Standard Language Support Mode

Although the Data Dictionary uses UNICODE to store object names in standard language
support mode and Japanese language support mode, the permissible range of characters in
object names depends on the language support mode.

For user data, the default server character set is LATIN.

LATIN Character Set

Standard language support provides Teradata Database internal coding for the entire set of
printable characters from the ISO 8859-1 (Latin1) and ISO 8859-15 (Latin9) standard,
including diacritical marks such as ä, ñ, Ÿ, Œ, and œ, though the Z with caron in Latin9 is not
supported. ASCII control characters are also supported for the standard language set.

Note: ASCII, as used here, represents the characters that can be stored as the LATIN server
character set, referred to as Teradata LATIN. EBCDIC is Teradata Database extended ASCII
mapped to the corresponding EBCDIC code points.

Compatible Languages

The LATIN server character set that Teradata Database uses in Standard language support
mode is sufficient for you to use client character sets that support the international languages
listed in the following table.

International Languages That are Compatible with Standard Language Support

Albanian English Germanic Portuguese

Basque Estonian Greenlandic Rhaeto-Romantic

Breton Faroese Icelandic Romance

Catalonian Finnish Irish Gaelic
(new orthography)

Samoan

Celtic French Italian Scottish Gaelic

Cornish Frisian Latin Spanish

Danish Galician Luxemburgish Swahili

Chapter 14: International Language Support
Japanese Language Support Mode

Introduction to Teradata 141

Japanese Language Support Mode

Although the Data Dictionary uses UNICODE to store object names in Japanese language
support mode and standard language support mode, the permissible range of characters in
object names depends on the language support mode.

For user data, the default server character set is UNICODE.

Advantages of Storing User Data Using UNICODE

Unicode is a 16-bit encoding of virtually all characters in all current languages in the world.
Teradata Database UNICODE server character set supports Unicode 4.1 and is designed
eventually to store all character data on the server.

UNICODE may be used to store all characters from all single-byte and multibyte client
character sets. User data stored as UNICODE can be shared among heterogeneous clients.

User DBC Default Character Set

With Japanese language mode support, the default character set for user DBC is UNICODE.

Extended Support

Extended support allows you to customize Teradata Database to provide additional support
for local character set usage.

A sufficiently privileged user can create single-byte and multibyte client character sets that
support, with certain constraints, any subset of the Unicode repertoire. Moreover, such a user
can customize a collation for the entire Unicode repertoire.

Extended support is available on systems that have been enabled with standard language
support or Japanese language support.

For More Information

For more information on the topics presented in this chapter, see International Character Set
Support.

Dutch German Norwegian Swedish

International Languages That are Compatible with Standard Language Support

Chapter 14: International Language Support
For More Information

142 Introduction to Teradata

Introduction to Teradata 143

CHAPTER 15 Query and Database Analysis
Tools

The Teradata Database Optimizer analyzes steps required to execute each query, then chooses
the most efficient path that returns answers in the minimal amount of time. The EXPLAIN
statement in SQL shows the details of the path chosen by the Optimizer, and can be used in as
an aid to help improve query performance further. Analyzing complex query plans can be
difficult, so Teradata provides tools to help.

This chapter discusses:

• Tools found in Teradata Analyst Pack, a set of tools designed to help automate and simplify
query plan analysis. These include:

• Teradata Visual Explain (VE)

• Teradata System Emulation Tool (SET)

• Teradata Index Wizard

• Teradata Database Query Analysis Tools (DBQAT), tools designed to improve the overall
performance analysis capabilities of Teradata Database. These include:

• Query Capture Facility

• Database Query Log

• Target Level Emulation (TLE)

• Database Object Use Count

Teradata Visual Explain

Teradata Visual Explain (VE) is a tool that visually depicts the execution plan of complex SQL
requests in a graphical manner.

Teradata VE presents a graphical view of the request broken down into discrete steps showing
the flow of data during execution. It has the ability to compare multiple execution plans side
by side.

Because comparing optimized queries is easier with Teradata VE, application developers and
database administrators can fine-tune the SQL statements so that Teradata Database can
access data in the most effective manner.

In order to view an execution plan using Teradata VE, the execution plan information must
first be captured in the Query Capture Database (QCD) by means of the Query Capture
Facility (QCF).

Chapter 15: Query and Database Analysis Tools
Teradata System Emulation Tool

144 Introduction to Teradata

Teradata VE reads the execution plan, which has been stored in a QCD, and turns it into a
series of icons.

Teradata System Emulation Tool

When Target Level Emulation (TLE) information is stored on a test system, Teradata System
Emulation Tool (SET) enables you to generate and examine the query plans using the test
system Optimizer as if the plans were processed on the production system.

Using Teradata SET you can:

• Change system configuration details, including DBS Control fields, and table
demographics and model the impact of various changes on SQL statement performance.

• Determine the source of various Optimizer-based production problems.

• Provide an environment in which Teradata Index Wizard can produce recommendations
for a production system workload.

Teradata Index Wizard

Teradata Index Wizard analyzes SQL queries and suggests candidate indexes to enhance their
performance.

The workload definitions, supporting statistical and demographic data, and index
recommendations are stored in various QCD tables.

Using data from a QCD or the Database Query Log (DBQL), Teradata Index Wizard:

• Recommends, using an INITIATE PARTITION ANALYSIS statement, the potential
performance benefits from adding a partitioning expression to one or more tables in a
given workload.

The statement does not recommend the complete removal of any defined partitioning
expressions. It considers, however, the alteration of an existing partitioning expression if a
Partitioned Primary Index (PPI) table is explicitly included in the table_list.

• Recommends secondary indexes for the tables based on workload details, including data
demographics, that are captured using the QCF.

• Enables you to validate index recommendations before implementing the new indexes.

• Enables you to perform what-if analysis on the workload. Teradata Index Wizard allows
you to determine whether your recommendations actually improve query performance.

• Interfaces with other Teradata Tools and Utilities, such as Teradata SET to perform offline
query analysis by importing the workload of a production system to a test system

• Uses Teradata Visual Explain and Compare tools to provide a comparison of the query
plans with and without the index recommendations.

Chapter 15: Query and Database Analysis Tools
Query Capture Facility

Introduction to Teradata 145

Teradata Index Wizard can be started from Teradata Visual Explain and Teradata SET. Teradata
Index Wizard can also open these applications to help in your evaluation of recommended
indexes.

Demographics

Teradata Index Wizard needs demographic information to perform index analysis and to
make recommendations. You can collect the following types of data demographics using SQL:

• Query demographics

Use the INSERT EXPLAIN statement with the WITH STATISTICS and
DEMOGRAPHICS clauses to collect table cardinality and column statistics.

• Table demographics

Use the COLLECT DEMOGRAPHICS statement to collect the row count and the average
row size in each of the subtables in each AMP on the system.

Query Capture Facility

The Query Capture Facility (QCF) allows you to capture the steps of query plan information
into well-known user tables called the Query Capture Database (QCD).

The source of the captured data is produced by the Teradata Database Optimizer, which
outputs the text of the EXPLAIN request modifier detailing the final stage of optimization.

Applications of QCF include:

• Store all query plans for customer queries. You can then compare and contrast queries as a
function of software release, hardware platform, and hardware configuration.

• Provide data so that you can generate your own detailed analyses of captured query steps
using standard SQL DML statements and third-party query management tools.

• Provide the input for these utilities: Teradata Index Wizard (which recommends index
definitions for improved efficiency) and Teradata VE (which presents a graphical view of
the flow of data during query execution).

Target Level Emulation

Teradata Database supports Target Level Emulation (TLE) both on Teradata Database and in
the client as follows.

Teradata Database supports… On the…

Target Level Emulation (TLE) Teradata Database.

Teradata System Emulation Tool (SET) client. For information about Teradata SET, see
“Teradata System Emulation Tool” on page 144.

Chapter 15: Query and Database Analysis Tools
Database Query Log

146 Introduction to Teradata

Teradata Database provides the infrastructure for TLE. You can use the standard SQL interface
to capture the system configuration details and table demographics on one system and store
them on another.

Usually the information is obtained from a production system, then stored on a smaller test or
development system. With this capability, the Optimizer can generate access plans similar to
those that are generated on a production system. You can use the plans to analyze Optimizer-
related production problems. This information can also be used by Teradata SET.

Database Query Log

The Database Query Log (DBQL) is a Teradata Database feature that provides a series of
predefined tables that can store historical records of queries and their duration, performance,
and target activity based on rules you specify.

DBQL is flexible enough to log information on the variety of SQL requests that run on
Teradata Database, from short transactions to longer-running analysis and mining queries.

You can request that DBQL log particular query information or just a count of qualified
queries. You can specify a hierarchy of rules that DBQL applies to sessions. This allows great
flexibility in capturing the right amount of logging data for each use of the Teradata Database
system. The rules may target:

• Application names, for example FastLoad or MultiLoad

• A user and a specific account

• A user and all accounts

• All users and a specific account

• All users and all accounts

Each rule may specify that the recording criteria be a mix of:

• Summarizing data based on elapsed time, CPU time, or I/O counts as either a series of
intervals or a threshold limit

• Reporting details at the request level, including identification, performance, counts, error
code, and SQL text

• Additional, optional detailed data, which may include any or all:

• Objects used in the request

• Steps and performance data per step

• Full SQL text

• Explain text

• Optimizer query plan information logged as an XML document

You can define rules, for instance, that tell the DBS to log the first 4,000 SQL characters of a
query that runs during a session invoked by a specific user under a specific account if the
query exceeds a specified time threshold.

Chapter 15: Query and Database Analysis Tools
Database Object Use Count

Introduction to Teradata 147

To implement DBQL, you use simple SQL requests to control the starting and ending of the
logging activity. These rules may be dynamically changed as needed to support management
of the Teradata Database system.

Database Object Use Count

The database administrator and application developer can use Database Object Use Count to
capture the number of times an application refers to an object.

Database Object Use Count captures counts for the following:

• Databases

• Tables

• Columns

• Indexes

• Views

• Macros

• Teradata Database stored procedures

• Triggers

• User-defined functions

Object use access information is not counted for EXPLAIN, INSERT EXPLAIN, or DUMP
EXPLAIN statements.

Once captured, you can use the information to identify possibly obsolete or unused database
objects, particularly those that occupy significant quantities of valuable disk space. Further,
Database Object Use Count information can be useful to database query analysis tools like
Teradata Index Wizard.

For More Information

For more information on… See…

Teradata Visual Explain Teradata Visual Explain User Guide

Teradata System Emulation Tool Teradata System Emulation Tool User Guide

Teradata Index Wizard, including support for
Partitioned Primary Index

• Teradata Index Wizard User Guide

• SQL Request and Transaction Processing

• SQL Data Definition Language

Query Capture Database • SQL Data Definition Language

• SQL Request and Transaction Processing

Chapter 15: Query and Database Analysis Tools
For More Information

148 Introduction to Teradata

Database Query Log • Database Administration

• Data Dictionary

• SQL Data Definition Language

Target Level Emulation • SQL Request and Transaction Processing

• Teradata System Emulation Tool User Guide

Database Object Use Count Database Administration

For more information on… See…

Introduction to Teradata 149

CHAPTER 16 Teradata Database Security

Teradata Database security is based on the following concepts.

For detailed information on these topics, see Security Administration.

Users

Users that access Teradata Database must be defined in the database or a supported directory.

Permanent Database Users

 The CREATE USER statement defines permanent database users. Teradata recommends that
the username represent an individual. Each username must be unique in the database.

Security Element Description

User An individual or group of individuals represented by a single user
identity.

Privileges The database privileges explicitly or automatically granted to a user or
database.

Logon The process of submitting user credentials when requesting access to
the database.

Authentication The process by which the user identified in the logon is verified.

Authorization The process that determines the database privileges available to the
user.

Security Mechanism A method that provides specific authentication, confidentiality, and
integrity services for a database session.

Network Traffic
Protection

The process for protecting message traffic between Teradata Database
and mainframe-attached and workstation-attached clients against
interception, theft, or other form of attack.

Message Integrity Checks data sent across the network against what was received to
ensure no data was lost or changed.

Access Logs Logs that provide the history of users accessing the database and the
database objects accessed.

Chapter 16: Teradata Database Security
Database Privileges

150 Introduction to Teradata

Directory-based Users

Directory-based users that access the database must be defined in a supported directory.
Creation of a matching database user may or may not be required, depending upon
implementation. One or more configuration tasks must be completed before directory users
can access the database.

Proxy Users

Proxy users are end users who access Teradata Database through a middle-tier application set
up for trusted sessions. They are authenticated by the application rather than the database.
The GRANT CONNECT THROUGH statement assigns role-based database privileges to
proxy users. To establish privileges for a particular connection to the database, the application
submits the SET QUERY_BAND statement when it connects the user. The SET
QUERY_BAND statement and the rules for how it is applied to each proxy user must be coded
into the application as part of setup for trusted sessions.

Database Privileges

Users can access only database objects on which they have privileges. The following table lists
the types of database privileges and describes how they are acquired by a user.

Privilege Description

Implicit (Ownership) Privileges implicitly granted by the database to the owner of the space in
which database objects are created.

Automatic Privileges automatically provided by the system to:

• The creator of a database, user, or other database object.

• A newly created user or database.

Inherited Privileges that are passed on indirectly to a user based on its relationship
to another user or role to which the privileges were granted directly.

• Directory users inherit the privileges of the database users to which
they are mapped. Directory users who are members of groups also
inherit the privileges defined in external roles to which the groups
are mapped.

• All users inherit the privileges of PUBLIC, the default database user,
whether or not they have any other privileges.

Explicit (GRANT) Privileges granted explicitly to a user or database in one of the following
ways:

• GRANT directly to a user or database.

• GRANT to a role, then GRANT the role to one or more users.

Chapter 16: Teradata Database Security
Database Privileges

Introduction to Teradata 151

Directly Granted Privileges

Privileges can be directly given to users with the GRANT statement. Administrators
GRANTing a privilege must have been previously granted the privilege they are granting, as
well as the WITH GRANT OPTION privilege on the privilege.

For additional information on how to use SQL statements to GRANT and REVOKE
privileges, see SQL Data Control Language.

Roles

Roles can be used to define privileges on database objects for groups of users with similar
needs, rather than granting the privileges to individual users. Roles also require less dictionary
space than individually granted privileges. Use the CREATE ROLE statement to define each
role, then use the GRANT statement to grant roles to users. The CREATE USER statement
must also specify the default role for the user. The MODIFY USER statement can be used to
assign additional user roles.

A member of a role may access all objects to which a role has privileges. Users can employ the
SET ROLE statement to switch from the default to any alternate role of which the user is a
member, or use SET ROLE ALL to access all roles.

For more information on use of roles, see Database Administration.

Roles for Proxy Users

Proxy users are users that access the database through a middle-tier application set up to offer
trusted sessions. Proxy users are limited to privileges defined in roles that are assigned to them
using the GRANT CONNECT THROUGH statement.

For details on using GRANT CONNECT THROUGH, see Security Administration and SQL
Data Control Language.

External Roles

Use external roles to assign role privileges to directory users. External roles are created exactly
like database roles; however, they cannot be granted to directory users because these users do
not exist in the database. Instead, directory users must be members of groups that are mapped
to external roles in the directory.

Directory users mapped to multiple external roles have access to all of them at logon to the
database.

For information on mapping directory users to database objects, see Security Administration.

Profiles

To simplify user management, an administrator can define a profile and assign it to a group of
users who share similar values for the following types of parameters:

• Default database assignment

• Spool space capacity

Chapter 16: Teradata Database Security
User Authentication

152 Introduction to Teradata

• Temporary space capacity

• Account strings permitted

• Password security attributes

• Query band

For further information on profiles, see Database Administration.

User Authentication

At logon to the database, users are authenticated, meaning their identity is verified and
checked against a list of approved users. Authentication comprises the following elements:

• Authentication method

• Logon formats and controls

• Password formats and controls

Authentication Method

Two categories of authentication are available:

• Teradata Database authentication

• External authentication

Teradata Database Authentication

Authentication by Teradata Database requires that the user and its privileges are defined in the
database. The TD2 and TDNEGO security mechanisms support Teradata Database
authentication. Unless another mechanism has been set as the default, TD2 need not be
specified at logon.

External Authentication

External authentication allows Teradata Database users to be authenticated by an agent
running on the same network as Teradata Database and its clients.

Teradata Database supports the following external authentication logon types:

• Single sign-on (authentication in the client domain; user credentials do not have to be
resubmitted to Teradata Database). The Kerberos, NTLM, SPNEGO, and TDNEGO
security mechanisms support Single Sign-on.

• Directory sign-on (authentication by the directory). The LDAP and TDNEGO security
mechanisms support Directory Sign-on.

• Sign-on As (user logs on to Teradata Database with credentials the client also recognizes).
The Kerberos, LDAP, NTLM, SPNEGO, and TDNEGO security mechanisms support
Sign-on As.

For complete information on authentication logon types and the mechanisms that support
them, see Security Administration.

Chapter 16: Teradata Database Security
User Authentication

Introduction to Teradata 153

Logon Format

Logons to Teradata Database can take the following forms:

• Command line

• Graphical User Interface (GUI)

• Logon from a mainframe-attached client

• Logon through a middle-tier application

Command-Line Logon

Users provide the following information when logging on from a workstation-attached client:

• .logmech: Specifies the name of the security mechanism that defines the method by which
the user will be authenticated and authorized. If a mechanism is not specified, the logon
proceeds using the designated default mechanism.

• .logdata: Used only for external authentication. Specifies the username and password, and
optionally names an individual username, profile, or role where the logon user has access
to multiple user identities, profiles, or roles.

• .logon: Must be used for Teradata Database authentication. May be used for external
authentication except when the logon requires specification of user=, profile=, or realm=
to differentiate among multiple user identities, profiles, or realms.

For either authentication type, .logon specifies the tdpid, username, password, and
optional account string information.

Note: The format required for the username and password information varies depending
on the user is sign-on method.

For more information on command-line logons, see Security Administration.

GUI Logons

Some Teradata Database client applications provide a logon GUI in the form of dialog boxes.
The dialog boxes provide fields and buttons that prompt the user to enter the same logon
information shown for command-line logons.

For an example of a GUI logon, see Security Administration.

Logons from Mainframe-Attached Clients

Sessions logged on from mainframe-attached clients do not support network security
features, such as security mechanisms, encryption, or directory management of users. Such
logons require submittal of only the username, password, tdpid, and optional account string
information using the .logon command.

For information on logons from mainframe-attached clients, see Security Administration and
Teradata Director Program Reference.

Logons Through Connection Pools

Some users access the database through a middle-tier application. The application must log
on to Teradata Database with a database username. The application then sets up a connection
pool that allows individual end users access to the database but does not require that the users

Chapter 16: Teradata Database Security
User Authorization

154 Introduction to Teradata

formally logon. End user privileges are determined by whether or not the application and its
end-users are set up for trusted sessions.

For information, see “Authorization of Middle-tier Application Users” on page 155.

Logon Controls

Teradata Database automatically grants permission for all users defined in the database to
logon from all connected client systems. But administrators can, for example:

• Modify current or default logon privileges for specific users.

• Give individual users permission to log on to the database only from specific mainframe
or workstation interfaces.

• Set the maximum number of times a user can submit an unsuccessful logon string.

• Enable authentication of the user by an external application, such as Kerberos or LDAP.

• Restrict access to the database based on the IP address of the machine from which a user
logs on.

Password Format Requirements

Passwords must conform to password format rules, which govern the type and number of
characters allowed in the password.

Password Controls

Teradata Database provides controls to enable the administration of passwords.
Administrators can, for example:

• Restrict the content of passwords:

• Define limits on minimum and maximum password characters.

• Allow or require that passwords contain upper and lowercase characters, digits, or
special characters.

• Allow or deny use of restricted words.

• Set the number of days for which a password is valid.

• Assign a temporary password.

• Set the lockout time after the user has exceeded the maximum number of logon attempts.

• Define the period during which a user may not reuse a previous password.

User Authorization

Once users have been authenticated, they are authorized database privileges according to their
defined privileges.

Chapter 16: Teradata Database Security
User Authorization

Introduction to Teradata 155

Authorization of Permanent Database Users

Permanent database users are defined in the database with a CREATE USER statement. Once
authenticated at logon, permanent users are authorized the following privileges:

• Privileges granted directly to the user with the GRANT statement.

• Privileges indirectly given to the user (automatic, implicit, and inherited privileges).

• Privileges granted to a role that has been granted to the user.

Note: Users with more than one role automatically have access to the default role or all
their roles, as specified in the CREATE USER statement. The SET ROLE statement allows
users to access roles other than their default role.

Authorization of Directory-Based Users

After being authenticated by the directory, directory-based users are authorized database
access privileges according to the following rules:

• If the directory maps users to Teradata Database objects (users, external roles, and
profiles), each directory user is authorized the privileges of the objects to which it is
mapped.

• If the directory does not map users to Teradata Database objects, but the directory
username matches a Teradata Database username, the directory user is authorized all the
privileges belonging to the matching Teradata Database user.

• If a directory user is neither mapped to any database objects, nor does the directory
username match a Teradata Database username, the directory user has no privileges to
access the database.

Note: One or more setup tasks (depending on implementation) must be completed before a
directory user can access the database. For information, see Security Administration.

Authorization of Middle-tier Application Users

Middle-tier applications may stand between end users and Teradata Database, accepting
requests from users, constructing queries from those requests, passing the queries to the
database, and then returning results to the users. The middle-tier application logs on to the
database, is authenticated as a permanent database user, and establishes a connection pool.
The application then authenticates the individual application end users, some of whom may
request access to the database through the connection pool.

By default, all end-users accessing the database through a middle-tier application are
authorized database privileges and are audited in access logs, based on the single permanent
database user identity of the application.

For sites that require end users to be individually identified, authorized, and audited, the
middle-tier application can be configured to offer trusted sessions. Application end-users that
access the database through a trusted session must be set up as proxy users and assigned one or
more database roles, which determine their privileges in the database. When a proxy user
requests database access, the application automatically forwards the user identity and
applicable role information to the database.

Chapter 16: Teradata Database Security
Data Protection

156 Introduction to Teradata

For further information about the tasks required to set up trusted sessions and proxy users,
see Security Administration.

Data Protection

Teradata Database provides the following features to enhance data protection:

• By default, the logon string is encrypted to maintain the confidentiality of the username
and password employed to log on to Teradata Database.

• Optional data encryption of messages maintains confidentiality of the data transmitted to
and from Teradata Database.

• Automatic integrity checking insures that the data is not corrupted during the encryption/
transmission/decryption cycle.

• Optional BAR and DSA encryption provides confidentiality of data backups between the
BAR server and the storage device.

• Optional SSL/TLS protection for systems using LDAP authentication with simple binding,
including:

• Encryption of the LDAP authentication sequence between Teradata Database and the
directory server.

• Advanced TLS protection, which requires that the database authenticate itself to the
directory or that the database and directory mutually authenticate.

• Optional SASL protection for systems using LDAP authentication with Digest-MD5
binding:

• Protection of the LDAP authentication token exchange sequence between Teradata
Database and the directory server.

Directory Management of Users

Normally, users that log on to Teradata Database have been defined in the database using a
CREATE USER request. However, because many potential database users may already be
defined in a directory running within the client network, Teradata Database allows for
authentication and authorization of users by supported directories. Integration of directory
managed users simplifies administration by eliminating the need to create a database instance
for every user.

For information on how to set up the database and the directory for integrated user
management, see Security Administration.

Supported Directories

Teradata Database is certified for use with the following directories:

• Active Directory

Chapter 16: Teradata Database Security
Database Security Monitoring

Introduction to Teradata 157

• Active Directory Application Mode (ADAM)

• Novell eDirectory

• Sun Java System Directory Server

• Other LDAPv3-compliant directories may be usable. Contact Teradata Professional
Services for integration assistance.

Database Security Monitoring

To ensure optimal database security, the security administrator should configure the system to
audit security events, and then monitor the logs to detect breaches in security and, where
necessary, repel security threats. If unauthorized or undesirable activity is detected, the
administrator can take remedial actions to address the problem.

Security Monitoring

Teradata Database provides the capability for two types of user security monitoring:

• All user logon and logoff activity is automatically collected in the Event Log and can be
accessed using the DBC.LogOnOffV system view. Listed parameters include:

• Database username

• Session number

• Logon events, including the causes of any unsuccessful logons

• Optional access logging records user attempts to access the database and can be accessed
using the DBC.AccessLogV view, including the following access parameters:

• Type of access

• Type of request

• Requesting database username

• Referenced database object

• Frequency of access

Note: Access log entries are generated each time the database checks a privilege to determine
whether or not it will honor a user request.

Logging of Directory Users

Directory users are logged by directory username rather than by the name of any database
user they may be mapped to.

Logging of Middle-tier Application Users

Users that access the database through a middle-tier application by means of a trusted session
and who are set up as proxy users are logged by their proxy user name. If the middle-tier
application and its end users are not set up for trusted sessions, all such users will appear in the
log as the same username, that is, the name used by the application.

Chapter 16: Teradata Database Security
Defining a Security Policy

158 Introduction to Teradata

Enabling and Disabling Access Logging

Use the BEGIN and END LOGGING statements to enable and disable logging and to indicate
which access parameters should be logged. Access logging can be set up for almost any
database object, for instance, users, databases, or tables.

Security-related System Views

The Data Dictionary provides s number of security-related system views, including the
following.

For a complete listing of security-related system views, see Security Administration.

Defining a Security Policy

Your security policy should be based on the following considerations:

• Determine your security needs to balance the need for secure data against user needs for
quick and efficient data access.

• Review Teradata Database security features to meet your needs.

• Develop a policy that includes both system-enforced and personnel-enforced features.

Publishing a Security Policy

To ensure administrators and users at your site understand and follow site-specific security
procedures, the administrator should create a security handbook. The handbook should
summarize how you are using Teradata Database security features for your database and
should be published and made available to all users.

 A security policy document should include:

• Why security is needed.

View Description

DBC.AccessLogV Each entry indicates a privileges check that has resulted from a
user request.

DBC.AccLogRulesV Lists the access logging rules contained in each BEGIN and
END LOGGING statement. These rules are used by the
database to determine the access logging criteria for a particular
user or database object.

DBC.LogOnOffV Lists all logon and logoff activity.

DBC.LogonRulesV Lists the logon rules that result from GRANT and REVOKE
LOGON statements. These rules are used by the database to
determine whether or not to allow logon privileges to a
particular user.

Chapter 16: Teradata Database Security
For More Information

Introduction to Teradata 159

• Benefits for both the company and the users of adhering to the security policy.

• A description of the specific implementation of Teradata Database security features at your
site.

• Suggested/required security actions for users and administrators to follow.

• Whom to contact when security questions arise.

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

IF you want to learn more about… See…

Security concepts Security Administration

Users • Security Administration

• SQL Data Control LanguageDatabase privileges, including information on
how to use security-related SQL statements,
such as GRANT and REVOKE.

User authentication Security Administration

User authorization, including detailed logon
requirements for Teradata Database client
applications

the user guide for the respective application

Data protection Security Administration

Directory management of users

Database security monitoring, including
security-related system tables and views

Data Dictionary

Defining a security policy Security Administration

Publishing a security policy

Chapter 16: Teradata Database Security
For More Information

160 Introduction to Teradata

Introduction to Teradata 161

SECTION 4 Managing and Monitoring Teradata
Database

162 Introduction to Teradata

Introduction to Teradata 163

CHAPTER 17 System Administration

The system administrator is responsible for creating databases and users, and for managing
the database.

For information on creating database and users, see Chapter 7: “Database Objects, Databases,
and Users.”

Session Management

Users must log on to Teradata Database and establish a session before system administrators
can do any system accounting.

Session Requests

A session is established after the database accepts the username, password, and account
number and returns a session number to the process.

Subsequent Teradata SQL requests generated by the user and responses returned from the
database are identified by:

• Host id

• Session number

• Request number

The database supplies the identification automatically for its own use. The user is unaware
that it exists.

The context for the session also includes a default database name that is often the same as the
user name. When the session ends, the system discards the context and accepts no further
Teradata SQL statements from the user.

Establishing a Session

To establish a session, the user logs on to the database.

The procedure varies depending on the client system, the operating system, and whether the
user is an application program, or a user in an interactive terminal session using an
application program or an interactive user.

Chapter 17: System Administration
Administrative and Maintenance Utilities

164 Introduction to Teradata

Logon Operands

The logon string can include any of the following operands:

• Optional identifier for the database server, called a tdpid

• User name

• Password

• Optional account number

Administrative and Maintenance Utilities

A large number of utilities are available to system administrators to perform various
administrative and maintenance functions.

The following table lists some of the major Teradata Database utilities.

Utility Purpose

Abort Host
(aborthost)

Aborts all outstanding transactions running on a failed host, until the
system restarts the host.

CheckTable
(checktable)

Checks for inconsistencies between internal data structures such as table
headers, row identifiers, and secondary indexes.

CNS Run
(cnsrun)

Allows running of database utilities from scripts.

Configuration Utility
(config)

Defines AMPs, PEs, and hosts, and describes their interrelationships for
Teradata Database.

Note: Configuration is documented in Support Utilities.

Control GDO Editor
(ctl)

Displays the fields of the PDE Control Parameters GDO, and allows
modification of the settings.

Cufconfig Utility
(cufconfig)

Displays configuration settings for the user-defined function and external
stored procedure subsystem, and allows these settings to be modified.

Database
Initialization
Program
(DIP)

Executes one or more of the standard DIP scripts packaged with Teradata
Database. These scripts create a variety of database objects that can extend
the functionality of Teradata Database with additional, optional features.

DBS Control
(dbscontrol)

Displays the DBS Control Record fields, and allows these settings to be
modified.

Dump Unload/Load
(DUL, DULTAPE)

Saves system dump tables to tape, and restores system dump tables from
tape.

Ferret Utility
(ferret)

Defines the scope of an action, such as a range of tables or selected vprocs,
displays the parameters and scope of the action, and performs the action,
either moving data to reconfigure data blocks and cylinders, or displaying
disk space and cylinder free space percent in use of the defined scope.

Chapter 17: System Administration
Administrative and Maintenance Utilities

Introduction to Teradata 165

Filer Utility
(filer)

Finds and corrects problems within the file system.

Note: Filer is documented in Support Utilities.

Gateway Control
(gtwcontrol)

Modifies default values in the fields of the Gateway Control Globally
Distributed Object (GDO).

Gateway Global
(gtwglobal)

Monitors and controls the Teradata Database workstation-connected users
and their sessions.

Lock Display
(lokdisp)

Displays a snapshot capture of all real-time database locks and their
associated currently-running sessions.

Priority Scheduler
(schmon)
(SLES 10 only)

Creates, modifies, and monitors Teradata Database process prioritization
parameters.

All processes have an assigned priority based on their Teradata Database
session. This priority is used by Priority Scheduler to allocate CPU and
I/O resources.

Note: On SLES 11 systems, Priority Scheduler is managed by Teradata
Active System Management (ASM), and is configured using the Teradata
Viewpoint workload management portlets. For more information on those
portlets, see Teradata Viewpoint User Guide.

Query Configuration
(qryconfig)

Reports the current Teradata Database configuration, including the Node,
AMP, and PE identification and status.

Query Session
(qrysessn)

Monitors the state of selected Teradata Database sessions on selected logical
host IDs.

Reconfiguration
Utility
(reconfig)

Uses the component definitions created by the Configuration Utility to
establish an operational Teradata Database.

Note: Reconfiguration is documented in Support Utilities.

Reconfiguration
Estimator
(reconfig_estimator)

Estimates the elapsed time for reconfiguration based upon the number and
size of tables on the current system, and provides time estimates for the
following phases:

• Redistribution

• Deletion

• NUSI building

Note: Reconfiguration Estimator is documented in Support Utilities.

Recovery Manager
(rcvmanager)

Displays information used to monitor progress of a Teradata Database
recovery.

Show Locks
(showlocks)

Displays locks placed by Archive and Recovery and Table Rebuild
operations on databases and tables.

For details Archive and Recovery, see Teradata Archive/Recovery Utility
Reference. For details on Table Rebuild, see Utilities.

Utility Purpose

Chapter 17: System Administration
For More Information

166 Introduction to Teradata

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

System Initializer
(sysinit)

Initializes Teradata Database. Creates or updates the DBS Control Record
and other Globally Distributed Objects (GDOs), initializes or updates
configuration maps, and sets hash function values in the DBS Control
Record.

Note: System Initializer is documented in Support Utilities.

Table Rebuild
(rebuild)

Rebuilds tables that Teradata Database cannot automatically recover,
including the primary or fallback portions of tables, entire tables, all tables
in a database, or all tables in an Access Module Processor (AMP). Table
Rebuild can be run interactively or as a background task.

Teradata Locale
Definition Utility
(tdlocaledef)

Converts a Specification for Data Formatting file (SDF) into an internal,
binary format (a GDO) for use by Teradata Database. The SDF file is a text
file that defines how Teradata Databaseformats numeric, date, time, and
currency output.

Tpareset
(tpareset)

Resets the PDE and database components of Teradata Database.

Update DBC
(updatedbc)

Recalculates the PermSpace and SpoolSpace values in the DBASE table for
the user DBC, and the MaxPermSpace and MaxSpoolSpace values of the
DATABASESPACE table for all databases based on the values in the DBASE
table.

Update Space
(updatespace)

Recalculates the permanent, temporary, or spool space used by a single
database or by all databases in a system.

Vproc Manager
(vprocmanager)

Manages the virtual processors (vprocs). For example, obtains status of
specified vprocs, initializes vprocs, forces a vproc to restart, and forces a
Teradata Database restart.

Utility Purpose

IF you want to learn more about… See…

Roles and profiles • Database Administration

• SQL Fundamentals

• SQL Data Definition Language

Session management Database Administration

Administrative and maintenance utilities Utilities

Introduction to Teradata 167

CHAPTER 18 Database Management Tools and
Utilities

Teradata Database offers a wide variety of utilities, management tools, and peripherals.

Some of these reside on the Teradata Database system itself, and others are part of the Teradata
Tools and Utilities management suite for installation in client environments.

With database management tools, you can back up and restore important data, save dumps,
and investigate and control Teradata Database configuration, user sessions, and various
aspects of its operation and performance. Management and analysis tools help keep the
database running at optimum performance levels.

Data Archiving Utilities

To archive, restore, and recover data in Teradata Database, you can use either:

• Teradata Data Stream Architecture, which is accessible via the Viewpoint BAR Operations
portlet

• Teradata Archive and Recovery utility (ARC)

These programs can co-exist at a customer site; however, only the program that created the
archive can read it and restore it. Teradata Data Stream Architecture cannot restore an archive
created by ARC and vice versa.

For more information, see the documentation for Teradata Data Stream Architecture.

Teradata Parallel Transporter

Teradata Parallel Transporter (Teradata PT) is an object-oriented client application that
provides scalable, high-speed, parallel data extraction, loading, and updating.

Teradata PT uses and expands on the functionality of the traditional Teradata standalone
extract and load utilities, that is, FastLoad, MultiLoad, FastExport, and TPump.

Teradata PT supports:

• Process-specific operators: Teradata PT jobs are run using operators. These are discrete
object-oriented modules that perform specific extraction, loading, and updating
processes. There are four functional operator types:

• Producer operators that read data from a source and write it to data streams.

• Consumer operators that read from data streams and write it to a data target.

Chapter 18: Database Management Tools and Utilities
Teradata Parallel Transporter Application Programming Interface

168 Introduction to Teradata

• Filter operators that read data from data streams, perform data filtering operations
such selection, validation, and condensing, and then write filtered data to data streams.

• Standalone operators that perform processing that does not involve receiving data
from, or sending data to, the data stream.

• Access modules: These are software modules that give Teradata PT access to various data
stores.

• A parallel execution structure: Teradata PT can execute multiple instances of an operator
to run multiple and concurrent loads and extracts and perform inline updating of data.
Teradata PT maximizes throughput performance through scalability and parallelism.

• The use of data streams: Teradata PT distributes data into data streams shared with
multiple instances of operators. Data streaming eliminates the need for intermediate data
storage (data is not written to disk).

• A single SQL-like scripting language: Unlike the standalone extract and load utilities,
each of which uses its own scripting language, Teradata PT uses a single script language to
specify extraction, loading, and updating operations.

• A GUI-based Teradata PT Wizard: The Teradata PT Wizard helps you generate simple
Teradata PT job scripts.

Teradata Parallel Transporter Application
Programming Interface

The Teradata Parallel Transporter Application Programming Interface (Teradata PT API) is a
set of application programming interfaces used to load into, and extract from, Teradata
Database.

Unlike Teradata PT and the standalone utilities, which are script-driven, Teradata PT API is a
functional library that is part an application. This allows applications to have more control
during load and extract operations. Closer control of the runtime environment simplifies
management processes.

Standalone Data Load and Unload Utilities

Teradata FastExport

Teradata FastExport extracts large quantities of data in parallel from Teradata Database to a
client. The utility is the functional complement of the FastLoad and MultiLoad utilities.

Teradata FastExport can:

• Export tables to client files.

• Export data to an Output Modification (OUTMOD) routine. You can write an OUTMOD
routine to select, validate, and preprocess exported data.

• Perform block transfers with multisession parallelism.

Chapter 18: Database Management Tools and Utilities
Standalone Data Load and Unload Utilities

Introduction to Teradata 169

Teradata FastLoad

Teradata FastLoad loads data into unpopulated tables only. Both the client and server
environments support Teradata FastLoad.

Teradata FastLoad can:

• Load data into an empty table.

FastLoad loads data into one table per job. If you want to load data into more than one
table, you can submit multiple FastLoad jobs.

• Perform block transfers with multisession parallelism.

Teradata MultiLoad

Teradata MultiLoad supports bulk inserts, updates, and deletes against initially unpopulated
or populated database tables. Both the client and server environments support Teradata
MultiLoad.

Teradata MultiLoad can:

• Run against multiple tables.

• Perform block transfers with multisession parallelism.

• Load data from multiple input source files.

• Pack multiple SQL statements and associated data into a request.

• Perform data Upserts.

Teradata Parallel Data Pump

Teradata TPump uses standard SQL (not block transfers) to maintain data in tables.

TPump also contains a resource governing method whereby you can control the use of system
resources by specifying how many inserts and updates occur minute-by-minute. This allows
background maintenance for insert, delete, and update operations to take place at any time of
day while Teradata Database is in use.

TPump provides the following capabilities:

• Has no limitations on the number of instances running concurrently.

• Uses conventional row hash locking, which provides some amount of concurrent read and
write access to the target tables.

• Supports the same restart, portability, and scalability as Teradata MultiLoad.

• Perform data Upserts.

Chapter 18: Database Management Tools and Utilities
Access Modules

170 Introduction to Teradata

Access Modules

Access modules are dynamically linked software components that provide block-level I/O
interfaces to external data storage devices.

Access modules import data from data sources and return it to a Teradata utility. Access
modules are dynamically linked to one or more Teradata utilities by the Teradata Data
Connector API.

Access modules provide transparent, uniform access to various data sources, isolating you
from, for example, device and data store dependencies.

Teradata Database supports the following access modules, which read data, but do not write it.

• Named Pipes Access Module, which enables you to load data into the Teradata Database
from a UNIX OS named pipe. A pipe is a type of data buffer that certain operating systems
allow applications to use for the storage of data.

• Teradata WebSphere MQ Access Module, which enables you to load data from a message
queue using IBM’s WebSphere MQ (formerly known as MQ Series) message queuing
middleware.

• Teradata Access Module for JMS, which enables you to load data from a JMS-enabled
messaging system using JMS message queuing middleware.

• Teradata OLE DB Access Module, which enables you to transfer data between an OLE DB
provider and Teradata Database.

• Custom Access Modules, which you can use with the DataConnector operator for access
to specific systems.

Teradata access modules work on many operating systems with the following Teradata Tools
and Utilities:

• BTEQ

• Teradata FastExport

• Teradata FastLoad

• Teradata MultiLoad

• Teradata PT

• Teradata TPump

Basic Teradata Query

Basic Teradata Query (BTEQ) software is a general-purpose, command-based program that
allows users on a workstation or mainframe to communicate with one or more Teradata
Database systems and to format reports for both print and screen output.

Using BTEQ you can submit SQL queries to the Teradata Database. BTEQ formats the results
and returns them to the screen, to a file, or to a designated printer.

Chapter 18: Database Management Tools and Utilities
Session and Configuration Management Tools

Introduction to Teradata 171

A BTEQ session provides a quick and easy way to access a Teradata Database. In a BTEQ
session, you can:

• Enter Teradata SQL statements to view, add, modify, and delete data.

• Enter BTEQ commands.

• Enter operating system commands.

• Create and use Teradata stored procedures.

Session and Configuration Management Tools

Database management tools include utilities for investigating active sessions and the state of
Teradata Database configuration, such as:

• Query Session

• Query Configuration

• Gateway Global

The following table contains information about the capabilities of each utility.

This utility… Does the following…

Query Session • Provides information about active Teradata Database
sessions.

• Monitors the state of all or selected sessions on selected
logical host IDs attached to Teradata Database.

• Provides information about the state of each session
including session details for Teradata Index Wizard. For
more information about Teradata Index Wizard, see
“Teradata Index Wizard” on page 144.

Query Configuration Provides reports on the current Teradata Database
configuration, including:

• Node

• AMP

• PE identification and status

Gateway Global Allows you to monitor and control the sessions of Teradata
Database workstation-connected users.

Chapter 18: Database Management Tools and Utilities
System Resource and Workload Management Tools and Protocols

172 Introduction to Teradata

System Resource and Workload Management
Tools and Protocols

Teradata Database supports specific tools, protocols, and tool architectures for system
resource and workload management. Among these are:

• Write Ahead Logging

• Ferret utility

• Priority Scheduler

• Teradata Active System Management

Write Ahead Logging

Teradata Database uses a Write Ahead Logging (WAL) protocol. According to this protocol,
writes of permanent data are written to a log file that contains the records representing
updates. The log file is written to disk at key moments, such as at transaction commit.

Modification to permanent data from different transactions, all written to the WAL log, can
also be batched. This achieves a significant reduction in I/O write operations. One I/O
operation can represent multiple updates to permanent data.

The WAL Log is conceptually similar to a table, but the log has a simpler structure than a table.
Log data is a sequence of WAL records, different from normal row structure and not accessible
via SQL.

The WAL Log includes the following:

• Redo Records for updating disk blocks and insuring file system consistency during
restarts, based on operations performed in cache during normal operation.

• Transient Journal (TJ) records used for transaction rollback.

WAL protects all permanent tables and all system tables, except Transient Journal (TJ) tables,
user journal tables, and restartable spool tables (global temporary tables). Furthermore, WAL
allows Teradata Database to be reconstructed from the WAL Log in the event of a system
failure.

The file system stages in-place writes through a disk area called the DEPOT, a collection of
cylinders. Staging in-place writes through the DEPOT ensures that either the old or the new
copy is available after a restart.

Ferret Utility

The Ferret utility, ferret, lets you display and set storage space utilization attributes of the
Teradata Database. Ferret dynamically reconfigures the data in the Teradata file system while
maintaining data integrity during changes. Ferret works on various data levels as necessary:
vproc, table, subtable, WAL log, disk, and cylinder.

The Ferret utility allows display and modification of the WAL Log and its index.

Ferret includes the following:

Chapter 18: Database Management Tools and Utilities
System Resource and Workload Management Tools and Protocols

Introduction to Teradata 173

• The SCANDISK option includes checking the WAL Log by default.

• The SCOPE option can be set to just the WAL Log.

• The SHOWBLOCKS and SHOWSPACE options display log statistics and space.

Priority Scheduler

Note: The information in this section applies only to Teradata Database systems running on
SUSE Linux Enterprise Server (SLES) 10. On SLES 11 systems, Priority Scheduler is managed
by Teradata Active System Management (TASM), and is configured and monitored using the
Teradata Viewpoint workload management portlets. For more information on those portlets,
see Teradata Viewpoint User Guide.

Teradata Database Priority Scheduler (also called schmon) is a workload management facility
that controls access to resources by the different active jobs in Teradata Database. It allows
administrators to define different priorities for different categories of work, and comes with a
number of flexible options.

Priority Scheduler is active in

Priority Scheduler has these capabilities:

• Provides better service for more important work.

• Controls resource sharing among different applications.

• Prevents aggressive queries from over-consuming resources at the expense of other work.

• Automates changes in priority based on query or session CPU usage levels.

Teradata Active System Management

Teradata Active System Management (TASM) is a set of products, including system tables and
logs, that interact with each other and a common data source. It facilitates automation in the
following four key areas of system management:

• Workload management

• Performance tuning

• Capacity planning

• Performance monitoring

With careful planning, TASM can improve and optimize your workload management and
performance. It can also improve response times and ensure more consistent response times
for critical work. This can reduce the effort required by DBAs.

Some Key TASM Products and Components

The following table describes some of the key products and components of TASM.

Chapter 18: Database Management Tools and Utilities
System Resource and Workload Management Tools and Protocols

174 Introduction to Teradata

Teradata Viewpoint

Teradata Viewpoint, including the Workload Designer portlet, supports the creation of the
following based on business-driven allocations of operating resources:

• Filter rules

• Throttle rules

• Rules that define classes of queries (Workload Definitions [WDs])

• Events to monitor system resources

• States to allow changes to rule values

Request-Specific Performance Management

Teradata Viewpoint Workload Designer portlet lets users define rules according to which
workload is managed. The following table describes the three categories of Teradata Active
System Management (ASM) rules.

Product / Component Description

Teradata Workload Analyzer
(Teradata WA)

A product that analyzes collected DBQL data to help group
workloads and define rules to manage system performance.

See “Database Query Log” on page 146.

Teradata Viewpoint A product that enables users to:

• Create rules for filtering, throttling, and defining classes
of queries (workload definitions)

• Create events to monitor system resources

Open APIs An interface, invoked from any application, that provides an
SQL interface to PMPC through User-Defined Functions
(UDFs) and external stored procedures.

See “Workload Management Application Programming
Interface” on page 103.

Query Bands A set of name-value pairs that are defined by the user or
middle-tier application. Query Bands allow the user to tag
session or transactions with an ID through an SQL interface.

For specific information on Query Bands, see SQL Data
Definition Language and Database Administration.

Resource Usage Monitor Data collection subsystem that includes TASM-related data
collection. See “Resource Usage Monitoring” on page 182.

Chapter 18: Database Management Tools and Utilities
System Resource and Workload Management Tools and Protocols

Introduction to Teradata 175

Rules Description

Filter Reject unwanted logon and query requests before they are
executed.

Filters restrict access to specific database objects for some or all
types of SQL requests. You can prohibit queries that are estimated
to access too many rows, take too long, and perform some types of
joins.

Throttle
(also called concurrency rules)

Enforce session and query concurrency limits on specific objects.

When creating throttle rules, you can:

• Restrict the number of requests simultaneously executed
against a database object (such as requests made by a user, or
against a table).

• Reject requests over the concurrency limit on a state-by-state
basis (where state is a complete set of working values for a rule
set).

• Enforce concurrency limits on FastLoad, MultiLoad,
FastExport, DSA, and ARC utilities.

• Apply them to Priority Scheduler Performance Groups (PGs).

Workload
(also called Workload
Definitions [WDs])

Specify how Teradata Database should handle queries while they
are executing by specifying parameters for up to 36 separate
workload definitions.

In each workload definition, you can specify:

• The Include and Exclude conditions or database objects, or
both the workload definition and database objects that
determine whether a query is assigned to the class.

Note: Wildcard characters (such as “*” and “?”) can be used to
include all or a group of database objects, and then exclude
specific ones.

• The execution priority (by more or less transparently creating
a Priority Scheduler configuration).

• The query concurrency limits. Requests over the concurrency
limit can be rejected on a state-by-state basis.

• The set of conditions that invoke an exception once a query
has started running.

Chapter 18: Database Management Tools and Utilities
System Resource and Workload Management Tools and Protocols

176 Introduction to Teradata

Event-Based Performance Management

Teradata Viewpoint Workload Designer portlet allows you to specify filter, throttle, and
workload rules (WDs) that dynamically adjust their behavior based on system and user-
defined events.

An event is any condition or indication that you think is pertinent to workload management.

Utility Management

You can manage load utilities (FastLoad, MultiLoad, FastExport) and Teradata Archive/
Recovery utility similarly to how you manage SQL requests: by classifying them into workload
definitions with throttle limits based on:

• Utility name

• “Who” criteria (such as user, account, or queryband)

• “Where” criteria (the name of the database, table, or view) (not available for Archive/
Recovery)

For example, you can specify that:

• User A cannot run more than two FastLoad jobs at the same time

• Only one MultiLoad job can run at a time against Database XYZ

In addition, using Workload Designer, a portlet of Viewpoint, you can define rules that
control the number of sessions that Archive/Recovery or a load utility can use. To create
session configuration rules, specify at least one of the following criteria:

• Utility name (required)

• Data size

• “Who” criteria (for example, user, account, client address, or query band)

and then specify the number of sessions to be used when the criteria are met.

For example, you can specify using:

• Ten sessions for standalone MultiLoad jobs submitted by Joe

• Four sessions for JDBC FastLoad from the application called WebApp

If you do not create a session configuration rule or the utility currently running does not meet
the rule criteria, then Workload Designer automatically uses default session rules to select the
number of sessions based on these criteria:

Event Description

Health Condition Reflects the health of the system, such as a Teradata Database
component degrading or failing (a node down, for example), or
resources below a threshold for some period of time.

Planned Environment Includes the kinds of work Teradata Database is expected to
perform, such as batch and loads or month-end processing,
defined as time periods.

Chapter 18: Database Management Tools and Utilities
Teradata SQL Assistant

Introduction to Teradata 177

• Utility name

• System configuration (the number of AMPs)

• Optional data size

Teradata Workload Analyzer

Teradata Workload Analyzer (WA) is a tool to analyze resource usage patterns of workloads
and to correlate these patterns with specific classification and exception criteria. Teradata WA
helps:

• DBAs identify classes of queries (workloads).

• Provides recommendations on workload definitions and operating rules to ensure that
database performance meets Service Level Goals (SLGs).

Through graphical displays such as pie charts showing CPU and I/O utilization by accounts,
applications, users, profiles, or query bands, through histograms showing actual service levels,
as well as recommended settings, Teradata WA makes it easier for DBAs to manage
distribution of resources effectively.

Teradata SQL Assistant

Teradata SQL Assistant stores, retrieves, and manipulates data from Teradata Database (or any
database that provides an ODBC interface). You can store the data on your desktop PC, and
produce consolidated results or perform data analyses using tools such as Microsoft Excel. In
addition to ODBC connectivity, Teradata SQL Assistant can connect to Teradata Database
using .NET Data Provider for Teradata, which can be downloaded from the Teradata
Corporation website.

Teradata SQL Assistant Java Edition can be used to attach to Teradata Database or any other
database that provides a JDBC interface.

The following table contains information about key features of Teradata SQL Assistant.

This feature… Allows you to…

Queries • Use SQL syntax examples to help compose your SQL
statements.

• Send statements to any ODBC database or the same
statement to many different databases.

• Limit data returned to prevent runaway execution of
statements.

Reports • Create reports from any database that provides an ODBC
interface.

• Use an imported file to create many similar reports (query
results or answer sets); for example, display the DDL (SQL)
that was used to create a list of tables.

Chapter 18: Database Management Tools and Utilities
Teradata Studio

178 Introduction to Teradata

Teradata SQL Assistant electronically records your SQL activities with data source
identification, timings, row counts, and notes. Having this historical data allows you to build a
script of the SQL that produced the data. The script is useful for data mining.

Teradata Studio

Teradata Studio is a client-based GUI used to perform database administration tasks on
Teradata Database. Teradata Studio has a modular display that allows users to create a custom
user interface. Teradata Studio combines the functionality of Teradata SQL Assistant and
Teradata Administrator and allows you to:

• Search for and view database objects or space and skew

• Write SQL using content assistance, edit and parse SQL, view history, and use SQL
templates and annotations

• Build and edit SQL requests visually with SQL Query Builder

• Export result sets to Excel, XML, or text files

• Generate and run COLLECT STATISTICS requests

• Load and extract data with a smart data loader that automatically determines data types,
creates tables, and loads the data

• Copy database objects to another database or system

• Move space between databases

• Compare SQL DDL side-by-side

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

Data manipulation • Export data from the database to a file on a PC.

• Import data from a PC file directly to the database.

• Create a historical record of the submitted SQL with timings
and status information, such as success or failure.

• Use the Database Explorer Tree to easily view database
objects.

Teradata Database stored
procedures

Use a procedure builder that gives you a list of valid statements
for building the logic of a stored procedure, using Teradata
Database syntax.

This feature… Allows you to…

Chapter 18: Database Management Tools and Utilities
For More Information

Introduction to Teradata 179

IF you want to learn more about… See…

Data Archiving Utilities, including:

• Archive/Recovery utility

• Backup and Recovery (BAR), including
Backup Application Software products

• Teradata Archive/Recovery Utility Reference

• Teradata BAR Solutions Guide

Teradata Parallel Transporter • Teradata Parallel Transporter User Guide

• Teradata Parallel Transporter Reference

• Teradata Parallel Transporter Operator
Programmer Guide

Teradata Parallel Transporter Application
Programming Interface

Teradata Parallel Transporter Application
Programming Interface Programmer Guide

Standalone Data Load and Export Utilities • Teradata FastExport Reference

• Teradata FastLoad Reference

• Teradata MultiLoad Reference

• Teradata Parallel Data Pump Reference

Access Modules Teradata Tools and Utilities Access Module
Programmer Guide

Basic Teradata Query (BTEQ) Basic Teradata Query Reference

Session and Configuration Management Utilities

System Resource and Workload Management,
including:

• Write Ahead Logging (WAL)

• Ferret utility

• Priority Scheduler

• Teradata Active System Management (ASM)

• Support Utilities

• Utilities

• Database Administration

• Teradata Workload Analyzer User Guide

Teradata SQL Assistant • Teradata SQL Assistant for Microsoft Windows
User Guide

• Teradata Developer Exchange
http://developer.teradata.com/tools/articles/
sql-assistant-java-edition

Teradata Studio Teradata Studio documentation

http://developer.teradata.com/tools/articles/sql-assistant-java-edition
http://developer.teradata.com/tools/articles/sql-assistant-java-edition

Chapter 18: Database Management Tools and Utilities
For More Information

180 Introduction to Teradata

Introduction to Teradata 181

CHAPTER 19 System Monitoring

This chapter discusses various aspects of monitoring Teradata Database, including the
monitoring tools used to track system and performance issues.

Teradata Viewpoint

Teradata Viewpoint enables database and system administrators and business users to
monitor and manage Teradata Database systems from anywhere using a standard web
browser.

Teradata Viewpoint allows users to view system information, such as query progress,
performance data, and system saturation and health through preconfigured portlets displayed
from within the Teradata Viewpoint portal. Portlets can also be customized to suit individual
user needs. User access to portlets is managed on a per-role basis.

Database administrators can use Teradata Viewpoint to determine system status, trends, and
individual query status. By observing trends in system usage, system administrators are better
able to plan project implementations, batch jobs, and maintenance to avoid peak periods of
use. Business users can use Teradata Viewpoint to quickly access the status of reports and
queries and drill down into details. Teradata Viewpoint includes the following components.

For more information on Teradata Viewpoint, contact your Teradata representative.

Component Description

Viewpoint Server The hardware on which the other components are installed. It is an
Ethernet-connected server housed in the Teradata rack so it can be
managed by server management software.

Viewpoint Portal A Java-based portal that resides on the Viewpoint Server and is the
framework for delivering the Teradata Viewpoint portlets. The portal
includes built-in security, user management, and role-based permissions
for defining which users can perform specific actions and for granting or
limiting system access.

Data Collection Service A Java process that tracks daily activities on Teradata Database and
maintains data history for comparison and reporting purposes. Because it
maintains a local cache database, users can access the system even during
critical events, such as outages.

Portlets Preconfigured and customizable content that provides a current view of
the workload and throughput of Teradata systems and a historical view of
system capacity and use.

Chapter 19: System Monitoring
QUERY STATE Command

182 Introduction to Teradata

QUERY STATE Command

Teradata Database is always in one of several states. You can monitor these states using the
QUERY STATE command from the DBW Supervisor window.

The following table lists the valid system states.

Resource Usage Monitoring

Teradata Database has facilities that permit you to monitor the use of resources such as:

• AMPs

• AWTs

• CPUs

• BYNET activity

• Disk activity

• Performance Groups

System State Description

Database is not running Teradata Database has not been started; it cannot be accessed
from a client or used for processing.

Database Startup Teradata Database is undergoing startup processing and is
not yet ready to accept requests.

Logons are disabled - Users are
logged on

No new sessions can log on, but existing sessions are still
logged on.

Logons are disabled - The system is
quiescent

Logons are disabled and no sessions are logged on.

Logons are enabled - Users are
logged on

New sessions can log on and work is in process.

Logons are enabled - The system is
quiescent

Logons are enabled, but no sessions are logged on.

Only user DBC Logons are enabled Only new DBC sessions can log on and work is in process.

RECONFIG is running Reconfiguration is being run.

System is operational without PEs -
Sessions are not allowed

Either there are no PEs configured into the system or all PEs
are offline/down.

TABLEINIT is running Database startup has detected that there are no tables on the
system and is running TABLEINIT to create the system
tables.

This usually occurs during the next system restart after a
SYSINIT.

Chapter 19: System Monitoring
Resource Usage Monitoring

Introduction to Teradata 183

Resource usage data is useful for the following purposes:

• Measuring system performance

• Measuring component performance

• Assisting with on-site job scheduling

• Identifying potential performance impacts

• Planning installation, upgrade, and migration

• Analyzing performance degradation and improvement

• Identifying problems such as bottlenecks, parallel inefficiencies, down components, and
congestion

Resource Usage Data Reporting

Data is reported at the logging period. When a new logging period starts, the data is gathered
in the Gather Buffer, then updated to the Log Buffer and logged to the database resource usage
tables.

How to Control Logging of ResUsage Data

Several mechanisms exist within Teradata Database for setting the logging rates of ResUsage
data. The control sets allow users to do any of the following:

• Specify data logging rate.

• Enable or disable ResUsage data logging on a table-by-table basis.

• Enable or disable summarization of the data.

• Enable or disable active row filtering.

Logging rates control the frequency that resource usage data is logged to the ResUsage tables.

You can use the SET LOGTABLE command to establish the logging of resource usage
information. The system inserts data into ResUsage tables every logging period for the tables
that have logging enabled. You can use the statistics collected in the ResUsage tables to analyze
system bottlenecks, determine excessive swapping, and detect system load imbalances.

ResUsage Tables and Views

Resource usage data is stored in system tables and views in the DBC database. Macros installed
with Teradata Database generate reports that display the data.

You can use SQL to access resource usage data if you have the proper privileges. You can also
write your own queries or macros on resource usage data.

ResUsage Data Categories

Each row of ResUsage data contains two broad categories of information:

• Housekeeping, containing identifying information

• Statistical

Chapter 19: System Monitoring
Performance Monitoring

184 Introduction to Teradata

Each item of statistical data falls into a defined kind and class. Each kind corresponds to one
(or several) different things that may be measured about a resource.

ResUsage Macros

The facilities for analyzing ResUsage data are provided by means of a set of ResUsage macros
tailored to retrieving information from a set of system views designed to present ResUsage
information.

Summary Mode

Summary Mode is one method for improving system performance. It reduces database I/O by
consolidating and summarizing data on each node on the system. Because Summary Mode
reduces the availability of detail, you can log normally to tables in which greater detail is
needed. Activate Summary Mode individually for the tables in which great detail is not
needed.

For more information about Summary Mode and those tables supported in Summary Mode,
see Resource Usage Macros and Tables.

Performance Monitoring

Several facilities exist for monitoring and controlling system performance.

For information on the Workload Management API, including those for dynamic workload
management and Query Banding, see “Workload Management Application Programming
Interface” on page 103.

Account String Expansion

Account String Expansion (ASE) is a mechanism that enables AMP usage and I/O statistics to
be collected. ASE supports performance monitoring for an account string.

The system stores the accumulated statistics for a user/account string pair as a row in
DBC.Acctg table in the Data Dictionary. You can use the DBC.AMPUsageV view to access this
information.

Each user/account string pair results in a new set of statistics and an additional row. You can
use this information in capacity planning or in charge back and accounting software.

At the finest granularity, ASE can generate a summary row for each SQL request. You can also
direct ASE to generate a row for each user, each session, or for an aggregation of the daily
activity for a user.

ASE permits you to use substitution variables to include date and time information in the
account id portion of a user logon string. The system inserts actual values for the variables at
Teradata SQL execution time.

Chapter 19: System Monitoring
For More Information

Introduction to Teradata 185

The TDPTMON

Teradata Director Program (TDP) User Transaction Monitor (TDPTMON) is a client routine
that enables a system programmer to write code to track TDP elapsed time statistics.

System Management Facility

The System Management Facility (SMF) is available in the z/OS environment only. This
facility collects data about Teradata Database performance, accounting, and usage.

Data is grouped into the following categories:

• Session information

• Security violations

• PE stops

For More Information

For more information on the topics presented in this chapter, see the following Teradata
Database and Teradata Tools and Utilities books.

IF you want to learn more about… See…

QUERY STATE Command “Database Window (xdbw)” in Utilities

Resource Usage Monitoring Resource Usage Macros and Tables

Performance Monitoring, including:

• Account String Expansion

• the TDPTMON

• System Management Facility

• Workload Management Application
Programming Interface

• Database Administration

• Security Administration

• Application Programming Reference

Chapter 19: System Monitoring
For More Information

186 Introduction to Teradata

Introduction to Teradata 187

CHAPTER 20 Teradata Meta Data Services

Teradata Meta Data Services (MDS) provides a means of storing, administering, and
navigating metadata in Teradata. It is the only metadata management system optimized for,
and integrated with, the Teradata Database environment.

About Metadata

Metadata is the term applied to the definitions of the data stored in Teradata Database. Simply
put, metadata is data about data. In a transaction processing database environment, a Data
Dictionary generally satisfies the need for data about data. In the data warehouse
environment, the requirements for a more elaborate metadata storage system can exceed the
capabilities of the Data Dictionary.

Metadata plays an important role across Teradata Database architecture. In the operational
database environment, that role is very formal. All development should use metadata as a
standard part of the design and development process. As far as the data warehouse is
concerned, metadata is used to locate data. Without it, you cannot not interact with the data
in the data warehouse because you have no means of knowing how the tables are structured,
what the precise definitions of the data are, or where the data originated.

Types of Metadata

Metadata has been around for as long as there have been programs and data. However, in the
world of data warehouses, metadata takes on a new level of importance. Using metadata, you
can make the most effective use of Teradata. Metadata allows the decision support system
(DSS) analyst to navigate through the possibilities.

The major component of the DSS environment is archival data, that is, data with a timestamp.
Because archival data is timestamped, it makes sense to store metadata with the actual
occurrences of data, which are time stamped as well.

The following table describes the types of metadata.

Chapter 20: Teradata Meta Data Services
Types of Metadata

188 Introduction to Teradata

For the… The following types of metadata are stored…

data model • Description

• Specification

• The layout of the physical data model tables

• Relation between the data model and the data
warehouse

data warehouse • Data source (system of record)

• Definition of the system of record

• Mapping from system of record to the data
warehouse and other places defined in the
environment

• Table structures and attributes

• Any relationship or artifacts of relationships

• Transformation of data as it passes into the data
warehouse

• History of extracts

• Extract logging

• Common routines for data access

columns • Columns in a row

• Order in which the columns appear

• Physical structure of the columns

• Any variable-length columns

• Any columns with containing NULLs

• Unit of measure of any numeric columns

• Any encoding used

database design • Description of the layouts used

• Structure of data as known to the programmers
and analysts

Chapter 20: Teradata Meta Data Services
Teradata Meta Data Services

Introduction to Teradata 189

Teradata Meta Data Services

Teradata MDS is software that creates a repository in a Teradata Database in which metadata is
stored. Teradata MDS also permits the DSS analyst to administer and navigate metadata in the
warehouse. The following table describes the benefits of Teradata MDS to several user groups.

Creating Teradata Meta Data Repository

Teradata MDS repository is a set of tables, views, and macros stored in a Teradata Database.
You must use MDS program software to create these tables before metadata can be added,
stored, or accessed.

For this type of user… Teradata MDS…

application developers • Provides a persistent store for application metadata so that
developers can concentrate on developing application functions.

• Allows the developer to manipulate metadata with the same
techniques used to manipulate other data.

• Provides security (MDS controls the read and write access).

• Allows metadata to be shared between applications. This allows
integration of tools such as ordered analytical functions and data
mining tools.

• Allows application data to be modeled around Teradata
Database metadata maintained by MDS. MDS maintains the
metadata so that the application is kept current with database
changes.

database administrator • Provides a common repository for Teradata components.

• Provides a single shared copy of metadata, or a single version of
the business. One copy eliminates multiple islands of redundant
metadata that can cause confusion and administrative
difficulties.

• Provides the capabilities to browse through data in the
repository and to drill-down to see successive levels of detail.

• Shows interrelationships between different data definitions.

• Provides impact analysis of proposed changes.

business user • Provides the foundation for a “warehouse view” of enterprise
computing.

• Allows business analysts to quickly determine where their data
comes from, how it was changed, when it was last updated, and
how the answer was determined. This greatly increases the value
of the detail data and implicitly the value of the metadata.

• Supports third-party tools that can be used to import metadata
into MDS for viewing.

• Supports a web browser that provides general reporting and
search capabilities and shows strategic metadata relationships.

Chapter 20: Teradata Meta Data Services
For More Information

190 Introduction to Teradata

Connecting to Teradata Meta Data Repository

Each system running a Teradata MDS application must have the following:

• The appropriate Teradata ODBC driver (see ODBC Driver for Teradata User Guide for
more information).

• An ODBC System Data Source Name (DSN) connection to Teradata Database where the
MDS repository resides.

For More Information

For more information on the topics presented in this chapter, see the following Teradata Meta
Data Services and Teradata Tools and Utilities books.

IF you want to learn more about… See…

Metadata • Teradata Meta Data Services Administrator
Guide

• Teradata Meta Data Services Programmer
Guide

Types of Metadata

Teradata MDS

Introduction to Teradata 191

Glossary

1NF First Normal Form

2NF Second Normal Form

2PC Two-Phase Commit

3NF Third Normal Form

4NF Fourth Normal Form

5NF Fifth Normal Form

AMP Access Module Processor

ANSI American National Standards Institute

API Application Programming Interface

ARC Teradata Archive/Recovery Utility

ASCII American Standard Code for Information Interchange

ASE Account String Expansion

AWT AMP Worker Task

BCNF Boyce-Codd Normal Form

BTEQ Basic Teradata Query

BYNET Banyan Network (high-speed interconnect)

CAS Channel-Attached System

CICS Customer Information Control System

CLIv2 Call-Level Interface, Version 2

CNS Console Subsystem

DB2 DATABASE 2

DBC Database Computer

DBQAT Database Query Analysis Tools

DBQL Database Query Log

DBS Database System or Database Software

DDE Dynamic Data Exchange

Glossary

192 Introduction to Teradata

DDL Data Definition Language

DIP Database Initialization Program

DML Data Manipulation Language

DNS Domain Name Source

DSS Decision Support System

EBCDIC Extended Binary Coded Decimal Interchange Code

FIPS Federal Information Processing Standards

GDO Globally Distributed Object

HI Hash Index

IBM International Business Machines Corporation

ID Identification

IMS Information Management System

I/O Input/Output

ISV Independent Software Vender

JBOD Just a Bunch Of Disks

JDBC Java Database Connectivity

JI Join Index

LAN Local Area Network

LUN Logical Unit

MDS Meta Data Services

MIPS Millions of Instructions Per Second

MLPPI Multilevel Partitioned Primary Index

MOSI Micro Operating System Interface

MPP Massively Parallel Processing

MTDP Micro Teradata Director Program

NAS Network-Attached System

NoPI Tables Tables that are defined with no primary index (PI).

NPPI Nonpartitioned Primary Index

NUPI Nonunique Primary Index

Glossary

Introduction to Teradata 193

NUSI Nonunique Secondary Index

ODBC Open Database Connectivity

OS/VS Operating System/Virtual Storage

PDE Parallel Database Extensions

PE Parsing Engine

PI Primary Index

PL/I Programming Language 1

PJ/NF Projection-Join Normal Form

PP2 Preprocessor2

PPI Partitioned Primary Index

PUT Parallel Upgrade Tool

QCD Query Capture Database

QCF Query Capture Facility

RAID Redundant Array of Independent Disks

RCT Resource Check Tools

RI Referential Integrity

SIA Shared Information Architecture

SMP Symmetric Multiprocessing

SNMP Simple Network Management Protocol

SR Single Request

SSO Single Sign On

TCP/IP Transmission Control Protocol/Internet Protocol

TDGSS Teradata Generic Security Services

TDP Teradata Director Program

TDSP Teradata Stored Procedures

TASM Teradata Active System Management

TPA Trusted Parallel Application

UPI Unique Primary Index

USI Unique Secondary Index

Glossary

194 Introduction to Teradata

vproc Virtual Processor

z/OS IBM System z Operating System

Introduction to Teradata 195

Index

Symbols
.NET Data Provider for Teradata 26, 59

Numerics
1NF, first normal form 117
2NF, second normal form 117
2PC 127
2PL

phases 124
serializability 123

3NF, third normal form 117

A
Access logs 149, 157
Access Module for JMS 29
Access Module Processor. See AMP
Access modules 29, 170
Account String Expansion 184
Account String Expansion. See ASE
Accounting

ASE 184
DBC.AMPUsage table 184

Active data warehouse 17
Active Directory 156
Active System Management. See Teradata ASM
ADAM 157
Administrative utilities 164
Aggregate functions 91
AMP 43

clusters 44, 53
down AMP journal 55
down AMP recovery 127
hashing and 116
operation 46
SELECT statement processing 48
step processing 48
vproc migration 51

Analytical functions. See Ordered analytical functions
ANSI mode transactions 124
APIs

network-attached clients 26
workload management 103
See also Open APIs

Application development
client applications 95

embedded SQL applications 95
macros 96
platforms 96
Preprocessor2 96
SQL stored procedures 98

Application development languages
C 96
COBOL 96
PL/I 96

ARC. See Teradata Archive/Recovery
Archive/Recovery. See Teradata Archive/Recovery
ASE, accounting 184
Attachment Methods

.NET Data Provider for Teradata 59
CLIv2 61
ODBC 60

Attachment methods
channel 23
CLIv2 60
network 23
Teradata Database

JDBC 60
Authentication 149

external 152
user 152

Authorization 149
user 154

Automatic privileges 150

B
BAR

encryption 156
NetBackup Extension for Teradata 32
Tivoli Storage Manager Teradata Extension 32

Basic Teradata Query. See BTEQ
BEGIN LOGGING 158
Boardless BYNET 40
BTEQ 28, 170
BYNET

boardless 40
function 40
inter-network communication 39
multiple 56

Index

196 Introduction to Teradata

C
C Preprocessor 27
C, application development language 96
Call-Level Interface version 2. See CLIv2
Channel-attached clients 153
Channel-attached systems

multiple connections 56
TDP 62

Character sets
restrictions on creation of KANJI1 objects 138
See also International language support

Child table 118
CICS 27
Client platforms 26
Cliques

definition 41
disk arrays 41
hardware fault tolerance 57
vproc migration 57

CLIv2 27, 60, 61
Clusters

AMP 44
fault tolerance 44

COBOL Preprocessor 27
COBOL, application development language 96
Column partitioning 115
Columns

attributes 35
identity 116

Command-line logon 153
Communications interfaces

TDP 62
Concurrency 123
Concurrency control

2PC and 127
locks 125
transactions 123

Confidentiality
definition 156

Connection pools 153
Constraints

normal forms and 117
table 36

Constructor methods 76
CREATE PROCEDURE statement 71
CREATE USER 149
Credentials 149
Cursors 92

definition 92
Preprocessor2 92
SQL statements related to 92
stored procedures 92

Customer Information Control System. See CICS

D
Data attributes, summary of 89
Data Control Language. See DCL
Data Definition Language. See DDL
Data Dictionary

compatibility system views 134
DBC.AMPUsage table 184
SQL statements and 134
Unicode system views 134
views 133

Data distribution
hashing 116
indexes and 109

Data encryption 156
Data export utilities

Teradata FastExport 168
Data load utilities

controlling the number of sessions 176
Teradata FastLoad 169
Teradata MultiLoad 169
Teradata TPump 169
throttling 176

Data management
active sessions 171

Data Manipulation Language. See DML
Data protection 156
Data type attributes 89
Data type phrase 89
Data types

data type phrase and 89
UDT 76

Data warehouse
active data warehouse 17
definition 17

Database
management tools 31, 181
space allocation 77

Database access, monitoring 157
Database Management and Query Analysis Tools 30
Database object use count 147
Database recovery 127
Database security 149
Database window

server software 25
Databases

database object use count 147
definition 77

DBQAT
database object use count 147

DCL examples 83
DDL

CREATE PROCEDURE 71
examples 82

Index

Introduction to Teradata 197

REPLACE PROCEDURE 71
Derived tables 67
Directory Management of Users

supported directories 156
Directory-based users 150
Disk arrays

LUNs 40
RAID 40
RAID1 56

Dispatcher
function 45
operation 46

Distinct UDTs 76
DML examples 83
Down AMP

journal 55
recovery 127

E
Embedded SQL applications 95
END LOGGING 158
Error logging tables 68
Event log 157
Event-based performance management 176
EXPLAIN Request Modifier

definition 100
use 100

Explicit privileges 150
Extended language support. See International language

support
External authentication 152
External roles 151
External stored procedures 71

C and C++ 71
CREATE PROCEDURE 71
Java 71
usage 71

F
Fallback table 52
FastExport. See Teradata FastExport
FastLoad. See Teradata FastLoad
Fault tolerance

AMP clusters 53
clusters 44
fallback tables 52
hardware 56
software 51
Table Rebuild utility 56
vproc migration 51

Ferret utility 172
Filters 174
Foreign key. See referential integrity 110

Formats, logon 153
Full table scans, strengths and weaknesses 114
Functions

aggregate 91
definition 90
ordered analytical 91
scalar 91

G
Gateway Global utility 171
Generator, function 44
Global temporary tables 68
Global temporary trace tables 68
GRANT 155
GUI logon 153

H
Hardware fault tolerance

cliques 57
hot swap 57
multiple BYNETS 56
multiple channel and network connections 56
redundant power supplies and fans 56
server isolation 56

Hash indexes
strengths and weaknesses 115

Hashing
data distributing 116
primary index 116
secondary index 116

Host Utility Console. See HUTCNS
Host Utility lock. See HUT lock
Hot standby nodes

definition 42
function 42

Hot swap
components 57
definition 57

HUT lock
Teradata Archive/Recovery and 125

HUTCNS 27

I
IBM IMS 27
Identity column

column attribute 116
unique row number generator 116

Implicit privileges 150
IMS. See IBM IMS
Index Wizard 144

Index

198 Introduction to Teradata

Indexes
join 112
secondary 111
strengths and weakness 113
types of 109
uses 109

Inherited privileges 150
Instance methods 75
Integrity

definition 156
International character set support. See International

language support
International language support

character data translation 138
character sets, internal 138
compatible languages 140
extended support 141
external character sets 137
internal character sets 137
Japanese mode 139
language support modes 139
LATIN character set 140
object names 139
session charset 138
standard mode 139
standard support mode 140
user data 139
user data, default character set 140

J
JDBC 27, 60
JMS Access Module 170
Join indexes

covering 112
multitable 112
multitable, partially covering 112
partially covering 112
single table 112
strengths and weaknesses 114

Joins
SELECT statement and 86

Journals
down AMP 55
permanent 55
transient 55

K
KANJI1

restriction on creation of objects 138

L
Load utilities. See Data load utilities

Locks 125
HUT 125

Logging database activity 157
Logical Units. See LUNs
Logon

command-line 153
controls 154
formats 153
GUI 153
logon string operands 164
sessions 163

LUNs
RAID 40

M
Macros

definition 71, 96
multi-user 71
processing 72
resource usage 184
single-user 71
SQL statements and 96, 97
SQL statements related to 71
use 97

Maintenance utilities 164
See also Utilities

Management software
server software 25

Massively Parallel Processing. See MPP
MDS 31, 189
MDTP
Mechanism, security 149, 153
Message integrity 149, 156
Meta Data Services. See MDS
Metadata

definition 187
types of 187

Methods
constructor 76
instance 75

Micro Teradata Director Program. See MTDP
Middle-tier application

authorization 155
logon 153

Monitoring database activity 157
MOSI 61
MPP

architecture 39
hardware platform 39

MTDP 60
Multilevel partitioned primary index 116
MultiLoad. See Teradata MultiLoad
Multitable join indexes 112

Index

Introduction to Teradata 199

partially covering 112
strengths and weaknesses 114

N
Named Pipes Access Module 29, 170
NetBackup

Extension for Teradata 32
Network-attached systems

multiple connections 56
Nonunique primary index. See NUPI
Nonunique secondary index. See NUSI
Normal forms

1NF 117
2NF 117
3NF 117
definition 117
first 117
second 117
third 117

Normalization
normal forms 117
purpose 117

Novell eDirectory 157
NUPI, strengths and weaknesses 114
NUSI 111

strengths and weaknesses 114

O
ODBC 27, 60
OLE DB Access Module 29, 170
Open APIs 174
Optimizer

function 44
SQL request implementation 46

Ordered analytical functions 91

P
Parallel Database Extensions. See PDE
Parallel Upgrade Tool. See PUT
Parent key 118
Parent table 118
Parser 44

PE element 44
request processing 45

Parsing Engine. See PE
Password

controls 154
format 154

PDE 48
MPP system enabling 48
server software 25
vprocs 48

PE 44
dispatcher 45
generator 44
migration 41
optimizer 44
parser 44
request processing 45
SELECT statement processing 48
session control 45
vproc migration 51

Performance management 174, 176
Performance monitoring 184
Performance monitoring. See System performance

monitoring
Permanent database users 149
Permanent journals 55
Permanent tables 68
PL/I

application development language 96
Preprocessor 28

PM/API 103
Preprocessor2

application development 96
C 27
COBOL 27
cursors 92
PL/I 28

Primary index
compared to primary key 111
hashing 116
multilevel partitioned 116
secondary index and 112

Primary key 110
compared to primary index 111
referential integrity and 118
see also referential integrity

Priority Scheduler 173
Privileges 149, 150
Processor node 39
Profiles 151

security 151
Proxy user 150, 155

roles for 151
PUT

installation and 26
operational modes 26

Q
QCD 143, 144, 145

Teradata Visual Explain 143
QCF 143, 144, 145
Queries

strategic 17

Index

200 Introduction to Teradata

tactical 18
Teradata SQL Assistant 177

Query Analysis Tools. See Database Management and Query
Analysis Tools

Query Bands 174
Query Capture Database. See QCD
Query Capture Facility. See QCF
Query Configuration utility 171
Query plan 145
Query Session utility 171
QUERY STATE command 182
Queue tables 68

R
RAID

LUNs 40
RAID1 56
storage technology 40

Recovery 126
database 127
down AMP 127
single transaction 126
transaction 126

Recursive query 90
Referenced table (parent) 119
Referencing table (child) 119
Referential integrity 110

benefits of 119
referenced tables 119
referencing tables 119
terminology 118

Referential integrity terminology
child table 118
foreign key 118
parent key 118
parent table 118
primary key 118

Relational database
definition 35
relational model and 35
set theory and 35
set theory terminology 35

Relational model
relational databases and 35
set theory and 35

REPLACE PROCEDURE statement 71
Request processing 45
Resource Usage. See ResUsage
Restarts, system 126
ResUsage 182

categories of data 183
collection rate control 183
macros 184

monitoring 174, 182
Roles 151

for directory users (See External roles)
security 151

Rows
definition of 36

S
SASL protection 156
Scalar functions 91
Secondary index 111

hashing 116
nonunique 111
primary index and 112
unique 111

Security
concepts 149
policy 158
threats 157

SELECT statement
cursor declaration 92
joins and 86
options 86
processing 47
set operators 86

Session
charset 138
control 45
establishing 163
logon 163
management 163

Set operators
SELECT statement and 86

Set theory
relational databases and 35
relational model and 35

Set theory terminology
relation 35
tuple 35

Single transaction recovery 126
Single-table join indexes 112

strengths and weaknesses 115
SMP

architecture 39
boardless BYNET 40
hardware platform 39

Space allocation 77
databases 77

Sparse join indexes
strengths and weaknesses 115

SQL
aggregate function 91
cursors 92

Index

Introduction to Teradata 201

data control language statements 83
data definition language statements 82
Data Dictionary statements 134
data manipulation language statements 83
embedded 95
EXPLAIN 100
macros 96, 97
non-ANSI compliant development 81
ordered analytical function 91
relational databases and 81
scalar functions 91
SELECT statement processing 47
statement execution 85
statement punctuation 85
statement syntax 84
statements related to macros 71
statements, types of 81
stored procedure statements 99
stored procedures 69, 98
Teradata SQL 81
transaction statements 124, 125
UDFs 73

SQL Assistant 31, 177
SQL Stored procedures

SQL statements and 98
SSL protection 156
Storage management utilities 31
Stored procedures

benefits 69
cursors 92
definition 69
elements 70
external 71
SQL statements and 99
use 69

Strategic queries 17
Structured UDTs 76
Studio 31, 178
Sun Java System Directory Server 157
Symmetric Multi-Processing. See SMP
System administration

performance monitoring 184
session management 163
space allocation 77
utilities 164

System Emulation Tool. See Teradata SET
System Management Facility 185
System monitoring

resource usage 182
system status 182
Teradata Database Window 182

System performance monitoring
performance monitoring 184
system management facility 185

TDPTMON 185
System resource management 172

Priority Scheduler 173
Teradata ASM 173
Teradata WA 177
Viewpoint 174

System restarts 126
System status

configuration 182
states 182

System views, security-related 158

T
Table

derived 67
error logging 68
global temporary 68
global temporary trace 68
permanent 68
queue 68
types 67, 68
volatile 68

Table Rebuild utility 56
Tables

child 118
constraints 36
DBC.AMPUsage 184
definition of 36
fallback 52
parent 118
referenced table (parent) 119
referencing (child) 119
relations 35

Tactical queries 18
Target Level Emulation. See TLE
TDP 27

channel-attached systems 62
definition 62
functions 62

tdpid 153
TDPTMON 185
Teradata

interface to 170
Teradata Access Modules 29
Teradata active data warehouse

active access 18
active availability 19
active enterprise integration 19
active events 19
active load 18
active workload management 19

Teradata Administrator 30
Teradata Analyst Pack 30

Index

202 Introduction to Teradata

Teradata Index Wizard 143
Teradata SET 143
Teradata Statistics Wizard 143
Teradata Visual Explain 143

Teradata architecture
BYNET 39
cliques 41
disk arrays 40
hot standby nodes 42
MPP 39
processor node 39
SMP 39
vprocs 42

Teradata Archive/Recovery 31
controlling the number of sessions 176
HUT locks 125
using throttle limits 176

Teradata ASM 19, 29, 173
Teradata Call-Level Interface, Version 2. See CLIv2
Teradata Data Connector 27, 29
Teradata Database

ANSI SQL 25, 81
architecture

hardware 39
software 39

as single data store 24
attachment methods 59

.NET Data Provider for Teradata 59
CLIv2 60, 61
JDBC 60
ODBC 60

capabilities 24
character support 23
CLIv2 62
database window 25
designing 23
management software 25
methods of attachment 23
PDE 25
PUT installation software 26
referential integrity 118
status 182
Teradata Gateway 25
Teradata mode transactions 125
Teradata SQL 25, 81
third-party software 103

Teradata Database Query Analysis Tools. See DBQAT
Teradata Database Window 49
Teradata Director Program User Transaction Monitor. See

TDPTMON
Teradata Director Program. See TDP
Teradata FastExport 28, 168

controlling the number of sessions 176
using throttle limits 176

Teradata FastLoad 28, 169
controlling the number of sessions 176
using throttle limits 176

Teradata file system
function 49

Teradata Gateway
server software 25

Teradata Index Wizard 30
demographics 145
Teradata Visual Explain and 144
use 144

Teradata mode
transactions 125

Teradata MultiLoad 28, 169
controlling the number of sessions 176
using throttle limits 176

Teradata Parallel Transporter API. See TPTAPI
Teradata Parallel Transporter. See Teradata PT
Teradata PT 28
Teradata PTAPI 28
Teradata Query Scheduler 30
Teradata recursive query 90
Teradata security 151

external authentication 152
logons 153
policy, defining 158
policy, publishing 158
roles 151
user authentication 152
user authorization 154

Teradata SET 30
client support for 144
TLE and 144
use 144

Teradata solution
operational intelligence 18
strategic intelligence 18

Teradata SQL Assistant 31, 177
Teradata Studio 31, 178
Teradata System Emulation Tool. See Teradata SET
Teradata Tools and Utilities

.NET Data Provider for Teradata 26
API for network-attached clients 26
BTEQ 28
C Preprocessor 27
channel-attached clients 27
CICS 27
client platforms 26
CLIv2 27
COBOL Preprocessor 27
Database Management and Query Analysis Tools 30
Host Utility Console 27
IBM IMS 27
installation guides for 26

Index

Introduction to Teradata 203

JDBC 27
Load and export utilities 28
ODBC 27
PL/I Preprocessor 28
storage management utilities 31
TDP 27
Teradata Access Modules 29
Teradata Active System Management 29
Teradata Administrator 30
Teradata Archive/Recovery 31
Teradata Data Connector 27
Teradata FastExport 28
Teradata FastLoad 28
Teradata Index Wizard 30
Teradata MultiLoad 28
Teradata Parallel Transporter 28

API 28
Teradata Query Scheduler 30
Teradata SQL Assistant 31
Teradata System Emulation Tool 30
Teradata TPump 28
Teradata Visual Explain 30
Teradata Workload Analyzer 29

Teradata TPump 28, 169
Teradata VE 30, 143

QCD 143
Teradata Index Wizard and 144

Teradata Viewpoint 31, 181
Teradata Visual Explain. See Teradata VE
Teradata WA 29, 174
Teradata Workload Analyzer. See Teradata WA
Third-party software

Teradata Database, compatible with 103
Throttles 174
Tivoli Storage Manager Teradata Extension 32
TLE 146

Teradata SET and 146
TLS protection 156
TPump. See Teradata TPump
Transactions

2PL 123
ANSI mode 124
ANSI mode, rollback 124
consistency 127
control using 2PL 123
definition 123
recovery 126
serializability 123
SQL statements and 124, 125
Teradata mode 125
Teradata mode, rollback 125

Transient journals 55
Triggers

definition 72

firing 73
types of 72
use 73

Two-phase commit protocol 127
Two-Phase Locking. See 2PL

U
UDFs

aggregate function 74
scalar function 74
SQL 73
table function 74
types 74
usage 75

UDM
constructor methods 76
instance methods 75

UDT data types 76
distinct 76
dynamic 76
structured 76

Unique primary index. See UPI
Unique secondary index. See USI
Unload utilities. See Data export utilities
UPI 113
User authentication 152
User authorization 154
User-defined functions. See UDFs
User-defined method. See UDM
Users 149

definition 77
space allocation 77
types 149

USI 111, 114
Utilities

administrative 164
Ferret 172
Gateway Global 171
maintenance 164
management 176
Priority Scheduler 173
Query Configuration 171
Query Session 171
session configuration rules 176
Teradata FastExport 168
Teradata FastLoad 169
Teradata MultiLoad 169
Teradata TPump 169

Utility management 176

V
Viewpoint 29, 31, 181
Views

Index

204 Introduction to Teradata

base tables 69
benefits 69
DBC.AMPUsage 184
definition 68
restrictions 69
users 134

Virtual processors 42
Virtual processors. See Vprocs
Visual Explain. See Teradata VE
Volatile tables 68
Vprocs

cliques 57
definition 42
function 42
hardware fault tolerance 57
maximum per system 43
migration 51
PDE 48
software fault tolerance 51
types 42

W
WAL 172
Web-based tools 31, 181
WebSphere MQ Access Module 29, 170
Workload Analyzer. See Teradata WA
Workload definitions 174
Workload management 172, 174

Archive/Recovery utility 176
data load utilities 176
Priority Scheduler 173
Teradata ASM 173
Teradata WA 177
Write Ahead Logging 172

Workload Management API 103
Write Ahead Logging. See WAL

	Preface
	Purpose
	Audience
	Supported Software Releases and Operating Systems
	Prerequisites
	Changes to This Book
	Product Safety Information
	Additional Information
	Teradata Database Optional Features

	Table of Contents
	Chapter 1 Introduction: The Data Warehouse
	The Active Data Warehouse
	Strategic Queries
	Tactical Queries

	Teradata Active Solutions
	Active Load
	Active Access
	Active Events
	Active Workload Management
	Active Enterprise Integration
	Active Availability

	Section 1 Teradata Overview
	Chapter 2 Teradata Database and Tools
	Teradata Database Design and Architecture
	Attachment Methods
	Character Support
	Single Data Store
	Teradata Database Capabilities
	Teradata Database Software
	Software Installation

	Teradata Tools and Utilities
	Supported Platforms
	Installation Guides for Teradata Tools and Utilities
	Application Programming Interfaces
	Mainframe-Attached Connectivity Tools
	Language Preprocessors
	Load and Unload Utilities
	Teradata Active System Management
	Teradata Analyst Pack
	Teradata Database Management Tools
	Teradata Viewpoint
	Teradata Meta Data Services
	Storage Management Utilities

	Chapter 3 Teradata Database Model
	Relational Model
	Relational Database
	Set Theory and Relational Database Terminology

	Tables, Rows, and Columns
	Table Constraints
	Rows and Columns

	Section 2 Teradata Database Architecture
	Chapter 4 Teradata Database Hardware and Software Architecture
	SMP and MPP Platforms
	The BYNET
	Boardless BYNET

	Disk Arrays
	Logical Units
	Vdisks

	Cliques
	Hot Standby Nodes
	Virtual Processors
	Access Module Processor
	AMP Clusters
	Parsing Engine

	Request Processing
	The Dispatcher
	The AMPs
	Example: SQL Request

	Parallel Database Extensions
	Teradata Database File System
	Teradata Database Window
	How Database Window Communicates with Teradata Database
	Running DBW

	Teradata Generic Security Service

	Chapter 5 Teradata Database RASUI
	Software Fault Tolerance
	Vproc Migration
	Fallback Tables
	AMP Clusters
	One-Cluster Configuration
	Smaller Cluster Configuration
	Journaling
	Backup Archive and Recovery
	Table Rebuild Utility

	Hardware Fault Tolerance

	Chapter 6 Client Communication with Teradata Database
	Workstation Attachment Methods
	.NET Data Provider for Teradata
	Java Database Connectivity
	Open Database Connectivity
	Teradata CLIv2 for Workstation-Attached Systems

	Mainframe Attachment Method
	Teradata CLIv2 for Mainframe-Attached Systems
	Teradata Director Program
	Teradata Database Server

	Section 3 Using Teradata Database
	Chapter 7 Database Objects, Databases, and Users
	Tables
	Views
	Creating Views
	Benefits of Using Views
	Restrictions on Using Views

	SQL Stored Procedures
	Using SQL Stored Procedures
	Elements of an SQL Stored Procedure

	External Stored Procedures
	Macros
	SQL Statements Related to Macros
	Single-User and Multi-User Macros
	Macro Processing

	Triggers
	Types of Triggers
	When to Fire Triggers
	ANSI/ISO-Specified Order
	Using Triggers

	User-Defined Functions
	SQL UDFs
	External UDFs

	User-Defined Methods
	Instance Methods
	Constructor Methods

	User-Defined Types
	Databases and Users
	Creating Databases and Users
	Example: Creating a Finance and Administration Database

	Chapter 8 SQL
	Teradata SQL
	Using SQL
	Types of SQL Statements
	Data Definition Language Statements
	Data Control Language Statements
	Data Manipulation Language Statements

	SQL Statement Syntax
	Statement Execution
	Statement Punctuation
	The SELECT Statement
	SELECT Statement and Set Operators
	SELECT Statement and Joins

	SQL Data Types
	Data Types
	Data Type Phrase
	Data Type Attributes

	Teradata Database Recursive Query
	SQL Functions
	Scalar Functions
	Aggregate Functions
	Ordered Analytical Functions

	Cursors

	Chapter 9 SQL Application Development
	Client Applications
	Embedded SQL Applications
	Using Embedded SQL
	Supported Languages and Platforms

	Macros as SQL Applications
	SQL Used to Create a Macro
	Macro Usage
	SQL Used to Modify a Macro
	SQL Used to Delete a Macro

	SQL Stored Procedures as SQL Applications
	SQL Used to Create Stored Procedures
	SQL Stored Procedure Example
	SQL Used to Execute a Stored Procedure
	DDL Statements with Stored Procedures

	The EXPLAIN Request Modifier
	How EXPLAIN Works
	Benefits of Using EXPLAIN
	Simple EXPLAIN Example

	Third-Party Development
	Compatible Third-Party Software Products
	Workload Management Application Programming Interface

	Chapter 10 Scripting and Language Support
	About Scripting Capabilities
	Benefits

	About Using R with Teradata Database

	Chapter 11 Data Distribution and Data Access Methods
	Teradata Database Indexes
	Primary Indexes
	Secondary Indexes
	Join Indexes
	Comparison of Index Types

	Partitioned Tables
	Multilevel Partitioned Tables

	Hashing
	Identity Columns
	Normalization
	Normal Forms
	First, Second, and Third Normal Forms

	Referential Integrity
	Referential Integrity Terminology
	Referencing (Child) Table
	Referenced (Parent) Table
	Importance of Referential Integrity

	Chapter 12 Concurrency Control and Transaction Recovery
	About Concurrency Control
	Transactions
	Definition of a Transaction
	Definition of Serializability

	ANSI Mode Transactions
	Teradata Mode Transactions
	Locks
	Overview of Teradata Database Locking

	Host Utility Locks
	Recovery and Transactions
	System and Media Recovery
	System Restarts
	Transaction Recovery
	Down AMP Recovery
	Down Subtable Recovery

	Two-Phase Commit Protocol

	Chapter 13 The Data Dictionary
	Data Dictionary Views
	Users of Data Dictionary Views

	SQL Access to the Data Dictionary

	Chapter 14 International Language Support
	Character Representation
	External and Internal Character Sets
	Character Data Translation
	What Teradata Database Supports

	Teradata Database Character Data Storage
	Internal Server Character Sets
	User Data
	Object Names in the Data Dictionary

	Language Support Modes
	Overriding the Default Character Set for User Data

	Standard Language Support Mode
	LATIN Character Set
	Compatible Languages

	Japanese Language Support Mode
	Advantages of Storing User Data Using UNICODE
	User DBC Default Character Set

	Extended Support

	Chapter 15 Query and Database Analysis Tools
	Teradata Visual Explain
	Teradata System Emulation Tool
	Teradata Index Wizard
	Demographics

	Query Capture Facility
	Target Level Emulation
	Database Query Log
	Database Object Use Count

	Chapter 16 Teradata Database Security
	Users
	Permanent Database Users
	Directory-based Users
	Proxy Users

	Database Privileges
	Directly Granted Privileges
	Roles
	External Roles
	Profiles

	User Authentication
	Authentication Method
	Logon Format
	Logon Controls
	Password Format Requirements
	Password Controls

	User Authorization
	Authorization of Permanent Database Users
	Authorization of Directory-Based Users
	Authorization of Middle-tier Application Users

	Data Protection
	Directory Management of Users
	Supported Directories

	Database Security Monitoring
	Security Monitoring

	Defining a Security Policy
	Publishing a Security Policy

	Section 4 Managing and Monitoring Teradata Database
	Chapter 17 System Administration
	Session Management
	Session Requests
	Establishing a Session
	Logon Operands

	Administrative and Maintenance Utilities

	Chapter 18 Database Management Tools and Utilities
	Data Archiving Utilities
	Teradata Parallel Transporter
	Teradata Parallel Transporter Application Programming Interface
	Standalone Data Load and Unload Utilities
	Teradata FastExport
	Teradata FastLoad
	Teradata MultiLoad
	Teradata Parallel Data Pump

	Access Modules
	Basic Teradata Query
	Session and Configuration Management Tools
	System Resource and Workload Management Tools and Protocols
	Write Ahead Logging
	Ferret Utility
	Priority Scheduler
	Teradata Active System Management

	Teradata SQL Assistant
	Teradata Studio

	Chapter 19 System Monitoring
	Teradata Viewpoint
	QUERY STATE Command
	Resource Usage Monitoring
	Resource Usage Data Reporting
	How to Control Logging of ResUsage Data
	ResUsage Tables and Views
	ResUsage Data Categories
	ResUsage Macros
	Summary Mode

	Performance Monitoring
	Account String Expansion
	The TDPTMON
	System Management Facility

	Chapter 20 Teradata Meta Data Services
	About Metadata
	Types of Metadata
	Teradata Meta Data Services
	Creating Teradata Meta Data Repository
	Connecting to Teradata Meta Data Repository

	Glossary
	Index

